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The run-and-tumble (RT) dynamics followed by bacterial swimmers gives rise first to a ballistic
motion due to their persistence, and later, through consecutive tumbles, to a diffusive process.
Here we investigate how long it takes for a dilute swimmer suspension to reach the diffusive regime
as well as what is the amplitude of the deviations from the diffusive dynamics. A linear time
dependence of the mean-squared displacement (MSD) is insufficient to characterize diffusion and
thus we also focus on the excess kurtosis of the displacement distribution. Four swimming strategies
are considered: (i) the conventional RT model with complete reorientation after tumbling, (ii) the
case of partial reorientation, characterized by a distribution of tumbling angles, (iii) a run-and-
reverse model with rotational diffusion, and (iv) a RT particle where the tumbling rate depends on
the stochastic concentration of an internal protein. By analyzing the associated kinetic equations
for the probability density function and simulating the models, we find that for models (ii), (iii), and
(iv) the relaxation to diffusion can take much longer than the mean time between tumble events,
evidencing the existence of large tails in the particle displacements. Moreover, the excess kurtosis
can assume large positive values. In model (ii) it is possible for some distributions of tumbling angles
that the MSD reaches a linear time dependence but, still, the dynamics remains non-Gaussian for
long times. This is also the case in model (iii) for small rotational diffusivity. For all models,
the long-time diffusion coefficients are also obtained. The theoretical approach, which relies on
eigenvalue and angular Fourier expansions of the van Hove function, is in excellent agreement with
the simulations.

I. INTRODUCTION

There are billions of different species of bacteria on
Earth [1]. Because of adaption, their life and swimming
styles vary across a multitude of distinct environments
and conditions [2–6]. The vast majority have never been
researched, and are thus dubbed Microbial Dark Mat-

ter [7]. On the other hand, the E. coli bacteria continue
to be extensively studied. Their motion is usually mod-
eled as a run-and-tumble (RT) dynamics. In fact, their
flagella can rotate and propel the cell body in a “run”
mode which can suddenly terminate whenever some of
them reverse direction [8]. This leads to a quick reori-
entation mode called “tumble”—which is then followed
by another run—with an average tumbling angle of ap-
proximately 70◦ [9]. In the case of marine bacteria, up to
70% of them are thought to have a distribution of tum-
bling angles peaked around 180◦ instead [10]. Examples
include S. putrefaciens and P. haloplanktis [11], and thus
in this case we can speak of a run-and-reverse motion.
In his seminal work [12, 13], Berg showed that bacte-

ria and other microswimmers performing run-and-tumble
motion develop, in the long term, a diffusive motion.
If V is the characteristic run velocity and ν0 the tum-
ble rate (or rotational diffusion coefficient, in the case
of mutant swimmers that tumble only very rarely), the
diffusion coefficient scales as D ∼ V 2/ν0, with a pref-
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actor that depends on the tumble properties. For ex-
ample, in the case of three-dimensional Markovian swim-
mers, i.e., each tumble is uncorrelated from previous ones
and tumble events are distributed as a Poisson process,
D = V 2/[3ν0(1 − 〈cos θs〉)], where θs is the tumbling (or
“scattering”) angle between the pre- and post-tumble di-
rectors [12, 13]. In the case of E. coli, the data in Ref. [12]
gives 〈cos θs〉 ≃ 0.33, ν0 ≃ 1.2 s−1, V ≃ 14.2µm/s, which
results in D ≃ 87µm2/s [14]. The diffusive description
of bacterial spreading is extensively used because of its
simplicity, which allows, for example, to couple this ran-
dom dynamics with hydrodynamic flows and with the
diffusion of nutrients and other chemicals, or to consider
complex geometrical restrictions (for recent applications,
see [15–18]). Also, it is possible to include cell division
and death by employing reaction–diffusion equations, as
it is common in chemical and environmental engineering
to describe the spatiotemporal spreading of bacteria [19–
21]. Finally, nonlinear effects as a density-dependent
diffusion coefficient are key to describe motility-induced
phase separation [22, 23]. At short times, on the other
hand, the swimmers’ persistent motion gives rise to a
ballistic motion. Näıvely, the crossover time Tcross be-
tween the ballistic and diffusive regimes is expected to
be relatively small and to scale as ν−1

0 . In this article
we thoroughly show that, depending on tumbling strate-
gies and parameters, the prefactor of this scaling can be
quite large and thus the non-diffusive regime can per-
sist for long times. This can happen even if the mean-
squared displacement (MSD) reaches a linear time de-
pendence relatively quickly since having MSD ∼ t is a
necessary but not sufficient condition for being in the dif-
fusive regime. Note that, associated with Tcross, there is
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a spatial scale Lcross =
√
MSD(Tcross) where the diffusive

description is not valid. Simulations of active Brownian
particles (ABPs) with large values of Lcross show that for
lengths of this order a non-diffusive regime indeed arises
[16].
Our motivation is to quantitatively study the disper-

sal process of bacteria. With that purpose in mind, we
consider several run-and-tumble models which are dis-
tinct in swimming strategy and compare how slowly these
microswimmers approach the diffusive regime. We also
provide the spreading dynamics for temporal and spa-
tial scales smaller than Tcross and Lcross, respectively.
The swimming strategies considered here are different not
only in terms of the distribution of tumbling angles but
also in whether or not the tumbling rate remains constant
over time. In particular we consider the Tu–Grinstein
model [24], where the concentration of a phosphorylated
internal protein named CheY-P changes stochastically
with time [25], affecting the tumbling rate exponentially.
Previous studies have discussed departures from diffusion
by using the MSD for run-and-tumble swimmers [26] and
through the excess kurtosis of the displacement distribu-
tion for ABPs [27–29]. More recently, Ref. [30] has stud-
ied the non-Gaussian behavior of interacting run-and-
tumble particles in the context of active polymer chains
and lattice models, where the authors considered sim-
pler tumbling processes and employed analytical meth-
ods which are based on solving the associated Langevin
equation. In the case of the present work, our analy-
sis is done by performing simulations and derivations of
both the MSD and the excess kurtosis for the different
RT models, aiming to appropriately determine how long
the system takes to reach the diffusive regime. Further-
more, the analytical part is carried out from associated
kinetic equations, with Fokker-Planck terms to describe
rotational diffusion and the evolution of the protein con-
centration [31] coupled with a Lorentz term to account
for the tumbling [32–34]. The simulations are essentially
numerical implementations of the stochastic rules of mo-
tion, i.e., Langevin dynamics. In all cases, we will con-
sider two spatial dimensions.
The paper is organized as follows. Section II brings our

