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English

This thesis consists of two parts. In part I, we model the magnetic degrees of freedom in
the van der Waals magnet CrI3. We start from an ab-initio Hamiltonian obtained with LDA
calculations. Employing a self-consistent method, we include the local electronic repulsion as
a mean-field theory of the Kanamori Hamiltonian on Cr+3 ions. Using a Green’s functions
method, we use the electronic Hamiltonian to calculate the corresponding spin Hamiltonian
and the magnonic spectrum. A Heisenberg-Kitaev-Γ model is found to describe the ferro-
magnetism adequately in CrI3. Also, we found a nontrivial topological structure in the spin
excitations.

Part II includes two projects carried out in the context of micromagnetic simulations. The
first one studies the stability of an antiferromagnetic skyrmion in the top layer of a bilayer
system. In the second project, we study the equilibrium and dynamics of a ferromagnetic
domain wall on the surface of a nanotube. We show that the domain wall’s velocity is in-
creased in the presence of a Dzyaloshinskii-Moriya interaction.

Español

Esta tesis consiste de dos partes. En la parte I, se modelan los grados de libertad mag-
néticos en el imán bidimensional de van der Waals CrI3. Se comienza desde un cálculo ab
initio obtenido, mediante la aproximación de densidad local (LDA). Empleando un método
autoconsistente, se incluye la repulsión electrónica local a través de una teoría de campo
medio del Hamiltoniano de Kanamori, en los iones Cr+3. Utilizando un método de funciones
de Green, se deduce un Hamiltoniano de spin, a partir del modelo electrónico, y se calcula el
correspondiente espectro de magnones en torno al estado basal. Se encontró que un modelo
de Heisenberg-Kitaev describe de forma aproximada el ferromagnetismo en CrI3. Además,
se observó una estructura topológica no trivial en las excitaciones magnéticas.

La parte II incluye dos proyectos desarrollados en el contexto de simulaciones micromag-
néticas. En el primero de estos, se estudió la estabilidad de un Skyrmion antiferromagnético
en la capa superior de una bicapa antiferromagnética. En el segundo proyecto, se investigó
el equilibrio y la dinámica de una pared de dominio magnética en un nanotubo. Al respecto,
se mostró que la velocidad máxima de la pared de dominio puede aumentar en presencia de
una interaccioń de Dzyaloshinskii-Moriya.
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Introduction
This thesis goes through different topics in bi-dimensional magnetism. Magnetism has

had a leading role in the history of physics and science. From ancient Greece, passing by the
classical electrodynamics to the quantum mechanics revolution and the solid-state physics
[83], magnetism has accompanied various revolutions of science. Magnetic phenomena have
enormous potential from a theoretical point of view. But also, several magnetic behaviors
serve as inspiration for new technologies. The topic of this thesis tries to position magnetism
in one of the last solid-state physics revolutions: The bidimensional materials.

At the beginning of the XXI century, the solid-state community made enormous efforts to
synthesize a bidimensional material experimentally. These efforts materialized in the discov-
ery of graphene [70], a bi-dimensional arrangement of Carbon atoms forming a honeycomb
lattice, which have semi-metallic properties that opened new and exciting lines of research,
with several applications in the design of electronic devices. More than a decade has passed
from graphene’s discovery, and nowadays, we know that graphene was just the first of a gi-
ant family of bidimensional materials whose chemical, electrical, and optical properties have
aroused to great interest inside the scientific community [71, 75, 2, 22].

Recently, magnetism has entered the scene, due to the discovery of bidimensional mate-
rials that behave as ferromagnets. Despite the efforts, for a long time, no 2D material was
found that have intrinsic magnetic properties. Even, according to the Mermin-Wagner theo-
rem, any 2D magnet, with full rotational symmetry, is unstable due to thermal fluctuations
at all temperatures distinct to zero. In 2017, it was reported the discovery of a single-layer
CrI3 [39]. This material is a semiconductor, and a layered-crystal and its 2D layers interact
between them by van der Waals forces, such as graphene. Magnetic properties of CrI3 even
persist in the single-layer structure.

In this material, Cr+3 ions form a honeycomb lattice of magnets that interact through
super exchanges paths between I− anions. It has been observed that magnetic degrees of free-
dom in single layer CrI3 are decoupled of the substrate, as opposed to metallic ferromagnets,
in which the substrate is coupled with the magnetic freedom degrees. Two layers of CrI3
are coupled antiferromagnetically, and three-layer system couple ferromagnetically. All these
features serve as motivation to study the origin of ferromagnetism in the single-layer CrI3.
In particular, it is crucial to explain the microscopical origin of the lack of full rotational
symmetry in the spin freedom degrees, which leads to a stable ferromagnetic state at finite
temperature. This text is divided into two parts. Part I is focused on the understanding of
ferromagnetism in the van der Waals magnet CrI3. Chapter 1 introduces the single-band
Hubbard model, which is the natural way to incorporate the local electronic repulsion to any
tight-binding model. Then we show its multi-orbital version in the context of transition met-
als, such as Cr+3. A Hartree-Fock approximation is used to treat the electronic interactions
with a mean-field technique. This formalism is then applied to an effective tight-binding
model of CrI3. A metal-Mott-insulator transition is observed when electronic repulsion is
increased from zero. We obtain an effective mean-field Hamiltonian of the single-layer CrI3
ferromagnet.

In chapter 2, we focus on the understanding of the magnetic degrees of freedom of the
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material. To do this task, we introduce a generalization of the Green’s functions method used
in [62], to calculate several magnetic couplings. We incorporate second-order terms in the
spin-orbit coupling perturbation, which has been neglected in previous works. From these
high order terms, we were able to calculate a spin Hamiltonian, which has the symmetries
of a Heisenberg-Kitaev model, plus a contribution of single-ion anisotropy. The spectrum of
magnons and all magnetic couplings were calculated as functions of the spin-orbit magnitude.
In chapter 3, we assume a simplified version of the Hamiltonian obtained in chapter 2, and
we calculate the corresponding magnon’s spectrum analytically. Also, we observe that the
presence of the Kitaev’s term leads to a nontrivial topological structure in the spin excitations.

Part II of this thesis was developed chronologically before that the rest of the text, and
it includes two projects carried out in the context of micromagnetic simulations of mag-
netic textures with Dzyaloshinskii-Moriya interaction. The idea is to numerically solve the
Landau–Lifshitz–Gilbert equation to study the temporal evolution of magnetic moments in
different geometries.

In chapter 4, we study an antiferromagnetic bilayer system, which supports an atomic-
sized skyrmion on the top layer. Skyrmions are pseudo-particle textures of the magnetization
field, which posses a nontrivial winding number. Due to their robustness, skyrmions have
been proposed as potential information carriers in magnetic racetracks. They can move fast
when spin-polarized currents are applied. Furthermore, antiferromagnetic skyrmions (AFM-
Sk) also have two advantages over their ferromagnetic counterparts (FM-Sk): (i) AFM-Sk
are even faster than FM-Sk. (ii) AFM-Sk moves straightly when spin-polarized currents are
applied. We construct a stability diagram showing a vast region in which an AFM-Sk on the
top layer is meta-stable. We also characterize the energy barrier that protects the skyrmion
of collapsing to the AFM Neel-like state.

In Chapter 5, we study a ferromagnetic domain wall on the surface of a nanotube. We
show that by including DMI in the energy functional, the domain wall equilibrium changes,
and the system prefers a specific chirality. Also, DMI modifies the dynamics of the domain
wall in the presence of an external magnetic field. It has been previously reported that there
are two regimes in the DW motion: (i) For low magnetic field, the domain wall reaches a
stationary motion, with constant velocity. (ii) For magnetic fields bigger than a critical field,
the motion is precessional, and the average velocity decreases when higher fields are applied.
We show that, by including DMI, the critical field is increased, and the domain wall can
reach greater velocities.

The variety of studies present in this thesis cover a broad range of topics inside bidimen-
sional magnetism. The author’s idea was to understand the microscopical origin of magnetic
order in the matter. This is the goal of chapters 1 and 2. Once the origin of the magnetic
order is clear, and a magnetic ground state is known, it is possible to study the spin wave’s
spectrum (chapter 3), and also the behavior of a magnetic texture, such as a domain wall,
or a skyrmion (chapters 4 and 5).

The van der Waals magnet CrI3 was a perfect platform to learn about 2D magnetic
phenomena and is the central object of study in part I. However, we did not explore magnetic
textures in CrI3, and this is proposed as possible future research. If inversion symmetry is
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broken by means of, for example, an electrical field perpendicular to the plane of the sample, a
DMI interaction could appears on the spin Hamiltonian. This feature could enable skyrmions
to be stable at CrI3 [55, 56].

This thesis was written in the LaTeX template of Pablo Pizarro [76].
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Part I

The origin of ferromagnetism in the
van der Waals magnet CrI3
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Chapter 1

Hartree Fock mean field
approximation in a multi-orbital
Hubbard Model

1.1. Single-band Hubbard Model
In solid-state systems, the repulsion between electrons, and correlation effects are usually

incorporated by mean of the Hubbard Hamiltonian:

H = HTB + U
∑
i

n̂i↑n̂i↓ , (1.1)

where U is called the Hubbard parameter, and n̂iσ is the number operator of electrons with
spin σ at the site i. HTB is the kinetic term of the Hamiltonian an its spectrum gives origin
to the band structure when the electronic repulsion is ignored.

One way to obtain the approximated spectrum of this Hamiltonian is to make use of the
mean field approximation, by writing n̂iσ = 〈n̂iσ〉+ δn̂iσ, and replacing it in the second term
of Hamiltonian (1.1):

n̂i↑n̂i↓ = (〈n̂i↑〉+ δn̂i↑)(〈n̂i↓〉+ δn̂i↓)
= δn̂i↑ 〈n̂i↓〉+ δn̂i↓ 〈n̂i↑〉+ 〈n̂i↑〉 〈n̂i↓〉+ δn̂i↑δn̂i↓ .

(1.2)

The central idea of mean field approximation is to neglect the high order fluctuations δn̂i↑δn̂i↓.
Replacing δn̂iσ = n̂iσ − 〈n̂iσ〉 in equation (1.2) we obtain.

n̂i↑n̂i↓ ≈ (n̂i↑ − 〈n̂i↑〉) 〈n̂i↓〉+ (n̂i↓ − 〈n̂i↓〉) 〈n̂i↑〉+ 〈n̂i↑〉 〈n̂i↓〉
= n̂i↑ 〈n̂i↓〉+ n̂i↓ 〈n̂i↑〉+ 〈n̂i↑〉 〈n̂i↓〉 .

(1.3)

Finally, the mean field Hamiltonian for the single-band hubbard model is:

H = HTB + U
∑
i

(n̂i↑ 〈n̂i↓〉+ n̂i↓ 〈n̂i↑〉+ 〈n̂i↑〉 〈n̂i↓〉) . (1.4)

Mean occupations can be obtained self-consistently, as we will explain in detail in later
sections. Starting with an initial ansatz for the occupations 〈n〉iσ, we calculate the band

5



structure of (1.4), and from this band structure, new average occupations are obtained. This
iteration is repeated until the average occupations converge to some value.

1.1.1. Example: one-dimensional chain

As an example, lets considerate an infinite uni-dimensional chain, with site energy ε0 and
hopping parameter t:

HTB =
∑
i,σ

ε0n̂iσ − tĉ†i,σ ĉi+1,σ + h.c. , (1.5)

where ĉ†i,σ, and ĉi,σ are the creation and anihilation operators repectively, of an electron
located at site i with spin σ. Hamiltonian HTB can be easily diagonalized by introducing
Bloch sums of the form

ĉ†j,σ = 1√
N

∑
k

eikxj ĉ†k,σ ,

ĉj,σ = 1√
N

∑
k

e−ikxj ĉk,σ ,
(1.6)

where N is the number of sites, xj = aj, and k takes values in the first Brillouin zone. After
replacement of the Bloch’s sums into Hamiltonian (1.5) we get

ĤTB = 1
N

∑
σ

∑
j

∑
k,k′

eiaj(k−k
′)
(
ε0ĉ
†
kσ ĉk′σ − teiakĉ

†
kσ ĉk′σ − te−iakĉ

†
k′σ ĉkσ

)
. (1.7)

Using the identity ∑j e
iaj(k−k′) = Nδkk′ , the Hamiltonian is diagonalized:

ĤTB =
∑
σ

∑
k

(ε0 − 2t cos ak) ĉ†kσ ĉkσ . (1.8)

Eigenenergies of (1.8), ε(k) = ε0−2t cos ak give us the band structure, and as we can see in fig
1.3, the spectrum is spin degenerated. Let’s suppose that there are N electrons, so we have
one electron per site, therefore half of the total states are occupied and the system is metallic.

Now, let us focus on the Hubbard term. We choose a spin polarization axis, and assume
that average spin occupations on all sites is the same. After mean field approximation (1.3),
Hubbard’s Hamiltonian takes the form:

Ĥmf = U
∑
j

(〈n̂↑〉 n̂j↓ + 〈n̂↓〉 n̂j↑ − 〈n̂↑〉 〈n̂↓〉) . (1.9)

Note that mean occupations do not depend on site j, and therefore, these coefficients remain
identical after passing to momentum space:

Ĥmf = U
∑
k

(〈n̂↑〉 n̂k↓ + 〈n̂↓〉 n̂k↑ − 〈n̂↑〉 〈n̂↓〉)

= U
∑
k

∑
σ,σ′

(∆τ zσσ′ − Cδσσ′) ĉ
†
kσ ĉkσ′ .

Here τ z is the third pauli matrix. Moreover, we have defined ∆ = 1
2(〈n̂↑〉 − 〈n̂↓〉), and
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C = 1
2(〈n̂↑〉+ 〈n̂↓〉) + 〈n̂↑〉 〈n̂↓〉. From last expression it can be seen that the Hubbard model

in mean field approximation is analogous to an effective magnetic field, constant on each site.
The strenght of this magnetic field is proportional to the Hubbard parameter U , and also it
is proportional to the local spin density ∆. The effect of such a spin asymmetry on the band
structure is in next panel.
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Figure 1.1: Bands of the 1D chain for different values of the ∆: (a)∆ =
0; (b) ∆ = 1eV ; (c) ∆ = 2.5eV . In all cases we have used ε0 = 0 and
y = −1eV .

As U∆ increases from zero, spin degeneracy is left out and the system can pass from a
nonmagnetic metal, to a fully spin-polarized magnetic insulator. The questions of how to
find ∆ and how it depends on Hubbard parameter U is postponed to a later section (see
sections 3 and 4), and we conclude this example for now.
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1.2. Multi-orbital Hubbard model in transition metals
In real materials, electrons lie in different pseudo-atomic orbitals, with eigenfunctions that

share the same symmetries of atomic orbitals (solutions of the isolated hydrogenoid atom).
These pseudo-atomic orbitals can be constructed by the Löwdin projection procedure [57]
to obtain an orthonormalized basis. Here we assume that these orbitals are known, and we
write them as |φiασ〉. Where i, α and σ are site, orbital and spin labels respectively.
The most general way to express the electronic repulsion (as a two-body operator) is

He−e =
∑
i

∑
b1b2b3b4

Ub1b2b3b4

∑
σ,σ′

ĉ†i,b1,σ
ĉ†i,b2,σ′

ĉi,b3,σ′ ĉi,b4,σ , (1.10)

where Uαβγδ is the matrix element defined by:

Ub1b2b3b4 = 1
2

∫
dr1dr2φ

∗
b1(r1)φ∗b2(r2)f(r1, r2)φb3(r2)φb4(r1) . (1.11)

In this expression, f(r1, r2) plays the role of an effective screened coulomb repulsion. The
International Union of Pure and Applied Chemistry (IUPAC) [64] defines a transition metal
as an element whose atom has a partially filled d sub-shell, or which can give arise to cations
with an incomplete d sub-shell. Using the spherical approximation, the screened coulomb
potential is assumed to be f(r1, r2) = f(|r2− r1|). and using the symmetry of d-like pseudo-
orbitals, it is possible to reduce (1.10) to the Kanamori model [10]:

HU = U
∑
α

n̂α↑n̂α↓ + (U ′ − JH
2 )

∑
α<β

n̂αn̂β − 2JH
∑
α<β

Ŝα · Ŝβ + JH
∑
α<β

(
ĉ†α↑ĉ

†
α↓ĉβ↓ĉβ↑ + h.c.

)
.

(1.12)
We have dropped the site index i for readability, and we only focused on repulsion terms
between electrons at the same site. Labels α and β runs over orbitals with same symmetry
as dxy, dyz, dzx, dx2−y2 and dz2 . Here n̂α = n̂nα↑ + n̂α↓ is the total occupation in orbital α.
The spin density on each orbital is defined by

Ŝα = ~
2
∑
σσ′

ĉ†αστσσ′ ĉασ′ ,

with τ the vector which components are Pauli matrices.The Kanamori parameters U , U ′,
JH are related by U ′ = U − 2JH . First term of (1.12) is the repulsion between two electrons
in the same orbital (with opposite spin because Pauli exclusion principle). The second term
of (1.12) is the repulsion between electrons on different orbitals (at the same atomic site).
Third term is the Hund coupling that gives origin to the Hund rules, favoring ferromagnetic
alignment inside the atom. Last term is the so called “pair-hopping”.

1.3. Hartree-Fock approximation of Hubbard Model
Hartree-Fock technique is useful to approximate the ground state of a many-body operator

by a single Slater determinant Ψ0, neglecting all correlation effects. One way to approach the
Hartree-Fock approximation of a Hamiltonian written as (1.10) is to use the Wick’s theorem
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(see appendix A) to rewrite a two-body operator as:

ĉ†αĉ
†
β ĉγ ĉδ =: ĉ†αĉ

†
β ĉγ ĉδ :

+ : ĉ†·α ĉ
†·
β ĉγ ĉδ : + : ĉ†·α ĉ

†
β ĉ
·
γ ĉδ : + : ĉ†·α ĉ

†
β ĉγ ĉ

·
δ :

+ : ĉ†αĉ
†·
β ĉ
·
γ ĉδ : + : ĉ†αĉ

†
β ĉ
·
γ ĉ
·
δ : + : ĉ†αĉ

†·
β ĉγ ĉ

·
δ :

+ : ĉ†·α ĉ
†·
β ĉ
··
γ ĉ
··
δ : + : ĉ†·α ĉ

†··
β ĉ
·
γ ĉ
··
δ : + : ĉ†·α ĉ

†··
β ĉ
··
γ ĉ
·
δ : ,

(1.13)

where : Â : is the sequence of annihilation and creation operators Â which is “normal ordered”
with respect to the Fermi ground state. If we take the expectation value in the ground state
over the contraction ĉ†·α ĉ

†·
β = ĉ†αĉ

†
β− : ĉ†αĉ

†
β :, as ĉ†·α ĉ

†·
β is a number, we get ĉ†·α ĉ

†·
β = 〈ĉ†αĉ

†
β〉 = 0. In

analogous way it can be seen that ĉ·γ ĉ·δ = 0. With this in mind, we perform some permutations
to get:

ĉ†αĉ
†
β ĉγ ĉδ = 〈ĉ†αĉδ〉 〈ĉ

†
β ĉγ〉 − 〈ĉ†αĉγ〉 〈ĉ

†
β ĉδ〉

+ 〈ĉ†αĉδ〉 : ĉ†β ĉγ : −〈ĉ†αĉγ〉 : ĉ†β ĉδ :
− 〈ĉ†β ĉδ〉 : ĉ†αĉγ : + 〈ĉ†β ĉγ〉 : ĉ†αĉδ :
+ : ĉ†αĉ

†
β ĉγ ĉδ : .

(1.14)

This expression allows us to separate the non-normal-ordered two-body operator as a sum of
a one body contribution, and a genuine two body part (last term). The central idea in the
mean-field Hartree-Fock approximation is to interpret : ĉ†αĉ

†
β ĉγ ĉδ : as a fluctuational term,

and neglect it.

An equivalent way to formulate Hartree-Fock approximation is through a variational
principle. A trial wave function |Ψ0〉 is constructed to be the ground state of an effective one
body Hamiltonian Hhf . The matrix elements of Hhf are obtained, minimizing the energy in
the state |Ψ0〉:

δ 〈Ψ0|Hhf |Ψ0〉 = 0 . (1.15)

We note that the last term of (1.14) has zero expectation value, and also has zero first
variation with respect to the Hartree-Fock ground state |Ψ0〉.

δ 〈Ψ0| : ĉ†αĉ
†
β ĉγ ĉδ : |Ψ0〉 = 〈δΨ0| : ĉ†αĉ

†
β ĉγ ĉδ : |Ψ0〉+ 〈Ψ0| : ĉ†αĉ

†
β ĉγ ĉδ : |δΨ0〉 = 0 (1.16)

Last expression is zero because up to first order, variation |δΨ0〉 is a state with only one
electron-hole pair. This gives another perspective of why should we neglect the last term in
(1.14). After the approximation, we replace back the definition of each contraction : ĉ†αĉβ :=
ĉ†αĉβ − 〈ĉ†αĉβ〉 in equation (1.14) and we obtain:

ĉ†αĉ
†
β ĉγ ĉδ ≈〈ĉ†αĉδ〉 ĉ

†
β ĉγ + 〈ĉ†β ĉγ〉 ĉ†αĉδ − 〈ĉ

†
β ĉγ〉 〈ĉ†αĉδ〉

− 〈ĉ†αĉγ〉 ĉ
†
β ĉδ − 〈ĉ

†
β ĉδ〉 ĉ†αĉγ + 〈ĉ†β ĉδ〉 〈ĉ†αĉγ〉 .

