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Abstract
Two algorithms are proposed to simulate space-time Gaussian random fields with a covariance function belonging to an
extended Gneiting class, the definition of which depends on a completely monotone function associated with the spatial
structure and a conditionally negative definite function associated with the temporal structure. In both cases, the simulated
random field is constructed as a weighted sum of cosine waves, with a Gaussian spatial frequency vector and a uniform
phase. The difference lies in the way to handle the temporal component. The first algorithm relies on a spectral decomposition
in order to simulate a temporal frequency conditional upon the spatial one, while in the second algorithm the temporal
frequency is replaced by an intrinsic random field whose variogram is proportional to the conditionally negative definite
function associated with the temporal structure. Both algorithms are scalable as their computational cost is proportional to the
number of space-time locations that may be irregular in space and time. They are illustrated and validated through synthetic
examples.

Keywords Spectral simulation · Spectral measure · Substitution random field · Gaussian random field

1 Introduction

The simulation of random fields plays an increasingly impor-
tant role in environmental and climate studies, for example
to quantify uncertainties and to assess adaptation scenarios
to global changes. Space-time simulations that span over rel-
atively large regions and long periods of time generate very
large space-time grids as soon as the resolution is not coarse.
However, simulating space-time random fields on very large
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grids remains a challenge, in particular for nonseparable
covariance functions able to capture space-time complexity,
such as the Gneiting class of covariance functions (Gneiting
2002). This motivation prompted this research.

In the following, Z(x, t)will denote a space-time random
field defined over R

k × R, where k is the space dimen-
sion, with k = 2 or k = 3 in most applications. Here,
and in the rest of this work, we will use roman letters for
scalars and bold letters for vectors. Without loss of gen-
erality, we shall assume that the random field is centered,
i.e. E[Z(x, t)] = 0, ∀(x, t) ∈ R

k × R. It will also be
assumed that the random field is second-order stationary, so
that the covariance function only depends on the space-time
lag (h, u) ∈ R

k × R:

Cov(Z(x, t), Z(x + h, t + u)) = C(h, u). (1)

The functions CS(h) = C(h, 0) and CT (u) = C(0, u) are
purely spatial and temporal covariance functions, respec-
tively. It is well-known thatC must be a positive semidefinite
function over Rk ×R, see for example Gneiting and Guttorp
(2010) and references therein.

A space-time covariance C is separable if it is the prod-
uct (or the sum) of one spatial and one temporal covariance
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function. Random fields with separable covariance functions
can easily be simulated as the product (or the sum) of a
spatial random field constant in time and a temporal ran-
dom field constant in space. Product of Gaussian random
fields are not Gaussian, but a Gaussian distribution can be
approximated through the Central Limit Theorem. Although
congenial from a mathematical point of view, separabil-
ity is a simplistic assumption in many applications, which
makes separable covariances unable to take into account
sophisticated interactions between space and time. Nonsep-
arable space-time covariance functions can be constructed
from basic building-blocks of purely spatial and/or tempo-
ral covariance functions, taking advantage of the fact that
the class of covariance functions is closed under products,
convex mixtures and limits. The product-sum (De Iaco et al.
2001) and convex mixture (Ma 2002, 2003) approaches are
two such examples. Another straightforward construction
is to consider a space-time geometric anisotropy on R

k+1,
based on an isotropic covariance model and a geometrical
transformation (rotation and rescaling) of the coordinates.
A more physically oriented construction is to introduce a
random velocity vector V ∈ R

d and to define C(h, u) =
E[CS(h − Vu)], as proposed in Cox and Isham (1988) for
modeling precipitation fields. All these models can easily be
simulated, even on very large space-time grids, by combining
well-established purely spatial and purely temporal simula-
tion algorithms, see for example Schlather et al. (2015).

Gneiting (2002) proposed a class of fully symmetric
space-time covariances that has become one of the standard
classes of models for space-time random fields in applica-
tions relating to climate variables. It was later extended by
Zastavnyi and Porcu (2011). We will refer to this extended
class as the Gneiting class or the class of Gneiting-type
covariance functions.Using arguments based on normalmix-
tures, itwas generalizedbySchlather (2010) to a large class of
covariance functions that overlaps with the model proposed
in Cox and Isham (1988).

Methods for simulating random fields with a Gneiting
covariance function are not numerous. They include the
methods based on the Cholesky decomposition of the covari-
ance matrix or on block circulant matrices, as well as
variations of turning bands and spectral methods for specific
cases. The Cholesky decomposition of the covariance matrix
(Davis 1987) is an exact method, but it is well-known that the
computational cost to simulate a randomfield at n space-time
locations {(x1, t1), . . . , (xn, tn)} is O(n3). Its application
is therefore limited to a few tens of thousands space-time
locations only. One way to reduce the computational bur-
den consists in using block circulant matrices and FFT, as
introduced byWood and Chan (1994), Dietrich and Newsam
(1997) and Chan andWood (1999). This approach is fast, but
it has limitations: simulations must be performed on regular
grids and edge effects are not always well controlled when

the correlation function is smooth at the origin or decays
slowly. Spectral and turning bands methods, see for example
Shinozuka (1971), Matheron (1973) and Chilès and Delfiner
(2012, Chapter 7.4) and references therein, are known to be
computationally efficient to construct spatial random fields
based on the simulation of one-dimensional basic random
fields. Moreover, they are scalable, in the sense that, after
some initial calculations, the computational burden is propor-
tional to the number of target locations, which furthermore
need not be regularly spaced. Two special algorithms for
space-time random fields have been proposed in Schlather
(2012), see also Schlather et al. (2015, 2020). The first one
is an extension of the turning bands method, called turning
layers, in which the basic random fields are two-dimensional
and are approximated with a discrete (circulant embedding)
approach. The second one, known as spectral turning layers,
is specifically designed for aCox–Ishamcovariance function.
A general simulation method that exactly produces a space-
time random field with a Gneiting-type covariance function
has not been developped yet. In this work, two simulation
methods inspired by spectral approaches are presented to fill
this gap.

The outline is as follows. Section 2 provides the math-
ematical background required in the subsequent sections
and presents the original and extended Gneiting classes of
covariances. Section 3 proposes a spectral approach based
on a conditional decomposition of the spectral measure of
C(h, u). Section 4 proposes an alternative approach that can
be seen as a particular case of the substitution approach pre-
sented inLantuéjoul (2002,Chapter 17). Both approaches are
illustrated with synthetic examples. Their pros and cons are
compared and discussed in Sect. 5. Finally, Sect. 6 presents
conclusions and proposes some perspectives to generalize
our approaches.

2 Theoretical background

2.1 Completely monotone and Bernstein functions

A function on the positive half-line ϕ(t), t ≥ 0, is said to be
completely monotone if it possesses a derivative ϕ(n) for any
order n ∈ N with (−1)nϕ(n)(t) ≥ 0 for any t > 0. By Bern-
stein’s theorem (Bernstein 1929), a continuous completely
monotone function can be written as the Laplace transform
of a nonnegative measure μ, i.e.

ϕ(t) =
∫
R+

e−r tμ(dr). (2)

Furthermore, by Schoenberg’s theorem (Schoenberg 1938),
the radial function

φ(h) = ϕ(|h|2), h ∈ R
k, (3)
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where |x| = 〈x, x〉1/2 denotes the Euclidean norm of vector
x and 〈x, y〉 is the usual scalar product between vectors x
and y, is a covariance function for any dimension k ∈ N\{0}
if and only if ϕ(t), t ≥ 0, is a completelymonotone function.