review and further development of general theoretical as-
pects that will be used throughout the paper. In Section
III we consider three distinct swimming strategies with
constant tumbling rate. Section IV brings a thorough
analysis of the case with stochastic tumbling rate. Our
conclusions and a discussion are presented in Section V.
Finally, the appendix gives technical details about the
simulations.

II. GENERAL THEORETICAL ASPECTS

We start by presenting commonly used model-
independent expressions which will be essential in the
following sections. From these results we will then derive
a general framework to more clearly extract how slowly

the diffusive regime is approached. Consider a single bac-
terium, initially located at the origin with random orien-
tation and internal state. The object of study is ρ(r, t),
the bacterial density at vector position r at time t ob-
tained by averaging over different realizations and initial
states. For this initial condition [ρ(r, 0) = δ(r)] the bac-
terial density is called the van Hove function [35]. The
MSD is

〈r2(t)〉 =
∫

dr r2ρ(r, t). (1)

When at long times the diffusive regime is achieved, the
density obeys

∂ρ

∂t
= D∇2ρ, (2)

where D is the diffusion coefficient, with solution in two
spatial dimensions

ρ(r, t) =
1

4πDt
e−r2/4Dt. (3)

Equation (3) implies that 〈r2(t)〉 ∼ t and the diffusion
coefficient is obtained with Einstein’s relation [36],

D = lim
t→∞

〈r2(t)〉
4t

. (4)

Calculations become easier to perform through the def-
inition of

ρ̃(k, s) ≡
∫ ∞

0

dt e−st

∫
dr e−ik·rρ(r, t) (5)

as the Laplace–Fourier transform of ρ(r, t), where k is the
Fourier wave vector and s is the Laplace complex vari-
able. Similarly to what is derived in Ref. [35], the second
spatial moment (MSD) and the fourth spatial moment in
2D can be calculated, respectively, from

〈r2(t)〉 = L−1

{
−2

∂2

∂k2
ρ̃(k, s)

∣∣∣∣
k=0

}
(6)

and

〈r4(t)〉 = L−1

{
8

3

∂4

∂k4
ρ̃(k, s)

∣∣∣∣
k=0

}
, (7)

where L−1 denotes the inverse Laplace transform opera-
tor used to bring the result back to the time t domain.
The corresponding long-time diffusion coefficient D can
be expressed as [35]

D = lim
ω→0

lim
k→0

ω2

k2
Re [ρ̃(k, iω)] , (8)

where ω is real, k ≡ |k|, and Re(ρ̃) denotes the real part
of ρ̃.
In the diffusive regime, not only the MSD must grow

linearly, but also the displacement distribution must be
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Gaussian. In order to measure the non-Gaussianity of
a particle’s displacement distribution, i.e., a departure
from the diffusive regime, we will be interested in the
excess kurtosis, defined in 2D by

γ(t) ≡ 〈r4〉
〈r2〉2 − 2. (9)

The excess kurtosis is dimensionless and vanishes for a
Gaussian distribution of displacements r. For isotropic
distributions, negative values of γ indicate that the distri-
bution decays faster than a Gaussian for large displace-
ments, while positive values implies that the distribu-
tion presents heavy tails. Notice that for one and three
dimensions, one would need to subtract 3 and 5/3, re-
spectively, instead of 2 in Eq. (9). At short times, when
the motion is ballistic, 〈r4〉 equals 〈r2〉2 and, therefore,
γ(t → 0) = −1, as it is verified for all models presented
in the next sections.
At instances where we give explicit expressions for the

second and fourth moments, we will omit similar expres-
sions for the excess kurtosis since they are lengthy and
provide no further information. Nevertheless, expressions
for their limits as well as their plots will be given and dis-
cussed.

A. Extracting the excess kurtosis tail

In general, we will see in the next sections that 〈r2〉 and
〈r4〉 approach their asymptotic regimes with exponential
and subdominant polynomial corrections. As a result,
the excess kurtosis (9) approaches zero as

γ(t) ∼
∑

n

ant
−βne−µnt, (10)

with particular sets of coefficients an, exponents βn ≥ 0,
and rates µn ≥ 0 that depend on the model under con-
sideration. We are looking for the slow decay modes to
the diffusive regime, which can appear when µn and βn

are small or zero. From the definition (9), exponential
factors can come from either the second or fourth mo-
ment. For example, for the second moment, we will see
in the next sections that

〈r2(t)〉 ∼ 4Dt+
∞∑

n=0

cnt
λne−µnt, (11)

which in Laplace space gives for small s

〈r̃2(s)〉 ∼ 4D

s2
+

∞∑

n=0

cnλn!

(s+ µn)1+λn

(12)

and similarly for 〈r̃4(s)〉. Hence, the exponents µn

are recognized as minus the poles of ∂2
k ρ̃(k, s)|k=0 and

∂4
k ρ̃(k, s)|k=0, and the power exponents λn are associated

with pole multiplicity. The slowest decaying mode will

be identified as the smallest µn. For the majority of the
models considered in this article, the long-time behavior
of excess kurtosis can be explicitly obtained in real time.
However, for the last model, we will need to extract it
from Laplace space, as there is no closed expression for
γ(t).

