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ABSTRACT We investigate the energy-efficient channel estimation in wireless networks, where one pilot is
inserted for every several data slots to estimate the channel coefficients. Both the channel state information
estimation error and the time-varying model are considered. We first formulate the energy-efficient channel
estimation problem into a mixed integer nonlinear programming (MINLP) problem, where the variables
include the transmitted power and the number of data slots. Due to the NP-hard nature, we degenerate the
MINLP problem into a series of non-concave optimization problems without integer variables. Then we
solve these problems using successive convex approximation, geometric programming, and the Dinkelbach
algorithm to obtain a point satisfying the Karush-Kuhn-Tucker (KKT) conditions. Furthermore, we develop
a low-complexity sub-optimal scheme through binary variable relaxation to obtain a solution, and the
convergence point satisfies the KKT conditions of the relaxed non-concave problem. Simulation results
demonstrate the convergence and effectiveness of our proposed schemes.

INDEX TERMS Energy efficiency, channel estimation, power control.

I. INTRODUCTION
Due to the rapid development of the Internet of Things
(IoT) [1]–[3], the impact of wireless communication sys-
tems on the environment cannot be ignored [4], and the
design of energy-efficient wireless communication sys-
tems has become an urgent task [5]–[8]. In wireless net-
works, channel state information (CSI) is used to improve
energy-efficiency (EE), and pilots are inserted into data
streams to get the CSI [9]. It is noticeable that the pilot itself
requires additional power consumption, and perfect CSI esti-
mation is unachievable in practice due to the CSI estimation
errors [10]. Better CSI quality, namely lower CSI error, can
provide a higher data rate [11]–[13], but better CSI also
requires higher pilot power consumption [14], [15]. Since
EE could be defined as the ratio of data rate to energy con-
sumption, an energy efficient pilot design has to make a good
tradeoff between energy consumption and CSI quality [16].

The pilot design relies on the established channel model.
Block-fading feedback channel model is widely used for the
channel estimation in a given frequency, where the chan-
nel gains remain invariant over the channel coherence time.
In [17], the authors discussed the optimal power allocation
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from the EE viewpoint with considering channel estimation
expense, and made the adjustment of the pilot power and the
data power. In [18], the authors investigated power alloca-
tion between pilots and data with channel estimation error.
In [19], the authors jointly optimized the number of activated
antennas, power allocation, and pilot assignment. In [20],
the number of subcarriers was taken into account to opti-
mize the EE of the orthogonal frequency-division multiple
access (OFDMA) system, where one of the subcarriers was
pilot subcarrier and the others were data subcarriers. It is
noticeable that [17]–[20] made the adjustment optimization
of pilot power and data power. However, the channel gains
in these works changed randomly across different coherence
time slots. Thus, pilots had to be sent in each time slot, which
limited the potentials of EE optimization.

In this paper, we propose an improved block-fading feed-
back channel model. The channel varies in different time
slots. There are non-zero correlation coefficients between
different time slots, and the correlation coefficients decrease
as time interval increrases. Pilots and data are sent in the first
time slot and the next several slots, respectively. The length of
time slots is flexible. On the one hand, a shorter length of time
slots results in a higher pilot energy consumption proportion,
whichwill decrease the EE. On the other hand, a longer length
of time slots results in worse CSI quality, which will reduce
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the average data rate and the EE. In this case, an optimal
length of time slots should be derived. We try to solve the
EE-maximization power control problem jointly considering
the CSI errors and the channel coefficients in time-varying
channels, and we try to optimize pilot transmission power,
data transmission power and the number of data slots at the
same time.

Similar to [21], the downlink channel is estimated by the
uplink feedback channel in our model. Compared with [22],
the pilot power and the transmission power in each data slot
are coupled together in our objective function, which is more
complex and harder to solve. Our optimization goal is the EE
of the system instead of the frame error probability. The pilot
length in our paper is a variable, so the objective function
is completely different from [23]. Compared with [24], our
paper focuses on how to optimize the energy efficiency of
the system through resource allocation and pilot design with
channel estimation information, rather than calculating the
upper channel capacity limit in the case of multiple antenna
arrays. We would like to mention that the pilots and data are
in different slots rather than within the channel coherence
time, and we may reduce the additional pilot power cost
and obtain higher EE, which is different from [25]–[27].
In addition, we note that the analytical expression of the
channel data rate is more complicated in our paper. In this
paper, due to the variable coupling, the fractional form of
the EE, and the integer variables, the formulated optimization
problem is amixed–integer nonlinear programming (MINLP)
problem [28]. Moreover, the number of independent vari-
ables will change with the integer variables, which is hard to
solve. To overcome these difficulities, we investigate MINLP
EE-maximization schemes for wireless communication sys-
tem pilot design based on successive convex approximation
(SCA), geometric programming (GP), and the Dinkelbach
methods. We further present a low-complexity sub-optimal
power control schemes based on the integer relaxation to give
sub-optimal solutions. The main contributions of the paper
can be summarized as follows.

1) We model the time-varying channel, then calculate the
CSI errors with different correlation coefficients to
obtain the analytical expression of the channel data
rate, which depends on the number of data slots,
the pilot transmission power, and the data transmission
power. Then, the EE-maximization problem is formu-
lated as an MINLP problem.

2) We design two schemes, namely sub-optimal and
low-complexity sub-optimal schemes, for this MINLP
problem, aiming to approximate the solution to
meet the Karush-Kuhn-Tucker (KKT) conditions with
acceptable costs. In addition, we analyze the perfor-
mance of our schemes, including the complexity and
convergence.