Closely related to the completely monotone functions are
the Bernstein functions. A function ψ defined on R+ is a
Bernstein function if it is a positive primitive of a completely
monotone function. It can be shown (Schilling et al. 2010),
Chapter 3) that ψ admits the general expression

ψ(t) = a + bt +
∫ +∞

0

(
1 − e−t x) ν(dx), t ∈ R+, (4)

where a, b ≥ 0, and ν is a positive measure, called Lévy
measure, satisfying

∫ +∞

0
min(1, x) ν(dx) < +∞.

2.2 The original Gneiting class of space-time
covariance functions

Even though the applications we have in mind concern space
and time, all the theoretical background is actually valid in
the R

k × R
l more general setting, with k and l two posi-

tive integers. Space-time corresponds to the particular case
l = 1. The Gneiting class of covariances on Rk ×R

l (Gneit-
ing 2002) involves two functions, usually denoted ϕ and ψ

and associated with the “spatial” (on R
k) and the “tempo-

ral” (on R
l ) structures, respectively: Let σ > 0, ϕ(t), t ≥ 0,

a completely monotone function on R+ and ψ(t), t ≥ 0, a
Bernstein function. Then,

C(h, u) = σ 2

ψ(|u|2)k/2 ϕ

( |h|2
ψ(|u|2)

)
, (h, u) ∈ R

k × R
l , (5)

is a covariance on Rk × R
l . Notice that the function defined

in (5) is fully symmetric, i.e. C(h, u) = C(−h, u) =
C(h,−u) = C(−h,−u). Without loss of generality, we
suppose from now on that C(0, 0) = 1. Hence, following
Gneiting (2002), one can assume that σ 2 = 1,ψ(0) = a = 1
and that the measure μ defined in (2) is a probability mea-
sure. Unless specified otherwise, we shall also consider
throughout that μ has no atom at 0, which implies that
limt→+∞ ϕ(t) = 0.

2.3 The extended Gneiting class

The temporal structure is parameterized by the function ψ .
From Gneiting’s theorem (Gneiting 2002), a sufficient con-
dition on ψ for the function given in (5) to be a space-time
covariance on R

k × R
l is that ψ(t), t ≥ 0, is a Bernstein

function. Zastavnyi and Porcu (2011) established a milder

condition on ψ , assuming that it is continuous and positive.
They showed that the function in (5) is a covariance function
for any continuous and completely monotone function ϕ on
[0,+∞) if and only if ψ is conditionally definite negative
on Rl , i.e. the function γ defined by

γ (u) := ψ(|u|2) − ψ(0) = ψ(|u|2) − 1, u ∈ R
l ,

is a variogram on Rl .
Accordingly, the Gneiting covariance (5) belongs to the

more general class of functions of the form

C(h, u) = 1

(γ (u) + 1)k/2
ϕ

( |h|2
γ (u) + 1

)
, (6)

where ϕ is a completely monotone function on R+ and
γ a continuous variogram on R

l . From a modeling point
of view, the formulation (6) offers much more flexibility
than (5), which only allows for isotropic variograms asso-
ciated with Bernstein functions. In particular, for space-time
applications, any one-dimensional variogram is admissible,
including nonmonotonic variograms. In the remainder of this
work, we will adopt the formulation (6), hereafter referred to
as the extended Gneiting class of covariance functions or the
class of Gneiting-type covariance functions. The substitu-
tion approach presented in Sect. 4 will provide an alternative
constructive proof of this result.

In this context, the Lévy representation (4) turns out to
be unnecessarily restrictive. Similar to Bochner’s theorem
for covariance functions, the spectral representation of the
variogram (Kolmogorov 1961; Yaglom 1957) states that a
continuous function γ 	= 0 on R

l is a variogram if and only
if

γ (u) = Q(u) +
∫
Rl

[
1 − cos(〈u, x〉)]X (dx), (7)

where Q(u) is a nonnegative quadratic form and where the
spectral measure X is positive, symmetric, without an atom
at the origin, and satisfies

∫
Rl

|x|2 X (dx)

1 + |x|2 < +∞. (8)

According to Proposition 4.5 inMatheron (1972, Chapter 4),
Q(u) = 0 if and only if γ (u)/|u|2 → 0 as |u| → +∞. For
the sake of simplicity and following common usage in spatial
statistics, we will assume throughout that Q(u) = 0.

The temporal covariance function associated with (6)

CT (u) = C(0, u) = (
γ (u) + 1

)−k/2 (9)

is not necessarily integrable. For example, this occurs when
γ (u) is bounded, since in this case CT (u) does not tend to
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zero as |u| tends to infinity. This prevents us using properties
of the Fourier transform to establish the existence of a spec-
tral density in all generality. Theorem 1 is a characterization
result, which provides a necessary and sufficient condition
for the existence of a spectral density for C .

Theorem 1 Assume that the spectralmeasureX is absolutely
continuous. Then the covariance C has a spectral density if
and only if X (Rl) = ∫

Rl X (dx) = +∞.

This theorem, proven in Appendix A, relies on the condi-
tional decomposition of the spectral measure presented in
Sect. 3.1. A Gneiting covariance from the original class,
i.e. defined by (5), always admits the representation (7)
where X is an absolutely continuous measure such that
X (Rl) = ν(R+), where ν is the Lévy measure defined in
(4). Hence Theorem 1 offers a full characterization of the
subclass of original Gneiting covarianceswith a spectral den-
sity. It is interesting to make a link between Theorem 1 and
bounded variograms. First of all, we establish the following
proposition.

Proposition 1 A variogram γ (u) is bounded and thus asso-
ciated with a covariance function c(u) with γ (u) = c(0) −
c(u), if and only if X (Rl) = ∫

Rl X (dx) < +∞.

Proof First, assume that the symmetric measure X is finite,
that is, X (Rl) = A < +∞. Then, (7) becomes

γ (u) = A −
∫
Rl

cos(〈u, x〉)X (dx) = c(0) − c(u),

where, by Bochner’s theorem, c(u) = ∫
Rl cos(〈u, x〉)X (dx)

is a covariance function. The variogram γ is thus bounded.
Reciprocally, assume that the variogram γ is bounded, so
that c(u) = B−γ (u) is a covariance function for some finite
value B, see Gneiting et al. (2001) for details. Its Bochner
representation is c(u) = ∫

Rl cos(〈u, x〉)η(dx)with η(Rl) =
B. Hence, γ (u) = B − c(u) = ∫

Rl

(
1 − cos(〈u, x〉))η(dx)

and a direct comparison with (7) leads to η(dx) = X (dx).
Accordingly, X (Rl) = B < +∞. 
�

Putting Theorem 1 and Proposition 1 together, we estab-
lish the following: an extended Gneiting covariance function
admits a spectral density when γ (u) is unbounded and its
spectral measure X is absolutely continuous. Examples of
pairs (γ,X ) are given in Table 1.

WenowrecallBochner’s theorem(Bochner 1955), accord-
ing to which a continuous function C on Rk ×R

l is positive
semidefinite, hence a covariance function, if and only if

C(h, u) =
∫
Rk

∫
Rl

ei〈ω,h〉+i〈τ ,u〉 F(dω, dτ ), (10)

where F is a nonnegative finite, symmetric measure on
R
k ×R

l , known as the spectral measure ofC . Note that since

the extended Gneiting class is fully symmetric, the spec-
tral measure F must also be fully symmetric. We finish this
Section with a lemma that will be useful for the simulation
algorithm proposed in Sect. 4.

Lemma 1 The extendedGneiting covariance functiondefined
in (6) can be written as follows:

C(h, u) = 1

(2π)k/2

∫
R+

∫
Rk

cos
(√

2r 〈ω̃, h〉
)

× exp

(
−|ω̃|2(γ (u) + 1)

2

)
dω̃ μ(dr), (11)

where μ is the measure associated with ϕ, as defined in (2).