III. CONSTANT TUMBLING RATE

We will now examine three separate limiting cases of
the well known Markovian run-and-tumble model. Con-
sider a particle moving in two spatial dimensions, for
which tumbling occurs at a constant rate ν0. That is,
the random walker moves with a constant speed V along
a body-axis n̂ = (cos θ, sin θ) that can change abruptly at
a tumble event, suddenly decorrelating its orientation—
in the case of E. coli the duration of the tumble is about
ten times smaller than the duration of the runs [13] and
so it is taken as zero here. The new random orientation
is chosen with a kernel W (θ, θ′) that sets the probability
that the swimmer changes between two specified orien-
tation angles θ and θ′ at a tumble. We will assume that
the space is isotropic, hence, the kernel only depends on
the angle difference, W (θ, θ′) = w(θs), where w is an
even periodic function and θs ≡ θ′ − θ is the tumbling
angle. In addition to that, the model’s particle is sub-
ject to thermal rotational diffusion with coefficient Dr.
Thus, in the meantime between two consecutive tumbles
the orientation will change slowly and diffusively. The ki-
netic equation for the distribution function f = f(r, θ, t)
is [32–34, 37]

∂f

∂t
+V n̂·∇f = ν0

∫ 2π

0

w(θ−θ′)f(r, θ′, t)dθ′−ν0f+Dr∇2
n̂f,

(13)
where the distribution function is normalized such that
ρ(r, t) =

∫ 2π

0
f(r, θ, t)dθ. The kernel satisfies

∫
w(θ)dθ =

1, which guarantees that the density ρ is conserved. We
notice that some of the MSD results in this section are
already present in some form in Refs. [8, 26, 32–34, 37],
but they will be developed here either as calibration of
our methodology or to facilitate comparisons against new
expressions such as for the excess kurtosis and with sim-
ulations. An entirely new discussion in which the MSD
plays only a limited role is provided.

A. Conventional run-and-tumble model with

complete reorientation

We start with the limiting case whereDr = 0 and there
is complete reorientation after tumbling, that is, w(θs) =
1/2π, the simplest version of the run-and-tumble model.
Although no known microswimmer reorients completely
after a tumble event, this model will serve to calibrate
our methodology, as mentioned. In this case the kinetic
equation for the probability density function f(r, θ, t) is
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just

∂f

∂t
+ V n̂ · ∇f =

ν0
2π

∫ 2π

0

f(r, θ′, t)dθ′ − ν0f. (14)

The initial condition is f(r, θ, 0) = δ(r)/2π, meaning that
the initial orientation is random. With a view to ob-
taining ρ̃(k, s) satisfying this kinetic equation, we move
to Laplace–Fourier space. This leads to Eq. (14) being
rewritten as

(s+ iV k · n̂+ ν0) f̃ =
1

2π
(1 + ν0ρ̃) , (15)

where we used that

ρ̃(k, s) =

∫ 2π

0

f̃(k, θ, s)dθ (16)

for the Laplace–Fourier transform f̃(k, θ, s) of the distri-

bution function. Therefore by isolating f̃(k, θ, s) and in-
tegrating over θ we obtain a closed equation for ρ̃, which
gives

ρ̃(k, s) =
1√

(s+ ν0)2 + V 2k2 − ν0
, (17)

=
1

s
− V 2k2

2s2(s+ ν0)
+

(3s+ 2ν0)V
4k4

8s3(s+ ν0)3
+O(k6),

(18)

where in the second line we made a Taylor expansion in
k to easily identify the poles associated to the second
and fourth moments. We can now use the equations in
Section II to obtain our desired quantities. The MSD is

〈r2〉 = 2V 2

ν20

(
ν0t+ e−ν0t − 1

)
, (19)

from which one can either use Einstein’s relation (4) or
directly apply Eq. (8) to obtain

D =
V 2

2ν0
, (20)

which is a widely known result [38–40]. The fourth spa-
tial moment reads

〈r4〉 = 4V 4

ν40

[
2
(
ν20 t

2 − 3ν0t+ 3
)
+ e−ν0t(ν20 t

2 − 6)
]
,

(21)
allowing one to compute the excess kurtosis directly
through (9). The kurtosis longest-standing exponential
goes as exp(−ν0t), which does not present any singular
behavior.
In Fig. 1 the above expressions for the MSD, the diffu-

sion coefficient, and the excess kurtosis are tested against
our simulations, which have been performed by directly
solving the associated run-and-tumble motion equations
(see the appendix for details on the simulation method).
The agreement is excellent as expected since no approx-
imations were made.

FIG. 1. Conventional run-and-tumble model with complete
reorientation (to calibrate our methodology): theory (solid
black line) and simulation (circles) for the time evolution of
the excess kurtosis γ and, in the inset, of the MSD (log-log
scale). The dashed line is 4Dt where the diffusion coefficient
D is given by Eq. (20). Units are chosen such that V = ν0 = 1.

B. Partial reorientation

We now generalize the previous analysis to the case of
partial reorientation while keeping Dr = 0. In this case
the kernel is no longer uniformly distributed between 0
and 2π and it is fully characterized by its cosine Fourier
components

σn ≡ 〈cos (nθs)〉 =
∫ π

−π

dθs w(θs) cos (nθs) , n ≥ 1,

(22)
which, in the previous case, vanish completely. This
model accounts for many flagellated bacteria and uni-
cellular algae [41]. For the case of E. coli, the kernel
has been measured [12], giving σ1 ≃ 0.33 [14]. It can
be shown that the mean-squared displacement depends
on σ1 only [8]. Thus, for the purpose of computing this
quantity, only the average value σ1 matters and so we do
not need to worry about the whole shape of w. However,
we show below that the excess kurtosis and the crossover
time to reach the diffusive regime depend also on σ2.
The Laplace–Fourier transform of the kinetic equa-

tion (13) for this case is

(s+ iV k · n̂+ ν0) f̃ =
1

2π
+ν0

∫ 2π

0

w(θ−θ′)f̃(k, θ′, s)dθ′,

(23)
where we used the same initial condition as in Sec. III A.
To solve it, we expand the distribution function in Fourier
modes

f̃(k, θ, s) =

∞∑

n=0

[hn cos(nθ) + gn sin(nθ)] , (24)

where the coefficients hn and gn depend on k and s, and
are to be determined by plugging the solution into the
kinetic equation. Taking k = kx̂, it is clear that the sine
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modes will vanish identically, and so we can set gn = 0
from now on. The convolution integral can be expressed
as