3) We investigate the following network performance
through simulation results, including the convergence
rates of sub-optimal and low-complexity sub-optimal
power control schemes, the gap between two solutions,

the impact of the length of time slots, and the impact
of the maximum allowed transmission power. The gap
between two power control schemes is small. With the
increase of the number of data slots, the EE increases
and the average throughput decreases.

The rest parts of the paper are organized as follows.
In Section II, we introduce the system model with
time-varying channel, and then calculate the CSI error.
In Section III, we formulate the EE-maximization prob-
lem and its equivalent problem, which is used to develop
sub-optimal and low-complexity sub-optimal schemes,
respectively. In Section IV, we present sub-optimal power
control algorithm. A low-complexity sub-optimal power con-
trol algorithm is designed in Section V. Simulation studies
are shown in Section VI. Finally, Section VII concludes the
paper.
Notations: a is a vector, a is a scalar, a(x) means a as a

function of x, a(x0) (where x0 is a given value) means the
value of function a with given independent variable value x0,
CN

(
m, σ 2

)
is a complex Gaussian scalar with mean m and

covariance σ 2, and E[∗] represents expectation.

II. SYSTEM MODEL
Let us consider a system consisting of one single antenna
source node and one single antenna destination node,1 where
one pilot symbol is inserted for every N data slots to estimate
the channel coefficients, as shown in Figure 1. Here, we will
present the channel model, system throughput, and power
consumption model consequently to facilitate the following
analysis.

FIGURE 1. Illustration of the pilot and data slots.

A. CHANNEL MODEL
Considering a time-varying Rayleigh block-fading
channel [29], the received signal can be written as

yi =
√
Ghixi + ni, i ∈ {0, 1, . . . ,N }, (1)

where xi is the transmission signal with transmission power
Pi, hi ∼ CN

(
0, σ 2

h

)
is the channel coefficient of the i-th time

slot with the variance of σ 2
h , ni ∼ CN

(
0, σ 2

n
)
represents the

1When the source node and/or the destination node are equipped with
multiple antennas, the formulated problem has almost the same form as that
in the single antenna scenario, indicating that our proposed strategy in this
paper can be extended to the multi-antenna scenario.
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additional white Gaussian noise with the variance of σ 2
n , and

G = (4πd0/λ)−2 (d/d0)−ν is the pathloss. Here, d0, d , λ,
and ν are the reference distance, the distance between the
source and the destination, the wavelength, and the path loss
exponent, respectively.

To model the relationship between hi and h0, we employ
the time-varying channel feedback error model to express the
channel coefficient as [21]

hi = ρih0 +
(
1− ρ2i

) 1
2
e, (2)

where ρi is the cross correlation between hi and h0, and
e ∼ CN

(
0, σ 2

e
)
is the error with the variance σ 2

e .
In the pilot slot, a pilot x0 is sent from the source node to

the destination node and the received signal is y0 = h0 x0+n.
The destination node estimates the channel. Denote ĥ0 as the
MMSE estimation of h0, and it can be expressed as [30], [31]

ĥ0 =
σ 2
h x

H
0 y0

σ 2
hGP0 + σ

2
n
, (3)

where P0 is the transmitted power of x0. Then ĥ0 is transmit-
ted back from the destination node to the source node through
the feedback channel. As the channel is estimated in the pilot
slot, we take ĥ0 as the estimation of the channel coefficient
for all data slots, i.e.,

ĥi = ĥ0, (4)

where ĥi represents the estimation of hi.

B. SYSTEM THROUGHPUT
With ĥi, the data rate of data slot i, i ∈ {1, 2, . . . ,N }, is give
by [20], [21]

Ri = B log2

1+
|ĥi|2GP0

σ 2
hi−ĥi

GP0 + σ 2
n

 , (5)

where

σ 2
hi−ĥi
= E

[(
hi − ĥi

) (
hi − ĥi

)H]
=

aiGPi + bi
GPiσ 2

h + σ
2
n
, (6)

with

hi − ĥi = ρih0 +
(
1− ρ2i

) 1
2
e− ĥ0, (7)

ai =
(
1− ρ2i

)
σ 2
h σ

2
e + (1− ρi)

2 σ 4
h , (8)

bi = ρ2i σ
2
h σ

2
n +

(
1− ρ2i

)
σ 2
n σ

2
e . (9)

The detailed calculation of (6) is presented in Appendix A.
Substituting (6) into (5), the total system throughput is

R =
N∑
i=1

Ri

=

N∑
i=1

B log2

(
1+

|ĥ|2GP0
(
GPiσ 2

h +σ
2
n
)

(aiGPi+bi)GPi+σ 2
hσ

2
nGP0+σ 4

n

)
. (10)

C. POWER CONSUMPTION MODEL
In our system, the total power consumption P includes the
transmission power and the static power. The static power
includes the power of circuits incurred by active circuit blocks
and signal processing [32]. Note that a part of the static
power can be employed to capture an effect of the computa-
tion power. We denote P0, Pi, Ps as the power of the pilot,
the transmission power in the i-th time slot, and the static
power of the source node, respectively. Therefore, the total
power consumption of the system can be given by

P = Ps + P0 +
N∑
i=1

Pi. (11)

The total EE η is defined as the amount of the transmitted data
per unit energy consumed. Based on (10) and (11), we have

η
(
P[N ],N

)
=

R
P

=

B
∑N

i=1 log2

(
1+

|ĥ|2GP0
(
GPiσ 2h+σ

2
n
)

(aiGPi+bi)GPi+σ 2h σ
2
nGP0+σ 4n

)
Ps + P0+

∑N
i=1 Pi

,

(12)

where P[N ] = [P0,P1, . . . ,PN ].