Proof The inner integral in the right-hand side of (11) is, up
to a multiplicative factor, the Fourier transform at

√
2r h

of the function ω̃ → exp
(
−|ω̃|2(γ (u)+1)

2

)
and is equal

to
(

2π
γ (u)+1

)k/2
exp

(
− r |h|2

γ (u)+1

)
. Formula (11) then follows

from (2) and (6). 
�
For the sake of clarity, and because most applications are

in a space-time context, the presentation will be made in the
particular case when l = 1. Extensions to the more general
case when l ∈ N\{0} will be discussed in Sect. 5.2.

3 Spectral approach

Since we assumed C(0, 0) = 1, the spectral measure F
defined in (10) is a probability measure. Let (�S,
T ) be
a frequency vector distributed as F . Let also � be a ran-
dom phase that is uniform on (0, 2π) and independent of
(�S,
T ). In its most basic form, the spectral method rests
on the fact that the random field defined by

Z(x, t) = √
2 cos(〈�S, x〉 + 
T t + �), (12)

has a zero mean and covariance C (Shinozuka 1971). By
introducing a multiplicative factor

√−2 ln(U ), where U
is an independent uniform variable on (0, 1), the Box–
Muller transformation (Box and Muller 1958) ensures that
all marginal distributions of Z are standard Gaussian. To go
further and obtain a random field whose finite-dimensional
distributions (not only the marginals) are approximately
Gaussian, one option is to add and rescale many indepen-
dent copies of the form (12):

Z̃(x, t) =
p∑

j=1

√
−2 ln(Uj )

p
cos

(
〈�S

j , x〉 + 
T
j t + � j

)
, (13)
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where p is a positive integer and
(
(�S

j ,

T
j ,� j ,Uj ),

j = 1, . . . , p
)
are independent copies of (�S,
T ,�,U ).

Because of the central limit theorem, the finite-dimensional
distributions of Z̃ tend to become multivariate Gaussian as p
tends to infinity (Lantuéjoul 2002, Chapter 15). Although the
joint spectral measure of Gneiting-type covariance functions
is not explicitly known, it is possible to simulate the fre-
quency vector (�S,
T ), as shown in the next subsections.

3.1 Sampling the spectral measure

The function ϕ introduced in (2) is a mixture of exponential
functions. The mixture parameter r can be seen as deriving
from a latent random variable R with distributionμ. Accord-
ingly, a covariance C belonging to the extended Gneiting
class (6) is also a mixture of basic covariance functions

C(h, u) =
∫ +∞

0

1(
1 + γ (u)

)k/2 exp

(
− r |h|2
1 + γ (u)

)
μ(dr)

:=
∫ +∞

0
C(h, u | r) μ(dr),

and their spectral measures are related by the formula

F(dω, dτ) =
∫ +∞

0
F(dω, dτ | r) μ(dr).

The simulation algorithm proposed hereinafter is conditional
on R. It relies on the factorization of the spectral measure
F(dω, dτ | r) into a spatial component and a conditional
temporal component:

F(dω, dτ | r) = FS(dω | r) FT (dτ | ω, r).

The following theorem, the proof of which is deferred to
Appendix A, makes the expression of these components
available via their Fourier transforms.

Theorem 2 Consider aGneiting-type covariance function as
given in (6). The two following assertions hold:

1. If �S(r) ∼ FS(dω | r), then its Fourier transform satis-
fies

E

[
ei 〈h,�S(r)〉

]
= e−r |h|2 . (14)

2. If 
T (ω, r) ∼ FT (dτ | ω, r), then its Fourier transform
is

E

[
ei u 
T (ω, r)

]
= exp

(
−|ω|2 γ (u)

4r

)
ω-a.e.

(15)

Algorithm1, presentedbelow, corresponds to this approach.
There, and in the rest of this work, U(a, b) denotes a uniform
random variable on the interval (a, b), Nd(m,�) denotes
the multivariate Gaussian (or normal) distribution with mean
m ∈ R

d and covariance matrix � and “∼” means “is dis-
tributed as”. Equation (14) shows that all the components
of�S(r) are independent and normally distributed with zero
mean and variance 2r . The spatial spectralmeasure can there-
fore be easily simulated. The simulation of the conditional
temporal spectral measure is more tricky. An adaptation of
the shot-noise approach developed by Bondesson (1982) is
proposed here. Consider the spectral measure X of the var-
iogram introduced in Sect. 2.3 (Eqs. (7) and (8)). As shown
in Appendix A, it is possible to define a positive and locally
integrable function θ defined on R+, as well as a family of
probability measures

(Xt : t > 0
)
on R+, such that

X (dx) =
∫ +∞

0
Xt (dx) θ(t) dt . (16)

Consider now a Poisson point process
(
Tn : n ≥ 1

)
with

intensity function λ(t) = |ω|2 θ(t)
4r on R+. Let us indepen-

dently assign to each Tn , a random variable XTn distributed
according to XTn . Then, it is shown in Appendix A that the
distribution of the randomvariable

∑
n≥1 XTn coincideswith

that of 
T (ω, r).

Algorithm 1 Spectral simulation of a Gaussian random field
with Gneiting-type space-time covariance
Require: k and p
Require: μ, γ

1: for j = 1 to p do
2: Simulate R j ∼ μ;
3: Simulate (�S

j | R j ) ∼ √
2R jNk(0, Ik);

4: Simulate (
T
j | �S

j , R j ) ∼ FT ;
5: Simulate � j ∼ U(0, 2π);
6: Simulate Uj ∼ U(0, 1);
7: end for
8: For each (x, t), compute Z̃(x, t) as per (13)

This algorithm is generic, in the sense that it is applicable
to any continuous variogram γ . If the spectral measure of
the variogram is integrable, then the number of points of the
Poisson process is almost surely finite, whichmakes the algo-
rithmic implementation possibly exact. The Poisson number
may be equal to zero with a nonzero probability. In such a
case, the distribution of 
T (ω, r) has an atom at 0, which is
equivalent to saying that C(0, u) does not tend to zero as u
tends to infinity. When X (R) = +∞, or equivalently from
Prop. 1, when γ is unbounded, the Poisson point process
contains infinitely many points. In this case, the algorithm
can only be approximately implemented. Bondesson (1982)
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Table 1 Spectral measures
corresponding to selected
one-dimensional variograms

γ (u)
X (dx)

dx
Restriction

|u|α −2�(α)

�(α/2) �(−α/2)

1

|x |1+α
0 < α < 2

|u| − 1 + e−|u| 1

π

1

x2 (1 + x2){
|u| if |u| < 1

2|u| − 1 if |u| ≥ 1

1

π

1 + cos x

x2{
u2(3 − |u|) if |u| < 1

3|u| − 1 if |u| ≥ 1

6

π

1 − cos x

x4

ln(1 + u2)
exp(−|x |)

|x |
8
√

π
(
sinh

argsinh u

4

)2 exp(−|x |)
|x |3/2

2|u| arctan|u| − ln(1 + u2)
exp(−|x |)

|x |2
8
√

π

3

(
1 − (1 + u2)3/4 cos

3 arctan u

2

)
exp(−|x |)

|x |5/2

made a number of recommendations about the effective num-
ber of Poisson points to simulate and the way to approximate
the remainder.

To apply this algorithm, the spectral measure of the vari-
ogram γ is explicitly needed. This is a limitation because
such a spectral measure is not always available. Table 1
provides a list of variograms and their associated spectral
measures. Note however that “universal” algorithms have
been developed to simulate monovariate distributions start-
ing from their Fourier transforms (Devroye 2001; Barabesi
and Pratelli 2015), under some conditions on the character-
istic functions. These algorithms could be used to simulate
directly 
T (ω, r) without knowing explicitly the spectral
measure X . We do not pursue this route in this work since,
as we will see in the next subsection, for many variograms,
specific simulation algorithms can be conceived. Typical
examples include the variogram γ (u) = (

1+a|u|α)β (Gneit-
ing 2002).