∫ 2π

0

w(θ − θ′)f̃(k, θ′, s)dθ′ =

∞∑

n=0

σnhn cos(nθ). (25)

By keeping terms up to n = 2, we truncate the Fourier
series, which allows us to obtain a closed expression for
ρ̃(k, s). For the sake of presentation the long result is
expressed as an expansion up to fourth order in k. This
has no implications as no higher-order derivative in k will
be required. We have

ρ̃(k, s) =
1

s
− V 2k2

2s2 (ν0(1 − σ1) + s)

+
(3s− 2ν0 (σ2 − 1))V 4k4

8s3 (ν0(1− σ1) + s) 2 (ν0(1 − σ2) + s)
+O(k6). (26)

Using the expressions of Sec. II, the MSD is

〈r2〉 = 2V 2

ν20(1− σ1)

[
ν0t+

e−ν0(1−σ1)t − 1

(1− σ1)

]
, (27)

with diffusion coefficient

D =
V 2

2ν0(1 − σ1)
, (28)

which is a well known result [34, 37]. The fourth moment
is

〈r4〉 = 8V 4

ν40

[
ν20t

2

(1− σ1) 2
+

e−ν0(1−σ2)t

(σ1 − σ2) 2 (1− σ2) 2

− σ2
1 + 2 (σ2 − 2)σ1 − 6σ2

2 + 10σ2 − 3

(1− σ1) 4 (1− σ2) 2

− ν0 (3σ1 − 2σ2 − 1) te−ν0(1−σ1)t

(1− σ1) 3 (σ1 − σ2)
+

ν0 (σ1 − 4σ2 + 3) t

(1− σ1) 3 (σ2 − 1)

−
(
9σ2

1 − 2 (7σ2 + 2)σ1 + 6σ2
2 + 2σ2 + 1

)
e−ν0(1−σ1)t

(1− σ1) 4 (σ1 − σ2) 2

]
.

(29)

While for the complete-reorientation kernel of
Sec. III A there is a single relaxation time, for a gen-
eral kernel two relaxation rates appear: ν1 = ν0(1 − σ1)
and ν2 = ν0(1 − σ2). In this regard, the complete-
reorientation case is singular since the two relaxation
times merge, increasing the multiplicity of the corre-
sponding pole in (26). This implies that, while for the
complete-reorientation case the excess kurtosis decays
purely exponentially as γ ∼ exp(−ν0t), here γ is the sum
of two leading terms, exp(−ν1t)/t and exp(−ν2t)/t

2, ex-
cept for the singular case where both rates are equal, in
which γ ∼ exp(−ν1,2t).
The approach to a linear time dependence in the MSD

is controlled by the relaxation time T1 = 1/ν1, which
diverges when the average tumbling angle is small. Nat-
urally, in this case, when swimmers deviate little in each

FIG. 2. Run-and-tumble model with partial reorientation.
(a) Theory (solid black lines) and simulation (circles) for (the
negative of) the excess kurtosis as a function of time in log-
log scale. The MSDs are shown in the inset in linear scale to
highlight the departure between the parameters. The values
of ∆ are indicated in degrees: 164◦, 262◦, and, the complete-
reorientation limit, 360◦ (green, blue, and red, respectively).
(b) MSD in log-log scale for a kernel uniformly distributed
around both 0◦ and 180◦ with ∆ = 20◦ as defined in the main
text, giving σ1 = 0 and σ2 ≃ 0.99. Theory (solid black line),
simulation (circles), and the linear part of the MSD (dashed
blue line). Insets: probability distribution function of the x-
displacement at different time instants as from simulations
(solid lines are normalized Gaussian distributions with the
same mean and variance as the corresponding data). The
excess kurtosis (not shown) changes from negative to positive
at t ≃ 4.76. Units are chosen such that V = ν0 = 1.

tumble event the persistence is enhanced, implying a
large diffusion coefficient. Importantly, also the ampli-
tude of the non-diffusive term diverges when σ1 ≈ 1,
making such a departure from diffusion more relevant.
Figure 2a shows this behavior. To compare with simula-
tions, first we consider the case in which the tumbling an-
gles are uniformly distributed in the range [−∆/2,∆/2].
The second relaxation time, T2 = 1/ν2, appears in the
fourth moment given by Eq. (29). Both the relaxation
time and the associated amplitude diverge when σ2 ≈ 1,
implying that for long times the displacement distribu-
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tion deviates largely from a Gaussian one. Together with
the slow exponential decay, algebraic terms also con-
tribute to γ with amplitudes that can be quite large as
they read (2T2 − 4T1)/t. It can be seen that the smaller
the ∆ the slower is the excess kurtosis approach to zero.
Note that, for this kernel, the two relaxation times scale
as 1/(ν0∆

2) and are of a similar order, implying that
both conditions for the diffusive regime to be valid—the
linear increase of the MSD and a small excess kurtosis—
are attained in the same timescale.
It is possible, however, that T1 and T2 decouple if

σ2 ≈ 1 and, simultaneously, σ1 is far from 1. Then
although the MSD reaches the linear regime rapidly,
the excess kurtosis remains finite and positive for long
times, implying that the diffusion equation is not valid
in this period. This situation occurs, for example, if the
tumbling angles distribution is sharply centered around
both 0 and 180◦. Figure 2b shows the case where θs
is uniformly distributed in the ranges [−∆/4,∆/4] and
[180◦ −∆/4, 180◦ +∆/4], that is, any new tumbling an-
gle θs is randomly drawn out of these two ranges. In
this case, a small ∆ leads indeed to a sharp separation
of the time scales T1 and T2. As a result, we can see in
Fig. 2b that the MSD becomes linear in time even if the
displacement distribution is still strongly non-Gaussian,
as revealed by the insets. For this class of kernels, tum-
bling gives rise for a single swimmer to a one-dimensional
random walk along n̂ and only slowly, with a rate propor-
tional to the dispersion of tumbling angles around 0 and
180◦, i.e., σ2, the process evolves to a two-dimensional
diffusion. For a collection of swimmers initially seeded
at r = 0, the intermediate dynamics for T1 < t < T2 will
therefore be diffusive only in the radial direction.
Also, our analytical results for the MSD in Eq. (27)

and for the excess kurtosis [from Eq. (9) using (27) and
(29)] are compared against the simulations in Fig. 2. We

highlight that they agree well with simulations (even for
small values of ∆, not shown) despite the approximation
made in truncating the Fourier series up to n = 2.