III. PROBLEM FORMULATION
In this section, we will formulate the energy-efficient power
control problem, where the number of data slots is flexible.
Taking the minimum data rate requirement into considera-
tion, the EE-maximization problem can be formulated as

P1 : max
P[N ],N

η
(
P[N ],N

)
s.t. C1 : Ri ≥ Rth, i ∈ {1, 2, . . . ,N },

C2 : P0,Pi ≤ Pmax, i ∈ {1, 2, . . . ,N },

C3 : N ≤ L, (13)

where Rth represents the minimum data rate requirement,
Pmax represents the maximum allowed transmission power,
and L represents the maximum number of data slots. Due
to the integer variable N , the fractional form of EE, and
the non-concavity of Ri, P1 is a mixed integer non-concave
fractional programming (FP) problem.

We can notice that the form of the objective function in
P1 depends on variable N . In particular, there are N + 2
independent variables in P1, namely P0,P1, . . . ,PN and N ,
and there are N and N + 2 items in the numerator and
denominator of the objective function, respectively. Both the
number of independent variables and the number of items in
the objective function change with N . For the convenience of
analysis, we introduce binary variables xi, i ∈ {1, 2, . . . ,L},
which is given by

xi =

{
1, 1 ≤ i ≤ N
0, else.

(14)
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Using xi, P1 can be rewritten into an equivalent form. Define

R̃i = B log2

1+ xi
|ĥ|2GP0

σ 2
hi−ĥ

GP0 + σ 2
n

 , (15)

P̃i = xiPi, i ∈ {1, 2, . . . ,L}, (16)

x = [x1, x2, . . . , xL]. (17)

Accordingly, we have

R̃ =
L∑
i=1

R̃i, (18)

P̃ = Ps + P0 +
L∑
i=1

P̃i, (19)

η̃ (P, x) =
R̃

P̃

=

B
∑L

i=1 log2

(
1+

xi|ĥ|2GP0
(
GPiσ 2h+σ

2
n
)

(aiGPi+bi)GPi+σ 2h σ
2
nGP0+σ 4n

)
Ps + P0 +

∑L
i=1 xiPi

.

(20)

Therefore, P1 is transformed into the following problem.

P2 : max
P,x

η̃ (P, x)

s.t. (14),

C4 : R̃i ≥ xiRth, i ∈ {1, 2, . . . ,L},

C5 : P0, P̃i ≤ Pmax, i ∈ {1, 2, . . . ,L},

where P = [P0,P1, . . . ,PL]. Since xi ∈ {0, 1}, the elements
in P are continuous variables, and η̃ is a nonlinear function,
P2 is an MINLP problem which has 2L + 1 independent
variables.Wewill prove thatP1 andP2 are equivalent, hence
the maximum EE can be reached through either P1 or P2.
Proposition 1: P1 and P2 are equivalent.
Proof: The proof is presented in Appendix B. �

Both P1 and P2 are MINLP problems, which are
NP-hard [33], and there exists no general efficient method
to solve the large-scale nonconvex problems [34]. Therefore,
we will investigate the sub-optimal power control scheme
from P1 in Section IV and the low-complexity sub-optimal
power control scheme from P2 in Section V.

IV. POWER CONTROL SCHEME
In this section, we design a three-loop scheme to obtain
a point satisfing the KKT conditions of P1, where the
optimal N , P[N ], and η are derived in the outer, middle,
and inner loops based on traversing, SCA and GP, and the
Dinkelbach method in subsections IV-A, IV-B, and IV-C,
respectively.

A. OUTER LOOP
To make the MINLP problem tractable, we fix the integer
value N . Denote R[N ] and P[N ] as S and P with given N

Algorithm 1 Outer Loop of Traversing the Variable N
1: Set N ← 0, Noptimal ← 1 and η← 0.
2: while N < L do
3: N ← N + 1.
4: Solve P3 with given N to obtain P[N ] and η[N ].
5: if η[N ] > η then
6: η← η[N ], Noptimal ← N .
7: end if
8: end while
9: Poptimal ← P[Noptimal ].

respectively, and

η[N ]
(
P[N ]

)
=
R[N ]

P[N ]
. (21)

As shown in Algorithm 1, let N change from 1 to L, P1 is
reduced to a series of sub-problems P3.

P3 : max
P[N ]

η[N ]
(
P[N ]

)
s.t.C1 and C2. (22)

P1 can be solved through solving P3 as follows

argmax
P[N ],N

η
(
P[N ],N

)
= argmax

N

[
argmax
P[N ]

η[N ]
(
P[N ]

)]
. (23)

While N is fixed, P3 is an optimization problem with no
integer variable, but it is still a non-concave problem due to
the fractional form of EE and the non-concavity of Ri. This
means P3 is still hard to solve.

B. MIDDLE LOOP
Due to the non-concavity of P3, we will adopt SCA and
GP based method. SCA method is used to approximate a
difficult non-convex problem with a series of convex prob-
lems to obtain a KKT point of the original problem [35]–[37].
GP method can transform a positive polynomial form opti-
mization problem into a convex problem. In the middle
loop, we approximate P3 to a series of problems that can
be reduced into concave fractional programming problems
through exponential variable substitutions [38]. The solution
sequence converges to a point that satisfies the KKT condi-
tions of P3.