3.2 Illustrations

Three examples are presented inR2×R. For the sake of sim-
plicity, they are all based on the same completely monotone
function ϕ(t) = exp(−r t) with r = 0.01, but with differ-
ent variograms γ (u). Covariance functions associated with
another function ϕ(t) can be simulated as long as one is able
to simulate R according to the associated measureμ in step 2
ofAlgorithm1. This pointwill be further discussed in Sect. 5.
All the simulations have been obtained using p = 5000 basic
cosine waves. They are displayed on a 300 × 200 grid with
a unit square mesh size, using the same color scale ranging
from −4 (blue) to +4 (red). Six consecutive images, sepa-

rated by short intervals of 0.2 time units, allow to keep track
of the evolution of the large-value zones with time. The first
illustration is shown in Fig. 1; the other ones are displayed
in the Supplementary Material.

3.2.1 First example

The linear variogram γ (u) = b|u|, with b > 0, is certainly
one of the simplest variograms that can be considered. Its
spectral measure is proportional to the Lebesgue measure.
The associated space-time covariance function is

C(h, u) = 1

1 + b|u| exp

(
− r |h|2
1 + b|u|

)
,

which includes a spatial Gaussian covariance and a temporal
hyperbolic covariance. The conditional temporal frequencies
follow a Cauchy distribution. The simulation of Fig. 1 has
been obtained by taking b = 1 and r = 0.01.

3.2.2 Second example

The second example considers the logarithmic variogram
γ (u) = ln

(
1 + (au)2

)
, with 1/a being a temporal scale

parameter. The corresponding space-time covariance func-
tion is equal to

C(h, u) = 1

1 + ln
(
1 + (au)2

) exp
(
− r |h|2
1 + ln

(
1 + (au)2

))
.

Compared to the first example, the temporal covariance func-
tion
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Fig. 1 Realization of a space-time random field with Gneiting covariance function C(h, u) = (1+ |u|)−1 exp
(−0.01|h|2 (1 + |u|)−1

)
, displayed

on a 300 × 200 grid at 6 successive time intervals separated by 0.2 unit (from left to right and from top to bottom)

CT (u) = 1

1 + ln
(
1 + (au)2

)

vanishes at infinity at a very slow rate. The spectral measure
of γ can be derived from the 5th entry of Table 1,

X (dx) = exp(−|x |/a)

|x | dx,

which is not integrable in agreement with Proposition 1. To
design a simulation algorithm, the generic approach can be
applied (see the details in Appendix A), but in the present
case a more direct approach is also possible.

Let us start with the Fourier transform (15) of 
T (ω, r).

Replacing γ by its expression and putting λ = |ω|2
4r , one

obtains

E

[
ei u 
T (ω, r)

]
=

(
1

1 + (au)2

)λ

.

The right-hand side member of this equation can be seen as
the Laplace transform at (au)2 of a gamma distribution with
parameter λ and index 1. Accordingly, one can write

E

[
ei u 
T (ω, r)

]
= 1

�(λ)

∫ +∞

0
e−xa2u2 e−x xλ−1 dx .

Since exp(−xa2u2) is the Fourier transform of a centered
Gaussian random variable with variance 2a2x , it is obtained
that the distribution of
T (ω, r) is a gammamixture ofGaus-
sian distributions. The explicit description is detailed in the
following algorithm. Below, and in the rest of this work,

G(λ, b) denotes the gamma distribution with shape parame-
ter λ and scale parameter b.

Algorithm 2 Sampling from the conditional spectral distri-
bution with a logarithmic variogram

Require: a > 0, λ = |ω|2
4r

1: Simulate X ∼ G(λ, 1) and Y ∼ N (0, 1);
2: Return 
T (ω, r) = aY

√
2X .

The simulation shown in Fig. 1 of the Supplementary
Material has been obtained using this algorithm with r =
0.01 and a = 2.3527, a value chosen so that the temporal
covariance functions of the first two examples take the same
value at the time lag 0.2 between successive images.

3.2.3 Third example

The third example is the variogram used in Gneiting (2002)
for modeling the Irish wind data set, namely γ (u) = (1 +
a|u|α)β − 1 with a > 0, 0 < α ≤ 2 and 0 < β ≤ 1, see
also Schlather and Moreva (2017) for a detailed presenta-
tion of this variogram model. The special case α = β = 1
corresponds to the first example, whilst the limiting case
limβ→0 γ (u)/β with α = 2 is formally similar to the second
example. This model of variogram leads to the space-time
covariance function

C(h, u) = 1

(1 + a|u|α)β
exp

(
− r |h|2

(1 + a|u|α)β

)
.
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In particular, the associated temporal covariance CT (u) =
(a|u|α + 1)−β belongs to the Cauchy class (Gneiting and
Schlather 2004) and can exhibit a wide range of behaviors.
The parameter α governs the behavior at the origin (trajecto-
ries become smoother as α increases), while the product αβ

controls the rate of decay at long times (trajectories have a
longer memory as αβ increases). A simulation of a Gneiting
model with r = 0.01, a = 1, α = 1 and β = 0.5 is depicted
on Fig. 2 in the Supplementary Material.
The spectral measure of this variogram is unknown, but,
here too, the conditional spectral measure can be simulated
directly. Let us start again with the Fourier transform (15)
of 
T (ω, r). Replacing γ by its expression, and putting

λ = |ω|2
4r , the Fourier transform becomes

E

[
ei u 
T (ω, r)

]
= exp

(−λ
(
(1 + a|u|α)β − 1

))
.

Up to the factor exp (λ), the right-hand side member is the
Laplace transform at λ1/β

(
a|u|α + 1

)
of a unilateral stable

distribution S+(β) with stability index β (Devroye 2009).
Denoting by fβ its probability density function, one canwrite

E

[
ei u 
T (ω, r)

]

= exp(λ)

∫ +∞

0
exp

(
−λ1/β

(
a|u|α + 1

)
s
)

fβ(s) ds.

Now, another grouping of factors gives

E

[
ei u 
T (ω, r)

]
=

∫ +∞

0
gβ(s) exp

(
−λ1/βa|u|αs

)
ds,

where

• gβ(s) = exp
(
λ − λ1/β s

)
fβ(s) is the density of another

distribution, denoted by S+(β, λ1/β) and called expo-
nentially tilted unilateral stable distribution with stability
index β and tilting parameter λ1/β , see Devroye (2009)
and references therein.

• exp
(−λ1/βa|u|αs) is theFourier transformat

(
λ1/βas)1/α

of a bilateral stable distribution S(α) with stability index
α (Khintchine and Lévy 1936).

It thus appears that the distribution of 
T (ω, r) is a mix-
ture of bilateral stable distributions. Algorithm 3 makes this
assertion more precise.

There remains to see how to simulate those stable dis-
tributions. S(α) can be simulated using the fast algorithm
by Chambers et al. (1976) that generalizes the Box–Muller
algorithm to simulate normal distributions and has become
a standard. Brix (1999) proposes an algorithm to simulate
S+(β, λ1/β) based on a rejection from S+(β). However, this

Algorithm 3 Sampling from the conditional spectral distri-
bution with Cauchy temporal covariance

Require: a > 0, 0 < α ≤ 2, 0 < β ≤ 1, λ = |ω|2
4r

1: Simulate S ∼ S+(β, λ1/β);
2: Simulate T ∼ S(α);
3: Return 
T (ω, r) = T (Saλ1/β)1/α .

algorithm may suffer from a high rejection rate for large val-
ues of λ1/β . This prompted Devroye (2009) to propose a
double rejection technique that possesses a uniform and lim-
ited rejection rate.