(1.17)

It is usual in literature to identify first line of (1.17) (direct pairing) as the Hartree term,
and second line (exchange pairing) as the Fock term. Systematic application of (1.17) over
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all terms of Kanamori model (1.12) allow us to exprress a mean field Hubbard model term
by term.

1.3.1. Hartree-Fock approximation on different parts of Kanamori
Hamiltonian

Now, we define four different terms that contribute to Kanamori Hamiltonian (1.12):

H1 = U
∑
α

n̂α↑n̂α↓ ,

H2 = (U ′ − JH
2 )

∑
α<β

n̂αn̂β ,

H3 = −2JH
∑
α<β

Ŝα · Ŝβ ,

H4 = JH
∑
α<β

(
ĉ†α↑ĉ

†
α↓ĉβ↓ĉβ↑ + h.c.

)
.

(1.18)

In this way, Kanamori’s Hamiltonian takes the form HU−J = H1 + H2 + H3 + H4, and we
use the mean field Hartree-Fock approximation (1.17) on each term separately. In the case
of H1 equation (1.17) is applied straight forward as:

H1 =U
∑
α

n̂α↑n̂α↓

≈U
∑
α

(〈n̂α↑〉 n̂α↓ + 〈n̂α↓〉 n̂α↑ − 〈n̂α↑〉 〈n̂α↑〉

− 〈ĉ†α↑ĉα↓〉 ĉ
†
α↓ĉα↑ − 〈ĉ

†
α↓ĉα↑〉 ĉ

†
α↑ĉα↓ + 〈ĉ†α↑ĉα↓〉 〈ĉ

†
α↓ĉα↑〉) .

(1.19)

To deal with H2, we start expanding the number occupations:

H2 = (U ′ − JH
2 )

∑
α<β

n̂αn̂β

= (U ′ − JH
2 )

∑
α<β

(n̂α↑ + n̂α↓)(n̂β↑ + n̂β↓)

= (U ′ − JH
2 )

∑
α<β

(n̂α↑n̂β↑ + n̂α↑n̂β↓ + n̂α↓n̂β↑ + n̂α↓n̂β↓) .

(1.20)

Now, we approximate each term on the sum separately:

n̂α↑n̂β↑ ≈〈n̂α↑〉 n̂β↑ + 〈n̂β↑〉 n̂α↑ − 〈n̂α↑〉 〈n̂β↑〉
− 〈ĉ†α↑ĉβ↑〉 ĉ

†
β↑ĉα↑ − 〈ĉ

†
β↑ĉα↑〉 ĉ

†
α↑ĉβ↑ + 〈ĉ†α↑ĉβ↑〉 〈ĉ

†
β↑ĉα↑〉

(1.21)

n̂α↑n̂β↓ ≈〈n̂α↑〉 n̂β↓ + 〈n̂β↓〉 n̂α↑ − 〈n̂α↑〉 〈n̂β↓〉
− 〈ĉ†α↑ĉβ↓〉 ĉ

†
β↓ĉα↑ − 〈ĉ

†
β↓ĉα↑〉 ĉ

†
α↑ĉβ↓ + 〈ĉ†α↑ĉβ↓〉 〈ĉ

†
β↓ĉα↑〉

(1.22)

n̂α↓n̂β↑ ≈〈n̂α↓〉 n̂β↑ + 〈n̂β↑〉 n̂α↓ − 〈n̂α↓〉 〈n̂β↑〉
− 〈ĉ†α↓ĉβ↑〉 ĉ

†
β↑ĉα↓ − 〈ĉ

†
β↑ĉα↓〉 ĉ

†
α↓ĉβ↑ + 〈ĉ†α↓ĉβ↑〉 〈ĉ

†
β↑ĉα↓〉

(1.23)
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n̂α↓n̂β↓ ≈〈n̂α↓〉 n̂β↓ + 〈n̂β↓〉 n̂α↓ − 〈n̂α↓〉 〈n̂β↓〉
− 〈ĉ†α↓ĉβ↓〉 ĉ

†
β↓ĉα↓ − 〈ĉ

†
β↓ĉα↓〉 ĉ

†
α↓ĉβ↓ + 〈ĉ†α↓ĉβ↓〉 〈ĉ

†
β↓ĉα↓〉 .

(1.24)

Puting all together we obtain:

H2 ≈(U ′ − JH
2 )×∑

α<β

(
〈n̂α↑〉 n̂β↑ + 〈n̂β↑〉 n̂α↑ − 〈n̂α↑〉 〈n̂β↑〉 − 〈ĉ†

α↑ĉβ↑〉 ĉ†
β↑ĉα↑ − 〈ĉ†

β↑ĉα↑〉 ĉ†
α↑ĉβ↑ + 〈ĉ†

α↑ĉβ↑〉 〈ĉ†
β↑ĉα↑〉

)
+ 〈n̂α↑〉 n̂β↓ + 〈n̂β↓〉 n̂α↑ − 〈n̂α↑〉 〈n̂β↓〉 − 〈ĉ†

α↑ĉβ↓〉 ĉ†
β↓ĉα↑ − 〈ĉ†

β↓ĉα↑〉 ĉ†
α↑ĉβ↓ + 〈ĉ†

α↑ĉβ↓〉 〈ĉ†
β↓ĉα↑〉

+ 〈n̂α↓〉 n̂β↑ + 〈n̂β↑〉 n̂α↓ − 〈n̂α↓〉 〈n̂β↑〉 − 〈ĉ†
α↓ĉβ↑〉 ĉ†

β↑ĉα↓ − 〈ĉ†
β↑ĉα↓〉 ĉ†

α↓ĉβ↑ + 〈ĉ†
α↓ĉβ↑〉 〈ĉ†

β↑ĉα↓〉

+ 〈n̂α↓〉 n̂β↓ + 〈n̂β↓〉 n̂α↓ − 〈n̂α↓〉 〈n̂β↓〉 − 〈ĉ†
α↓ĉβ↓〉 ĉ†

β↓ĉα↓ − 〈ĉ†
β↓ĉα↓〉 ĉ†

α↓ĉβ↓ + 〈ĉ†
α↓ĉβ↓〉 〈ĉ†

β↓ĉα↓〉
)

.
(1.25)

Now, we perform the approximation on H3. First we expand Ŝα with respect to the
fermionic operators:

Ŝα = 1
2
∑
σσ′

ĉ†αστ̂σσ′ ĉασ′ = 1
2
∑
σσ′


ĉ†ασ τ̂

x
σσ′ ĉασ′

ĉ†ασ τ̂
y
σσ′ ĉασ′

ĉ†ασ τ̂
z
σσ′ ĉασ′

 = 1
2

 ĉ†α↑ĉα↓ + ĉ†α↓ĉα↑
−iĉ†α↑ĉα↓ + iĉ†α↓ĉα↑

n̂α↑ − n̂α↓

 . (1.26)

Using this expression, we calculate the terms in the expansion of Ŝα · Ŝβ, and we perform
some permutations to obtain normal ordered terms.

ŜxαŜ
x
β = −1

4
(
ĉ†α↑ĉ

†
β↑ĉα↓ĉβ↓ + ĉ†α↑ĉ

†
β↓ĉα↓ĉβ↑ + ĉ†α↓ĉ

†
β↑ĉα↑ĉβ↓ + ĉ†α↓ĉ

†
β↓ĉα↑ĉβ↑

)
, (1.27)

ŜyαŜ
y
β = −1

4
(
ĉ†α↑ĉ

†
β↑ĉα↓ĉβ↓ + ĉ†α↑ĉ

†
β↓ĉα↓ĉβ↑ + ĉ†α↓ĉ

†
β↑ĉα↑ĉβ↓ + ĉ†α↓ĉ

†
β↓ĉα↑ĉβ↑

)
, (1.28)

ŜzαŜ
z
β = 1

4 (n̂α↑n̂β↑ − n̂α↑n̂β↓ − n̂α↓n̂β↑ + n̂α↓n̂β↓) . (1.29)

We replace equations (1.27) to (1.29) in H3 and after some cancellations, we obtain:

H3 =− 2JH
∑
α<β

Ŝα · Ŝβ

=− JH
2
∑
α<β

(n̂α↑n̂β↑ − n̂α↑n̂β↓ − n̂α↓n̂β↑ + n̂α↓n̂β↓)

+ JH
∑
α<β

(
ĉ†α↑ĉ

†
β↓ĉα↓ĉβ↑ + ĉ†α↓ĉ

†
β↑ĉα↑ĉβ↓

)
.

(1.30)

Terms of first sum can be approximated using the already calculated expressions. The re-
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maining terms in the second sum are approximated as follows:

ĉ†α↑ĉ
†
β↓ĉα↓ĉβ↑ ≈〈ĉ

†
α↑ĉβ↑〉 ĉ

†
β↓ĉα↓ + 〈ĉ†β↓ĉα↓〉 ĉ

†
α↑ĉβ↑ − 〈ĉ

†
α↑ĉβ↑〉 〈ĉ

†
β↓ĉα↓〉

− 〈ĉ†α↑ĉα↓〉 ĉ
†
β↓ĉβ↑ − 〈ĉ

†
β↓ĉβ↑〉 ĉ

†
α↑ĉα↓ + 〈ĉ†α↑ĉα↓〉 〈ĉ

†
β↓ĉβ↑〉 ;

(1.31)

ĉ†α↓ĉ
†
β↑ĉα↑ĉβ↓ ≈〈ĉ

†
α↓ĉβ↓〉 ĉ

†
β↑ĉα↑ + 〈ĉ†β↑ĉα↑〉 ĉ

†
α↓ĉβ↓ − 〈ĉ

†
α↓ĉβ↓〉 〈ĉ

†
β↑ĉα↑〉

− 〈ĉ†α↓ĉα↑〉 ĉ
†
β↑ĉβ↓ − 〈ĉ

†
β↑ĉβ↓〉 ĉ

†
α↓ĉα↑ + 〈ĉ†ααĉ↓↑〉 〈ĉ

†
β↑ĉβ↓〉 .

(1.32)

Replacing on (1.30), we obtain

H3 ≈−
JH
2
∑
α<β

(〈n̂α↑〉 n̂β↑ + 〈n̂β↑〉 n̂α↑ − 〈n̂α↑〉 〈n̂β↑〉

− 〈n̂α↑〉 n̂β↓ − 〈n̂β↓〉 n̂α↑ + 〈n̂α↑〉 〈n̂β↓〉
− 〈n̂α↓〉 n̂β↑ − 〈n̂β↑〉 n̂α↓ + 〈n̂α↓〉 〈n̂β↑〉
+ 〈n̂α↓〉 n̂β↓ + 〈n̂β↓〉 n̂α↓ − 〈n̂α↓〉 〈n̂β↓〉
− 〈ĉ†α↑ĉβ↑〉 ĉ

†
β↑ĉα↑ − 〈ĉ

†
β↑ĉα↑〉 ĉ

†
α↑ĉβ↑ + 〈ĉ†α↑ĉβ↑〉 〈ĉ

†
β↑ĉα↑〉

+ 〈ĉ†α↑ĉβ↓〉 ĉ
†
β↓ĉα↑ + 〈ĉ†β↓ĉα↑〉 ĉ

†
α↑ĉβ↓ − 〈ĉ

†
α↑ĉβ↓〉 〈ĉ

†
β↓ĉα↑〉

+ 〈ĉ†α↓ĉβ↑〉 ĉ
†
β↑ĉα↓ + 〈ĉ†β↑ĉα↓〉 ĉ

†
α↓ĉβ↑ − 〈ĉ

†
α↓ĉβ↑〉 〈ĉ

†
β↑ĉα↓〉

− 〈ĉ†α↓ĉβ↓〉 ĉ
†
β↓ĉα↓ − 〈ĉ

†
β↓ĉα↓〉 ĉ

†
α↓ĉβ↓ + 〈ĉ†α↓ĉβ↓〉 〈ĉ

†
β↓ĉα↓〉

)
+ JH

∑
α<β

(
〈ĉ†α↑ĉβ↑〉 ĉ

†
β↓ĉα↓ + 〈ĉ†β↓ĉα↓〉 ĉ

†
α↑ĉβ↑ − 〈ĉ

†
α↑ĉβ↑〉 〈ĉ

†
β↓ĉα↓〉

− 〈ĉ†α↑ĉα↓〉 ĉ
†
β↓ĉβ↑ − 〈ĉ

†
β↓ĉβ↑〉 ĉ

†
α↑ĉα↓ + 〈ĉ†α↑ĉα↓〉 〈ĉ

†
β↓ĉβ↑〉

+ 〈ĉ†α↓ĉβ↓〉 ĉ
†
β↑ĉα↑ + 〈ĉ†β↑ĉα↑〉 ĉ

†
α↓ĉβ↓ − 〈ĉ

†
α↓ĉβ↓〉 〈ĉ

†
β↑ĉα↑〉

− 〈ĉ†α↓ĉα↑〉 ĉ
†
β↑ĉβ↓ − 〈ĉ

†
β↑ĉβ↓〉 ĉ

†
α↓ĉα↑ + 〈ĉ†ααĉ↓↑〉 〈ĉ

†
β↑ĉβ↓〉

)
.

(1.33)

Finally, in H4 we have to approximate only one term, and the other is the corresponding
hermitian conjugate

ĉ†α↑ĉ
†
α↓ĉβ↓ĉβ↑ ≈〈ĉ

†
α↑ĉβ↑〉 ĉ

†
α↓ĉβ↓ + 〈ĉ†α↓ĉβ↓〉 ĉ

†
α↑ĉβ↑ − 〈ĉ

†
α↑ĉβ↑〉 〈ĉ

†
α↓ĉβ↓〉

− 〈ĉ†α↑ĉβ↓〉 ĉ
†
α↓ĉβ↑ − 〈ĉ

†
α↓ĉβ↑〉 ĉ

†
α↑ĉβ↓ + 〈ĉ†α↑ĉβ↓〉 〈ĉ

†
α↓ĉβ↑〉 .

(1.34)

And the corresponding hermitian conjugate is

ĉ†β↑ĉ
†
β↓ĉα↓ĉα↑ ≈〈ĉ

†
β↑ĉα↑〉 ĉ

†
β↓ĉα↓ + 〈ĉ†β↓ĉα↓〉 ĉ

†
β↑ĉα↑ − 〈ĉ

†
β↑ĉα↑〉 〈ĉ

†
β↓ĉα↓〉

− 〈ĉ†β↑ĉα↓〉 ĉ
†
β↓ĉα↑ − 〈ĉ

†
β↓ĉα↑〉 ĉ

†
β↑ĉα↓ + 〈ĉ†β↑ĉα↓〉 〈ĉ

†
β↓ĉα↑〉 .

(1.35)
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After this, H4 takes the form:

H4 ≈JH
∑
α<β

(
〈ĉ†α↑ĉβ↑〉 ĉ

†
α↓ĉβ↓ + 〈ĉ†α↓ĉβ↓〉 ĉ

†
α↑ĉβ↑ − 〈ĉ

†
α↑ĉβ↑〉 〈ĉ

†
α↓ĉβ↓〉

− 〈ĉ†α↑ĉβ↓〉 ĉ
†
α↓ĉβ↑ − 〈ĉ

†
α↓ĉβ↑〉 ĉ

†
α↑ĉβ↓ + 〈ĉ†α↑ĉβ↓〉 〈ĉ

†
α↓ĉβ↑〉

+ 〈ĉ†β↑ĉα↑〉 ĉ
†
β↓ĉα↓ + 〈ĉ†β↓ĉα↓〉 ĉ

†
β↑ĉα↑ − 〈ĉ

†
β↑ĉα↑〉 〈ĉ

†
β↓ĉα↓〉

− 〈ĉ†β↑ĉα↓〉 ĉ
†
β↓ĉα↑ − 〈ĉ

†
β↓ĉα↑〉 ĉ

†
β↑ĉα↓ + 〈ĉ†β↑ĉα↓〉 〈ĉ

†
β↓ĉα↑〉

)
.

(1.36)

We have obtained an approximated one-body Hamiltonian for the Hubbard model, but
its matrix elements depends on the different averages 〈ĉ†ασ ĉβσ′〉. These free parameters are
usually obtained by solving the minimization problem (1.15). The way we choose here is
slightly different, and consist in determining 〈ĉ†ασ ĉβσ′〉 by a self-consistent cycle. We explain
this methodology in the next section.

1.4. Self-consistent method
As it was mentioned in last section, expectation values 〈ĉ†ασ ĉβσ′〉 can be determined self-

consistently. On the self consistent method, each iteration can be summarized as follows:

i) We start with an input for the expectation values at iteration i. We define the array
M

(i)
ασ,βσ′ = 〈ĉ†ασ ĉβσ′〉

(i) containing all parameters.

ii) We calculate the band structure of the effective Hamiltonian.

iii) From this band structure, new expectation valuesM (i)′
ασ,βσ′ = 〈ĉ†ασ ĉβσ′〉

(i)′ (note the prime
to distinguish them from those in the first step) can be determined as:

〈ĉ†αĉβ〉 = 1
VBZ

∫
BZ

d2k
n∑
µ=1

C∗αµ(k)Cβµ(k)nF (εµ(k)) , (1.37)

where VBZ is the volume (area in this case) of the first Brillouin zone. Moreover, α and
β indices runs over orbital an spin basis. Cαµ is the α-component of the eigenvector
with the eigenvalue εµ(k). nF (ε) is the Fermi-Dirac distribution.

iv) Compare the new expectation values, with those used in i). If both differ more than a
given tolerance, repeat steps from i), using as input the expectation values obtained in
iii).

In order to ensure convergence of the method, it is useful to include a “relaxation factor”
α, in such a way that the input of iteration i+ 1 is related with the previous iteration by the
recurrence:

M
(i+1)
ασ,βσ′ = αM

(i)′
ασ,βσ′ + (1− α)M (i)

ασ,βσ′ . (1.38)

The case α = 1 recovers the case in which we use the calculated expectation values as the
input for the next iteration. In general, it is a good practice to choose α small enough to
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ensure the required convergence. In this work we used α = 0.05, and the temperature is set
to zero in (1.37).

This method has no unique solution. It is sensitive to the initial condition. In particular,
the direction of the spin polarization at each atom can modify the final result. In order to find
a good approximation for the ground state, it is useful to run the self-consistent method using
several spin configurations (ferromagnetic, antiferromagnetic, polarized in several directions)
and then compare them to choose the one with minimal energy.

1.5. Hartree-Fock approximation applied to CrI3 single
layer.

Now we are going to apply the formalism explained in the previous sections to the van
der Walls magnet CrI3. Fig. 1.2 shows the atomic structure of the material. The oxidation
state of Chromium and Iodine atoms is +3 and −1, respectively. Then we have the following
electron configuration:

Cr+3 : [Ar]3d3 ,
I−1 : [Kr]4d105s25p6 .

As we can see in fig. 1.2, in the unit cell is composed by 2 Cr and 6 I atoms. We are going to
focus on the behavior of the outer electrons, so let us consider 5 orbitals of type 3d on each
Chromium, and 3 orbitals of type 5p on each Iodine. We have a basis of 5× 2 + 3× 6 = 28
orbitals, and if we consider spin, we finally get a basis of 56 elements in the unit cell. See the
appendix B on this chapter to review the explicit form of these orbitals in real space. The
system will be occupied with 42 valence electrons.

We thank professor Eric Suarez, to provide the form of HTB in (1.1). Making first a DFT
calculation in the software Quantum Espresso, which gives the band structure considering all
electrons (not only the outer ones). Then a “Wannerization” procedure [67] allows project-
ing the Bloch’s eigenstates in a basis of maximally localized pseudo atomic orbitals, which
also have the constraint of share the same symmetries with the orbitals of Appendix B. In
this calculation, we neglected the spin-orbit coupling, and also any local repulsion between
electrons on the same site. The effective tight-binding Hamiltonian HTB has the form:

HTB =
(
H0
TB 0
0 H0

TB

)
. (1.39)

Here each diagonal block is the projection of the Hamiltonian in the spin basis {|↑〉 , |↓〉}.
Since both projections are identical, the spectrum is spin degenerated. In figure 1.3 it is shown
the band structure. It is important to note that when the Fermi level is calculated assuming
N = 42 electrons in the unit cell, the system behaves as a conductor. The literature says
that single layer CrI3 is a semiconductor [63], so HTB is not enough to describe the material.
Repulsion between electrons on the same site has to be included.
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Figure 1.2: (left) Single-layer CrI3, atoms inside the unit cell are
highlighted. Purple spheres represent Cr sites, and the smaller green
spheres represent the position of Iodine atoms. Lattice vectors a1 =
a0(
√

3/2, 1/2) and a2 = a0(
√

3/2,−1/2) are drawn in red.(right) First
Brillouin zone with high symmetry points
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Figure 1.3: (a) Spin-degenerated spectrum ofHTB, obtained from LDA
calculations. (b) Band structure with U = 2.5eV and JH = 0.35U .
The chemical potential is set to zero in both cases.