In the following part, the Jensen’s inequality [38] is used
to construct a series of convex problems to approximate P3.
Define

fi (P0,Pi) = (aiGPi + bi)GPi + σ 2
h σ

2
nGP0 + σ

4
n

= aiG2P0Pi + biGPi + σ 2
h σ

2
nGP0 + σ

4
n , (24)

gi (P0,Pi) = |ĥ|2GP0
(
GPiσ 2

h + σ
2
n

)
+ (aiGPi + bi)GPi + σ 2

h σ
2
nGP0 + σ

4
n ,

α0i =
(
ai + |ĥ|2σ 2

h

)
G2P(0)0 P(0)i

+

(
bi + |ĥ|2σ 2

n

)
GP(0)i + σ

2
h σ

2
nGP

(0)
0 + σ

4
n ,
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α1i =

(
ai + |ĥ|2σ 2

h

)
G2P(0)0 P(0)i

α0i
,

α2i =

(
bi + |ĥ|2σ 2

n

)
GP(0)i

α0i
,

α3i =
σ 2
h σ

2
nGP

(0)
0 P(0)i

α0i
,

α4i =
σ 4
n

α0i
, (25)

and

γi (P0,Pi) =


(
ai + |ĥ|2σ 2

h

)
G2P0Pi

α1i

α1i

·


(
bi + |ĥ|2σ 2

n

)
GPi

α2i

α2i

·

[
σ 2
h σ

2
nGP0
α3i

]α3i
·

[
σ 4
n

α4i

]α4i
, (26)

where P(0)
[N ] = [P(0)0 ,P

(0)
1 , . . . ,P

(0)
N ] is the initial value of

P[N ]. Based on the Jensen’s inequality, we have the following
lemma.
Lemma 1:

1) gi (P0,Pi) ≥ γi (P0,Pi) , (27)

2) gi
(
P(0)0 ,P

(0)
i

)
= γi

(
P(0)0 ,P

(0)
i

)
, (28)

3) ∇gi
(
P(0)0 ,P

(0)
i

)
= ∇γi

(
P(0)0 ,P

(0)
i

)
, (29)

where ∇ =
(

∂
∂P0
, ∂
∂P1
, . . . , ∂

∂PN

)
.

Proof: The proof is presented in Appendix C. �
With (24) and (25), Ri can be written as

Ri (P0,Pi) = −B log2

(
fi (P0,Pi)
gi (P0,Pi)

)
. (30)

Denote

ζi (P0,Pi) = −B log2

(
fi (P0,Pi)
γi (P0,Pi)

)
. (31)

From Lemma 1, we can see that ζi is a lower bound of Ri, and
we will use ζi to approximate Ri. However, ζi (P0,Pi) is still
a non-concave function, so we will adopt GP based method
to transform ζi into a concave function. It is noticeable that
γi (P0,Pi) is a monomial, and fi (P0,Pi) and gi (P0,Pi) are
polynomials. Therefore fi(P0,Pi)

gi(P0,Pi)
is fractional and fi(P0,Pi)

γi(P0,Pi)
is a polynomial. Since ζi has the form of log(polynomial),
We choose the following variable substitution

P[N ] = Pmax[ep0 , ep1 , . . . , epN ], (32)

where p0, p1, . . . , pN ∈ (−∞, 0]. Now, ζi (Pmaxep0 ,Pmaxepi)
is a concave function due to the negative log-sum-exp
form [38]. Based on Lemma 1, we have the following corol-
lary.

Corollary 1:

1) Ri
(
Pmaxep0 ,Pmaxepi

)
≥ ζi

(
Pmaxep0 ,Pmaxepi

)
, (33)

2) Ri
(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
=ζi

(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
,

(34)

3) ∇Ri
(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
=∇ζi

(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
,

(35)

where (Pmaxep
(0)
0 ,Pmaxep

(0)
i ) = (P(0)0 ,P

(0)
i ) and

∇ =

(
∂
∂p0
, ∂
∂p1
, . . . , ∂

∂pN

)
.

We replace Ri with ζi, and have the following problem.

P4 : max
p[N ]

η
[N ]

(
p[N ]

)
s.t. ζi

(
Pmaxep0 ,Pmaxepi

)
≥ Rth, i ∈ {1, 2, . . . ,N },

p0, p1, . . . , pN ≤ 0, (36)

where

p[N ] = [p0, p1, . . . , pN ], (37)

ζ[N ]
(
p[N ]

)
=

N∑
i=1

ζi
(
Pmaxep0 ,Pmaxepi

)
, (38)

π[N ]
(
p[N ]

)
= Ps + Pmax

N∑
i=0

epi , (39)

η
[N ]

(
p[N ]

)
=
ζ[N ]

(
p[N ]

)
π[N ]

(
p[N ]

) . (40)

Because of the concavity of ζi (Pmaxep0 ,Pmaxepi),
ζ[N ]

(
p[N ]

)
is also a concave function. Thus, π[N ] is a convex

function. Therefore, η
[N ]

is a fractional function with a
concave numerator and a convex denominator.

Algorithm 2 presents an algorithm to solve P3 via solving
P4 iteratively. We can prove that the optimal objective value
of P4 provides a lower bound for the optimal objective value
of P3. We assume that p∗[N ] is the optimal solution to P4.
Recalling (33), we have

max
p[N ]

η
[N ]
= η

[N ]
(p∗[N ]) ≤ η[N ](p∗[N ]) ≤ max

p[N ]
η[N ]. (41)

Lemma 2: η(k) in Algorithm 2 is a monotonically increas-
ing sequence.