4 Substitution approach

4.1 Proposal

Instead of simulating a temporal frequency according to the
conditional measure FT (dτ | ω, r), here we simulate an
intrinsic Gaussian random field W (t) on R with variogram
γ , withoutmaking reference to its spectral representation (7).
Specifically, consider the random field Z defined in Rk × R

as follows:

Z(x, t) = √−2 ln(U )

× cos

(√
2R 〈�̃, x〉 + |�̃|√

2
W (t) + �

)
, (17)

where:

• R is a nonnegative randomvariablewith probabilitymea-
sure μ;

• �̃ is a Gaussian random vector of k independent compo-
nents with zero mean and unit variance;

• U is a random variable uniformly distributed on (0, 1),
independent of (R, �̃);

• � is a random variable, independent of (R, �̃,U ), uni-
formly distributed on (0, 2π);

• W (t), t ∈ R, is an intrinsic random field on R with
variogram γ and Gaussian increments, independent of
(R, �̃,U ,�).

Theorem 3 The random field Z defined in (17) is second-
order stationary inRk×R, with zeromean andGneiting-type
covariance function as given in (6).

The proof of this theorem is given in Appendix B. The
random field Z(x, t) is reminiscent of the spectral turning
layers proposed in Schlather (2012) in which one simulates
a space-time random field ZS(x, t) of the form

ZS(x, t) = √
2 cos

(√
2R〈�̃, x − V t〉 + �

)
, (18)
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where V is a random velocity. The important difference lies
in the way the temporal component is handled. In ZS , it is a
linear function of t with a random slope. The variogram γ (u)

corresponding to (18) is thus quadratic. In our approach, for
any specified variogram γ (u), a temporal process W (t) is
simulated.

Interestingly, the random field Z defined in (17) is a
particular case of a substitution random field, obtained by
combining a directing function D with stationary increments
inRk×R and a stationary coding process X inR, as proposed
in Lantuéjoul (1991) and Lantuéjoul (2002, Chapter 17),
a construction that generalizes the subordination approach
introduced by Feller (1966, Chapter 10). Here, the directing
function is the sum of a space-dependent linear drift, which
has stationary increments in R

k , and a time-dependent ran-
dom field with stationary increments in R:

D(x, t) = √
2R 〈�̃, x〉 + |�̃|√

2
W (t), (x, t) ∈ R

k × R.

As for the coding process, it is a cosine function in R with
constant frequency (2π)−1, random phase � uniformly dis-
tributed in (0, 2π) and random amplitude

√−2 ln(U ):

X(d) = √−2 ln(U ) cos (d + �) , d ∈ R.

Such a coding process is stationary and has a Gaussian
marginal distribution. Because D and X are independent,
the substitution random field Z = X ◦ D defined in (17)
inherits several properties of the coding process (Lantuéjoul
2002, Chapter 17), in particular it is stationary and has the
same Gaussian marginal distribution as X . The latter prop-
erty (Gaussian marginal) can also be proven on the basis of
the Box–Muller transformation (Box and Muller 1958).

There is actually more, as the coding process is a Gaus-
sian random field in R. This can be proven by observing
that any weighted sum of variables X(d1), . . . , X(d j ) has
a Gaussian distribution, since it can be written under the
form a

√−2 ln(U ) cos (b + �), with deterministic terms a
and b that depend on the chosen weights and time instants
t1, . . . , t j . In particular, the bivariate distributions of X are
bi-Gaussian and have an isofactorial representation with
Hermite polynomials as the factors, see Lancaster (1957)
and Chilès and Delfiner (2012, Chapter 6). The substitution
construction therefore ensures that Z also has bivariate dis-
tributions with Hermite polynomials as the factors, which
are nothing else than mixtures of bi-Gaussian distributions
(Chilès and Delfiner 2012, Chapter 6). Note the similarity of
this construction with the substitution models proposed by
Matheron (1982) and Emery (2008b).

4.2 Simulation algorithm

The random field Z defined in (17) is centered and second-
order stationary. Its covariance function belongs to the
Gneiting class (6) and its marginal distribution is Gaussian.
To obtain a random field whose finite-dimensional distribu-
tions are approximately Gaussian, one can simulate a large
number of independent random fields Z j , j = 1, . . . , p, as
in (17), and set:

Z̃(x, t) =
p∑

j=1

√
−2 ln(Uj )

p

× cos

(√
2R j 〈�̃ j , x〉 + |�̃ j |√

2
Wj (t) + � j

)
, (19)

where {(R j , �̃ j ,Uj ,� j ,Wj ) : j = 1, . . . , p} are indepen-
dent copies of (R, �̃,U ,�,W ).

Algorithm 4 described below can be used for simulating
Z̃ . The simulation of the intrinsic random field Wj at line 6
can be done by the covariance matrix decomposition method
applied to the incrementWj (t)−Wj (0), by fixingWj (0) = 0
andusing the nonstationary covarianceγ (t)+γ (t ′)−γ (t−t ′)
(Davis 1987). This is possible as long as the number of time
instants considered for the simulation is not too large (less
than a few tens of thousands). For larger numbers, other sim-
ulation methods are applicable, such as circulant embedding
matrices with FFT (Wood and Chan 1994) or the Gibbs prop-
agation algorithm (Arroyo and Emery 2015).

Algorithm 4 Substitution algorithm
Require: μ and γ (u)

Require: p
1: for j = 1 to p do
2: Simulate R j ∼ μ;
3: Simulate �̃ j ∼ Nk(0, Ik);
4: Simulate � j ∼ U(0, 2π);
5: Simulate Uj ∼ U(0, 1);
6: Simulate an independent intrinsic randomfieldWj withGaussian

increments and variogram γ (u).
7: end for
8: Compute the simulated random field at any target location (x, t) ∈

R
k × R as per (19).

As an illustration, consider the following covariance func-
tions over R2 × R:

C1(h, u) = 1√
1 + |u| exp

(
− 0.01 |h|2√

1 + |u|
)
, (20)

C2(h, u) = 1√
1 + |u| exp

(
− 0.1 |h|

4
√
1 + |u|

)
, (21)

which belong to the Gneiting class (6) with ϕ1(t) = e−0.01t ,
ϕ2(t) = e−0.1

√
t and γ (u) = √

1 + |u| − 1. Realizations
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of Gaussian random fields possessing these covariances are
displayed in Figs. 3 and 4 of the Supplementary Material.
The simulation has been obtained with Algorithm 4, by
using p = 5000 and the covariance matrix decomposition
approach to simulate the random fields Wj at the six time
instants of interest.Concerning the second example, the prob-
abilitymeasure associatedwithϕ2 is that of the square root of
a Gamma random variable with shape parameter 0.5 (Emery
and Lantuéjoul 2006).

5 Discussion

5.1 Experimental reproduction of the
spatio-temporal structure

The reproduction of the covariance structure can be experi-
mentally validated by comparing the sample variograms of a
set of realizations with the theoretical variogram γ (h, u) =
1 − C(h, u). An example is shown on Fig. 2, where fifty
realizations have been generated on a field in R

2 × R with
100 × 100 × 100 nodes with a spatial mesh of 1 × 1 and
a temporal mesh of 0.2, with the same covariance model
given by (20) and p = 5000 in both simulation approaches.
Each realization was obtained in a matter of minutes on a
standard computer, with the nonoptimized code written in
GNU Octave’s language provided in Supplementary Mate-
rial. Three spatial and three temporal variograms have been
calculated, for time lags u = 0, u = 0.2 and u = 1.6
and space lags h = (0, 0), h = (6, 6) and h = (10, 10),
respectively. In all cases, the sample variograms fluctuate
without any bias around the expected model, their average
over the realizations matching almost perfectly the theoret-
ical variogram, which corroborates the correctness of the
proposed algorithms. Interestingly, the spectral approach
provides sample variograms that exhibit, for the samenumber
of basic random fields (p = 5000) in the sums (13) and (19),
slightly higher fluctuations than the substitution approach.
This fact can be explained by following arguments in Lan-
tuéjoul (1994): sample variograms of spectral realizations
for a given space-time lag (h, u) have a higher variance than
those obtained with the substitution approach, although their
expectations are the same and equal to γ (h, u). Also note
the dimple (hole effect) of the temporal variogram associ-
ated with the space lag h = (10, 10), a well-known property
of the Gneiting model that arises even when the function ψ

is monotonic (Kent et al. 2011; Cuevas et al. 2017).