The reported studies show that each Cr has a magnetic moment of S = 3/2, and Iodines
are non-magnetic. So we are going to include the repulsion only on d−like orbitals of Cr
sites, and Kanamori Hamiltonian of eq. (1.12), can be used without changes. The on-site
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repulsion is parametrized with three parameters: (i) U representing the repulsion between
electrons on the same orbital; (ii) U ′ as the repulsion between electrons on the same site but
located in different orbitals; (iii) JH representing an exchange process that flips spin between
electrons of different orbitals.

As it was mentioned previously, these three parameters have the constraint U ′ = U−2JH .
We consider the cases: (i) JH = 0.15U ; (i) JH = 0.25U ; (iii) JH = 0.35U .
We calculate the mean-field Hamiltonian, with the formalism of the last section, for different
values of U on each case. In figure 1.4 it is shown the magnetic moment in the unit cell when
U is increased from zero. A ferromagnetic phase transition is observed for a critical value of
U . In figure 1.3 we can see the resultant bands for U = 2.5eV and JH = 0.35U . Comparing
this band structure with the case U = 0, we see that the spin degeneracy is lifted out by
the Hubbard repulsion, and the system becomes an insulator. This Metal - Mott insulator
transition has been extensively studied and is useful to explain magnetic order in transition
metal compounds [87, 25, 11].
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JH = 0.25U
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Figure 1.4: Magnetic moment on each Cr site as function of U . Three
cases of J/U are shown.

Note that the transition is not as smooth as in the example of the 1D chain. This is in
agreement with [58], and it is a behavior that appears when a multi-orbital model is consid-
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ered. The transition is smoothed when JH/U is increased.

The main conclusion of this chapter is that the on-site electronic repulsion cannot be
neglected, because it is necessary to describe the ferromagnetism properly in the van der
Waals magnet CrI3. This local repulsion is the reason behind the ferromagnetic transition.
However, it is not trivial to choose the correct values for U and JH , and the quantitative
results obtained in the following chapter will always be subject to the choice of U and JH .
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1.6. Appendixes

A. Normal order and Wick’ Theorem

Let A,B,C..,X, Y, Z be sequences of annihilation and creation operators of fermions. We
define the normal order of ABC...XY Z as:

: ABC...XY Z := (−1)PBXA...CZY .

Here operators on the right side are sorted in such a way that all creation operators are on the
left of annihilation operators. P is the number of permutations needed to reach the normal
order. It is important to note that the expectation value of the operator in the vacuum is
〈0| : AB...Y Z : |0〉 = 0, because either an annihilation operator acts on ket |0〉 or a creation
operators acts on bra 〈0|. Now we define the contraction of two fermionic operators as:

A·B· = AB− : AB : . (1.40)

Note that the contraction of a pair of operators is just a number. If AB is normal ordered, the
contraction is zero. Otherwise, if AB isn’t normal ordered, BA is, and A·B· = AB + BA =
{A,B}. The anti-commutator can be zero or one, and we conclude that A·B· is just a number.
Now we take the expectation value of (1.40) with respect to the vacuum |0〉, and because
the expectation value of a normal ordered operator is zero, and the expectation value of a
number is the number itself, we get:

A·B· = 〈0|AB |0〉 . (1.41)

With the previous definitions in mind, consider N fermionic operators A,B,C..,X, Y, Z.
Wick’s theorem can be stated in the next identity:

ABC...XY Z = : ABC...XY Z :
+ : A·B·C...XY Z : + : A·BC ·...XY Z : +...+ : ABC...XY ·Z · :
+ : A·B·C ··...X ··Y Z : +...+ : ABC ·...X ·Y ··Z ·· :
+ ...

+ A·B·C ··...X ··Y ···Z ··· + ... .

(1.42)

First line of the right side on (1.42) is the normal ordered operator, second line include all
possible contractions between one pair of operators, and the rest of them are normal ordered.
Third line include all possible contractions of two pairs of operators and so on until the last
line, where the number of pairs of operators being contracted is the entire part of N+1

2 . As it
was mentioned before , the contraction of two operators is just a number. Therefore all con-
tractions can be placed outside the normal ordered symbol : ... :. There is no need to include
the normal order in the last line, because either N is even and all operators are contracted,
then the expression is a number, or N is odd and only one operator is not contracted and it
becomes unnecessary to include the symbol.
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The strategy to compute different terms on the right side of (1.42) is perform all per-
mutations necessary to put every pair of contracted operators next together, calculate the
contraction using (1.41) and putting the expectation value out of the : ... : symbol. For
example,

: ĉ†·α ĉ
†
β ĉ
·
γ ĉδ := −ĉ†·α ĉ·γ : ĉ†β ĉδ := −〈ĉ†αĉγ〉 : ĉ†β ĉδ : , (1.43)

where the minus sign comes from the permutation needed to join contracted operators.
Up to now we have been talking about normal order with respect to to the vacuum |0〉,
which is the Fock state with zero occupations in all energy levels. It is also possible to define
a normal ordering with respect to the N-particle state with lowest energy. Let’s write this
ground state as

|Ψ0〉 =
N∏
α=1

ĉ†α |0〉 . (1.44)

States labeled with α are ordered from lowest to greatest energy. Now we can define a gener-
alized annihilation operator as any operator that annihilate the Fermi sea |Ψ0〉. Generalized
annihilations operators are those which annihilate an empty state, or those which create a
particle on an occupied state. So ĉ†α, with α ≤ N is such a way that

ĉ†α≤N |Ψ0〉 = 0 (1.45)

is a generalized annihilation operator of |Ψ0〉, and the same happens with

ĉα>N |Ψ0〉 = 0 . (1.46)

In analogous way, we can define generalized creation operators as the Hermitian conjugate
of the generalized annihilation operators, and they annihilate the bra 〈Ψ0|.
We can define the normal order with respect to |Ψ0〉 in the same way as (1.6), but letting
generalized creation operators on the left of generalized annihilation operators. The same
happens with the definition of the contraction (1.40). Finally, the property (1.41) becomes:

A·B· = 〈Ψ0|AB |Ψ0〉 . (1.47)

B. The explicit form of orbitals in real space

Pseudo atomic orbitals are constructed to have the same symmetries as the angular eigen-
functions of the Hydrogen atom. These angular eigenfunctions turn out to be also the basis
functions of the irreducible representations of the full rotation group SO(3). We define
the kets |l,m〉 as the m-th basis function of the irreducible representation l. The angular
dependence of these basis functions is:

〈Ω| |l,m〉 = Y m
l (θ, φ) = Pm

l (cos θ)eimφ . (1.48)

Where |Ω〉 = |θ, φ〉, θ being the polar angle, and φ the azimuthal angle, with respect to some
cartesian coordinate system. Pm

l is the associated Legendre polynomial of orders l and m.
Orbitals p and d are plotted in fig 1.5.

For each Chromium atom, we have considered 5 orbitals with the symmetries of the
spherical harmonics Y m

l (θ, φ), with l = 2, and m = −2,−1, 0, 1, 2. This five angular basis
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functions can be linerarly combined to get a basis of real functions. Real d-like orbitals are
listed below:

Name Combination of Y m
l Explicit form

dxy
i√
2(Y −2

2 − Y 2
2 )

√
15

16π sin2 θ sin 2φ

dxz
1√
2(Y −1

2 − Y 1
2 )

√
15
4π sin θ cos θ cosφ

dyz
i√
2(Y −1

2 + Y 1
2 )

√
15
4π sin θ cos θ sinφ

dx2−y2
1√
2(Y −2

2 + Y 2
2 )

√
15

16π sin2 cos 2φ

dz2 Y 0
2

√
15

16π (3 cos2 θ − 1)

For Iodine atoms, we considered p-like orbitals, which have the form Y l
m(θ, φ), with l = 1

and m = −1, 0, 1. The linear combinations of these three orbitals that allows to construct
real orbitals are listed below:

Name Combination of Y m
l Explicit form

px
1√
2(Y −1

1 − Y 1
1 )

√
3

4π sin θ cosφ

py
i√
2(Y −1

1 + Y 1
1 )

√
3

4π sin θ sinφ

pz Y 0
1

√
3

4π cos θ

  

Figure 1.5: p and d orbitals used for I and Cr atoms respectively.
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Chapter 2

Anisotropic ferromagnetism from
Green’s functions method

2.1. What is this chapter about?
The main idea of this chapter is to calculate magnetic constants of a spin Hamiltonian,

starting from the full electronic Hamiltonian of a given material. Using ab initio techniques,
we calculated the band structure of a single layer CrI3. This band structure is projected
using the basis of Bloch’s waves. After a Wannerization procedure [67], it is possible to
obtain a one body effective Hamiltonian (i.e., a matrix) expressed in a basis of maximally
localized pseudo-atomic orbitals. The technique developed in chapter 1 allows us to include
the on-site electronic Coulomb interactions as a Hartree-Fock approximation of the Kanamori
Hamiltonian (1.12).

In section 2.2, we start from a spin Hamiltonian, which includes a general exchange and
magneto-crystalline anisotropy. Then, we approximate this Hamiltonian up to quadratic or-
der in the transverse spin components. The quadratic Hamiltonian describes approximately
the physics of spin excitations, which are known as magnons. The approximated spectrum
of magnons is calculated in appendixes A and B, at the end of this chapter. First, we employ
the Holstein Primakoff’s transformation in the quadratic spin Hamiltonian. Then, we rewrite
it as a bosonic Bogoliuvov-de Gennes Hamiltonian, and we use Colpa’s algorithm to find the
band structure.

In section 2.3, we introduce a generalization of the Green’s functions method [62], by
including higher-order terms in the spin-orbit coupling. This technique allows us to calculate
the specific form of the quadratic Hamiltonian of section 2.2. We incorporate terms up to
quadratic order in the spin-orbit coupling.

In section 2.4, we employ the Green’s functions formalism to calculate the magnonic
spectrum in the single-layer CrI3, as a function of the spin-orbit coupling of Iodines. In
section 2.5, we repeat the calculation by polarizing the spin in an arbitrary direction. In this
way, we calculate the full spin-Hamiltonian, which describes the low energy excitations in
CrI3 ferromagnet.
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2.2. Spin Hamiltonian
Previous reports show that single layer CrI3 is ferromagnetic, with a magnetic moment of

3µB on each Chromium atom. In a low energy regime, only the magnetic degrees of freedom
of electrons become relevant. So we are interested in to map this low energy excitations into
a spin Hamiltonian of the form:

HS = −1
2
∑
i,j

(i6=j)

Si · Jij · Sj −
∑
i

Si · Aii · Si . (2.1)

Here, we only considered chromium sites, forming a honeycomb magnetic lattice. First sum-
mation runs over nearest neighbours, Jij is the exchange matrix between sites i and j, with
Jji = J T

ij . This matrix could have symmetric and antisymmetric parts, the latter indicating
the lack of inversion symmetry in the crystal, and therefore the presence of a Dzyaloshin-
skii–Moriya exchange. The symmetric part of Jij is not necessarily proportional to the
identity. Therefore, this model also includes the possibility of anisotropic exchange. The
second summation runs over all chromium sites, and matrix Aii is a generalized anisotropy,
representing an easy-plane or easy-axis anisotropy in an arbitrary direction.

Hamiltonian (2.1) is very general, in the sense that including some symmetries, we could
map it into a simpler model like the XXZ or the Heisenberg-Kitaev model. Both models
have been proposed recently to describe the magnetism in single layer CrI3 adequately. We
aim to give some light in distinguishing which model is more appropriate. We are going to
focus on the low energy excitations (i.e., spin waves) over the ground state, which is known
to be a ferromagnetic configuration with magnetization pointing on ẑ (axis normal to the
CrI3 layer). We perturb the ground state and rewrite magnetization as

Si =


δSxi
δSyi√

S2 − δS2
i

 ≈


δSxi
δSyi

S − 1
2S δS

2
i

 , (2.2)

where we defined δSi = (δSxi , δS
y
i , 0)T and its squared norm as δS2

i = (δSxi )2 + (δSyi )2. Now
we replace (2.2) into the exchange Hamiltonian:

Hex = −1
2
∑
i,j

Si · Jij · Sj

≈ −1
2
∑
i,j

((S − δS2
i

2S )ẑ + δSi) · Jij · ((S −
δS2

j

2S )ẑ + δSj)

≈ −1
2
∑
i,j

(S − δS2
i

2S )ẑ · Jij · ẑ(S −
δS2

j

2S ) + S (δSi · Jij · ẑ + ẑ · Jij · δSj) + δSi · Jij · δSj .

(2.3)
On the third line, we neglect δS2

i and δS2
j of the second sum, because they appear multiplied

by a linear term in δS. Now we work each term separately, first we note that ẑ ·Jij · ẑ = J zz
ij ,

and we expand the first term of (2.3):
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−1
2
∑
i,j

(S − δS2
i

2S )ẑ · Jij · ẑ(S −
δS2

j

2S ) ≈ −1
2
∑
i,j

(
S2J zz

ij − J zz
ij

δS2
i

2 − J zz
ij

δS2
j

2

)

= H0
ex + 1

2
∑
i

∑
j 6=i
J zz
ij

 δS2
i .

We have defined the exchange energy of the ground state as H0
ex = −S2

2
∑
i,j J zz

ij , and the
remaining terms have grouped in a nearest neighbors sum of each site. The second sum of
(2.3) can be written in the same way:

−1
2
∑
i,j

S (δSi · Jij · ẑ + ẑ · Jij · δSj) = −1
2
∑
i,j

Sẑ · (Jij + J T
ji ) · δSi

= −
∑
i

∑
j 6=i

Sẑ · Jij

 · δSi .
Finally, the exchange Hamiltonian takes the form:

Hex = H0
ex + 1

2
∑
i

∑
j 6=i
J zz
ij

 δS2
i −

∑
i

S∑
j 6=i

ẑ · Jij

 · δSi − 1
2
∑
i,j

δSi · Jij · δSj . (2.4)

Analogously, we can replace the perturbed magnetization in the anisotropy term:

HA =
∑
i

Si · Aii · Sj

= H0
A +

∑
i

Azzii δS2
i − 2S

∑
i

ẑ · Aii · δSi −
∑
i

δSi · Aii · δSj .
(2.5)

Here, we have defined the anisotropy energy of the ground state as H0
A = −S2∑

iAzzii . Now
the Hamiltonian can be written as HS ≈ H0

ex+H0
A+∆HS, with ∆HS being the total variation

of the energy, up to second order in the perturbation.

∆HS = −
∑
i

hi · δSi −
∑
i

δSi · A′ii · δSi −
1
2
∑
i,j

δSi · Jij · δSj , (2.6)

where hi and A′ii are respectively an effective field and an effective anisotropy defined as:

hi = 2Sẑ · Aii +
∑
j 6=i

Sẑ · Jij , (2.7)

A′ii = Aii −
Azzii + 1

2
∑
j 6=i
J zz
ij

 12×2 . (2.8)

Note that in the variation (2.6), δSi is defined as a bidimensional vector. Therefore in
the third summation only participates the components J xx

ij , J yy
ij , J xy

ij and J yx
ij . The same

happens with the effective field in (2.7). We simply ignore the third component and define
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hi = (hxi , h
y
i ). Also, in (2.8) we used only the x and y components of Aii. The eigenstates

of this Hamiltonian are particle-like excitations of the magnetization field, wich are called
magnons. The magnonic spectrum can be calculated performing a Holstein Primakoff’s
transformation, which allows to rewrite (2.6) as a bosonic Bogoliuvov de-Gennes (BdG)
Hamiltonian. The procedure to obtain the BdG Hamiltonian, and the the corresponding
eigenvalues, is described in appendixes A and B of this chapter. In the next section we will
focus on how to obtain a quadratic Hamiltonian like (2.6), from an electronic Hamiltonian.

2.3. Green’s functions method
The goal of this section is to find a variation of an effective tight-binding Hamiltonian

when we rotate the magnetization. We do this in order to map this variation to the spin
Hamiltonian of (2.6). To achieve this, we use the Andersen’s local force theorem [82], which
states that the total energy variation δE under small perturbation from the ground state
coincides with the sum of the one-particle energy changes for the occupied states at the fixed
ground state potential [62]. By using the local force theorem, the first-order perturbation of
the charge and spin densities takes the form:

δE =
∫ EF

−∞
dεεδn(ε) = EF δz −

∫ EF

−∞
dεδN(ε) = −

∫ EF

−∞
dεδN(ε) . (2.9)

Here we have n(ε) = dN/dε as the density of electrons states (DOS). N(ε) is the integrated
DOS, and EF is the Fermi energy. The perturbation consists of a rotation of the magneti-
zation, so the electron’s number does not change and δz = 0. The density of states can be
expressed using the Green’s function as:

n(ε) = − 1
π
ImTr

(
G+(ε)

)
. (2.10)

The Green’s function is defined using the Hamiltonian H as G+(ε) = (ε+ i0+−H)−1. From
now on, we omit the + superscript. It is understood that we need to include the +i0+, in
order to avoid the poles. With this, the integrated DOS takes the form:

N(ε) = − 1
π
Im

∫ ε

−∞
dε′Tr (ε′ −H)−1

= − 1
π
ImTr (ln(ε−H)) + C .

(2.11)

Now we write the Hamiltonian as H = H0 + δH + δ2H, separating explicitly the first and
second order corrections. With this we can calculate δN(ε).
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N(ε) = − 1
π
ImTr

(
ln(ε−H0 − δH − δ2H)

)
= − 1

π
Im

∑
n

ln
(
ε− ε0n − δεn − δ2εn

)
= − 1

π
Im

(
Tr ln(ε−H0)−

∑
n

ln
(

1− δεn + δ2εn
ε− ε0n

))

≈ − 1
π
Im

(
Tr ln(ε−H0)−

∑
n

δεn
ε− ε0n

+ δ2εn
ε− ε0n

+ (δε)2

(ε− ε0n)2

)

= N0(ε) + 1
π
ImTr

(
δHG+ δ2HG+ δHGδHG

)
.

(2.12)

Here G(ε) = (ε−H0)−1 is the Green’s function of the unperturbed system. Finally, we replace
δN in (2.9) (first and second-order variations), obtaining a closed expression for the energy
change.

∆E = − 1
π

∫ EF

−∞
dεIm{Tr(δHG(ε) + δ2HG(ε) + δHG(ε)δHG(ε))} . (2.13)

We have not mentioned the specific form of the perturbation yet. The idea is to rotate
the magnetization a small angle δφi around the axis δ~φi/δφi, on each site i. The resultant
transformation is block-diagonal, with one block per pseudo-atomic orbital. On each orbital
on a site i, the rotation acts as:

Ui = exp
(
i

2δ
~φi · ~σ

)
. (2.14)

We start neglecting spin-orbit coupling and assuming a collinear magnetic configuration.
The Hamiltonian can be expressed on the basis of localized pseudo-atomic orbitals, using
|i, l,m, σ〉 as the ket representing the site i, with angular momentum quantum numbers l
and m and spin quantum number σ. For simplicity, we drop the orbital indices l and m,
and keep only the site and spin quantum numbers. The matrix elements of the unperturbed
Hamiltonian spin-diagonal:

Hij =
H↑ij 0

0 H↓ij

 . (2.15)

It is useful to rewrite the matrix elements of Hij using Pauli matrices

Hij = H0
ijσ̂0 + ∆ij

2 σ̂z , (2.16)

with H0
ij = (H↑ij +H↓ij)/2 and ∆ij = (H↑ij−H

↓
ij). We used σ̂0 to denote the identity in SU(2).
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The transformed Hamiltonian is:

H ′ii = U †iHiiUi

= exp
(
− i2δ

~φi · ~σ
)
Hii exp

(
i

2δ
~φi · ~σ

)
≈ Hii + i

2[δ~φi · ~σ,Hii]−
1
8[δ~φi · ~σ[δ~φi · ~σ,Hii]] .

(2.17)

In the last line, we used the Baker-Campbell-Hausdorff formula, keeping terms up to second
order in the angles δφi. Now we calculate the first-order correction of the Hamiltonian. We
omit in this step the index of site i, and it should be understood that the transformation
applies for each site (and orbital) separately:

δH = − i2[δ~φ · ~σ,H]

= − i2

(
H0[δ~φ · ~σ, σ0] + ∆

2 [δ~φ · ~σ, σz]
)

= −i∆4 (δφx[σx, σz] + δφy[σy, σz])

= −∆
2 δφ

xσy + ∆
2 φ

yσx .

(2.18)

In the same way, we calculate the second-order variation of the Hamiltonian:

δ2H = −1
8[δ~φ · ~σ, [δ~φ · ~σ,H]]

= −1
8
(
−i∆δφx[δ~φ · ~σ, σy] + i∆δφy[δ~φ · ~σ, σx]

)
= −∆

4 |δ
~φ|2σz .