Proof: The proof is presented in Appendix D. �
Lemma 2 and inequality (41) jointly show that the

sequence η(k) increases in each iteration, and it is
upper-bounded by max

p[N ]
η[N ], so Algorithm 2 converges,

as follows.

η(0) ≤ · · · ≤ η(k−1) ≤ η(k) ≤ η(k+1) · · · ≤ max
p[N ]

η
[N ]
. (42)

Lemma 3: The convergence point of Algorithm 2 satisfies
the KKT conditions of the original problem P3.

Proof: The proof is presented in Appendix E. �
Based on Lemmas 2 and 3, we have the following

corollary.
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Algorithm 2 Medium Loop of Solving P3 by Successive
Convex Approximation
1: Set tolerance δ.
2: Initialize k ← 0, p(k)← 0, and η(k)← 0.
3: k ← k + 1.
4: Update α1i, α2i, α3i and α4i with p(k−1), i ∈

{1, 2, . . . ,N }.
5: Solve problem P4 to derive the optimal solution p(k) and
η(k).

6: while |η(k) − η(k−1)| ≥ δ do
7: k ← k + 1.
8: Update α1i, α2i, α3i and α4i with p(k−1), i ∈
{1, 2, . . . ,N }.

9: Solve P4 to derive the optimal solution p(k) and η(k).
10: end while
11: ηoptimal ← η(k).
12: Poptimal ← Pmax[ep0 , ep1 , . . . , epN ].

Algorithm 3 Inner Loop of Deriving λ in P5 based on the
Dinkelbach Method
1: Set tolerance ε.
2: Initialize k ← 0 and λ(k)← 0.
3: Solve theP5 with λ(k) to obtain the optimal solution p(k).

4: while |F
(
λ(k)

)
| > ε do

5: k ← k + 1.
6: λ(k)←

ζ[N ]
π[N ]

with p(k−1).
7: Solve P5 with λ(k) to obtain P(k).
8: end while
9: λ∗← λ(k).

Corollary 2: Algorithm 2 converges to a point satisfying
the KKT conditions of P3, and a locally optimal solution of
P3 is obtained.

C. INNER LOOP
We notice that η

[N ]
has a concave numerator and a convex

denominator, and all the constraints are convex. Accordingly,
P4 can be globally solved by the Dinkelbach’s algorithm
[39]. We have the equivalent Dinkelbach problem as follows.

P5 : max
p[N ]

ζ[N ]
(
p[N ]

)
− λπ[N ]

(
p[N ]

)
s.t. ζi

(
Pmaxep0 ,Pmaxepi

)
≥ Rth, i ∈ {1, 2, . . . ,N },

p0, p1, . . . , pN ≤ 0, (43)

where λ is a non-negative parameter. Due to the concavity
of ζ[N ] and the convexity of π[N ], ζ[N ] − λπ[N ] is a concave
function and P5 is a concave problem. Therefore, it can be
easily solved through convex optimization methods.

Through solving the concave problem P5, we can solve
FP P4, as shown in Algorithm 3, where

F(λ) = max
p[N ]
{ζ[N ]

(
p[N ]

)
− λπ[N ]

(
p[N ]

)
}. (44)

Since both ζ[N ] and π[N ] are positive, F(λ) is continuous and
strictly monotonic decreasing in λ and has an unique root.
Within the Dinkelbach method, the value of λ increases in
each iteration until converges to λ?, where λ? in Algorithm 3
is the root of F(λ) [40]. Also, λ? is equal to the optimal
EE [40], [41], i.e.,

λ? = max
p[N ]

η
[N ]

(
p[N ]

)
. (45)

So far, we have solved the original problem P1 entirely.

D. COMPLEXITY ANALYSIS
Here, we regard the tolerance ε as a constant, and the com-
plexity is considered as a function of the size of the optimiza-
tion problem. The sub-optimal scheme includes three loops,
i.e., traversing the variable N in outer loop, the SCA method
in middle loop, and the Dinkelbach method in inner loop. The
complexity of the outer loop is O (L). The simulation results
in section VI show that the convergence rate of successive
convex is very fast and almost stable with L. According
to [40], updating λ based on the Dinkelbach method con-
verges at a superlinear convergence rate. The complexity
of solving convex problem P5 on the Dinkelbach method
is O

(
L3.5

)
, based on interior point method [42]. The accu-

rate analytical complexities of the SCA and the Dinkelbach
method are challenging to derive, and therefore we illustrate
the average number of the required iterations by simulations
in Section VI.

V. FAST SUB-OPTIMAL POWER CONTROL SCHEME
We design a three-loop scheme to obtain a solution satisfying
the KKT conditions of P1 in the previous section. However,
the complexity is too high due to the traversal of the variable
N in the outer loop. In this section, we will investigate an
integer relaxation based low-complexity scheme to obtain
a point satisfying the KKT conditions of the relaxed P2.
We first relax the binary variables in P2 to transform P2
into a problem without integer variables, and then solve the
problem via optimization to obtain the optimal N . With the
optimal N , we solve P3 to get the final results.

A. INTEGER RELAXATION
Relaxation is an important approach to solve MINLP
problems. The original integer variables in (14), i.e.,
x1, x2, . . . , xL , are binary variables, which can be relaxed
into continuous variables, i.e., x̃1, x̃2, . . . , x̃L . Accordingly,
we define x̃ = [x̃1, x̃2, . . . , x̃L], and we have

1 ≥ x̃1 ≥ x̃2 ≥ · · · ≥ x̃L ≥ 0. (46)

Constraint (46) can be further expressed as the following
linear constraints.