C. Run-and-reverse with thermal rotational

diffusion

As already mentioned, up to 70% of marine bacteria
are believed to have a distribution of tumbling angles
peaked around 180◦ [10]. The soil bacteria Bradyrhizo-

bium diazoefficiens has also been shown to perform this
kind of tumbling [42]. In the limiting case known as
run-and-reverse dynamics, which we consider now, the
particle’s tumble can only lead to the exactly opposite
motion direction. In this limit it becomes physically un-
reasonable to neglect thermal diffusion and so we will
take Dr > 0; otherwise the swimmer will indefinitely
perform a one-dimensional random walk. In this model,
w(θs) = δ(θs − π), and hence the kinetic equation reads

∂f

∂t
+ V n̂ · ∇f = ν0f(r, θ + π, t)− ν0f +Dr

∂2f

∂θ2
, (30)

where we notice that the indicated instance of f is eval-
uated at θ + π, while the other ones are evaluated at θ
as per usual. After the Laplace–Fourier transform is ap-
plied and using the same initial condition as before, i.e.,
f(r, θ, 0) = δ(r)/2π, we obtain

(s+ iV k · n̂+ ν0) f̃ − ν0f̃(k, θ + π, s)−Dr
∂2f̃

∂θ2
=

1

2π
.

(31)

As in the previous case, we expand f̃ in a Fourier series
[Eq. (24)], where again gn = 0 by symmetry. We truncate
the series keeping only the terms n ≤ 2 and solve for the
coefficients. Integrating f̃(k, θ, s) over θ, we obtain

ρ̃(k, s) =
4 (4Dr + s) (Dr + 2ν0 + s) + V 2k2

8V 2k2Dr + 20Drs2 + 8ν0s (4Dr + s) + 16sD2
r + 3sV 2k2 + 4s3

. (32)

Upon using the formulae in Section II, we find that the MSD is given by

〈r2〉 = 2V 2

(Dr + 2ν0)2

[
(Dr + 2ν0)t+ e−(Dr+2ν0)t − 1

]
, (33)

with diffusion coefficient

D =
V 2

2(Dr + 2ν0)
, (34)

while the fourth moment is

〈r4〉 = V 4

2

[
87D2

r − 4ν20 − 20ν0Dr

D2
r (Dr + 2ν0) 4

+
16t2

(Dr + 2ν0) 2
+

8ν0t− 60Drt

Dr (Dr + 2ν0) 3
+

e−4Drt

D2
r (3Dr − 2ν0) 2

−16e−(Dr+2ν0)t
(
D2

r (2ν0t+ 49)− 4ν0Dr (11ν0t+ 19) + 15D3
r t+ 12ν20 (2ν0t+ 3)

)

(3Dr − 2ν0) 2 (Dr + 2ν0) 4

]
.

(35)
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The MSD can rapidly reach a regime where it grows lin-
early with time, but for small rotational diffusion, the
process remains non-Gaussian, with large positive values
of γ. Similarly to the previous case, when the scatter-
ing angle is narrowly distributed around 0◦ and 180◦,
reversions at rate ν0 induce a one-dimensional diffusive
motion along the director axis, but an authentic two-
dimensional diffusion is only achieved at a typical time
1/(4Dr) as the axis changes direction. For a perfect one-
dimensional random walk, i.e. for Dr = 0, the excess
kurtosis equals 1 as γ = 〈x4〉/〈x2〉2 − 2 = 3 − 2. For
small enough rotational diffusion, the excess kurtosis be-
comes positive, having a peak that can be quite large
(see Fig. 3), reflecting this quasi one-dimensional motion.
Positive excess kurtosis with a very slow decay also ap-
pear in the similar case of partial reorientation without
rotational diffusion (Sec. III B) for σ2 ≈ 1, as can be seen
directly from Eq. (29).

FIG. 3. Run-and-reverse model with rotational diffusion: the-
ory (solid black lines) and simulation (circles) for the excess
kurtosis γ as a function of time (and for the MSD in the inset).
The values of Dr are indicated: 0.01, 0.1, and 1 (green, blue,
and red, respectively). Units are chosen such that V = ν0 = 1.
The MSDs are shown in linear scale to highlight the departure
between the parameters.

IV. STOCHASTIC TUMBLING RATE

In bacteria like E. coli, the tumbling process is trig-
gered by a reversion in the sense of rotation (from
counter-clockwise, CCW, to clockwise, CW) of one or
several flagella. As a result, the flagella bundle dissem-
bles and the propulsion thrust is lost [43]. By analyz-
ing the biochemistry of the molecular motor, Tu and
Grinstein proposed that the tumbling process can be de-
scribed as a two state activated system, where the free
energy barrier to transit from the CCW to the CW state
depends sensibly on the concentration inside the bacte-
rial body of the so-called CheY-P protein, denoted by
[Y ] [24]. In the Tu–Grinstein model the tumble rate is
ν = ν̄ exp(−G([Y ])/kBT ), whereG is the free energy bar-
rier and ν̄ a constant. Expanding G around the average

value [Y0], they propose

ν(X) = ν0e
αX , (36)