(2.19)

Here we set to zero the z-component of δ~φ because we are considering the ground state
polarized in ẑ and a z-rotation does not change the energy. We want to map the energy
variations to a spin Hamiltonian, so it is going to be useful to express δH, and δ2H in terms
of Sx and Sy in such a way δS = (Sx, Sy) is the magnetization field around the ground state.
For the material we are interested in, each Chromium site has a magnetic moment S = 3/2,
so the angle δφ is related to δS by:

δφx = −Sy/S ,
δφy = Sx/S .

(2.20)

Defining ψ = Sx + iSy, variations δH and δ2H can be written as:

δHii = ∆i

2S

(
0 ψ∗i
ψi 0

)
(2.21)

and
δ2H = −|ψ|2 ∆i

2S2σz . (2.22)

Now we take into account the spin-orbit coupling. The only difference is that in equation
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(2.13), we have to replace G→ G̃ and to include the spin-orbit coupling as a perturbation.

G̃ = G+GHSOG+GHSOGHSOG , (2.23)

with HSO
k = λkL · S. Note that HSO is diagonal in the site index k, but it mixes the pseudo-

atomic orbitals on each site. We are neglecting any hopping that comes from the spin-orbit
coupling. Now we write the energy variation as

∆E = δE + δ2E . (2.24)

The first and second-order variations can be expressed in turn as a sum of different contri-
butions depending on the order of spin-orbit parameter λk:

δE = δE0 + δEλ + δEλ2 , (2.25)

δ2E = δ2E0 + δ2Eλ + δ2Eλ2 . (2.26)

Each energy term takes the form:

δE0 = −1
π

∫ EF

−∞
dεTr{δHG} , (2.27)

δEλ = −1
π

∫ EF

−∞
dεTr{δHG(1)} , (2.28)

δEλ2 = −1
π

∫ EF

−∞
dεTr{δHG(2)} , (2.29)

δ2E0 = −1
π

∫ EF

−∞
dεTr{δ2HG+ δHGδHG} , (2.30)

δ2Eλ = −1
π

∫ EF

−∞
dεTr{δ2HG(1) + δHGδHG(1) + δHG(1)δHG} , (2.31)

δ2Eλ2 = −1
π

∫ EF

−∞
dεTr{δ2HG(2) + δHGδHG(2) + δHG(1)δHG(1) + δHG(2)δHG} . (2.32)

Where we have defined the corrections of the Green’s function of first and second order in
the spin-orbit coupling as G(1) = GHSOG and G(2) = GHSOGHSOG. In order to calculate
the traces in spin, it is going to be useful to define the spin components of HSO:

HSO
k =

h↑↑k h↑↓k

h↓↑k h↓↓k

 , (2.33)

where each element hσσ′k is a matrix in the orbital basis at site k.

It is easy to see that δE0 = 0 because δH and G are spin-anti-diagonal and spin-diagonal,
respectively, so the product has null trace. This doesn’t happen for δEλ and δEλ2 . If we use
TrL to represent the trace in orbital basis, and then we write the summation explicitly in
the site and spin indices, we get:
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δEλ = − 1
π

∑
ij

∑
σ,σ′

Im
∫ EF

−∞
dεTrL

(
δHσ

iiG
σ
ijH

SO
j,σσ′G

σ
ji

)

= − 1
2πS

∑
ij

Im
∫ EF

−∞
dεTrL{ψ∗i ∆iG

↓
ijh
↓↑
j G

↑
ji + ψi∆iG

↑
ijh
↑↓
j G

↓
ji} .

(2.34)

The integrand has the structure ψ∗a+ψb with a and b complex numbers. We use the following
identity:

Im (ψ∗i a+ ψib) = Sxi Im(b+ a) + Syi Re(b− a) . (2.35)

With this δEλ takes the form:

δEλ = −
∑
i

h
x(1)
i Sxi + h

y(1)
i Syi

= −
∑
i

h(1)
i · δSi .

(2.36)

Where we have defined the components of h(1)
i as:

h
x(1)
i = 1

2πS
∑
j

Im
∫ EF

−∞
dεTrl{∆i(G↑ijh

↑↓
j G

↓
ji +G↓ijh

↓↑
j G

↑
ji)} ,

h
y(1)
i = 1

2πS
∑
j

Re
∫ EF

−∞
dεTrl{∆i(G↑ijh

↑↓
j G

↓
ji −G

↓
ijh
↓↑
j G

↑
ji)} .

(2.37)

A similar procedure allows us to calculate δEλ2 .

δEλ2 = −
∑
i

h(2)
i · δS , (2.38)

with

h
x(2)
i = 1

2πS Im
∫ EF

−∞
dεTrL{∆i(G(2)↑↓

ii +G
(2)↓↑
ii )} ,

h
y(2)
i = 1

2πSRe
∫ EF

−∞
dεTrL{∆i(G(2)↑↓

ii −G(2)↓↑
ii )} .

(2.39)

Here we have not expanded the explicit form of G(2) in order of keep clear the notation. Now
we calculate the contributions of δ2E. The spin-orbit independent term δ2E0 has two parts.
The first one is:

−1
π
Im

∫ EF

−∞
dεTr{δ2HG} = 1

2πS2 Im
∑
i

∫ EF

−∞
dε|ψi|2TrL{∆i(G↑ii −G

↓
ii)} . (2.40)

Because Gii is diagonal in spin basis, the identity G↑ii − G
↓
ii = (G↑∆G↓)ii = ∑

j G
↑
ij∆jG

↓
ji is

satisfied. With this the previous term takes the form:

28



−1
π
Im

∫ EF

−∞
dεTr{δ2HG} = 1

2πS2

∑
ij

Im
∫ EF

−∞
dε|ψi|2TrL{∆iG

↑
ij∆jG

↓
ji} . (2.41)

The second part of δ2E0 is

−1
π
Im

∫ EF

−∞
dεTr{δHGδHG} = −1

4πS2

∑
ij

Im
∫ EF

−∞
dεTrL{ψ∗iψj∆iG

↓
ij∆jG

↑
ji + ψiψ

∗
j∆iG

↑
ij∆jG

↓
ji} .

(2.42)
We use the following identity

Im{ψ∗iψja+ ψiψ
∗
j b} = δSi · δSjIm{a+ b}+ (δSi × δSj)zRe{a− b} , (2.43)

to obtain

−1
π
Im

∫ EF

−∞
dεTr{δHGδHG} = −1

2πS2

∑
ij

Im
∫ EF

−∞
dεδSi · δSjTrL{∆iG

↓
ij∆jG

↑
ji} . (2.44)

The second term of identity (2.43) doesn’t appear because the symmetric sum in i, j. Both
parts of δ2E0 can be added together to form an isotropic exchange:

δ2E0 = 1
4
∑
ij

J0
ij|δSi − δSj|2 . (2.45)

Where we have defined the exchange constant as

J0
ij = 1

πS2 Im
∫ EF

−∞
dεTrL{∆iG

↓
ij∆jG

↑
ji} . (2.46)

The terms δEλ and δ2E0 are present in the work of Mazurenko [62]. The rest of the
energy variations, considering terms of higher order in the spin orbit coupling were neglected
in that formalism, and they correspond to our extension of that work. The terms present in
δ2Eλ and δ2Eλ2 has one of the following structures:

(i) E(n)
onsite = −1

π
Im

∫ EF
−∞ dεTr{δ2HG(n)} .

(ii) E(n1,n2)
intersite = −1

π
Im

∫ EF
−∞ dεTr{δHG(n1)δHG(n2)} .

On-site contributions can be calculated as before, expanding the sum in the site and spin
indices we get

E
(n)
onsite = 1

2πS2

∑
i

Im
∫ EF

−∞
dε|ψi|2TrL{∆i(G(n)↑↑

ii −G(n)↓↓
ii )}

=
∑
i

K
(n)
i |δSi|2 .

(2.47)
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Where the on-site constant K(n)
i was defined as

Kn
i = 1

2πS2 Im
∫ EF

−∞
dεTrL{∆i(G(n)↑↑

ii −G(n)↓↓
ii )} . (2.48)

Now we calculate the generic E(n1,n2)
intersite term, expanding the trace it takes the form

E
(n1,n2)
intersite = −1

4πS2

∑
ij

Im
∫ EF

−∞
dεTrL{ψiψj∆iG

(n1)↑↓
ij ∆jG

(n2)↑↓
ji + ψ∗iψ

∗
j∆iG

(n1)↓↑
ij ∆jG

(n2)↓↑
ji

+ ψ∗iψj∆iG
(n1)↓↓
ij ∆jG

(n2)↑↑
ji + ψiψ

∗
j∆iG

(n1)↑↑
ij ∆jG

(n2)↓↓
ji } .

(2.49)
The third and fourth terms can be reordered using (2.43). For the first and second terms,
we use the following identity:

Im{ψiψja+ ψ∗iψ
∗
j b} = δSiσzδSjIm{a+ b}+ δSiσxδSjRe{a− b} . (2.50)

Where σz and σx are pauli matrices, and δSi,j were used as two dimensional vectors. Using
identities (2.43) and (2.50) the inter-site contribution can be written as

E
(n1,n2)
intersite = −1

2
∑
ij

δSi ·

J (n1,n2)
ij + α

(n1,n2)
ij β

(n1,n2)
ij + d

(n1,n2)
ij

β
(n1,n2)
ij − d(n1,n2)

ij J
(n1,n2)
ij − α(n1,n2)

ij

 · δSj . (2.51)

Where we have defined the following quantities:

J
(n1,n2)
ij = 1

2πS2 Im
∫ EF

−∞
dεTrL{∆iG

(n1)↓↓
ij ∆jG

(n2)↑↑
ji + ∆iG

(n1)↑↑
ij ∆jG

(n2)↓↓
ji } ,

d
(n1,n2)
ij = 1

2πS2Re
∫ EF

−∞
dεTrL{∆iG

(n1)↓↓
ij ∆jG

(n2)↑↑
ji −∆iG

(n1)↑↑
ij ∆jG

(n2)↓↓
ji } ,

α
(n1,n2)
ij = 1

2πS2 Im
∫ EF

−∞
dεTrL{∆iG

(n1)↑↓
ij ∆jG

(n2)↑↓
ji + ∆iG

(n1)↓↑
ij ∆jG

(n2)↓↑
ji } ,

β
(n1,n2)
ij = 1

2πS2Re
∫ EF

−∞
dεTrL{∆iG

(n1)↑↓
ij ∆jG

(n2)↑↓
ji −∆iG

(n1)↓↑
ij ∆jG

(n2)↓↑
ji } .

(2.52)

Now we are ready to calculate δ2Eλ and δ2Eλ2 , the linear term in the spin-orbit coupling
has the form

δ2Eλ = E
(1)
onsite + E

(0,1)
intersite + E

(1,0)
intersite . (2.53)

The quadratic term is

δ2Eλ2 = E
(2)
onsite + E

(0,2)
intersite + E

(2,0)
intersite + E

(1,1)
intersite . (2.54)

Note that α(0,1)
ij = α

(1,0)
ij = α

(0,2)
ij = α

(2,0)
ij = β

(1,0)
ij = β

(0,1)
ij = β

(0,2)
ij = β

(2,0)
ij = 0, because

G
(0)
ij = Gij is diagonal in spin basis. Therefore, up to linear order in the spin-orbit cou-

pling, only appears a correction to the isotropic Heisenberg exchange, and possibly an anti-
symmetric exchange dij. However, when quadratic terms in spin orbit coupling are included,
anomalous terms that breaks the x − y isotropy and mix x and y spin-components can be
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present.

Let’s define αij = α
(1,1)
ij , and βij = β

(1,1)
ij because these are the only non zero contributions

with that structure. Also we define the following linear terms in the spin-orbit coupling:

J
(1)
ij = J

(0,1)
ij + J

(1,0)
ij ,

d
(1)
ij = d

(0,1)
ij + d

(1,0)
ij .

(2.55)

and in analogous way, the quadratic terms in spin orbit coupling can be grouped as

J
(2)
ij = J

(0,2)
ij + J

(2,0)
ij + J

(1,1)
ij ,

d
(2)
ij = d

(0,2)
ij + d

(2,0)
ij + d

(1,1)
ij .

(2.56)

We finally write the isotropic exchange, the anti-symmetric exchange, and the on-site
constant as

Jij = J
(0)
ij + J

(1)
ij + J

(2)
ij ,

dij = d
(1)
ij + d

(2)
ij ,

Ki = K
(1)
i +K

(2)
i ,

hi = h(1)
i + h(2)

i .

(2.57)

2.4. From electrons to magnons in CrI3

In the last section, we started from an effective electronic Hamiltonian, and from it, we
obtained the energy variation of a ground state’s perturbation, by rotating the magnetization
on each site an arbitrary small-angle δφi. We perform this analysis, including the effects of
the spin-orbit coupling, up to quadratic order. In the material CrI3 as has been mentioned
before, the Chromium sites are the magnetic ones, so the energy variations δHii and δ2Hii

only has non zero contributions on chromium sites.

In order to calculate the corrections to the original Green’s function, we need an explicit
form for the spin-orbit Hamiltonian HSO. For simplicity, we include the spin-orbit coupling
only in Iodine atoms. It has been widely argued that the spin-orbit of ligands plays a cen-
tral role in the description of this material [49], and for this reason, we neglect SOC in the
magnetic chromium atoms.

As was mentioned in chapter 1, we use three p-like orbitals on each Iodine atom. From
Appendix B. of chapter 1, this orbitals can be written in terms of eigenstates of Lz and L2

as:
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|px〉 = 1√
2

(|1,−1〉 − |1, 1〉) ,

|py〉 = 1√
2

(|1,−1〉+ |1, 1〉) ,

|pz〉 = |1, 0〉 .

(2.58)

Where |l,m〉 are the angular eigenfuncions of the hydrogen-like atom with total angular
momentum L2 = ~2l(l + 1) and z-component Lz = ~m. By projecting HSO

k = λσ · L in this
basis, each Iodine block takes the form:

HSO
k = λ


0 −iσz iσy

iσz 0 −iσx
−iσy iσx 0

 . (2.59)

This matrix is the represented in the basis {|px〉 , |py〉 , |pz〉}, and each element is a 2 × 2
matrix representing the spin basis. With this G(1) is:

G
(1)
ij =

∑
k

GijH
SO
k Gkj . (2.60)

The sum in k runs every Iodine atom in the system. For practical purposes, we only need
to include a few unit cells around the link (i, j) to ensure the required convergence. The
second-order correction is:

G
(2)
ij =

∑
kk′
GikH

SO
k Gkk′H

SO
k′ Gk′j . (2.61)

As before, the sums over k and k′ only visit the Iodine’s sites. G(1)
ij is the sum over all pro-

cesses in which the electron hops from the chromium i, to an Iodine atom, and then to the
chromium j. The second-order Green’s function G

(2)
ij represents all the processes in which

two Iodine’s sites are visited before the electron returns to a Chromium atom.

The energy variation calculated in the last section can be written as:

∆E = −
∑
i

hi · δSi −
∑
i

δSi · A′ii · δSi −
1
2
∑

ij(i 6=j)
δSi · Jij · δSj . (2.62)

With hi = h(1)
i + h(2)

i (see eqs. (2.37) and (2.39)). The exchange matrix has the form:

Jij = Jijσ0 − idijσy + αijσz + βijσy

=
(
Jij + αij βij + dij

βij − dij Jij − αij

)
.

(2.63)

And the on-site matrix is:

A′ii = −(Ki + 1
2J

(0)
ii + 1

2H
i
W )σ0 + 1

2Jii . (2.64)

Here H i
W = ∑

j,(j 6=i) J
(0)
ij is the Weiss field associated with the isotropic exchange on the site
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i. The magnetic constants used here are those defined in (2.57). When we calculate these
constants on CrI3, we found that several of them are zero. For example, due to the center
of inversion in the middle of the Cr - Cr link, the exchange matrix should be symmetric.
This is confirmed and we get dij = 0 for every link (i, j). Also, we calculate that hi is zero in
both Cr sites, supporting the fact that the ground state is the z-polarized ferromagnetic state.

The rest of the magnetic couplings of Jij are relevant only in nearest neighbors (NN)
and next-nearest neighbors (NNN). However, for the NNN we found that, for reasonable
values of the spin-orbit coupling, only J (0)

ij and J (2)
ij are non-negligible, and for fixed λ both

constants are equal on all NNN-links, this happens because the NNN-neighbours of a given
site are connected by a three-fold rotation Rz(2π

3 ) or a mirror symmetry Πuz, Πvz, and both
symmetries are present in the crystal. For the NN-links, we have the same values of J (0) and
J (2), but three different values for α and β, one for each link.

  

1
3

2

Figure 2.1: Bipartite honeycomb lattice of magnetic Cr sites. A lat-
tice is drawn in red, and B lattice is drawn in blue. (Left) Nearest
neighbours links enumerated from 1 to 3 are represented as green ar-
rows. (Right) Next nearest neighbours links, AA and BB links are
represented by red and blue arrows respectively.

Moreover, the on-site matrix A′ is equal on both Cr-sites, and it is diagonal. So it could
be written in the simpler form:

A′ = −(K(2) + 1
2HW −

1
2J

(2)
00 )σ0 . (2.65)

In order to obtain the effective Hamiltonian without SOC, we use the Kanamori Hamilto-
nian in the Hartree-Fock approximation, as was explained in chapter 1. Choosing U = 2.5eV
and JH = 0.4U , for the intra-orbital electronic repulsion, and the intra-atomic exchange,
respectively. We obtain the magnetic couplings mentioned previously. Isotropic exchange
couplings for NN and NNN are shown in fig 2.2. This exchange should be understood as the
mean value between Jxx and Jyy, and as we will see in the next section, one part of J (2)

ij

is going to modify the Heisenberg exchange constant, and some part will contribute to an
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anisotropic exchange. Fig 2.3 shows αij and βij as function of the spin-orbit coupling, for
the three NN-links,m enumerated as shown in fig 2.1. Some relations in these coefficients
are observed. For example α2 = α3, β1 = 0 and β2 = −β3. These terms are responsible for
generating an anisotropic exchange between the nearest neighbors. In the next section, it
will become clear why these relations are consistent with a specific form of the anisotropic
exchange, which is forced by the symmetries of the crystal. Finally, in fig 2.4 are shown the
coefficients that contributes to the on-site matrix A′ in eq. (2.65).

Figure 2.2: Exchange constants defined as J = J (0) + J (2) for different
links, as functiopn of the spin orbit coupling λ. (Left) Exchange
between nearest neighbours J = 5.88 meV−9.1×10−3λ2/eV. (Right)
Exchange between next nearest neigbbours, defined as J = 2.68meV −
4.8× 10−4λ2/eV.

  

Figure 2.3: Couplings αij (left), and βij (right) for the nearest neigh-
bours, as function of the spin orbit coupling. Links are enumerated as
shown in fig 2.1. α1 = 0.032λ2/eV , α2 = α3 = −0.016λ2/eV , β1 = 0,
β3 = −β2 = 0.028λ2/eV .
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Figure 2.4: On-site terms of eq. (2.65), as function of the spin orbit
coupling. The curve is parametrized by 2.8× 10−3λ2/eV

Within the formalism developed in appendixes A and B of this chapter, the spectrum
of the magnons can be calculated. In fig 2.5 it is shown the magnonic spectrum with and
without spin-orbit coupling. Note that when we turn on the spin-orbit coupling in the Iodine
sites, a gap is opened for infinite wavelength (Γ point), and also the degeneration at K and
K′ points are lifted out. The gap at Γ point is particularly significant because it is the reason
for the stable ferromagnetism in the bi-dimensional magnet CrI3. According to the Mermin-
Wagner theorem [65], there is no magnetic order for finite temperature in two dimensions, if
SU(2) symmetry is preserved. The gap at Γ is a consequence of that symmetry is broken,
and the origin of this gap is particularly important in order to understand CrI3 magnetism,
and others bi-dimensional magnets.

Figure 2.5: (a) Magnon’s bands for λ = 0 (green) and λ = 0.15eV
(red). (b) Energies in the vicinity of K point.
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2.5. Spin Hamiltonian for the CrI3 ferromagnet
The technique developed in the last section is easy to generalize to a uniform spin tex-

ture polarized in an arbitrary axis n̂. The collinear Hamiltonian obtained by the Hartree
Fock approximation is independent of the spin polarization, and the spin-orbit coupling is
introduced as a perturbation in the collinear Green’s function. Once we choose a coordinate
system {x′, y′, z′}, and polarize the magnetization in z′-direction, the technique described in
the last section allows to us to obtain the quadratic form of H in terms of δSx′ and δSy′ . We
only have to make the replacement HSO → R†HSOR, with R being the SU(2) spin-rotation
connecting both coordinate systems. Given a {x′, y′, z′} basis, we can permute the axes
employing a (111) three-fold rotation, and so get all the 2× 2 blocks of the exchange matrix.