0 ≤ x̃i ≤ 1, i ∈ {1, 2, . . . ,L},

−x̃1 + x̃2 ≤ 0,

−x̃2 + x̃3 ≤ 0,

· · ·

−x̃L−1 + x̃L ≤ 0. (47)

VOLUME 8, 2020 9707



G. Wei et al.: Energy-Efficient Channel Estimation

Recalling that x represents the number of data slots, in order
to get a reasonable result, we need to decode x̃ into the binary
x in P2. Let the optimal results be x̃∗ = [x̃∗1 , x̃

∗

2 , . . . , x̃
∗
L], and

set a as the decision threshold, i.e.,

xi =

{
1, x̃∗i ≥ a
0, else,

i ∈ {1, 2, . . . ,L}. (48)

After x is fixed (equivalent to fixed N ), P2 can be solved in
the same way as P3.

B. OUTER LOOP
We replace x and constraints (14) in P2 with x̃ and con-
straints (47) respectively, and P2 becomes a non-concave
optimization problemwithout integer variables, which is sim-
ilar to P3. Therefore, we can use the similar scheme as in
Section IV-B to solve it. We define

f̃i (P0,Pi, x̃i) = (aiGPi + bi)GPi + σ 2
h σ

2
nGP0 + σ

4
n

= aiG2P0Pi + biGPi + σ 2
h σ

2
nGP0 + σ

4
n , (49)

g̃i (P0,Pi, x̃i) = x̃i|ĥ|2GP0
(
GPiσ 2

h + σ
2
n

)
+ (aiGPi + bi)GPi+σ 2

h σ
2
nGP0 + σ

4
n , (50)

α̃0i =
(
ai + x̃i|ĥ|2σ 2

h

)
G2P(0)0 P(0)i

+

(
bi+x̃i|ĥ|2σ 2

n

)
GP(0)i + σ

2
h σ

2
nGP

(0)
0 +σ

4
n ,

α̃1i =

(
ai + x̃i|ĥ|2σ 2

h

)
G2P(0)0 P(0)i

α̃0i
,

α̃2i =

(
bi + x̃i|ĥ|2σ 2

n

)
GP(0)i

α̃0i
,

α̃3i =
σ 2
h σ

2
nGP

(0)
0 P(0)i

α̃0i
,

α̃4i =
σ 4
n

α̃0i
, (51)

and

γ̃i (P0,Pi, x̃i) =


(
ai + x̃i|ĥ|2σ 2

h

)
G2P0Pi

α1i

α1i

·


(
bi + x̃i|ĥ|2σ 2

n

)
GPi

α2i

α2i

·

[
σ 2
h σ

2
nGP0
α3i

]α3i
·

[
σ 4
n

α4i

]α4i
, (52)

where P(0)
= [P(0)0 ,P

(0)
1 , . . . ,P

(0)
L ] is the initial value of P,

and ˜x(0) = [x̃(0)1 , x̃(0)2 , . . . , x̃(0)L ] is the initial value of x̃. Based
on (49) and (50), R̃i in (15) can be further expressed as

R̃i (P0,Pi, x̃i) = −B log2

(
f̃i (P0,Pi, x̃i)
g̃i (P0,Pi, x̃i)

)
. (53)

Thus, we can construct a lower bound of R̃i using (49) and
(52), which is given by

ζ̃i (P0,Pi, x̃i) = −B log2

(
f̃i (P0,Pi, x̃i)
γ̃i (P0,Pi, x̃i)

)
. (54)

R̃i is lower bounded by ζ̃i due to Jensen’s inequality, similar
to Section IV-B. We also have the similar conclusions, listed
as follows.

1) R̃i (P0,Pi, x̃i) ≥ ζ̃i (P0,Pi, x̃i) , (55)

2) R̃i
(
P(0)0 ,P

(0)
i , x̃

(0)
i

)
= ζ̃i

(
P(0)0 ,P

(0)
i , x̃

(0)
i

)
, (56)

3) ∇R̃i
(
P(0)0 ,P

(0)
i , x̃

(0)
i

)
= ∇ ζ̃i

(
P(0)0 ,P

(0)
i , x̃

(0)
i

)
, (57)

where ∇ =
(

∂
∂P0
, ∂
∂P1
, . . . , ∂

∂PL
, ∂
∂x1
, . . . , ∂

∂xL

)
. The above

conclusions can be proved in the same way as that in
Appendix C. Noticing that f̃i(P0,Pi,x̃i)

γ̃i(P0,Pi,x̃i)
is a polynomial, we can

transform ζ̃i (P0,Pi, x̃i) into a concave function by the
following exponential variable substitution,

x̃ = [ey1 , ey2 , . . . , eyL ],
P = Pmax[ep0 , ep1 , . . . , epL ]. (58)

Then, we replace R̃i with ζ̃i and apply exponential variable
substitution (58) to obtain P6.