where X(t) = ([Y ](t)− [Y0])/σY corresponds to the fluc-
tuations in concentration normalized to σY , the standard
deviation of [Y ]. Finally, ν0 absorbs all the prefactors.
Note that ν0 has been used in the previous sections to de-
note the tumbling rate of models without stochasticity,
that is, where the tumbling rate is constant over time.
Here we use it with exactly the same meaning: in the
limit where α → 0 the tumbling rate is ν(X) → ν0. The
parameter α is positive [44] and quantifies the sensitiv-
ity of the system to changes in the protein concentration.
This phosphorylated protein has a small production rate,
with a long memory time T , and consequently X is well
described by the Ornstein-Uhlenbeck process

dX

dt
= −X

T
+

√
2

T
ξ(t), (37)

where ξ is an additive zero-mean Gaussian white noise
with correlation 〈ξ(t)ξ(t′)〉 = δ(t − t′). By tracking sev-
eral individual E. coli bacteria it has been possible to fit
the model parameters to T = 19.0 s, ν0 = 0.65 s−1, and
α = 1.62 [45]. The same experiments gave for the ro-
tational diffusivity Dr = 0.025 s−1 and for the tumbling
σ1 = 0.112. Considering that Dr ≪ ν0 and that σ1 ≈ 0,
we will consider complete reorientation after tumbling
and neglect the rotational diffusion. This approximation
also helps to highlight the new phenomenology that ap-
pears from considering the internal variable X .
With X as a new variable of the distribution function,

the kinetic equation for f = f(r, θ,X, t) reads

∂f

∂t
+ V n̂ · ∇f =

1

T

[
∂2f

∂X2
+

∂(Xf)

∂X

]

+
ν(X)

2π

∫ 2π

0

f(r, θ′, X, t)dθ′ − ν(X)f. (38)

where the distribution function is normalized such that
ρ(r, t) =

∫
f(r, θ,X, t)dθdX .

Once again, we change to the Laplace–Fourier space
and so Eq. (38) becomes

sf̃ − 1

(2π)3/2
e−X2/2 + iV k · n̂f̃ =

1

T

[
∂2f̃

∂X2
+

∂(Xf̃)

∂X

]
+ ν(X)

[
g̃(k, X, s)

2π
− f̃

]
, (39)

where f̃ stands for f̃(k, θ,X, s), and we have made use
of the definition

g̃(k, X, s) ≡
∫ 2π

0

f̃(k, θ′, X, s)dθ′ (40)

and the initial condition

f(r, θ,X, t = 0) =
1

(2π)3/2
e−X2/2δ(r), (41)
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which indicates that the internal variable X is in equilib-
rium. We propose the solution

f̃(k, θ,X, s) =

∞∑

n=0

Gn(X)f̃n(k, θ, s), (42)

where the coefficients f̃n(k, θ, s) do not depend on X and

Gn(X) ≡ e−X2/2Hn(X/
√
2), (43)

in which Hn is the Hermite polynomial of order n [such
that H0(x) = 1, H1(x) = 2x, . . . ] [46]. Using the eigen-
value equation for the Hermite polynomials allows us to
write

1

T

[
∂2f̃(k, θ,X, s)

∂X2
+

∂(Xf̃(k, θ,X, s))

∂X

]
=

− 1

T

∞∑

n=0

ne−X2/2Hn(X/
√
2)f̃n(k, θ, s). (44)

Since our goal is to find the Laplace–Fourier transform
of ρ(r, t), i.e., ρ̃(k, s), which does not depend on θ, it is

helpful to define g̃n(k, s) =
∫ 2π

0
f̃n(k, θ, s)dθ.

At this point we proceed by plugging the above equa-
tions into Eq. (39), then multiplying by Hm(X/

√
2), and

finally integrating over X . One obtains

∞∑

n=0

Amn(k, θ, s)f̃n(k, θ, s) = cm +

∞∑

n=0

Bmng̃n(k, s),

(45)
where

Amn(k, θ, s) ≡ 2nn!
√
πδmn

(
s+ iV k·n̂+

n

T

)
+ ν0Jmn,

(46)

Bmn ≡ ν0
2π

Jmn, cm ≡ 1

2π
√
2
δm0, (47)

where the δij are Kronecker deltas and

Jmn ≡
∫ ∞

−∞
e−y2

e
√
2αyHn(y)Hm(y)dy. (48)

The linear Eqs. (45) can be solved for f̃n in terms of
g̃n. Integrating over θ gives now a closed linear set of
equations for g̃n, which can be directly solved. Noting
that ρ̃ = g̃0 (which can be seen through the orthogonality
between H0 and Hn), one obtains

ρ̃(k, s) =

∫ 2π

0

[
1

2
√
π
(A−1)00(k, θ, s)

+
√
2π

∞∑

m,n=0

(A−1)0m(k, θ, s)Bmng̃n(k, s)

]
dθ. (49)

To obtain explicit expressions, Eq. (49) is truncated
at a certain order n = m = Nmax. The greater the

Nmax the higher is the order of a polynomial in α that
appears in Jmn. Hence, increasing Nmax one increases
the range in α over which the theory is valid. However,
the greater the Nmax the more complicated are the ele-
ments of the inverse of A, which eventually need to be
integrated in θ. Therefore Nmax also affects how compli-
cated it is the ρ̃(k, s) over which one needs to apply the
inverse Laplace transform as well as to compute limits.
As it turns out, those complications grow rapidly with
Nmax, with the case Nmax = 0 being the only one that
we have treated fully analytically. The ρ̃(k, s) obtained
by expanding up to this order is identical to the con-
ventional RT case (17), provided that one considers the
tumbling rate to be ν0 exp (α

2/2), which corresponds to
the average of Eq. (36) over X . See Section IVA for the
related analysis of the limits T → 0 and T → ∞.
For Nmax = 1 new physics is found. Although in-

volved, it is possible to obtain an explicit expression for
ρ̃(k, s) from where the diffusion coefficient is obtained
using Eq. (8),

D =
V 2

2ν0eα
2/2

(
1 +

α2ν0T

1 + ν0T

)
. (50)