    

Cr
A

Cr
B

I
top

I
bottom

x’

y’y’

z’

1

2

3

A  B

A

A

(a) (b)

Figure 2.6: (a) Top view of the CrI3 layer, with different plaquettes
Cr2I2 highlighted in color. Three kind of NN-links are enumerated
from 1 to 3, just as in fig. 2.1. b Plaquette 1 in the coordinate system
{x′, y′, z′}. Each plaquette is composed by two Cr sites (A (red) and
B (blue)), and two Iodines (green) Itop and Ibottom. Axis z′ is normal
to the plaquette. Plaquettes 2 and 3 can be obtained by a (111) three
fold rotation, or equivalently by permuting the axes x′, y′, z′.

For each NN-link, we chose the basis with z′ pointing normal to the Cr2I2 plaquette,
and x′, y′ oriented with the Cr − I links, as shown in fig. 2.6. In this basis {x′, y′, z′} the
exchange matrix has the form:

J1 =


J −Γ Γ
−Γ J Γ

Γ Γ J +K

 . (2.66)

With J = 5.88 meV + 1.18× 10−2λ2/eV, K = −6.06× 10−2λ2/eV and Γ = 8.9× 10−3λ2/eV.
Exchange matrices of the other two links J2 and J3 have the same form when oriented in
the basis {y′, z′, x′} and {z′, x′, y′} respectively, choosing the third component of the basis
as the spin polarization axis. In a recent article [45], a similar formalism is applied to CrI3
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neglecting the spin-orbit coupling. The authors found that the isotropic exchange has two
contributions. The first one is the antiferromagnetic direct exchange between occupied eg
orbitals. There is also another ferromagnetic contribution that gives arise from the superex-
change paths Cr− I −Cr in the Cr2I2 plaquette of the link. The total Heisenberg exchange
is ferromagnetic and isotropic, but when the spin-orbit coupling is turned on, it appears an
an-isotropic exchange from these Cr − I − Cr paths, which prefers the axis normal to the
plaquette. The last is the origin of the K term in the exchange matrix. As we will see
later, this link dependent anisotropy of the exchange is consistent with the Kitaev model,
and in the next chapter, we will prove that the gap at K point of the magnon’s spectrum is
generated by this non-zero Kitaev constant K (see fig 2.5).

An interesting fact is that Γ is originated from the distortion of the octahedral environ-
ment of each Cr site. We support this claim developing a naive tight-binding model, which
includes only site energies, nearest neighbors hoppings (Cr− I), and the crystal field on each
atom. Each NN-hopping matrix depends on two Slater-Koster parameters Vpdσ and Vpodπ,
and the relative positions of the atoms. When we perform the Green’s functions method on
the tight-binding model with the ideal atomic positions (when the local cubic symmetry is
preserved), we obtain Γ = 0, and it becomes non-zero when the actual atomic positions are
used instead.

Figure 2.7: Energy gaps at Γ point (∆Γ) andK point (∆K) as function
of the spin orbit coupling λ.

As a final comment with respect to the exchange matrices, we have to say that each
plaquette contributes to approximately the 80% of the constants K and Γ, as should be ex-
pected. With this, we mean that super-exchange paths that connects two Cr sites, through
I atoms, plays a central role in the magnetic couplings. The other 20% comes from higher-
order paths. We observed this by decomposing αij and βij as a sum of all possible paths,
and integrating different processes separately.

To distinguish between the single-ion anisotropy and the on-site contribution of the ex-
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change, we remember the form of the on-site matrix from (2.8):

A′ii = Aii − (Azzii + 1
2

∑
j∈nn(i)

J zz
ij )σ0 . (2.67)

The on-site matrix was founded to be diagonal, so Axx = Ayy = Axy = Ayx = 0. Defining
A0 = Azzii as the single ion anisotropy, we can compare it with (2.65), obtaining:

A0 = K
(2)
0 −

1
2J

(2)
00 −

K

2 − Γ = 1.86× 10−2λ2/eV . (2.68)

Finally, the spin-3
2 Hamiltonian takes the form:

H = −
∑
〈i,j〉

SiJijSj − Jnnn
∑
〈〈i,j〉〉

Si · Sj − A0
∑
i

(Szi )2 . (2.69)

The first term of this Hamiltonian is the Heisenberg-Kitaev-Γ model (HKΓ), with matrices
Jij ∈ {J1,J2,J3}. The second term is an isotropic next nearest neighbor’s exchange, and
the last term is the single-ion anisotropy. Magnetic constants involved in (2.69) are shown
in fig. 2.8 as function of the spin-orbit coupling. We conclude that the magnetic degrees
of freedom in CrI3 are well described not by the XXZ model, proposed in [49], but by
the Hamiltonian (2.69). The main difference between both models is that HKΓ model has
non zero components Jxy in the crystal basis {x, y, z}, behavior that is absent in the XXZ
model. These terms are calculated from the coefficients αij and βij; both defined in the last
section. The ground state of (2.69) is the ẑ-polarized ferromagnetic state, and its spectrum
was already calculated in the last section (see fig 2.5). Gaps at Γ and K points are plotted
as function of the spin-orbit coupling in fig 2.7.

The existence of bidimensional magnets, whose spin freedom degrees are well described
within a modified Kitaev’s model, opens promising opportunities for studying and controlling
the quantum-spin-liquid (QSL) phase [85, 5]. QSLs are topological states of matter which
exhibit remarkable features. For example, QSLs have been proposed as potential candidates
to protect quantum information from decoherence.

The spin Hamiltonian is consistent with the symmetries of the crystal, but it is important
no note that the values of the constants depend not only on the spin-orbit parameter but
also on of the on-site potential ∆i, which in turn depend on the Kanamori parameters U
and JH . A different choice for these Hubbard parameters could lead to different values of
J , K, Γ, and A0, but the same symmetries have to be preserved. Similar results, has been
obtained recently by ab-initio methods [92] and by experimental ferromagnetic resonance
[52]. Both works propose different magnitudes for the Kitaev’s constant, so an exact value
for the magnetic couplings in the CrI3 ferromagnet is not clear enough yet. However, the
technique developed in this chapter opens a novel way to characterize the angle-dependence
of the exchange in bi-dimensional materials or bi-dimensional hetero-structures in which the
spin-orbit coupling is small with respect to the on-site potential (fixed by U and JH). There-
fore it can be treated as a perturbation. The last is the case of Mott insulators, in which
ligands are heavy atoms, and therefore its spin-orbit coupling plays an important role. By
improving the techniques to obtain the effective tight-binding Hamiltonian HTB, more precise
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results can be obtained.

In the next chapter, we propose a simplified version of (2.69), in which the next nearest
neighbors hoppings are neglected, and Γ is assumed to be zero. We will use a classical
perspective, and using the linearized Landau Lifchitz equation. We will obtain analytical
expressions for the magnon’s spectrum. The presence of the Kitaev parameter is going to
be particularly important because it will lead to a non-trivial topological structure for the
magnons.

Figure 2.8: Several magnetic couplings of eq. (2.69) as function of λ.
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2.6. Appendixes

A. Magnonic spectrum

In this section, we calculate the spectrum of spin waves associated a the quadratic Hamil-
tonian, such as the one present in eq. (2.6). This Hamiltonian represents the energy of a
magnetic texture, which is slightly perturbed from the ground state. An expansion like this
one could be obtained from a specific model, or a full electron calculation, as we will see in
the next section. Let us write the quadratic Hamiltonian as:

H = −
∑
i

hi · δSi −
∑
i

δSi · A′ii · δSi −
1
2
∑
〈i,j〉

δSi · J1,ij · δSj −
1
2
∑
〈〈i,j〉〉

δSi · J2,ij · δSj , (2.70)

with δSi = (Sxi , S
y
i )T . Note that in last equation A′ii, J1,ij and J2,ij are matrices of dimen-

sions 2× 2. This Hamiltonian includes exchange between nearest neighbors and next nearest
neighbors. Now we incorporate the specific geometry that we are concerned with. Magnetic
sites form a honeycomb lattice, so we consider two sublattices labeled by {a, b}. We use
Sα(r) to name the spin at the site α ∈ {a, b} in the unit cell located at r. The Cartesian’s
components of the lattice vectors are:

a1 = a0

(√
3

2 ,
1
2 , 0

)
,

a2 = a0

(√
3

2 ,−1
2 , 0

)
.

(2.71)

Here a0 is the lattice constant. The nearest neighbour’s distance is dab = a0/
√

3. Considering
exchange between nearest and next nearest neighbours only, the Hamiltonian can be written
as:

H = Hh +HA +HJ1 +HJ2 . (2.72)

Where we have defined the different contributions as:

Hh = −
∑
r

∑
α∈{a,b}

hα · δSα(r) , (2.73)

HA = −
∑
r

∑
α∈{a,b}

δSα(r) · A′α · δSα(r) , (2.74)

HJ1 = −
∑
r
δSa(r) ·

∑
p

J1p · δSb(r + rp) , (2.75)

HJ2 = −1
2
∑
r

∑
α∈{a,b}

δSα ·
∑
q

J2q · δSα(r + rq) . (2.76)

Let us pay attention to the exchange contributions. Index p ∈ {1, 2, 3} labels the nearest
neighbours links from site a to site b. Vectors rp are the lattices vectors corresponding to
these links (so the position of the site inside the unit cell is ignored). On the other hand,
q ∈ {1, 2, 3, 4, 5, 6} labels the links between next-nearest neighbors, and vectors rq correspond
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to the lattices vectors associated with these links. Note hat nearest-neighbor links always
join a site a with a site b, while the next nearest neighbor links are of type a− a or b− b. In
fig 2.9 different links to nearest neighbours and next-nearest neighbours are enumerated.
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Figure 2.9: Links of Honeycomb lattice. Sub-lattices A and B are rep-
resented by red and blue spheres respectively. (Left) Links to nearest
neighbours are shown as green arrows. (Right) Links to next nearest
neighbours are drawn with red (AA-links) and blue (BB-links) arrows.

Writing the lattice vectors associated with each link vector as rp,q = n1a1 +n2a2, nearest
and next nearest neighbour’s links can be written as:

Nearest neighbours
rp n1 n2

r1 0 0
r2 0 −1
r3 −1 0

Next nearest neighbours
rq n1 n2

r1 1 0
r2 1 −1
r3 0 −1
r4 −1 0
r5 −1 1
r6 0 1

Now we use the Holstein Primakoff’s transformation, to express the spin Hamiltonian in
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terms of bosonic operators:

Sxα(r) =
√
S

2
(
α†r + αr

)
,

Syα(r) = i

√
S

2
(
α†r − αr

)
,

Szα(r) = S − α†rαr .

(2.77)

With α ∈ {a, b} being the annihilation operator of bosons on the respective sub-lattice. Now
we replace on each contribution of the Hamiltonian, and conserving terms up to quadratic
order in bosonic operators we get

Hh = −
√
S

2
∑
r

∑
α∈{a,b}

h̃αα
†
r + h̃∗ααr , (2.78)

with h̃α = hxα + ihyα. This term only appears if ẑ isn’t the ground state. On XXZ and
Heisenberg-Kitaev models, this term is identically zero. We will verify this from the electronic
Hamiltonian in next section. The on-site quadratic contribution takes the form:

HA = −
∑
r

∑
α∈{a,b}

2SA0
αα
†
rαr + S(∆Aα − iAxyα )α2

r + S(∆Aα + iAxyα )α†2r . (2.79)

Where A′ has been parametrized as:

A′α =
(
A0
α + ∆Aα Axyα

Axyα A0
α −∆Aα

)
. (2.80)

The exchange between nearest neighbours is:

HJ1 = −
∑
r

∑
p

a†rbr+rpS(J0
p − idp) + arbr+rpS(∆Jp + iJxyp ) + h.c. . (2.81)

Finally, we can write the next nearest neighbor exchange as:

HJ2 = −1
2
∑
r

∑
α∈{a,b}

∑
q

S(J0
q − idq)α†rαr+rq + S(∆Jq − iJxyq )αrαr+rq + h.c. . (2.82)

All exchange matrices Jp and Jq have been parametrized as:

J =
(
J0 + ∆J Jxy + d

Jxy − d J0 −∆J

)
. (2.83)

Note that we have included the possibility of an antisymmetric exchange depending on the
parameter d. For example, a Dzyaloshinskii-Moriya interaction that could appears if the
inversion symmetry is broken.

The next step is to take advantage of lattice’s periodicity and to express each operator
as a Bloch’s sum.
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αr = 1√
N

∑
k
eik·rαk ,

α†r = 1√
N

∑
k
e−ik·rα†k .

(2.84)

Where N is the number of unit cells. Now, we replace the Bloch’s sums on HA, HJ1 and
HJ2. After exchanging r and k summations, we use the Poisson’s identity: ∑r e

ir·k = Nδk,0,
obtaining the following expressions:

HA = −
∑
k

∑
α∈{a,b}

−2SA0
αα
†
kαk + S(∆Aα − iAxyα )αkα−k + S(∆Aα + iAxyα )α†kα

†
−k , (2.85)

HJ1 = −
∑
k

∑
p

Se−ik·rp(J0
p + idp)b†kak + e−ik·rpS(∆Jp − iJxyp )akb−k + h.c. , (2.86)

HJ2 = −1
2
∑
k

∑
α∈{a,b}

∑
q

eik·rqα†kαk + e−ik·rqS(∆Jq − iJxyq )αkαkα−k + h.c. . . (2.87)

Now the goal is to rewrite this bosonic Hamiltonian as a quadratic for in the vector
operator αk = (αk βk α

†
−k β

†
−k) as:

H = 1
2
∑
k
α†k ·Hk ·αk . (2.88)

Where the 4× 4 block Hk takes the form:

Hk =
(

Tk Uk

U∗−k T ∗−k

)
. (2.89)

Matrices Tk and Uk are defined as follows:

Tk = −S
2A0

a + t
(2)
ak t

(1)∗
k

t
(1)
k 2A0

b + t
(2)
bk

 , (2.90)

Uk = −S
2(∆Aa + iAxya ) + u

(2)
ak u

(1)
k

u
(1)
−k 2(∆Ab + iAxyb ) + u

(2)
bk

 . (2.91)
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The functions t(1)
k , t(2)

αk, u
(1)
k and u(2)

αk, depend on the magnetic constants and link vectors as:

t
(1)
k =

∑
p

e−ik·rp(J0
p + idp) ,

t
(2)
αk =

∑
q

Re{e−ik·rq(J0
αq + idαq)} ,

u
(1)
k =

∑
p

aik·rp(∆Jp + iJxyp ) ,

u
(2)
αk =

∑
q

cos(k · rq)(∆Jαq + iJxyαq ) .

(2.92)

This form to express the magnonic Hamiltonian is known as the Bogoliuvov de-Gennes (BdG)
Hamiltonian for bosons.

B. Diagonalization of the BdG Hamiltonian

The Bogoliuvov-de Gennes Hamiltonian Hk is diagonalized by a paraunitary matrix,
instead of a unitary matrix [80]:

W †
kHkWk =


ε1(k) 0 0 0

0 ε2(k) 0 0
0 0 ε1(−k) 0
0 0 0 ε2(−k)

 . (2.93)

This paraunitary matrix satisfies:

W †
kσ3Wk = σ3 ,

Wkσ3W
†
k = σ3 .

(2.94)

Where σ3 is the 4 × 4 para-identity matrix. The idea is to find the positive eigenvalues
of σ3Hk. After we find the specific form of the quadratic spin Hamiltonian, on section 2.4
we’ll use this technique to find the eigenvalues of the magnonic lattice. If one wants to
find the eigenvectors (We are going to need them in chapter 3), we have to perform a the
Colpa’s algorithm [16], which consist in performing a Cholesky’s decomposition of the BdG
Hamiltonian as Hk = K†kKk, with K a upper-triangular matrix. Then we define the matrix

Mk = Kkσ3K
†
k (2.95)

and we obtain the matrix Uk which diagonalizes Mk. Finally, the paraunitary matrix that
diagonalizes Hk can be written as:

Wk = K−1
k Mk



√
ε1(k) 0 0 0

0
√
ε2(k) 0 0

0 0
√
ε1(−k) 0

0 0 0
√
ε2(−k)


. (2.96)
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The fact that Hk is positive definite, guarantees the existence of the Cholesky’s decompo-
sition, and also the inverse K−1

k . Note that Hk could be not-positive definite, if ẑ is not the
correct ground state. In that hypothetical case, one can say that a spin excitation around
the ẑ-polarized texture is unstable, and magnons have to be found as excitations around a
different quantization axis.
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Chapter 3

Spin waves in Heisenberg-Kitaev
model

This chapter includes some calculations present in [1], with some variations in the content.
This work was carried out by Esteban Aguilera, Nicolas Vidal, Alvaro Nuñez, Luis Foà, and
the author of this thesis.

3.1. Microscopical model
Recently, it has been proposed that magnetic degrees of freedom in the CrI3 ferromagnet

can be modeled using the Heisenberg-Kitaev model [92, 52]. This fact is also supported by
our calculations in the last chapter, in which starting from an electronic Hamiltonian, we
calculated all magnetic couplings utilizing a Green’s functions method. We simplified the
resulting Hamiltonian (2.69) in this chapter, in order to obtain analytical expressions for
some fundamental spin constants. We neglect the next nearest neighbors hopping, and also
set Γ to zero. Chromium sites form a magnetic honeycomb lattice, with a magnetic moment
S = 3/2. The Hamiltonian consists of the usual isotropic Heisenberg exchange, plus an an-
isotropic contribution that come from the Kitaev model. The micromagnetic Hamiltonian
takes the form:

H = −
∑
<i,j>

(
JSi · Sj +KSγi S

γ
j

)
−
∑
i

A(Szi )2 . (3.1)

Here, the first summation runs over nearest neighbours, and we define Sγi ≡ Si · γ̂, as the
component of the magnetic moment in the γ̂ direction. These directions depends on the link,
so γ̂ should be understood in (3.1) as an abbreviation of γ̂ij. J and K are the Heisenberg
and Kitaev constants respectively. We also include an easy-axis anisotropy of magitud A.

We are considering nearest neighbours in a honeycomb lattice, so we have three kinds of
links on each unit cell. On 3.1 -a, the three links l̂a with their respective γ̂a directions are
shown. Note that each γ̂a points normal to the Cr2I2 plaquette that contains the link l̂a.
The explicit form of γ̂a vectors in the basis xyz is shown below:
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γ̂1 =
(

0, −
√

2√
3
,

1√
3

)
,

γ̂2 =
(

1√
2
,

1√
6
,

1√
3

)
,

γ̂3 =
(
−1√

2
,

1√
6
,

1√
3

)
.

(3.2)

  

  

a
1

a
2

k
y

k
x

  

(a)

(c)

(b)

Figure 3.1: (a) Top view of CrI3 monolayer. The atoms in the unit cell
are highlighted in color, big purple spheres represent Chromium sites,
and small green spheres represent Iodine sites. Lattices vectors a1 =
a0(
√

3
2 ,

1
2 , 0) and a2 = a0(

√
3

2 ,−
1
2 , 0) were drawn with red arrows, a0 is

the lattice constant. (b) First Brillouin zone, with special symmetry
points Γ, K and K′.(c) A view of the CrI3 monolayer in perspective,
with the plaquettes Cr2I2 colored according to their normal vectors
γ̂1,γ̂2 and γ̂3. Three plaquettes in the unit cell are highlighted, and
normal vectors form an orthonormal basis.

Note that {γ̂a} vectors form an orthonormal basis oriented as shown in fig 3.1. Heisenberg
and Kitaev’s contributions to exchange can be put together using a matrix exchange Jij.

−
∑
<i,j>

(
JSi · Sj +KSγi S

γ
j

)
= −

∑
<i,j>

Si · Jij · Sj . (3.3)
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Where Jij can take, depending on the link, one of three different forms J1, J2 or J3. The
matrix elements of Ja takes the form:

J µν
a = Jδµν +Kγµaγ

ν
a . (3.4)

Note that Ja remains invariant under the transformation γ̂a → −γ̂a.So we only have to care
about the direction and not the sense of γ̂a vectors.

3.2. Linearized equations of motion
Now, we will take into account the geometry of the lattice explicitly. A honeycomb lattice

consists of a triangular Bravais lattice plus a basis of two sites A and B. We define SA(r)
and SB(r) as the magnetic moments of the sublattices A and B at the unit cell r. After the
introduction of the exchange matrices Ja in the previous section, the Hamiltonian (3.1) can
be written as:

H = −
∑
r

SA(r) ·
( 3∑
a=1
Ja · SB(r− δa)

)
−
∑
r
A(SzA(r)2 + SzB(r)2) . (3.5)

Here, δa are lattice vectors that connects the two unit cells involved in the link. Explicitly we
have δ1 = 0, δ2 = a2 and δ1 = a1. Vectors a1 and a2 are the basis vectors of the triangular
latice, with components:

a1 = a0

(√
3

2 x̂ + 1
2 ŷ
)

,

a2 = a0

(√
3

2 x̂− 1
2 ŷ
)

.
(3.6)

Here, a0 is the lattices constant of the Bravais lattice, which is related to the nearest neigh-
bours distance between chromium sites by dCr−Cr = a0√

3 .