P6 : max
p,y

η (p, y)

s.t. ζi
(
Pmaxep0 ,Pmaxepi , eyi

)
≥Rth, i∈{1, 2, . . . ,L},

p0, p1, . . . , pL ≤ 0,
y1, . . . , yL ≤ 0, (59)

where

p = [p0, p1, . . . , pL], (60)
y = [y1, . . . , pL], (61)

ζ (p, y) =
L∑
i=1

ζi
(
Pmaxep0 ,Pmaxepi , eyi

)
, (62)

π (p, y) = Ps + Pmaxep0 + Pmax

L∑
i=1

epieyi , (63)

and

η (p, y) =
ζ (p, y)
π (p, y)

=

−B
∑L

i=1 log2
(
f̃i(Pmaxep0 ,Pmaxepi ,eyi )
γ̃i(Pmaxep0 ,Pmaxepi ,eyi )

)
Ps + Pmaxep0 + Pmax

∑L
i=1 e

pieyi
. (64)

Here, ζ is a concave function and π is a convex function
because of the concavity of ζi and the convexity of exponen-
tial functions. Assume that p∗ and y∗ is the optimal solution
toP6. The optimal objective value ofP6 gives a lower bound
for the optimal objective value of P2 due to the fact that ζ̃i is
a lower bound of R̃i, as follows.

max
p,y

η = η(p∗, y∗) ≤ η(p∗, y∗) ≤ max
p,y

η. (65)

Algorithm 4 presents an algorithm to solve P2 via solving
P6 iteratively.
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Algorithm 4 Outer Loop of Solving P2 by Successive Con-
vex Approximation
1: Set tolerance δ and threshold a.
2: Initialize k ← 0, p(k)← 0, y(k)← 0, and η(k)← 0.
3: Update α̃1i, α̃2i, α̃3i and α̃4i with p(k) and y(k), i ∈
{1, 2, . . . ,L}.

4: Set k ← 1.
5: SolveP6 to derive the optimal solution p(k), y(k) and η(k).

6: while |η(k) − η(k−1)| ≥ δ do
7: k ← k + 1.
8: Update α̃1i, α̃2i, α̃3i and α̃4i with p(k−1) and y(k−1), i ∈
{1, 2, . . . ,L}.

9: Solve P6 to derive the optimal solution p(k), y(k) and
η(k).

10: end while
11: x∗i ← 0, i ∈ {1, 2, . . . ,L}.
12: i← 1.
13: while i ≤ L do
14: if eyi ≥ a then
15: x∗i ← 1.
16: end if
17: i← i+ 1.
18: end while
19: Solve problem P2 with x← x∗ to get the optimal P and

η.

Similar to Lemmas 2 and 3, we can prove that the
sequence η(k) in Algorithm 4 increases and is upper-bounded
by max

p,y
η, so Algorithm 4 converges. Furthermore, the con-

vergence point of Algorithm 4 satisfies the KKT conditions
of the relaxed non-concave problem.

C. INNER LOOP
The objective function in P6 has a concave numerator and
a convex denominator, and all the constraints are convex.
This means that P4 can be globally solved through the
Dinkelbach’s algorithm, and the Dinkelbach problem is a
concave problem which can be easily solved by the convex
optimization, as follows.

P7 : max
p,y

ζ (p, y)− λπ (p, y)

s.t. ζi
(
Pmaxep0 ,Pmaxepi , eyi

)
≥Rth, i∈{1, 2, . . . ,L},

p0, p1, . . . , pL ≤ 0,

y1, . . . , yL ≤ 0. (66)

Algorithm 5 shows how to solve P4 through the Dinkelbach
method. Sequence λ(k) in Algorithm 5 will keep increasing
until converging to max

p,y
η [40].

D. COMPLEXITY ANALYSIS
Simulations in Section VI show that the integer relax-
ation variables will converge in several iterations. Similar to
Section IV, the average numbers of the required iterations for

Algorithm 5 Inner Loop of Deriving λ in P7 based on the
Dinkelbach Method
1: Set tolerance ε.
2: Initialize k ← 0 and λ(k)← 0.
3: Solve the concave problem P7 with λ(k) to obtain the

optimal solution p(k) and y(k).
4: while |F

(
λ(k)

)
| > ε do

5: k ← k + 1
6: λ(k)←

ζ
π
with p(k−1) and y(k−1)

7: Solve P7 with λ(k) to obtain p(k) and y(k).
8: end while
9: λ∗← λ(k)

the SCA and the Dinkelbach are shown through the simula-
tion results in Section VI.

VI. SIMULATION RESULTS
In this section, we provide some simulation results to demon-
strate the performance of our proposed energy-efficient
power control schemes in Sections IV and V. Here, we con-
sider a two-node communicate link where the distance
between the source node and the destination node d is
200 meters (m), the path loss is expressed as GdB = 140.7+
37.6 log10(d/1000) in dB and G = 10−GdB/10, and the noise
power spectral density is −174dBm/Hz [9]. The bandwidth
of the channel is 180 kHz. σ 2

h = G, σ 2
e = 0.5 G [21], and

the cross correlation between hi and h0 is considered as ρi =
exp(−i). The number of themaximum data slots L is 128. The
static power Ps is 500 milli-Watts (mW) [39], the maximum
allowed transmission power Pmax is 300 mW (24.7 dBm),
and the minimum data rate requirement Rth is 18 kilobits
per second (kbps). The tolerance is set as δ = ε = 10−6

and the decision threshold a in Algorithm 4 is 0.5 ∗ x∗1 .
Figure 2 shows that the parameters of the objective func-

tion in Algorithm 2 converge very fast, namely in less than
5 iterations. Moreover, the convergence rate of Algorithm 2 is
almost independent of the size of the problem. As L increases,

FIGURE 2. The difference between α(k)
0i and α(k−1)

0i Versus Iteration times

in terms of
∣∣∣∑i α

(k)
0i − α

(k−1)
0i

∣∣∣/∑i α
(k−1)
0i .
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the convergence rate of Algorithm 2 will almost not change.
The convergence of η in Algorithm 2 is shown in Figure 3.
Figure 3 shows that the convergence of Algorithm 2 is inde-
pendent of variable L as well. The optimal value tends to be
stable after two iterations.