5.2 Comparison of the simulation approaches

We presented two approaches for simulating spatio-temporal
random fields with a Gneiting-type covariance function,
based on two ingredients: a scale mixture argument for the

spatial structure and the use of variograms for the tem-
poral structure. Despite algorithmic differences, these two
approaches are mathematically very close in the sense that,
conditional on the spatial scale r , they rely on the decompo-
sition of the spectral measure

F(dω, dτ | r) = FS(dω | r) FT (dτ | ω, r).

Sampling from the marginal spatial spectral measure is com-
mon to both approaches, as the random vector

√
2R �̃ used

in the substitution approach (17) has the same distribution
Nk(0, 2R Ik) as the random vector �S(R) used in the spec-
tral approach (14). The two methods only differ in the way
of handling the temporal dimension.

The spectral approach uses the spectral measure associ-
ated with the temporal variogram γ (u) in order to sample
a conditional temporal frequency. The spectral measure is
known for several classes of variogram functions, seeTable 1.
However, it is not known for some popular temporal struc-
tures such as γ (u) = (1 + a|u|2α)β − 1. This function was
used in Gneiting (2002) and in many other studies implying
climate variables, see e.g. Bourotte et al. (2016). In this case
however, a specific algorithm was designed, see example 3
above in Sect. 3. A strong advantage of the spectral approach
is that it is continuous inRk ×R and requires limited storage
space since it only uses p independent copies of random vec-
tors of length k + 4. The random field can then be computed
at any location (x, t) using (13).

The spectral method can be extended to the simulation in
R
k×R

l , as it is relies onTheorem2 that can easily be general-
ized to that space. In this setting, the simulation of the spatial
density remains unchanged; conditional upon (�S, R), the
“temporal” frequency vector �T = (
T

1 , . . . , 
T
l ) is still an

infinitely divisible random vector. The only difficulty is the
simulation of multivariate infinitely divisible distributions.
But, as it was the case for l = 1, a case-by-case approach
can be considered.

In the substitution approach, one simulates a pure spatial
drift and a temporal intrinsic random field W (t) with Gaus-
sian increments and project them onto (x, t) using a cosine
function, as in (17). One advantage of using a standardized
Gaussian random vector �̃ instead of a vector �S(R) with
components of variance 2R is the possibility to apply the
algorithm even if R is zero, which happens with a non-zero
probability if the measure μ defined in (2) has an atom at 0.
Although this case has been excluded in the presentation of
both simulation approaches, it would not imply any change
in the proposal in Sect. 4 and the demonstration in Appendix
B. Another advantage of the substitution approach is that it is
absolutely generic, in the sense that the spectral measure of
γ (u) does not need to be known. Several discrete simulation
algorithms such as the covariance matrix decomposition, the
circulant embedding or the Gibbs propagation are possible
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Fig. 2 Spatial and temporal sample variograms (solid thin lines) for
fifty realizations of the model defined by (20) obtained with the
spectral approach (top) and the substitution approach (bottom) on a
100 × 100 × 100 domain of R2 × R with spatial mesh 1 × 1 and tem-
poral mesh 0.2. Three spatial variograms are drawn in the left column,

associated with u = 0 (black), u = 0.2 (red) and u = 1.6 (blue).
Three temporal variograms are drawn in the right column, associated
with h = (0, 0) (black), h = (6, 6) (red) and h = (10, 10) (blue). In
each case, the mean of the sample variogram (dots) and the theoretical
variograms (solid thick lines) are superimposed. (Color figure online)

in order to simulate W (t), as already pointed out in Sect. 3.
These algorithms are applicable not only in R, but also in Rl

with l > 1, whichmakes straightforward the extension of the
presented approach to R

k × R
l . The only difference lies in

that the intrinsic random field W is now defined on R
l , and

so is its variogram γ (u). Simulating a random fieldW on Rl

is, however, more difficult than onR, essentially because the
number of points targeted for simulation usually increases

with l. Note also that, in this approach, γ can be any vari-
ogram on Rl , which proves that this is a sufficient condition
for the Gneiting covariance in (6) to be a valid model. The
assumption of continuity of γ is not even needed: variograms
with a nugget effect, which do not have a spectral represen-
tation, can be considered in the construction by substitution.

The disadvantage is that the random field will be sim-
ulated only at those temporal coordinates where W (t) has
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been simulated. If nT denotes the number of such tempo-
ral coordinates, then the simulation requires nT + p(k + 3)
values to be stored. Although this is uncommon in practice,
a huge number of temporal coordinates (say, nT > 106)
may make the computational requirements prohibitive for
the aforementioned discrete algorithms.

Whether the spectral or the substitution algorithm is cho-
sen for simulation, two additional points deserve attention
for practical implementation:

• Choice of the number p of basic cosine waves: as a rule
of thumb, several thousands waves are usually recom-
mended, although fewer waves can be used when the
covariance function is smooth near the origin, see Lan-
tuéjoul (1994), Lantuéjoul (2002, Chapter 15), Emery
and Lantuéjoul (2006), Emery (2008a) and Schlather
(2012);

• Determination of the measure μ and design of an algo-
rithm to simulate R1, . . . , Rp ∼ μ: many examples of
measures associatedwith common completelymonotone
functions are available in Oberhettinger and Badii (1973,
Chapters 1–2),while numerous algorithms for simulating
real-valued random variables are described in Devroye
(1986, Chapters 2–10). A nontrivial example where μ is
not a Dirac measure centered on a fixed value r has been
presented in Sect. 4.2 for the exponential function (21).

As a guideline for practitioners, the main computational
properties and conditions of application of the proposed algo-
rithms, aswell as those of other twowell-knowngeneric algo-
rithms (Cholesky decomposition of the covariance matrix
and circulant embedding simulation), are summarized in
Table 2. Of particular interest is the computational com-
plexity, much lower for the former than for the latter two
algorithms, and the fact that calculations can be parallelized
since the projection onto target locations can be computed

independently. This makes the simulation extremely fast (in
a matter of seconds or minutes for the examples presented in
Sects. 3.2, 4.2 and 5.1).

6 Conclusions and perspectives

Two algorithms have been presented to simulate space-time
random fields with nonseparable covariance belonging to the
Gneiting class. The first one relies on a spectral decomposi-
tion of the covariance and constructs the simulated random
field as a weighted sum of cosine waves with random fre-
quencies and phases. In the second algorithm, an intrinsic
time-dependent random field is substituted for the temporal
frequency, yielding another representation of the simulated
random field as a mixture of cosine waves. The proposed
algorithms have been tested and validated through synthetic
case studies. Their computational requirements are afford-
able in terms of bothmemory storage andCPU time.Memory
requirement is proportional to the number of cosine waves,
to the order of a few thousands. As for CPU time, after an
overhead computation consisting in generating a few thou-
sands random variables (which is a matter of a few seconds),
the number of floating point operations is proportional to
the number of target space-time locations, whether being in
R
2 × R or Rk × R with k > 2. Also, the algorithms can be

adapted to the simulation of random fields in R
k × R

l with
l > 1. In this case also, up to the overhead computation, the
CPU time is proportional to the number of target locations.