Classically, when damping is neglected, the dynamics of the magnetization is governed
by the Landau-Lifchitz equation:

dSα(r)
dt

= Sα(r)× δH

δSα(r) , (3.7)

with α ∈ {A,B} the sub-lattice index. Here, we have redefined the time-scale, absorbing the
gyroscopic constant, in such a way frequency has units of energy. The functional derivative
can be calculated straight forward from (3.5), obtaining

δH

δSA(r) = −
3∑

a=1
Ja · SB(r− δa)− 2ASzA(r)ẑ , (3.8)

δH

δSB(r) = −
3∑

a=1
Ja · SA(r− δa)− 2ASzB(r)ẑ . (3.9)

We are only concerned about small perturbations around the ground state, which we assume
to have all magnetic moments pointing on ẑ. Magnetic moments can be written up to linear
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order in Sx and Sy:

Sα(r) ≈


Sxα(r)
Syα(r)

S

 (3.10)

and then we replace in equation (3.5) by components, for each sub-lattice. Let’s start with
lattice A, x component of (3.5) is

dSxA(r)
dt

= −SyA(r)
3∑

a=1
J zl
a S

l
B(r− δa) + S

3∑
a=1
J yl
a S

l
B(r− δa)− 2ASSyA(r)

≈ −SyA(r)S
( 3∑
a=1
J zz
a + 2A

)
+

3∑
a=1

S (J yx
a SxB(r− δa) + J yy

a SyB(r− δa)) +
3∑

a=1
SJ yz

a .

(3.11)
In a similar way, y-component of (3.5) for lattice A takes the form

dSyA(r)
dt

= −S
3∑

a=1
J xl
a S

l
B(r− δa) + SxA(r)

3∑
a=1
J zl
a S

l
B(r− δa) + 2ASSxA(r)

≈ SxA(r)S(
3∑

a=1
J zz
a + 2A)− S

3∑
a=1

(J xx
a SxB(r− δa) + J xy

a SyB(t− δa))− S
3∑

a=1
J xz
a .

(3.12)
In the last two equations, we used Einstein notation in repeated indices. It is going to be
useful to calculate the matrix elements of the sum of all matrices Ja:[ 3∑

a=1
Ja
]µν

= 3Jδµν +K
3∑

a=1
γµaγ

ν
a . (3.13)

Provided the completeness of the orthonormal basis {γ̂a}, the sum of the three dyads in the
last expression is proportional to the identity matrix, and we get[ 3∑

a=1
Ja
]µν

= (3J +K)δµν . (3.14)

Using this, it is simple to note that

3∑
a=1
J xz
a =

3∑
a=1
J yz
a = 0. (3.15)

Now we define ψα(r) ≡ Sxα(r) + iSyα(r). Note that ψα(r) and ψ∗α(r) are the classical
analogous to the spin ladder operators Ŝ+ and Ŝ−. Now we combine the x and y components
of the linearized equation of motion, by calculating dψα

dt
from (3.11) and (3.12).
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i
dψA(r)
dt

=− ψA(r)(3J +K + 2A)S +
3∑

a=1
ψB(r− δa)

S(J xx
a + J yy

a )
2 (3.16)

+
3∑

a=1
ψ∗B(r− δa)S(J xx

a − J yy
a + i(J xy

a + J yx
a ))

2 . (3.17)

In analogous way, we can calculate the equation of motion for ψB(r):

i
dψB(r)
dt

=− ψB(r)(3J +K + 2A)S +
3∑

a=1
ψA(r− δa)

S(J xx
a + J yy

a )
2 (3.18)

+
3∑

a=1
ψ∗A(r− δa)S(J xx

a − J yy
a + i(J xy

a + J yx
a ))

2 . (3.19)

We define the following quantities:

C ≡ S(3J +K + 2A) ,

αa ≡ −S
J xx
a + J yy

a

2 ,

βar ≡ −S
J xx
a + J yy

a

2 ,

βai ≡ −SJ xy
a ,

βa ≡ βar + iβar .

(3.20)

Equations of motion can now be wrote as

i
dψA(r)
dt

= −CψA(r)−
3∑

a=1
αaψB(r− δa)−

3∑
a=1

βaψ
∗
B(r− δa) , (3.21)

i
dψB(r)
dt

= −CψB(r)−
3∑

a=1
αaψA(r− δa)−

3∑
a=1

βaψ
∗
A(r− δa) . (3.22)

Since our system is periodic, we make use of Bloch’s theorem, and by writing each wave
function as a superposition of Bloch waves in the first Brillouin Zone (1BZ).

ψα(r) = 1√
N

∑
k
e−ik·rψαk , (3.23)

with N being the number of units cells in the system. We replace the Bloch’s sum in the
equations of motion, and after some manipulation we get:

i
dψAk

dt
= −CψAk −

( 3∑
a=1

αae
ik·δa

)
ψBk −

( 3∑
a=1

βae
ik·δa

)
ψ∗B−k , (3.24)

50



i
dψBk

dt
= −CψBk −

( 3∑
a=1

αae
ik·δa

)
ψAk −

( 3∑
a=1

βae
ik·δa

)
ψ∗A−k . (3.25)

Defining

αk =
3∑

a=1
αae

ik·δa (3.26)

and
βk =

3∑
a=1

βae
ik·δa , (3.27)

the equations of motion takes the simpler form:

i
dψAk

dt
= −CψAk − αkψBk − βkψ

∗
B−k (3.28)

i
dψBk

dt
= −CψBk − αkψAk − βkψ

∗
A−k . (3.29)

Note that the frequency matrix is not block-diagonal in k-basis. It mixes k and −k wave
vectors. This feature appears because of the presence of the anomalous term proportional
to β, which in turn, is proportional to the Kitaev’s constant K, as we can see in definitions
(3.27) and (3.20). To solve these differential equations as an eigenvalue problem, we need to
diagonalize a 4 × 4 matrix that mixes ψk with ψ∗−k. We conjugate and change k to −k in
(3.28) and (3.29) to obtain:

i
dψ∗A−k
dt

= Cψ∗A−k + α∗−kψ
∗
B−k + β∗−kψBk , (3.30)

i
dψ∗B−k
dt

= Cψ∗B−k + α∗−kψ
∗
A−k + β∗−kψAk . (3.31)

Now we put together equations (3.28), (3.29), (3.30) and (3.31) in matricial form:

i
d

dt
Ψk = −Ω̂kΨk , (3.32)

where we have defined Ψk as

Ψk =


ψAk

ψBk

ψ∗A−k

ψ∗B−k

 . (3.33)
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The elements of the frequency matrix Ω̂k are given by

Ω̂k =


C αk 0 βk

α∗k C β−k 0
0 −β∗−k −C −αk

−β∗k 0 −α∗k −C

 . (3.34)

3.3. Spin wave’s spectrum

The characteristic polynomial of Ω̂k gives us a bi-quadratic equation that can be solved
exactly. After substitution of definitions of α and β, we obtain

ω2
±(k) = ω2

0
9 (f(k)±

√
g(k)), (3.35)

with ω0 = 3J + K fixing the frequency scale. Here we have defined functions f(k) =
f0(k) + fρ(k) + fK(k) and g(k) = g0(k) + gA(k) + gK(k), in such a way functions fA,K(k)
and gA,K(k) were zero when A,K = 0, respectively.

f0(k) = 2
(

2 cos
(√

3kxa0

2

)
cos

(
kya0

2

)
+ cos(kya0) + 6

)
, (3.36)

fA(k) = 9A(2 +A) , (3.37)

fK(k) = K2
(

2 cos
(√

3kxa0

2

)
cos

(
kya0

2

)
+ cos(kya0)− 3

)
, (3.38)

and

g0(k) = 36
(

4 cos
(√

3kxa0

2

)
cos

(
kya0

2

)
+ 2 cos(kya0) + 3

)
, (3.39)

gA(k) = 36A(A+ 2)
(

4 cos
(√

3kxa0

2

)
cos

(
kya0

2

)
+ 2 cos(kya0) + 3

)
, (3.40)

gK(k) = 3
2K

2

2 cos
(√

3kxa0
) (
−
(
K2 − 4

)
cos(kya0) +K2 + 2

)

− 2
(
K2 + 2

)(
8 cos

(√
3kxa0

2

)
sin2

(
kya0

2

)
cos

(
kya0

2

)
+ cos(kya0)

)

+
(
K2 − 4

)
(− cos(2kya0)) + 3

(
K2 − 4

) .

(3.41)
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Here, K is an adimensional parameter defined by

K = K

3J +K
, (3.42)

which is bounded between 0 < A < 1, when J,K > 0. In this sense, K represents the relative
strength of the Kitaev constant. Similarly, A is defined as:

A = 2A
3J +K

, (3.43)

It represents the relative magnitude of the anisotropy constant. The spectrum is shown in
fig 3.2. The blue line is the spectrum with K = 0, and the red line corresponds to K = 2/5.
Note the gap at Γ point with magnitude ∆Γ, which is the same for two different values of
K, so it seems to be independent of Kitaev’s interaction. Also, we have a gap at K point of
magnitude ∆K , which appears when the Kitaev’s interaction is turned on. Now we are going
to analyze the spectrum in the vicinity of these special symmetry points in order to give an
exact expression for the gaps and other important quantities.

Figure 3.2: Energy spectrum of magnons within the first Brillouin zone.
The blue line corresponds to the case J = 0.53, A = 0.44 and K = 0.
It can be see that there is no gap at theKKK-point. There is a gap at the
Γ point that arises from the anisotropy contribution[49]. On the other
hand, the inclusion of the Kitaev interaction, K = 2J displayed in the
red line, displays a gap opening at the KKK-point revealing a non-trivial
topology. The circles next to each bands correspond to the associated
Chern numbers. These are calculated according to [80]. The K-point
gap is calculated as a function of the Kitaev interaction strength in
the inset. This plot was made by Esteban Aguilera in [1].
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3.3.1. Long wavelength limit

If we focus on waves near of Γ point, in the limit k → 0, we can expand functions f(k)
and g(k) in powers of kx, ky up to quadratic order:

f(k) ≈ 18 + 9A(2 +A)− 3
2(2 +K2)a2

0a
2
0|k|2 , (3.44)

g(k) ≈ 27
(
12(A+ 1)2 − |k|2

(
2(A+ 1)2 +K2

))
. (3.45)

Then we replace on (3.35) and expand the square root. Positives frequencies are expressed
as follows:

ω+(k) = 2ω0 + A− ω0a
2
0

(
1 + 2A+K2

24(1 +A)

)
|k|2 ,

ω−(k) = A+ ω0a
2
0

(
1 + 2A−K2

24(1 +A)

)
|k|2 .

(3.46)

In the lower band we identify the usual structure ω = ∆Γ + ρΓk2, where ∆Γ = 2AS and
ρΓ = ε0a

2
0

(
2+2A−K2

24(1+A)

)
. ∆Γ correspond to the minimal energy necessary to create a magnon. It

turns out to be a fundamental quantity and can be accessed experimentally. It lies between
1 and 9 meV [43] while ab-initio calculations locate it in the range of 1 meV [17]. ρΓ is the
effective low energy spin stiffness. It is an estimate of how hard it is to introduce a smooth
texture in the magnetization field.

The behavior of the top band at Γ point has the form:

ε+(k) = 2ε0 + ∆Γ − ρ′Γ|k|2 . (3.47)

As can be observed that the bandwidth, defined as the energy difference ε+ − ε− at Γ point,
is given by 2ε0 = 2S(3J +K).

3.3.2. Vicinity of K and K’

Next to K and K′ points, we can obtain the following effective Hamiltonians

HK(′)(q) =
 Tq U(′)

U(′)† Tq

 , (3.48)

where matrices Tq, U and U′ are defined as:

Tq = ε0

(
1 +A iκ

−iκ 1 +A

)
,

U =
(

0 0
K 0

)

and U′ = U†. Here we have defined q = k−K(′) and κ = a0(qx + iqy)/(2
√

3), with a0 being
the lattice constant. In the definition of U we have dropped linear terms in q under the
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assumtion of small Kitaev parameter. Energies around K and K′ take the form:

ε±(q) = EK ±
∆K

2 ± ρ
±
K|q|2 ,

with EK = ε0
2 (1 +A +

√
(1 +A)2 −K2) and ∆K = ε0(1 +A −

√
(1 +A)2 −K2). All those

features are in agreement with [17] which can be used to adjust our parameters. We find:
J ∼ 0.53meV, K ∼ 4.07meV and A ∼ 0.44meV, in same range as [52].

3.4. Topological magnons in the Heisenberg-Kitaev Model.
In a quantum mechanical perspective, a particle-like excitation of the magnetization field

around the ground state is called a magnon. To obtain a magnonic Hamiltonian for the
Heisenberg-Kitaev model introduced in (3.1), we have to perform a Holstein-Primakoff’s
transformation [38]:

S
(x)
iµ =

√
S

2
(
ψ†iµ + ψiµ

)
,

S
(y)
iµ = i

√
S

2
(
ψ†iµ − ψiµ

)
,

S
(z)
iµ = S − ψ†iµψiµ ,

(3.49)

where µ ∈ {A,B} indexes the two lattices conforming the bipartite honeycomb array of Cr
atoms. ψiµ and ψ†iµ are the ladder spin operators at the unit cell i, in the sublattice µ. When
replaced in the Hamiltonian and reduced to quadratic terms, we obtain a Hamiltonian in
terms of Ψk = (ψAk, ψBk, ψ

†
A−k, ψ

†
B−k)t, in the form H = 1

2
∑

k Ψ†kHkΨk. Each block Hk is:

Hk =


C αk 0 βk

α∗k C β−k 0
0 β∗−k C αk

β∗k 0 α∗k C

 . (3.50)

Note the similitude between (3.50) and the frequency matrix obtained previously (3.34).
They are related by Ωk = σ3Hk, where σ3 is the paraidentity matrix defined by:

σ3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (3.51)

The origin of this similitud is that operators ψiµ and ψ†iµ satisfies the bosonic commuta-
tion relation, and to obtain the spectrum of a bosonic quadratic Hamiltonian of the form
Ĥ = 1

2
∑

k Ψ†kHkΨk we should para-diagonalize each block Hk by means of a Bogoulivov’s
transformation, wich for multiple dimensions turns out to be the Colpa’s algorithm [16]. To
obtain the eigenvalues we have to diagonalize the matrix σ3Hk, and conserve the positive en-
ergies. Then the eigenvalues of (3.50) coincide with those obtained in the classical formulation
(3.35), and all analytical results of the last section remain valid in this formalism.
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3.4.1. Berry’s Curvature and Chern’s number

The band structure found by these methods reveals a non-trivial topological structure,
which is present both in the full model (3.1) and even in the minimal model of equation
(3.48). The above is in agreement with the results of [44] for similar geometrical construction.
Chern’s numbers of each band, calculated according to [80], are displayed next to each band
in figure 3.2. The Chern number of the jth energy band is given by:

Cj = i
εµν
2π

∫
BZ

d2k Tr
(
(1− Pj)

(
∂kµPj

)
(∂kνPj)

)
. (3.52)

The integrand of the Chern number is called the Berry curvature, Ωj
k, and Pj are the pro-

jection operators, which are defined as: Pj = TkkkΓjσ3T
†
kkkσ3. Where we have that Tkkk is the

transformation matrix obtained by Bogoliubov’s algorithm[16], σ3 is the paraunitary matrix
and Γj is a (2N, 2N) matrix where every element is 0 except for the j-th diagonal component,
where it has a value of 1.

We are going to focus on the minimal model (3.48), which is a good approximation for the
Hamiltonian at K and K′ points when the Kitaev’s parameter K is small. Our motivation
to focus on this limit is to show how the inclusion of a non zero Kitaev’s parameter, is enough
to generate a non-trivial topological structure.

Berry’s curvature turns out to be nonzero only in the vicinity of K and K′ points,
and it takes the same values on both of them. This happens because Berry’s curvature is
the remainder of the singularity in the parameter space that occurs at K = 0, when the
gap is closed. Defining q = k − K(′), we found that Berry’s curvature has no angular
dependence(with respect to K(′)), and it takes the form:

Ω±(q) = ±Ω0(q) . (3.53)

With q = |q| and the ± label indicating the upper and lower band, respectively. Ω0(q)
is shown on 3.3. Since we are focusing on an effective model around K(′), the integral of
the Chern’s number has to be performed summing the integrands of both points and then
integrating to infinity. We found:

C± = ± 1
2π

∫ 2π

0

∫ ∞
0

2Ω0(q)qdqdφ = ±2
∫ ∞

0
Ω0(q)qdq = ±1 . (3.54)

It is also important to note that the value of the Chern’s numbers does not revert its
sign when K passes from a positive value to a negative one. Therefore an interface between
samples with different signs of K would not host topological states as there is no change in
the Chern number between the regions. This is because a chirality is already fixed when we
chose the zzz as the quantization axis. To change the sign of the Chern’s number, we must
change and revert the quantization axis. From this fact, we expect magnetic domain walls
on CrI3 to act effectively as topologically protected waveguides.

The starting Hamiltonian (3.50) displays complete time-reversal symmetry. It is only
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after its spontaneous breaking that we can expect a non-time-reversal symmetric (TRS)
Hamiltonian for the spin-wave branch of excitations. It can be shown that performing TRS
is equivalent to change the quantization axis from zzz to −zzz. Performing Holstein-Primakoff’s
transformation around the reversed axis leads to the complex conjugation of the coefficients
of equation 3.50, followed by a k → −k transformation. The Hamiltonian (3.50) will be
invariant under TRS if the coefficient βa is real. When Kitaev’s parameter K is turned on,
we obtain J xy

a 6= 0 . The above makes βa complex, so TRS is broken in our Hamiltonian. It
is important to emphasize that the TRS breaking takes place through an anomalous A− B
nearest-neighbor coupling in contrast to the normal A− A next-nearest-neighbors proposed
by [74, 14, 47].

  

Figure 3.3: Left panel: Berry curvature in the vicinity of K point.
Blue, orange and green lines correspond to K = 0.1, K = 0.11 and
K = 0.12 respectively. Right panel: Peak in the Berry’s curvature
Ω0(q = 0) for different values of K. Both plots were calculated with
A = 0.
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Part II

Micromagnetic Simulations in 2D
surfaces with DMI
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Chapter 4

Stability of atomic-sized skyrmions in
antiferromagnetic bilayers.

This chapter is a literal transcription of the published article [41]. This work was done by
the author of this thesis, together with Álvaro S. Nuñez.

4.1. Abstract
We perform a stability analysis of an isolated atomic-sized antiferromagnetic skyrmion

(AFM-Sk), formed on the superior layer of a magnetic bilayer. The coupling between both
square lattices acts as an effective staggered magnetic field that stabilizes the AFM-Sk and
reduces its radius. A suitable anisotropy constant of the bottom layer material keeps it close
to the homogeneous AFM state. We compare the energy of the AFM-Sk with the energy of
the AFM ground state. In addition, an estimation of the energy barrier that protects the
skyrmion from being destabilized is provided and its value determined to be in the order of
∼ 300K. The remarkable reduction in the skyrmion radius towards atomic size and avoiding
an external magnetic field are key points in order to increase our ability to manipulate AFM-
Sk on skyrmionic devices. Our calculations provide an insight into novel ways to create and
manipulate AFM-Sk at the atomic scale.

4.2. Introduction
Antiferromagnetic (AFM) spintronics has turned into a major theme in the recent spin-

tronic developments.[4] Due to natural advantages over other systems and configurations,
AFM spintronics systems stand as natural environments for both, novel physical phenomena
and technological applications[28]. Just as their ferromagnetic counterparts, antiferromag-
netic order parameter get coupled with spin-polarized currents[89, 90, 34]. This opens the
possibility for displaying a great number of different spintronic effects in the context of AFM
materials. Several of these effects are already implemented [29, 30, 32]. Among the advan-
tages that AFM systems presents over ferromagnetic ones, to play a role as landscapes for
spintronics, we can mention the following: their stray field are radically smaller, their time
scale is within the terahertz range [91] and it offers natural integration pathways with stan-
dard ferromagnets[60, 21]. In addition to these advantages, it is worth to mention that AFM
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properties are spread over several materials, even in semiconductors at room temperature
[59]. This opens the possibility of hybrid systems that could display both spintronics and
electronic features.