It is not possible, however, to analytically perform the
inverse transforms of the second and fourth moments. In-
stead, they are calculated by applying a semi-numerical
inverse Laplace transform method for comparison with
simulations. As one can see in Fig. 4, the analytical re-
sults in this case agree very well with simulations up to
a significant value of α. The higher the α, the higher the
peak in the excess kurtosis.
Despite the aforementioned complications in obtaining

an expression for ρ̃(k, s), we can still use the method in
Section IIA to extract the late-time exponential decay
of the excess kurtosis. The second and fourth moments
share poles, and upon reversing their sign we obtain

ν1 = ν0[1 + α2(1/2− Tν0) +O(α4)], (51)

ν2 = ν0[1 + 1/(Tν0) + α2(3/2 + Tν0) +O(α4)]. (52)

While the second rate remains finite for all values of the
parameters, ν1 decays linearly with T . Therefore the
greater the protein memory the longer it will take for
diffusion to be achieved. But the behavior for varying
α depends on where in the memory T range we are: if
Tν0 > 1/2 then ν1 also decays with α, meaning a slower
approach to diffusion, and if Tν0 is smaller than that
then increasing α speeds up the approach. To evaluate
the importance of this eventual slow approach to diffu-
sion, we compute the multiplicity and amplitude of the
associated pole, obtaining

〈r̃4(s)〉 ∼ 8V 4[1 + ν0T (1 + 2ν0T )α
2/2 +O(α4)]

ν20 (s+ ν1)3
(53)

This implies that at long times the excess kurtosis expo-
nential decay is γ ∼ exp(−ν1t), with an amplitude that
grows with α, in agreement with the results shown in
Fig. 4.
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(a)

(b)

FIG. 4. Run-and-tumble model with stochastic tumbling rate.
(a) Excess kurtosis as a function of time for ν0T = 12.3 and
different values of α. The case α = 1.62, which corresponds to
the experimentally fitted value for E. coli is shown in the inset
as it falls out of scale. The circles are the simulation results
while the solid lines are the small-α theoretical prediction
(only for α = 0 and α = 0.35). (b) Diffusion coefficient D
scaled by the interpolating expression (56) as a function of
τ = (ν0T − 1)/(ν0T + 1) for different values of α. The points
at τ = ±1 are not obtained from simulations but rather from
the asymptotic expressions for the zero- and infinite-memory
limits. Units are chosen such that V = ν0 = 1.

A. Zero- and infinite-memory limits

In the limiting case of very small memory time T , X
fluctuates rapidly and the tumble rate is effectively an
average of (36) over all possible values of X , that is,
〈ν〉 = ν0 exp (α

2/2). This result can be achieved more

formally by expanding the distribution function f̃ for
small T as f̃ = f̃0+T f̃1+O(T 2) and g̃ = g̃0+T g̃1+O(T 2),
and replacing these into the Laplace–Fourier-transformed
kinetic equation (39). For O(1/T ) we obtain a simple dif-

ferential equation in X for f̃0 whose solution can be cast

as f̃0 = e−X2/2a(k, θ, s) where a(k, θ, s) is some coeffi-

cient function independent of X . At O(T ) the equation
reads

iV k·n̂ e−X2/2 a+ s e−X2/2 a+ ν0e
−X2/2+αX a

− ν0e
−X2/2+αX b√

2π
− e−X2/2

(2π)3/2
=

∂2f̃1
∂X2

+
∂(Xf̃1)

∂X
, (54)

where b(k, s) ≡
∫ 2π

0
a(k, θ, s)dθ. The RHS can be viewed

as a differential operator D acting on f̃1, where the ker-
nel of the adjoint operator D† is 1. Thus, upon us-
ing the Fredholm Alternative theorem, setting the X-
integral of the LHS to zero, one gets the conventional
RT equation (14) with tumbling rate 〈ν〉. Therefore,
DT→0 = V 2/[2ν0 exp (α

2/2)], as previously anticipated.
The T → ∞ limit is also interesting and roughly corre-

sponds to the experimentally fitted values for the E. coli,
for which ν0T ≃ 12.3. In this case a particle starts with a
certain protein concentration (and hence a certain tum-
bling rate) as determined by X , which is then kept fixed
at all times. The system is therefore equivalent to consid-
ering a “polydisperse dilute fluid”, that is, a set of non-
interacting particles, where each one has a fixed tumbling
rate νi drawn from a continuous distribution. Thus the
averaged diffusion coefficient is

DT→∞=

〈
V 2

2νi

〉
=

V 2

2ν0

∫ ∞

−∞
e−(αX+X2/2) dX=

V 2eα
2/2

2ν0
,

(55)
where we notice the opposite sign in the exponential ar-
gument in comparison to the T → 0 limit.
The two limits for T and the small-α expansion (50)

can be interpolated in a compact expression

Di =
V 2

2ν0
exp

[
α2(ν0T − 1)

2(ν0T + 1)

]
. (56)

By changing T between its two limits we change τ ≡
(ν0T − 1)/(ν0T + 1) in such a way that τ ∈ [−1, 1] and,
hence we have the bounds DT→0 ≤ D ≤ DT→∞. Sim-
ulations with different values of α and T show that this
interpolating expression is good for small α across dis-
tinct orders of T (see Fig. 4b).

V. CONCLUSIONS

Here we reviewed and extended general theoretical
methods as well as performed simulations to investi-
gate the approach to diffusion of run-and-tumble bacteria
within four models: conventional run-and-tumble, partial
reorientation, run-and-reverse with rotational diffusion,
and stochastic tumbling rate. By focusing on the mean-
squared displacement and on the excess kurtosis both
analytically and computationally, we have extracted the
effects of basic model parameters on how slowly diffusion
is reached. The methods have been presented in a way
that makes them easy to be translated into other mod-
els of particle dispersal. Although we have worked in 2D
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for the sake of simplicity, 3D generalizations should be
straightforward to perform [8]. Furthermore, since many
tracking experiments are performed in quasi-2D geome-
tries [40], our results are directly applicable.