This work paves the road to many possible extensions.
Rather straightforward extensions include the simulation of
multivariate space-time random fields based on the Gneit-
ing class such as those proposed in Bourotte et al. (2016),
more general models based on normal mixtures (Schlather
2010) and the simulation of random fields on spheres cross
time with covariance models similar to the Gneiting class,

Table 2 Comparison of
simulation algorithms

Algorithm Numerical complexity Spatial field Temporal field Remarks

Spectral O(n) Continuous Continuous (1)

Substitution O(n) Continuous Discrete (2)

Cholesky decomposition O(n3) Discrete Discrete (3)

Circulant embedding O(n ln(n)) Discrete Discrete (4)

(1) Applicable when, (i) the probabilitymeasureμ has no atom at 0 and is simulatable, and (ii) the variogram γ

is continuous with known spectral measure, or the conditional temporal frequency is simulatable starting from
its Fourier transform (15); allows an unlimited number of target space-time locations due to the continuous
nature of the algorithm.
(2) Applicable when the probability measureμ is simulatable and the number of target time instants is limited,
say less than 106; unlimited number of spatial locations.
(3) Applicable to a limited number (< 105) of target space-time locations due to CPU time and memory
storage requirements.
(4) Applicable to a limited number (< 106) of target space-time locations forming a regular grid due to CPU
time and memory storage requirements; approximate covariance reproduction due to edge effects
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but involving Stieltjes functions instead of Bernstein func-
tions, see White and Porcu (2019). Other nonseparable
models could also be simulated using at least one of the
approaches presented here, including models proposed in
Ma (2003). Spatio-temporal random fields derived from
SPDEs are characterized through their spectral measures,
see Carrizo-Vergara et al. (2018) for a general presentation
of these models. Simulating such fields could in some cases
be performed using our spectral approach under the condi-
tion that one is able to simulate from the spectral measure,
which requires further scrutiny. An interesting feature of
these models is that, contrarily to the Gneiting class, they are
not necessarily fully symmetric and that the marginal covari-
ance function CS can include nonmonotonic behaviors.
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A Proofs for the spectral approach

A.1 Proof of Theorem 1

We use the notations defined in Sect. 3. Substituting (7) in
(15), one obtains

E

[
ei u 
T (ω, r)

]

= exp
(−λ(ω, r)γ (u)

)

= exp

(
−λ(ω, r)

∫
R

(1 − cos(ux))X (dx)

)

= exp

(
λ(ω, r)

∫
R

(
eiux − 1 − iux

1 + x2

)
X (dx)

)
,

u ∈ R, (22)

where λ(ω, r) = |ω|2
4r and where the last equality stems from

the symmetry ofX and the integrability condition (8). There-
fore, the distribution FT (dτ | ω, r) is an infinitely divisible
distribution with Lévy measure νω,r = λ(ω, r)X .

Assume first that X (R) = +∞. In this case, νω,r (R) =
+∞ for ω 	= 0 and the Lévy measure νω,r is absolutely con-
tinuous, sinceX is absolutely continuous. Then, by applying
Lemma 1 of Sato (1982) the infinitely divisible distribution
FT (dτ | ω, r) is absolutely continuous for ω 	= 0 and for
a.e. ω. As a consequence, since FS(dω | r) is also absolutely
continuous, it follows that

F(dω, dτ) =
∫ +∞

0
FS(dω | r)FT (dτ | ω, r)μ(dr)

is absolutely continuous.
Let us now assume ϑ = X (R) < +∞. In this case, (22)

can be rewritten as

E

[
ei u 
T (ω, r)

]
= exp

(
λ(ω, r)

∫
R

(
eiux − 1

)
X (dx)

)
,

by symmetry of the finite measure X . Since 0 < ϑ <

+∞, 
T (ω, r) has a compound Poisson distribution with
P
(

T (ω, r) = 0)

) = exp
(−ϑλ(ω, r)

)
, which implies that

P

(

T = 0

)
= E

[
exp

(
−ϑ |�S|2

4R

)]
> 0.

In conclusion, when ϑ < +∞, the distribution of 
T has an
atom at 0. Hence, F is not absolutely continuous in this case.

A.2 Proof of Theorem 2

Recall that

C(h, u | r) = 1(
γ (u) + 1

)k/2 exp

(
− r |h|2

γ (u) + 1

)

:=
∫
Rk

∫
R

ei〈h,ω〉 + iuτ FT (dτ | ω, r) FS(dω | r). (23)

If u = 0, then

C(h, 0 | r) = exp
(
−r |h|2

)
:=

∫
Rk

ei〈h,ω〉 FS(dω | r),

which is nothing but (14). This shows that FS possesses the
density

fS(ω | r) = 1

(4πr)k/2
exp

(
−|ω|2

4r

)
. (24)

Plugging (24) into (23), one obtains

C(h, u | r) = 1

(4πr)k/2

∫
Rk

ei〈h,ω〉

× exp

(
−|ω|2

4r

) ∫
R

eiuτ FT (dτ | ω, r) dω.

(25)

On the other hand, up to a multiplicative factor, the function
ω → exp

(− r |h|2/(γ (u) + 1)
)
is the Fourier transform of

a Gaussian random vector:
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C(h, u | r) = 1

(4πr)k/2

∫
Rk

ei〈h,ω〉

× exp

(
−|ω|2 (γ (u) + 1)

4r

)
dω. (26)

Comparing (25) and (26), the injectivity of the Fourier trans-
form implies

exp

(
−|ω|2

4r

) ∫
R

eiuτ FT (dτ | ω, r)

= exp

(
−|ω|2 (γ (u) + 1)

4r

)
ω-a.e.,

or equivalently

∫
R

eiuτ FT (dτ | ω, r) = exp

(
−|ω|2γ (u)

4r

)
ω-a.e.,

which is precisely (15). 
�

A.3 On the generic approach

The aim of this section is to show that
∑

n≥1 XTn and

T (ω, r) have the same distribution. This is done by com-
paring their Fourier transforms. Remind that the spectral
measure of the variogram is positive, symmetric, without an
atom at the origin, and satisfies the integrability property

∫
R

x2 X (dx)

1 + x2
= A < +∞. (27)

Let us start with

X (dx) =
∫
R+

exp

(
−t

x2

1 + x2

)
x2 X (dx)

1 + x2
dt .

Because of (27), the positive function θ defined on R+ by

θ(t) =
∫
R

exp

(
−t

x2

1 + x2

)
x2 X (dx)

1 + x2

is upper bounded by A. It follows that, for each t > 0, the
measure

Xt (dx) = 1

θ(t)
exp

(
−t

x2

1 + x2

)
x2 X (dx)

1 + x2

is a probability measure on R. This measure is symmetric,
and satisfies

X (dx) =
∫
R+

Xt (dx) θ(t) dt . (28)

Consider now a Poisson point process
(
Tn : n ≥ 1

)
with

intensity λ(t) = λ θ(t) on R+ (λ is put here as a short nota-

tion for |ω|2
4r ). Since θ λ(t) is upper bounded by λA, this

process has no accumulation point. Consider also a family(
Xt : t ∈ R+

)
of independent random variables, with Xt

being distributed asXt . BecauseXt is symmetric, the Fourier
transform of Xt can be written as

E
[
exp(iuXt )

] =
∫
R

cos(ux)Xt (dx). (29)

In what follows, we calculate the Fourier transform of T =∑
n≥1 XTn . Denoting by �(t0) the integral of λ(t) on ]0, t0[,

we have

E
[
exp(iuT)

]

= lim
t0−→+∞

+∞∑
n=0

exp
(−�(t0)

) �n(t0)

n!

×
[∫ t0

0

λ(t)

�(t0)
E

[
exp(iuXt )

]
dt

]n

= lim
t0−→+∞ exp

(∫ t0

0
E

[
exp(iuXt ) − 1

]
λ(t) dt

)

= exp

(∫ +∞

0
E

[
exp(iuXt ) − 1

]
λ(t) dt

)
.