The above interest leads to the natural query whether it is possible for antiferromagnetic
systems to display skyrmion-like textures in their order parameter. This feature would pro-
vide a further analogy with ferromagnetic systems while endowing AFM materials with a
very promising metastructure that can be driven and controlled in order to perform infor-
mation processing and storage. Magnetic skyrmions have been at the spotlight of research
in magnetism for already a decade. The major point of attraction is based upon the fact
that they are regarded as candidates to play a starring role in the future of data storage.
They are expected to lead to novel spintronic devices like skyrmion racetrack memories [24],
skyrmion-based logic gates [97], synaptic devices[40], among others. Magnetic skyrmions
are spin textures with pseudo-particle properties [68], they can be defined as a solution of
the Dzyaloshinskii theory which is localized, axisymmetric, and has fixed rotation sense [78].
Therefore magnetic skyrmions are specially suited for the role of information holders. Their
properties seem tailor-made for such a role:(i) They are localized and nanometrically sized.
(ii) They are robust to perturbations, (iii) They display current-driven motion at ultra-low
current densities. skyrmions also exhibit a variety of topological phenomena associated with
their swirling spin texture. An iconic example is the topological Hall effect induced by the
emergent magnetic field of skyrmions on conduction electrons[95]. skyrmions can appear in
two dimensional systems with very simple requirements such as exchange interaction. The
stability of their features, such as the skyrmion radius, however, depends on a much sub-
tler energy balance that involves an interplay between the exchange and other interactions
such as Dzyalonshinskii-Moriya[23, 66] or four-spin interaction[35]. The Dzyaloshinskyy-
Moriya interaction (DMI), present in non-centrosymmetric magnets with a high spin-orbit
coupling, has been largely studied in this regard. The competition between Heisenberg ex-
change and DMI leads to the stabilization of ferromagnetic skyrmions at a fixed radius. It
has been studied that an external applied magnetic field normal to the surface can reduce the
skyrmion radius [88, 12]. This has important advantages in the design of skyrmionic devices,
since it increases the memory density. However it would be convenient to avoid the need
of an external magnetic field for two reasons: (i) The experimental difficulty of producing a
nanometric-localized magnetic field of the desired magnitude. (ii) An external magnetic field
could undesirably affect other parts of the device.

Antiferromagnetic skyrmions have been predicted, and their properties studied theoret-
ically, in a series of papers [9, 27, 96, 6, 77]. The important features of AFM-Sky are [42]:
(i) AFM-Sk current-driven motion is at least two orders of magnitude faster than the fer-
romagnetic case. (ii) AFM-Sk doesn’t exhibit the Magnus force, which implies that AFM
skyrmions move following directly along the line of the current. These characteristics make
AFM skyrmions better candidates for using them on the magnetic transmission of informa-
tion.

The aim of this article is to expand the range of existing theoretical possibilities to stabilize
antiferromagnetic skyrmions with radius at the atomic limit. We will see that this can be
achieved without relying on the application of an external magnetic field. When properly
controlled by electric currents, these atomic-sized skyrmions could be used as a system of
information storage.
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4.3. Theoretical model
The system at the core of the following developments is an antiferromagnetic lattice grown

on top of a heavy metal. It is well known that this set-up gives rise to a magnetic system
whose degrees of freedom are affected by an interfacial Dzyalonshinskii-Moriya interaction.
This kind of arrangement has been predicted to stabilize skyrmions in the antiferromagnetic
layer. For reasons that will become clear later we will work with a bilayer system [27].
Being deposited on a metallic surface the bilayer will be described by different parameters
characterizing the couplings within each layer and, importantly, by an interlayer exchange
coupling. This coupling influences the stability of the magnetic textures and affects their main
properties. Our starting point is a magnetic bilayer model formed by two square lattices, say
top and bot. Each layer represents an AFM system, with an exchange, anisotropy, and DM
interactions. In this way, each one of them can display a skyrmionic texture with dimensions
determined as functions of the ratios of the energy contributions.

Let sa
A be the unitary dimensionless magnetic moment on the site A (with respect to the

plane), and the layer a.

Figure 4.1: A display of the square lattice, with the sites being repre-
sented by the green spheres. The central site A and his first neighbors
are highlighted with the link vectors on blue. Over each link, the inter-
facial DMI vector is showed on red color. Here the anisotropy axis is
pointing out of the page.

The energy that describes the dynamics of the classical spins in the bilayer system is:

H = Htop +Hbot +
∑
A

JinterstopA · sbotA (4.1)

The sum is over first neighbors of different layers. The exchange constant between layers
is Jinter. Hbot and Htop are the Hamiltonians of the spins on each layer independently, and
have the form:
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Ha = Ja
∑
〈A,B〉

saA · saB +
∑
〈A,B〉

Da
A,B · (saA × saB)− κa

∑
A

(sa
A · ẑ)2 (4.2)

Here ẑ is the unitary vector that is normal to the superior layer, pointing out. The first
term is the Heisenberg exchange, with the same exchange constant J = Jtop = Jbot on
both layers. The sign is chosen in order to keep J being positive for antiferromagnetic
coupling. The second term is the interfacial Dzyaloshinskii Moriya interaction, the vector
Da
A,B = Daẑ× l̂A,B, is on the layer plane, with l̂A,B being the unitary link vector between the

sites A and B (see fig. 4.1).
We also introduce a term of easy axis anisotropy, proportional to κa, on the respective

layer.
The temporal evolution of each spin is given by the Landau-Lifshitz-Gilbert equation [54]:

dsA

dt
= −γsA × heff

A + αsA ×
dsA

dt
(4.3)

The parameters of the Hamiltonian, appear on the effective field heff
A = δH

δsA
. The gyro-

magnetic ratio is γ = geµB
~ , while the dimensionless Gilbert damping coefficient is denoted

by α. We use a homemade simulation programmed on Python 3.5 to solve numerically the
LLG equation (using α = 0.01) by an implicit method that conserves the spin norm. The
system is temporarily evolved until the maximum spin-torque dsaA

dt
decreases below a fixed

bound at 10−6ω0, with ω0 = γJ
µB

being the antiferromagnetic resonance frequency, on the
THz range. This value typically coincides with energy variations of the order of 10−8Jω0
per site. In this article, the values of all the parameters of the Hamiltonian are expressed
in terms of the exchange constant J = 3 meV, and the skyrmion radius is expressed in
units of the lattice constant a = 0.5 nm. As a first approach, the anisotropy constants are
fixed to be κtop = κbot = 0.2, then we study the effects of varying the bottom one. A large
anisotropy constant κbot keeps the bottom layer near of the homogeneous Neel-like state, while
the superior layer feels an alternated effective magnetic field, due to the antiferromagnetic
coupling between layers. Replacing every other spin by its negative we reach an equivalent
description based on a ferromagnetic layer with the opposite DM coupling. Under this duality,
the effects of exchange with the bottom layer take the form of an external magnetic field that
can aid the stabilization of a skyrmion and affects its radius [88, 12]. We expect that an
AFM skyrmion could be stabilized on the superior layer. The role of the coupling between
layers is the same than that of the staggered magnetic field pointing out-of-plane[27], and
due to the previous analogy, it is the same than a homogeneous field pointing upward on
a ferromagnetic skyrmion [94, 33]. Altough it has been demostrated [7] that it is possible
to stabilize isolated ferromagnetic skyrmions in absense of an external magnetic field, the
effective field here introduced by the interlayer coupling is desirable, as we will show later, in
order to reduce the skyrmion radius and expand the range of parameters in which isolated
skyrmions are stable. Keeping κbot, κtop, and J fixed, we vary the antiferromagnetic coupling
between layers Jinter, and the DMI constant D = Dtop in two scenarios: (i) Dbot = Dtop.;
(ii) Dbot = 2Dtop. The second one has the intention of giving a more realistic approach, in
which the bilayer system is placed over a heavy metallic layer with high spin orbit coupling.
In this case the Dzyaloshinskii-Moriya energy of the bottom layer should be larger than the
top one. Situation (ii) mimics the gradual decrease of the chiral energy density, as described
phenomenologically by Bogdanov in a multilayered system [8].
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4.4. Stability and main features of the isolated skyrmion

Figure 4.2: While the inferior layer keeps near the homogeneous Neel
state, the superior layer exhibits different equilibrium spin textures:
a) AFM state. b) Isolated antiferromagnetic Neel-like skyrmion of
radius RSk = 3a. c) AFM Helicoidal order. (See the animations on
supplementary material).

We study the time evolution of our system starting from an initial configuration of an
isolated Neel-like AFM skyrmion on the superior layer and a homogeneous Neel-like state
in the bottom layer. The initial skyrmion has axial symmetry while its radial profile is
determined by minimizing the energy of the spin texture. We evolve the magnetic system
by solving the LLG equation. The system has 50 × 50 sites and periodical edge conditions.
Three equilibriums can be reached from this initial configuration, as indicated the figure 4.2-
a: (i) Antiferromagnetic ground state (AFM); (ii) Isolated AFM skyrmion (Sk); (iii) AFM
helicoidal order (H). All these three configurations were observed in the top layer, while the
bottom one remained only slightly disturbed from the Neel AFM ground state. In some
cases, the inferior AFM state was destabilized as a result of the coupling with the superior
layer, and in these cases we say that the bottom layer is unstable (U).

By varying the exchange coupling between layers Jinter, and the DM interaction D = Dtop.
We construct a stability diagram for the isolated AFM-skyrmion, in the cases Dbot = Dtop and
Dbot = 2Dtop. We calculated the energy difference between the AFM-Sk and the Neel state
on the stability zone (see fig 4.3-a and fig 4.4-a). On the green-colored zone called AFM, the
initial skyrmion is annihilated to a Neel-like state (fig 4.2-a). The coupling between layers,
acting as a magnetic field, favours the AFM enviroment that surrounds the AFM-sk, and
contributes to reducing the radius of the skyrmion until it collapses. This process is analogous
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to the high field skyrmion instability, which has been described in the ferromagnetic context
[7, 53].

On the central zone Sk, the isolated skyrmion is stabilized with a fixed radius (see fig 4.2-
b). The color map shows the energy difference between the skyrmion and the AFM states.
The white dotted line represents the parameters for which the AFM-Sk has the same energy
than the AFM state. Below the white doted line, the ground state of the whole system is an
homogeneous Neel-like texture on both layers. It can be seen that in a large fraction of the
stability zone, the skyrmion has more energy than the AFM ground state. This means that
the isolated AFM-skyrmion on the top layer is a meta-stable equilibrium and there should
be an energy barrier that protects the skyrmion from its demise. Above the white doted
line, but still inside the stability zone, the skymion has less energy that its surroundings
and it should be expected of the skyrmion crystal on the top layer to be the ground state.
However if the skyrmions don’t nucleate easily, which occurs for example in materials with
enhanced coercivity [53], the skyrmion is still isolated as a meta-stable equilibrium. As we
approach to the frontier of the stability zone, by increasing D or decreasing Jinter, another
instability appears. On the blue-colored zone labeled by H, the skyrmion is ellipitically
deformed until an AFM-helicoidal state is obtained (see fig 4.2-c). The mechanism of this
elliptical instability is analogous to the instability of isolated ferromagnetic skyrmions at low
magnetic fields[7, 53]. Inside the blue-colored zone, the ground state on the top layer, could
be the AFM-helicoidal state or the AFM-sk crystal, depending on the value of D and Jinter.
A complete characterization of these ground states is beyond the scope of this article, and
we settle by studying the isolated AFM skyrmion as a meta-stable equilibrium. We suggest
the reader review the supplementary material and see the animations of the three scenarios
previously described. Finally, on the orange-colored zone U, because of the coupling between
layers Jinter, the bottom one is unable to stay on the AFM state. This breaks down the
staggered magnetic field that feels the top layer.

The fact that the bottom layer is able to support the skyrmion on the top layer, is mainly
because of the high anisotropy constant κbot. It is natural to ask how much this anisotropy
could be reduced so that the bottom layer stays, stably, close to a Neel-like state. The
winding number of the Neel vector has to be zero on the bottom layer in order to obtain
an staggered magnetic field on the top layer, and it is in this sense that we characterize the
stability of the bottom later. We fix D = Dtop = 0.5 (red dotted line on figs 4.3-a and 4.4-a),
and by varying kbot and Jinter we construct the stability diagrams on figures 4.3-b and 4.4-b.
For high kbot the frontiers of the stability zone converge with those determined by the limit
in which the bottom layer is fixed to the AFM ground state. As κbot is reduced the range of
stability expands. This implies that the deformation of the spin texture on the inferior layer
favors the skyrmion stability. However, if kbot continues to be reduced, the bottom layer is
destabilized and no skyrmion texture is formed on the top layer.

To evaluate the energy barrier that protects the AFM-Sk from its annihilation can be
a rather intricate problem and we are better served by an heuristic approach used in the
assessment quantum nucleation of the ferromagnetic skyrmion[18]. Within this approach we
use an analytic interpolation between the isolated AFM-skyrmion and the AFM ground-state,
which was proposed by [18] for a ferromagnetic system:

wr = λvSkr
1 + λuSkr

w̄r = λ̄v̄Skr

1 + λ̄ūSkr
(4.4)
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Figure 4.3: Case Dbottom = Dtop: a) Stability diagram for an isolated
AFM skyrmion on the superior layer D = Dtop and Jinter have units of
J . κbot = κtop. b) Stability diagram for an isolated AFM skyrmion on
the superior layer, κbot and Jinter have units of J , κtop = 0.2J is fixed
and marked on the dotted red horizontal line, D = 0.5J is marked on
the dotted red horizontal line on (b). c) skyrmion radius RSk in units
of the lattice constant a, as a function of Jinter in units of J . Different
curves correspond to different values of fixed D. A black triangle on
a), b) and c) is highlighting the point D = 0.5J and Jinter = 0.05J .

Here vSkr and uSkr are the spinor coordinates on the site r of the antiferromagnetic skyrmion.
These coordinates are the outcome of our LLG evolution. wr = vr/ur is the well known
stereographic projection. When the parameter λ tends to ∞, wr represents an isolated
skyrmion. When λ is reduced from infinity to zero, the spin texture changes, first reducing
the skyrmion radius and then annihilating the skyrmion into the ferromagnetic homogeneous
state. The analogy previously mentioned between FM spin texture and the staggered AFM
spin texture ensures that this reasoning for the FM skyrmion is connected with the AFM
skyrmion that we are stabilizing. By taking the energy difference between the AFM-Sk and
the maximum energy on the interpolation, we estimated the activation energy required to
disarm an AFM-skyrmion into the AFM ground state (see fig. 4.5). For the values depicted,
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Figure 4.4: Case Dbottom = 2Dtop: a) Stability diagram for an isolated
AFM skyrmion on the superior layer D = Dtop and Jinter have units of
J . κbot = κtop. b) Stability diagram for an isolated AFM skyrmion on
the superior layer, κbot and Jinter have units of J , κtop = 0.2J is fixed
and marked on the dotted red horizontal line, D = 0.5J is marked on
the dotted red horizontal line on (b). c) skyrmion radius RSk in units
of the lattice constant a, as a function of Jinter in units of J . Different
curves correspond to different values of fixed D. The black triangle on
a), b) and c) is highlighting the point D = 0.5J and Jinter = 0.05J .

the energy barrier may be in the order of 300 K.
The analytic interpolation [18] was used because it qualitatively captured the destabilizing

mechanism of the AFM-Sk. It begins to reduce its radius and finally twists the central spin,
changing the winding number of the Neel vector.

It is observed that as we approach the border of the stability zone, the potential barrier
drops towards zero. On the other hand, the skyrmion radius (see figs 4.1-c and 4.4-c), defined
by the circle with sz = 0, decreases until a terminal size, smaller than the lattice constant
a. This suggests that there is a minimum radius for the AFM skyrmion, like the one already
suggested [81] for ferromagnetic skyrmions. Under a certain radius, the skyrmion inevitably
relaxes to the AFM state, because there is no energy barrier to protects it.

Finally, comparing the behavior of the system in cases (i)Dbot = Dtop and (ii)Dbot = 2Dtop
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(fig 4.3 and fig 4.4 respectively), it is noted that both are qualitatively equivalent. Both cases
show the same phases and annihilation mechanisms. The main difference is that in the most
realistic case (ii), the bottom layer is more prone to destabilization (U ).
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Figure 4.5: Energy of the spin texture that the analytical interpolation
forms, as a function of the parameter λ. λ = 0 represents the AFM
ground state, while λ = ∞ corresponds to an isolated antiferromag-
netic skyrmion stabilized with Dtop = 0.5J and Jinter = 0.05J (Case
(ii) Dbot = 2Dtop). On the upper right subplot, the energy barrier
∆E is plotted for different values of D, as a function of the interlayer
coupling Jinter.

4.5. Final remarks
We study the stability of isolated atomic sized skyrmions formed in antiferromagnetic

bilayers. When one of the layers is held fixed by, say, a slightly higher anisotropy field,
it aides the stability of the skyrmion in the other layer. The antiferromagnetic exchange
coupling between layers acts as an effective-staggered magnetic field on the superior one[27].
This effective field allows the stabilization of atomic-sized antiferromagnetic skyrmions. This
is analogous to when a homogeneous magnetic field is added to a skyrmion and causes a
reduction in its size.

We start from an initial condition with an AFM-Sk on the top layer, and we evolve the
system to find an equilibrium. Repeating this process, varying Dzyaloshinsky-Moriya inter-
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action and the coupling between layers, we construct a stability diagram in which the energy
difference between AFM-ground state and AFM skyrmion was computed. We observed that
on a great region of this stability diagram, the AFM ground state is less energetic than the
AFM-Sk. This implies that there is an energy barrier that protects the AFM-skyrmion,
making it robust to perturbations. We estimated this activation energy needed to destabi-
lize an AFM-Sk, and it turned out to be in the order of 300 K. As expected, the energy
barrier drops to zero near of the frontier of the stability zone. This result means that some
of the skyrmions studied could be stable even at room temperature. The small size of the
stabilized AFM-Sk, like those found by [69], would allow improving the information density
on skyrmion-based memory devices. Also, there is no need to apply an external magnetic
field to stabilize atomic-sized-AFM-Sk. The idea of avoiding the application of an external
magnetic field, and still being able to reduce the AFM-Sk radius is important due to two
reasons. (i) The effective magnetic field induced by exchange coupling reaches values that
are two orders over those external magnetic fields obtained experimentally. Also, it would be
extremely difficult module the field to be staggered, in order to stabilize an AFM-Sk. (ii) An
external magnetic field could have negative consequences on other components of a magnetic
device. Proper control of skyrmion-like textures has been at the spotlight of the research
in magnetism (both theoretically and experimentally) during the past decade, leading up
to several proposals that implement memory storage and logic manipulation. Among those,
antiferromagnetic implementations stand out as promising candidates, and the achievement
of atomic-sized skyrmions would provide a significant progress in the field.
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Chapter 5

Ultrafast domain wall propagation
due to the interfacial
Dzyaloshinskii-Moriya interaction

This chaptewr is a literal transcription of the published article [61]. This work was done by
Daniela Mancilla, Álvaro S. Núñez, Sebastian Allende, and the author of this thesis. The main
contribution of the author on this work was the realization of a micro-magnetic simulation
that provided the proper ansatz for the analytical calculations shown here.

5.1. Abstract
It is shown that the interplay between curvature and interfacial Dzyalonshinsky- Moriya

interaction (DMI) is a pathway to ultrafast domain wall dynamics. In this work, we theo-
retically study the effect that interfacial DMI has on the average velocity of the domain wall
in thin ferromagnetic nanotubes grew around a core composed of heavy atoms. Our main
result shows that the domain wall average velocity is greater than usual by delaying the
Walker breakdown instability. This velocity is similar to the average velocities obtained in
ferrimagnetic systems, i.e., we find average velocities of the order of 103 m/s. The remarkable
velocities achieved through this configuration could prove greatly convenient for developing
spintronic devices.

5.2. Introduction.
The exploration of the dynamical properties of curved ferromagnetic systems has become

a fertile ground for potential applications in spintronic devices such as memory devices and
microwave technologies, among others. [79, 84, 37]. The reason to focus on these structures is
that the curvature induces anisotropies and chiral effects that arise from the lack of collinear-
ity of the spin moments. Effects such as the effective anisotropy and antisymmetric exchange,
i.e., Dzyaloshinskii-Moriya-like interaction emerge in a phenomenological sense regardless of
the details of the underlying crystal structure[79, 84, 26]. In this sense, the curvature be-
comes a new element in the toolkit of magnetization control and related phenomena. It has
been shown, that curvature effects can affect the magnetic properties of the structures, and
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alter dramatically the basic picture of texture dynamics, such as spin waves [73], domain
walls motion[93, 36], and skyrmions related phenomena[13, 48].

Among the several ferromagnetic curved nanostructures, nanotubes stand out over the
other nanostructures due of the ultrafast domain wall motion against the usual domain wall
motion given in magnetic strip[50, 36]. Also, nanotubes present a chiral symmetry breaking in
the domain wall motion [72]. These properties allow nanotubes to be an excellent candidate
for use in various magnetic devices.[36].

Ferromagnetic nanotubes present a Dzyaloshinskii-Moriya-like interaction that arises from
their curvature this induces a chiral symmetry breaking in the domain wall dynamics. An in-
teresting competition is expected if the system is engineered to display an actual DMI as well.
This type of exchange has been included in systems ultrathin magnetic films for the study
of the domain wall motion[86]. By example, Thiaville et al. observed domain wall motion
with large velocities under large fields at stationary conditions[86]. In nanotubes, Goussev et
al. studied bulk Dzyaloshinskii-Moriya domain walls in magnetic nanotubes with non-radial
component in the magnetization[31]. They observed a dependence of the domain wall ve-
locity with the chirality and the DMI. In this context, to fabricate ferromagnetic nanotubes
with DMI could be possible by using Atomic Layer Deposition (ALD)[3, 15]. Therefore, a
theoretical study of domain wall motion in ferromagnetic nanotubes with interfacial DMI
must be necessary if we want to understand the physics of these systems.