For the conventional RT model with complete reorien-
tation we obtained that the excess kurtosis approaches
zero exponentially with a rate equal to the tumbling
rate ν0. However, for the other models, new time scales
appear, which can make the approach to the diffusive
regime much slower. For the case of partial reorientation,
the new time scales depend on the averages σ1 = 〈cos θs〉
and σ2 = 〈cos 2θs〉 of the tumbling angle θs, and di-
verge when either of them approaches one. This happens
when the θs distribution is sharply peaked around both
0 and 180◦. For the run-and-reverse model the new time
scale is given by the inverse of the rotational diffusiv-
ity, Dr. When Dr ≪ ν0, swimmers remain performing a
one-dimensional random walk for a long time and transit
slowly to the full diffusive motion. Finally, the stochas-
tic tumbling rate model, which describes the dynamics
of E. coli, is characterized by two parameters: the sen-
sitivity α of the tumbling rate to the concentration fluc-
tuations of a relevant protein and the memory time T
of this concentration fluctuations. Analytical results are
obtained as an expansion for small α, in which case long
relaxation times, eventually diverging, are obtained for
long memory times. Simulations are in excellent agree-
ment. In this model we also compute the long-time dif-
fusion coefficient, finding an expression valid for small α
and any value of T .

Concomitantly, when the relaxation times grow, the
same happens with the amplitude of the excess kurtosis,
implying that the swimmer dispersion remains largely
non-Gaussian for long times, even though the MSD can
already increase linearly with time. The emergence of
large relaxation times to reach the vanishing of the excess
kurtosis implies that diffusion or reaction–diffusion equa-
tions cannot be used to describe bacterial dispersion at
intermediate times and distances. Instead, kinetic theory
or discrete element method simulations could be used.
This becomes relevant in the design of microrobots for
bioengineering applications [47] which include, for exam-
ple, killing pathogenous bacteria [48] or removing toxic
heavy metals from contaminated water [49].

By simulating with the experimentally obtained E. coli

values for the partial reorientation model, ν0 = 1.0 s−1

and 〈cos θs〉 ≈ 0.33 [9], we estimate that the time to
reach an excess kurtosis γ(t) such that |γ(t)| = 0.05 is
t ≈ 71.2 s, a value that is independent of the swim speed
V , as expected. A similar analysis can be done for the
model with stochastic tumbling rate by using the previ-
ously mentioned values T = 19.0 s, ν0 = 0.65 s−1, and
α = 1.62, and by setting Dr = 0 and σ1 = 0 [45]. This
gives |γ(t)| = 0.05 at t ≈ 143.7 s.

For the intermediate time and length scales where the
bacterial dispersion is not described by a diffusion equa-
tion, the computed expressions for the van Hove function
[Eqs. (17), (26), (32), and (49)] should be used as the

Green function for the density evolution. Alternatively,
moment equations derived from kinetic equations can be
used (see [50–52] for examples of moment equations).
In future work we will use the methods employed here

to compare how several types of interacting [30, 53] swim-
mers approach diffusion. In particular, because of the
richness imparted by polydispersity [54–57], fluid mix-
tures of interacting run-and-tumble particles with differ-
ent swimming strategies will be studied. One might also
want to tackle circularly propelled active particles and in-
vestigate similar associated phenomena including those
dependent on the so-called reverse rotations of driven
rigid bodies [58, 59].
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APPENDIX: SIMULATIONS

The four models considered in this paper have been
simulated in 2D in the following direct way. First, units
are chosen such that V = ν0 = 1. Each particle starts at
the origin r = 0 at t = 0. In the time step ∆t = 0.001
the bacterium moves to a new position as determined by
its fixed speed V and varying orientation θ, whose initial
value is uniformly distributed between 0 and 2π. After
each time step a new orientation is chosen if, and only
if, a newly drawn random number between 0 and 1 is
smaller than ν∆t where ν is the tumbling rate. The way
the new θ is chosen as well as the values of ν depend on
each model as follows.
For the first three models (Sec. III), a constant ν = ν0

is taken. In the case of complete re-orientation, any new
θ is drawn randomly between 0 and 2π, just like the ini-
tial orientation. In the partial re-orientation model, a
new θ is determined from a tumbling angle θs that is
drawn from one of two distributions: in the first case
the tumbling angle is uniformly distributed in the range
[−∆/2,∆/2], whereas in the second case the tumbling an-
gle θs is uniformly distributed in the ranges [−∆/4,∆/4]
and [180◦−∆/4, 180◦+∆/4]. The third model is that of a
run-and-reverse particle with rotational diffusion. In this
case the “reverse” part of the model represents a change
in the value of θ by an amount of π at each tumble. Be-
sides, as in any simple implementation of rotational dif-
fusion, θ changes further at each time step (that is, not
only at each tumble) by the amount

√
2Dr∆tη where η

is a normally distributed stochastic variable of mean 0
and variance 1.
In the last model (Sec. IV) we remind that, although

each new orientation is chosen between 0 and 2π as in
the complete reorientation model, the tumbling rate ν is
no longer constant but rather it follows ν(X) = ν0e

αX .
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The initial value of the stochastic variable X is also nor-
mally distributed with mean 0 and variance 1. It then
evolves at each time step following a simple Euler-like
scheme appropriate to its stochastic differential equa-
tion (37), i.e., at each step X changes by the amount

−X∆t/T +
√
2∆t/Tξ, with ξ normally distributed with

mean 0 and variance 1, again. A large number of time
steps is then performed for each bacterium until a chosen

total physical time t is reached. This whole time series is
repeated 2 × 105 times in order to provide the averaged
behavior of the bacteria. In the case of the log-log scale
data presented in Fig. 2a the simulations were repeated
2×106, instead. For the numerical values of the diffusion
coefficients, the total simulated time was t = 1000, but
virtually identical results can be obtained with t = 200,
which confirms that the MSD decays much more quickly
than the excess kurtosis.
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