This implies, owing to (29)

E
[
exp(iuT)

] = exp

(∫ +∞

0

∫
R

[
cos(ux) − 1

]Xt (dx) λ(t) dt

)
.

Permuting the integrals and replacing λ(t) by its expression,
we obtain

E
[
exp(iuT)

] = exp

( |ω|2
4r

∫
R

[
cos(ux) − 1

]X (dx)

)
.

Finally, the spectral representation (7) of γ gives

E
[
exp(iuT)

] = exp

(
−|ω|2

4r
γ (u)

)
,

which is precisely the Fourier transform (15) of
T (ω, r).�

A.4 Implementing the generic approach for
logarithmic variograms

The construction of θ and Xt proposed in Appendix A.3 is
not necessarily unique. Starting from

X (dx) = exp(−a|x |)
|x | ln a2

= 1

ln a2

∫ +∞

a
exp

(−t |x |) dt,
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it appears that a possible decomposition such as (16) can be
obtained by taking

θ(t) = 2

t ln a2
1t≥a = 1

t ln a
1t≥a

and

Xt (dx) = 1

2
t e−t |x | dx, t > a.

Consider now a Poisson point process
(
Tn : n ≥ 1

)
on

R+ with intensity function

λ(t) = |ω|2
4 r

θ(t) := λ

t
1t≥a .

A simple approach to simulate a nonhomogeneous Poisson
point process is recommended by Devroye (1986, Chapter
6). It consists in calculating the inverse of the primitive of
the intensity function λ(t) that vanishes at a, i.e. �(t) =
λ ln(t/a), at the points of a homogeneous Poisson process
with a unit intensity on the positive half-line, as shown in
Fig. 3.

In this figure, the Ui ’s are independent standard uniform
variables and are related to thePoisson timeTn by the formula
�(Tn) = λ ln(Tn/a) = − ln

(
U1 · · ·Un

)
, which gives

Tn = a

(U1 · · ·Un)1/λ
. (30)

Now, recall that 
T (ω, r) has the same distribution as∑+∞
n=1 XTn , where each Xt is distributed as Xt . Because the

Xt ’s are independent, we have

Var
[∑
n≥1

XTn

]
=

∑
n≥1

Var
[
XTn

]
.

t

λ ln(t/a)

a

− ln(U1)

T1

− ln(U1 U2)

T2

− ln(U1 · · ·Un)

Tn

Fig. 3 Simulation of a nonhomogeneous Poisson point process by
inversion of a homogeneous Poisson process with a unit intensity

Moreover, (30) implies

Var
[
XTn

] = E

[
Var

[
XTn |Tn

]] = E

[ 2

T2
n

]

= 2

a2
E

[
(U1 · · ·Un)

2λ
]

= 2

a2

(
λ

λ + 2

)n

.

Consequently

Var
[∑
n≥1

XTn

]
= 2

a2
∑
n≥1

(
λ

λ + 2

)n

= λ

a2
.

Similarly, if the series is truncated at order n0, then the same
calculation leads to the residual variance

Var
[ ∑
n≥n0+1

XTn

]
= 2

a2
∑

n≥n0+1

(
λ

λ + 2

)n

=
(

λ

λ + 2

)n0 λ

a2
.

Let ε > 0 be arbitrarily small. From the previous calcula-
tions, it follows that

Var
[∑

n≥n0+1 XTn

]

Var
[∑

n≥1 XTn

] < ε ⇐⇒
(

λ

λ + 2

)n0
< ε

⇐⇒ n0 >
− ln ε

ln(1 + 2/λ)
.


�

B Proofs for the substitution approach

Proof of Theorem 3

For (x, t) ∈ R
k × R, Z(x, t) conditional on (R, �̃,U ,W )

(i.e. only letting � vary randomly) has a zero expectation,
insofar as it is proportional to the cosine of a random variable
uniformly distributed on an interval of length 2π . The prior
expectation of Z(x, t) is therefore zero:

E[Z(x, t)] = E[E[Z(x, t) | R, �̃,U ,W ]] = 0.

Let us now calculate the covariance between the random
variables Z(x, t) and Z(x′, t ′), with (x, t) ∈ R

k × R and
(x′, t ′) ∈ R

k × R:

E[Z(x, t)Z(x′, t ′)]

= 2E

[
− ln(U ) cos

(√
2R 〈�̃, x〉 + |�̃|√

2
W (t) + �

)

× cos

(√
2R 〈�̃, x′〉 + |�̃|√

2
W (t ′) + �

) ]
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= 2E

[
cos

(√
2R 〈�̃, x〉 + |�̃|√

2
W (t) + �

)

× cos

(√
2R 〈�̃, x′〉 + |�̃|√

2
W (t ′) + �

)]
.

The last equality stems from the fact that− ln(U ) is an expo-
nential random variable with mean 1 and is independent of
(R, �̃,W ). Using the product-to-sum trigonometric identi-
ties, one can write the product of cosines as half the sum of
two cosines, namely:

• the cosine of the difference:
cos

(√
2R 〈�̃, x − x′〉 + |�̃|√

2
(W (t) − W (t ′))

)
• the cosine of the sum:
cos

(√
2R 〈�̃, x + x′〉 + |�̃|√

2
(W (t) + W (t ′)) + 2�

)
.

However, because � is uniformly distributed on (0, 2π) and
independent of (R, �̃,W ), the expectation of the cosine of
the sum is 0. It remains

E[Z(x, t)Z(x′, t ′)]

= E

[
cos

(√
2R 〈�̃, x − x′〉 + |�̃|√

2
(W (t) − W (t ′))

) ]
.

The increment W (t) − W (t ′) is a Gaussian random variable
with zero mean and variance 2γ (t − t ′) and is independent
of (R, �̃), i.e.:

W (t) − W (t ′) = √
2γ (t − t ′)Y ,

with Y ∼ N (0, 1) independent of (R, �̃). Defining h =
x−x′ and u = t−t ′ and denoting by g the standardGaussian
probability density, one therefore obtains:

E[Z(x, t)Z(x′, t ′)]
=

∫
R+

∫
Rk

∫
R

cos
(√

2r 〈ω̃, h〉 + |ω̃|√γ (u)y
)

× g(y)dy
1

(2π)k/2
exp

(
−|ω̃|2

2

)
dω̃μ(dr)

= 1

(2π)k/2

∫
R+

∫
Rk

cos
(√

2r 〈ω̃, h〉
)

×
∫
R

cos
(
|ω̃|√γ (u)y

)
g(y)dy exp

(
−|ω̃|2

2

)
dω̃μ(dr).

(31)

The last equality in (31) stems from the angle-sum trigono-
metric identity and the fact that 〈ω̃, h〉 is an odd function of
ω̃ and |ω̃|√γ (u)y is an even function of ω̃.

The simulated random field Z is therefore second-order
stationary, since its expectation is identically zero and the

covariance between any two variables Z(x, t) and Z(x′, t ′)
only depends on h = x − x′ and u = t − t ′. Up to a multi-
plicative factor, the last integral in (31) appears as the Fourier
transform of the standard Gaussian probability density g(y)
on R. Specifically:

∫
R

cos
(
|ω̃|√γ (u)y

)
g(y)dy = exp

(
−|ω̃|2 γ (u)

2

)
.

Hence:

E[Z(x, t)Z(x′, t ′)]
= 1

(2π)k/2

∫
R+

∫
Rk

cos(
√
2r 〈ω̃, h〉)

× exp

(
−|ω̃|2 γ (u) + 1

2

)
dω̃μ(dr)

= C(h, u). (32)

The last equality in (32) stems from (11) and completes the
proof. 
�
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