In this work, we studied the effect that DMI has on the average velocity of the domain
wall in thin ferromagnetic nanotubes. To obtain the average velocity, first, we obtained an
energy expression for the continuous interfacial Dzyaloshinskii-Moriya interaction. Second,
we required to obtain the static and dynamics phase diagrams for the domain wall shape
if we want to calculate the domain wall average velocity. Our main result shows that the
domain wall average velocity is similar to the average velocities obtained in ferrimagnetic
systems, i.e., we find average velocities of the order of 103 m/s.

5.3. Ferromagnetic nanutube
The system under consideration can be modeled as a ferromagnetic nanotube with an

outer radius R and an inner radius βR, where 0 < β < 1. The length L of the nanotube is
much longer than the radius. We consider that the ferromagnetic (FM) nanotube surrounds
a heavy metal (HM) material core, which leads to an interfacial Dzyaloshinskii-Moriya inter-
action is present at the interface between these two materials. The magnetization of the FM
nanotube can be written as M = MsΩ, where Ms is the saturation magnetization and Ω is
an unit vector. Then, the magnetic energy functional, E , of this system is given by

E [Ω] =
∫
dV [A(∇Ω)2 −K(ẑ ·Ω)2 + µ0M

2
s

2 (ρ̂ ·Ω)2]

+
∫
dV Dρ̂ · [Ω(∇ ·Ω)− (Ω ·∇)Ω], (5.1)

where the right terms are the exchange, the anisotropy, the demagnetizing, and the Dzyaloshinskii-
Moriya energies, respectively. A is the stiffness constant, K is the anisotropy constant, µ0
is the vacuum permeability, and D is the interfacial Dzyaloshinskii-Moriya parameter. . In
particular, D = 2d/a2, where d is related to the Dzyaloshinskii-Moriya vector and a is the lat-
tice constant. We remark that the functional form of the Dzyalonshinskii-Moriya interaction
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differs from the one expected in a plane geometry. This difference arises from the curvature
of the system as can be appreciated in the supplementary material. The unit vector Ω, in
cylindrical coordinates, can be written as

Ωρ = sin Θ(ρ, φ, z) cos Ψ(ρ, φ, z),
Ωφ = sin Θ(ρ, φ, z) sin Ψ(ρ, φ, z),
Ωz = cos Θ(ρ, φ, z). (5.2)

If we consider that the tube thickness is small (β ∼ 1), the magnetization is like a vortex
domain wall (DW) independent of the radial coordinate [51], that is,

Θ(ρ, φ, z) = Θ(z),
Ψ(ρ, φ, z) = π/2 + p, (5.3)

where p measures the radial component of the magnetization. Additionally, this parameter
can describe the two magnetization chiralities, i.e., when p = 0 or p = π, there is a counter-
clockwise or clockwise vortex DW, respectively. After replacing Eqs. (5.3) in Eqs. (5.2) and
(5.1), the magnetic energy is

E =sA
∫
dz

[
(∂zΘ)2 + sin2(Θ)

λ2
p

− 1
W 2 + (∂zΘ)

d
sin(p)

]
, (5.4)

where s = πR2(1− β2) is the cross section area, d = A/(2D), W 2 = A/K, and

λp =
[

2 log(1/β)
R2(1− β2) + sin2(p)

`2 + 1
dR(1 + β) + 1

W 2

]−1/2

, (5.5)

with ` =
√

2A/µ0M2
s the exchange length, and λp is related to the domain wall length.

In our calculations, we consider a ferromagnetic material of cobalt with β = 0.95, A =
1.3× 10−11 J/m, K = 410 J/m3, Ms = 1400× 103 A/m, and ` = 3.25 nm.

5.3.1. Static vortex domain wall.

In this section, we study the magnetization equilibrium in the ferromagnetic nanotube.
The equilibrium magnetic state satisfies ∂zΘ = −χ sin Θ/λp, with χ taking values ±1. The
solution is

cos Θ(z) = tanh
(
χ
z − z0

λp

)
, (5.6)

where z0 is the position of the domain wall center. We have that χ = +1 means tail-to-tail
magnetizations and χ = −1 means head-to-head magnetizations, see Fig. 5.1.

The total energy of the domain wall is, up to an overall constant

E =sA
[

4
λp
− χπ sin(p)

d

]
. (5.7)
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(a) (b)

Figure 5.1: Magnetization for (a) χ = +1 and (b) χ = −1 considering
p = 0 and neglecting Dzyaloshinskii-Moriya interaction.

Its optimal values for p are p1 = π/2, p2 = −π/2,

p3 = χ arcsin
(
`

λ0

√
1

(16d2/(π2`2)− 1)

)
, (5.8)

or

p4 = χ

[
π − arcsin

(
`

λ0

√
1

(16d2/(π2`2)− 1)

)]
. (5.9)

We calculate the derivative of the energy with respect p to find its optimal values. There-
fore, we find the roots of the equation ∂ε

∂p
= 0 for p. We have that ∂λp

∂p
= − sin p cos pλp,

then we have to solve ∂ε
∂p

= sA[4 sin p cos pλp
l2

+ χπ
d

cos p] = 0. The solutions are cos p = 0, i.e.
p1 = π/2 and p2 = −π/2, and (4 sin pλp

l2
+ χπ

d
) = 0, i.e.

p3 = χ arcsin l

λ0

√
1

(16d2/(π2l2)− 1) (5.10)

and

p4 = χ[π − arcsin l

λ0

√
1

(16d2/(π2l2)− 1)] (5.11)

where λ0 = λp=0. The value of p that minimizes Eq. (5.7) depends on the value of χ and
the interfacial Dzyaloshinskii-Moriya parameter.

Figure 5.2 illustrates the total energy Eq 5.7, normalized by µ0M
2
s sl, at zero applied

field as a function of the angle p. In absence of DMI, the profile of the energy is symmetric
whit respect p = 0. We observe that for lower values of D there are two minimum and two
maximum values of the energy, while for bigger values of D there are two minimum and one
maximum values of the energy. Figure 5.3 illustrates the schematic static vortex domain wall
solution when the interfacial Dzyaloshinskii-Moriya interaction is present, and Fig. 5.4 shows
the values of p that minimizes the energy as a function of D with R = 5` = 16.25 nm at
different χ [Fig. 5.4(a) for χ = +1 and Fig. 5.4(b) for χ = −1]. We observe that for lower D
there are two static solutions related to different chiralities. For χ = +1 the magnetization,
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Figure 5.2: Total energy, normalized by µ0M
2
s sl at zero applied field

for a vortex domain wall with χ = −1, as a function of the angle p for
R = 5l.

Figure 5.3: Magnetization for χ = +1 and a top view of the magnetiza-
tion at the domain wall center, when Dzyaloshinskii-Moriya interaction
is included. ψ = π

2 + p is the angle between magnetization and the
radial direction.

in the domain wall, has a component that points to the internal radial direction, while for
χ = −1 the magnetization has a component that points to the external radial direction. An
example of the first case (χ = +1) it is shown in Fig. 5.3. When D increases there is only one
static solution for each χ. Then p takes p = π/2 for χ = +1 (the magnetization is pointing
to the internal radial direction −ρ̂), and p = −π/2 for χ = −1 (the magnetization is pointing
to the external radial direction ρ̂).

To understand the solutions of p, we need to analyze Eqs. (5.8) and (5.9). We observe
two conditions from these equations. First, if λ0 < `

√
1

(16d2/(π2`2)−1) , the solutions p3 and p4

in Eqs. (5.8) and (5.9) does not exist. Then p takes p = π/2 for χ = +1, and p = −π/2
for χ = −1. Therefore, for a fixed β, there is a critical external radius of the tube where
there is a transition from one to two solutions of p for a specific D. The second condition
is (16d2/(π2`2) − 1) > 0 or d > π`/4 which is equivalent to D < 2A/(π`) = 2.55 mJ/m2.
Therefore, this condition gives an upper bound for D, i.e., if D > 2A/(π`), there is only one
solution for p. This two conditions can be represented in Fig. 5.5. This figure illustrates the
critical radius as a function of D. If R < Rc, the solution is p = π/2 (χ = +1) or p = −π/2
(χ = −1). If R > Rc, there are two solutions of p, p3 and p4, for every χ. For D > 2.55
mJ/m2, we observe that there is one solution for p. It is because the critical radius goes to
infinity at D = 2.55 mJ/m2 (see the vertical line in Fig. 5.5).
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there are two static solutions.

74



5.3.2. Domain wall motion.

In this section, we study the dynamics of the vortex domain wall in these systems. In
this case, we consider an external magnetic field applied in the axis of the ferromagnetic
nanotube, H = H ẑ, with a Dzyaloshinskii-Moriya parameter different to zero. If we use the
same procedure used to obtain the equations of motion for nanotubes without Dzyaloshinskii-
Moriya interaction[50, 20, 19], the dynamics equations for our systems are:

α
ż0

λp
+ ṗ = −χ2h

τ
, (5.12)

ż0

λp
− αṗ = sin(2p)

τ
− χπ`

2

2dτ
cos(p)
λp

, (5.13)

where h = H/Ms, τ = 2/(γ0Ms), γ0 is the gyromagnetic ratio, and α is the damping param-
eter. It is convenient to write these equation as

ż0

λp
= − 2χα

τ(1 + α2)(h− h∗(p)
α

)
, (5.14)

ṗ = − 2χ
τ(1 + α2)(h− αh∗(p) , (5.15)

where h∗(p) = χ sin 2p
2 − πl

4d
cos p
λp

is an effective field which is proportional to the derivative
of the energy E whit respect p. Figure 5.6 illustrates the average velocity of the domain
wall, v =< ż0 >, as a function of the normalized applied field for different values of the
Dzyaloshinskii-Moriya parameter, specifically, in Fig. 5.6(a) D = 0 mJ/m2, in Fig. 5.6(b)
D = 0.5 mJ/m2, in Fig. 5.6(c) D = 1 mJ/m2, and in Fig. 5.6(d) D = 3 mJ/m2. In these
figures we consider χ = −1 and R = 5`. If χ = +1, we obtain the same magnitudes for the
velocity, but the velocity is negative. In the case for χ = +1 the propagation of the domain
wall is in the direction −ẑ (opposite to the applied field) while for χ = −1 the propagation
of the domain wall is in the direction ẑ (in the same direction of the applied field).

First, by increasing D, we observe an enhancement of the maximum domain wall average
velocity. Also, for D = 0, we observe the same curve proposed by Landeros and Núñez for
the two initial conditions of p [50]. However, for D = 0.5 mJ/m2 and D = 1 mJ/m2 [see
Figs. 5.6(b) and 5.6(c), respectively], we observe two different curves depending on the initial
condition of p. For p = p3, we have the same behavior of D = 0. But for p = p4, there
is a drop of the average velocity at hW1, see Fig. 5.6(b). Similar behavior was observed
in the article of Landeros and Núñez when the total energy of the system has the exact
demagnetization energy. Finally, when we increase the Dzyaloshinskii-Moriya parameter, see
Fig. 5.6(d), there is only one static solution that evolves in the same way than when D = 0.
In the supplementary material, there are three animations of the domain wall dynamics
corresponding to Fig. 5.6(b) for h = 0.0035, 0.005, and 0.008.

5.3.3. Walker critical field and maximum velocity.

To understand well the Fig. 5.6, it is necessary to calculate the Walker fields, hW1 and
hW2, and the critical domain wall average velocity. The Walker fields, hW1 and hW2, are

75



0.00 0.01 0.02
0

500

1000

1500

h

v
(m

/s
)

D = 0 mJ/m2

p3 = 0
p4 = �⇡

0.00 0.01 0.02
0

500

1000

1500

h

v
(m

/s
)

D = 1 mJ/m2

p3 = �0.13
p4 = �3.01

0.00 0.01 0.02
0

500

1000

1500

h

v
(m

/s
)

D = 0.5 mJ/m2

hW1

hW2

p3 = �0.05
p4 = �3.09

0.00 0.01 0.02
0

500

1000

1500

h

v
(m

/
s)

D = 3 mJ/m2

p2 = �⇡/2

(a)

(d)(c)

(b)

Figure 5.6: Velocity for χ = −1 and R = 5` as a function of the applied
field for (a) D = 0 mJ/m2, (b) D = 0.5 mJ/m2, (c) D = 1 mJ/m2,
and (d) D = 3 mJ/m2.

obtained through the condition ṗ = 0 in Eqs. (5.13), i.e.,

h = −αh∗(p) = α

2

[
π`2

2dλp
− 2χ sin(p)

]
cos(p). (5.16)

Then, we need to obtain the values of p that satisfies this equation for the maximum values
of h, i.e., dh(p)/dp = 0, and the energy must be minimum for the solutions of p. Figure 5.7
shows the effective field h∗(p) as a function of the angle p for χ = −1. We observe that
for D < 2.55 mJ/m2 there are two maximum (hW1 and hW2, with hW1 < hW2), while for
D > 2.55 mJ/m2 there is one maximum (hW2). For a positive external applied field we
observe different behaviors. There are three external applied field regions for D < 2.55
mJ/m2: (i) 0 < h < hW1, (ii) hW1 < h < hW2, and (iii) h > hW2. In the firs region, (i), there
are four root of Eq. 5.16 where two of them have the lowest energies and represent the new
values of p for each initial condition. These initial conditions are related with two chiralities
(counterclock-wise(CCW)) and (clockwise (CW)). The applied field does not deliver enough
energy to the system to exceed the energy barriers observerd in Fig. 5.2. Then, the two initial
chiralities are preserved and the domain wall motion evolve to a constant velocity and a new
equilibrium angle, which are different for each chirality. In the second region, (ii), they are
two solution of p, where only one solution has the minimum energy and gives the value of
p that evolve from the two initial conditions. Then for h = hW1 , we observe a drop in the
velocity. It is because one of the initial conditions evolve to the another because the applied
field delivers enough energy to the system to exceed one of the energy barriers observed in
Fig 5.2. Then the system increase its velocity for this chirality with the purpose to minimize
its energy. In the last region, (iii), they are not solution for p and we observe an oscillatory
solution for this variable. We can conclude that the term associated to the DMI introduces a
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chiral asymmetry in the vortex domain wall propagation. Therefore, the domain wall velocity
depends on the initial chirality of the system.

Figure 5.7: Effective field h∗(p) for a vortex domain wall, whit χ = −1,
as a function of the angle p for R = 5l.
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Figure 5.8: Dynamic phase diagram that shows the Walker fields, for
R = 5`, as a function of D. There are different dynamic solutions.

Figure 5.8 illustrates the magnitude of the Walker fields, hW1 and hW2, as a function of
D for R = 5` at fixed β. This figure shows the dynamics phase diagram of the solutions
of p. From this figure, we observe that there are three possibilities for the solutions of p if
D < 2A/(π`) = 2.55 mJ/m2 (one dynamics solution, two dynamics solutions , and oscillatory
solutions of p) and two possibilities for the solution of p if D > 2A/(π`) = 2.55 mJ/m2 (one
dynamics solution and oscillatory solutions of p). In addition, we observe that both Walker
fields have approximately linear behavior at low values of D, where hW1 decreases and hW2
increases as D increases.

From Fig. 5.6, we observe an enhancement of the critical average velocity and the maxi-
mum average velocity of the domain wall when we change the Dzyaloshinskii-Moriya param-
eter. The critical velocity of the domain wall, vc, is obtained at the Walker field hW2, i.e.,
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vc = v(hW2). From Eq. (5.12), vc is given by

vc = 2hW2

α

λp′

τ
, (5.17)

where p′ is the dynamics solution of p at h = hW2. Additionally, the maximum average
velocity of the domain wall, vmax, is obtained through the condition dv/dh = 0. Figure
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Figure 5.9: (a) Critical velocity as a function of D for R = 5` and
χ = −1, and (b) critical velocity as a function of R for different values
of D.

5.9 illustrates the critical average velocity and the maximum average velocity of the domain
wall as a function of D and R. From these figures, we observe that the average velocities
increases when we increase D and R. In our system, the maximum average velocity takes the
same order observed in ferrimagnetic materials[46], i.e, 103 m/s. Due to the fact that DMI
introduces a chiral asymmetry in the vortex domain wall propagation, as we can observe in
Fig. 5.7, a larger external field is necessary (if we compare with D = 0) to reach the Walker
breakdown instability. This delay is reflected in an increase of the speed. In other words,
our system gives a fast domain wall motion for ferromagnetic materials when the interfacial
Dzyaloshinskii-Moriya interaction is present.

5.4. Conclusions.
We studied the domain walls dynamics in thin ferromagnetic nanotubes when the in-

terfacial Dzyaloshinskii-Moriya interaction is present. We observe an ultrafast domain wall
average velocity of the order of 103 m/s that is similar to the domain wall average velocity
for ferrimagnetic nanosystems. Also, we have obtained static and dynamics phase diagrams
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for the shape of the domain wall, p value, depending on the Dzyaloshinskii-Moriya parame-
ters. The static phase diagram shows that if D ≥ 2A/(π`), the magnetization of the domain
wall points completely along the radial direction. In the other case, if D < 2A/(π`), the
domain wall has two possible chiralities. In the dynamics phase diagram, we observe two
Walker fields, hW1 and hW2, where the first one corresponds when the average velocity is
independent of the chirality in the stationary domain wall motion, and the second one when
the domain wall start to have oscillatory motion. The remarkable velocities achieved through
this configuration could prove greatly convenient for developing spintronic devices.
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Chapter 6

Conclusions

Through this thesis, we studied several topics related to bidimensional magnets. The author
aimed to connect the spin degrees of freedom of a 2D magnet, with his origin in the elec-
tronic picture. Throughout chapters 1, 2, and 3, we take advantage of CrI3, one of the last
discovered bidimensional ferromagnets, and use it as a platform to develop a detailed study
of this connection between electrons and magnons.

We started by studying its band structure, in a very simplistic model, which was obtained
by professor Eric Suarez, employing ab initio techniques. On this initial model, we neglected
any local electronic repulsion, and also the presence of spin-orbit coupling. We observed
that with these assumptions, the material behaves as a non-magnetic metal. However, when
we included the local electronic repulsion by a multi-orbital Hubbard model, we observed a
phase transition to a ferromagnetic semiconductor. The later certainly was a more appro-
priate model for describing CrI3, in comparison with that one in which the local electronic
repulsion was neglected.

In chapter 2, we used a Green’s function method to calculate the functional derivative
of the ground state energy with respect to the magnetization field. These functional deriva-
tives were calculated perturbatively, up to second order in the spin-orbit coupling. From this
formalism, we obtained the spectrum of the collective low energy excitations. Furthermore,
we were able to calculate the energy change, not only in the ground state but in the state
having the magnetization polarized in an arbitrary direction. The later allowed us to obtain
a full spin Hamiltonian, which describes the low energy regime in CrI3. We find that be-
tween nearest neighbors, the spin-exchange can be approximated by the Heisenberg-Kitaev-Γ
model. We also find a non-negligible isotropic exchange between next-nearest neighbors. Fi-
nally, we find a contribution of a magneto-crystalline anisotropy, on each Cr site.

In chapter 3, we took a simplified version of the spin model obtained in chapter 2, and we
calculated the spectrum analytically. We observed a non-trivial topological structure on the
magnonic bands, which could be used to create a topologically protected spin wave’s guide
in a domain wall.

In part I, we focused on the microscopical description of ferromagnetism in the single-
layer CrI3. In chapters 4 and 5, we studied, another two bidimensional systems, utilizing
micro-magnetic simulations. In chapter four, we explored an antiferromagnetic bilayer, with
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both layers coupled antiferromagnetically. This AFM coupling between layers allowed us to
stabilize an AFM skyrmion on the top layer. We explored this stability for several parameters
of the energy functional.

Bidimensional magnets are not only related to plane surfaces, such as layers. That is why
in chapter 5, we studied the magnetization at the surface of a nanotube. We focus on the
understanding of the equilibrium and dynamics of a domain wall. Moreover, we observed that
by including DMI in the energy functional, the domain wall reaches higher velocities, when a
magnetic field is applied on the nanotube’s axis. Since domain walls are very promising infor-
mation carriers, this finding has great potential to be used in the design of spintronic devices.

Having all the cards on the table, we hope that this thesis serves as an inspiration for future
research. Several questions remain unanswered yet. For example, it would be interesting to
study the effect on the spin Hamiltonian of CrI3, when we apply an electric field perpendicular
to the crystal plane. This electric field would break the inversion symmetry on the crystal,
and a Dzyaloshinskii–Moriya interaction could emerge from it. Furthermore, if DMI is present
in the spin Hamiltonian, it will be possible to stabilize ferromagnetic skyrmions with a fixed
radius. Studying the role of Kitaev’s coupling in the equilibrium of a skyrmion or any other
magnetic textures is also an exciting topic of research. In general, the application of the
green’s functions formalism, to characterize the anisotropies in the exchange, it is a powerful
technique to understand the microscopical origin of anisotropic magnetism in new materials
and hetero-structures.
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