FIGURE 3. The value of η(k) versus iteration times in algorithm 3.

Figure 4 shows the convergence of relaxed x̃. We use
1
L

∑
imin{x̃i/x̃1, 1 − x̃i/x̃1} to see if x̃ converges to zero or

the first component of x̃ (which is also the component with
the largest value). We can see that as the number of iterations
increases, most of the elements in x̃ are distributed around 0
or x̃1, which provides a basis for us to set a decision threshold
to choose the optimal N . Moreover, the convergence rate of
the integer relaxation is also almost independent of L.

FIGURE 4. The convergence of relaxed variables x̃ versus iteration times
in terms of 1

L
∑

i min{x̃i /x̃1,1− x̃i /x̃1}. d = 120 m.

From Figures 2, 3 and 4, we notice that the complexity of
the SCA and the integer relaxation are almost independent of
value L, which is related to the size of the original problem.
As we set the tolerance ε as a constant, the complexity is
considered as a function of size. Therefore, the complexity
of arithmetic operations of interior point method is O

(
L3.5

)
,

and the complexity of the traversal of variable N is O (L),
as mentioned in Sections IV-D and V-D.

We consider the impacts of cell radius in Figures 5 and 6,
where d = 200 m and d = 500 m, respectively. We can
see that in these figures, the curves of d = 500 m are much
lower than the curves of d = 200 m, which indicates that a

FIGURE 5. Impact of number of maximum data slots L on the EE.

FIGURE 6. Impact of maximum transmission power Pmax on EE.

larger d results in a lower EE and a lower average throughput.
This is due to the fact that the longer distance requires higher
transmission power to offset the larger path loss.

Figure 5 shows the impacts of the maximum number of
time slots L on the EE. We can see that the achieved EEs of
sub-optimal schemes are higher than those of low-complexity
sub-optimal schemes, but they are very close. This is due
to the fact that the low-complexity sub-optimal solution is
obtained by solving the P2 again after N is determined in
the Algorithm 4. We also observe that EE increases with the
increase of L, which shows that it is preferred to use less pilots
from the EE perspective.

The impacts of the maximum transmission power Pmax on
EE are shown in Figure 6.We can see that EE firstly increases
and then remains almost stable with the increase of Pmax.
We note that the increasing speed of data rate is always
lower than that of the transmission power due to the loga-
rithmic function, the system EE strictly decreases when the
transmission power increases, and the maximum EE should
be achieved when the data rate is Rth, if the static power
is zero. Under these circumstances, the average throughput
should remain constant, i.e., Rth. However, in practice the
static power is always larger than zero. If the transmission
power is extremely low, the static power becomes a dominant
influence and the system EE will increase as the transmission
power increases. On the other hand, if the transmission power
is very high, the influence of the static power is negligi-
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ble and the system EE will decrease as the transmission
power increases just like the case of zero static power. From
Figure 6, we find that there exists a break point for the trans-
mission power from the EE perspective, i.e. around 5 dBm
(curves of d = 200m) or 10 dBm (curves of d = 500m),
and the EE would be degraded when the transmitted power is
higher than the break point.

Figure 7 shows the impacts of the maximum number of
time slots L and the minimum date rate Rth on the average
throughput. We consider three different minimum data rates
Rth in this figure. We can see that the average throughput
decreases with the increase of L until reaching the minimum
date rateRth, which is due to the average throughput loss from
the worse channel estimation of additional data slot. A data
rate in every slot must be higher than Rth, and the average
throughput becomes stable after reaching Rth. We can also
notice that in the high throughput area all curves are similar.
However, in the low average throughput area, before reaching
the minimum date rate, the curves of lower minimum date
rate are above the curves of higher minimum date rate, from
the curves of Rth = 0.1 ∗ B and the curves of Rth = 0.6 ∗ B
shown in Figure 7. Since the data rates in additional slots have
reached Rth and raised the total power, to achieve a higher
EE, the power values of the previous slots are reduced and
the throughput is reduced.

FIGURE 7. Impact of the number of the maximum data slots L on the
average throughput.

From Figures 5 and 7, it is noticed that we should care-
fully choose the number of maximum data slots to make
a good tradeoff between system EE and average through-
put. From Figures 5, 6 and 7, we can see that the EE
performance of the low-complexity sub-optimal scheme
is alomst the same as that of the sub-optimal scheme.
Furthermore, as the low-complexity sub-optimal one is faster
than the sub-optimal one, when L is large, the low-complexity
sub-optimal scheme is a better choice for practical applica-
tions. If we need a better EE performance, and the maximum
data slots L is small, the sub-optimal scheme is more suitable.
The comparison of our proposed sub-optimal scheme

with the global optimal solution is shown in Figure 8.
We employ exclusive search to find the maximum objective
function value, which is a global optimal solution. However,

the complexity of exclusive search increases exponentially
with the problem size, which is unaffordable. Due to the high
complexity, we set L = 4 to get a global optimal solution in
a reasonable time. It can be observed that the performance of
our proposed sub-optimal scheme is very close to the global
optimal solution.

FIGURE 8. Energy efficiency of our proposed sub-optimal scheme and the
global optimal solution.

VII. CONCLUSION
In this paper, we have investigated the energy-efficient
power control schemes for wireless communication net-
works, where both the CSI error and the cross correlation
of the time-varying channel have been considered. Based on
the data rate expression we calculated, an MINLP problem
is formulated to maximum EE, and we use SCA and the
Dinkelbach methods to give a solution satisfying the KKT
conditions. We have further developed the low-complexity
sub-optimal scheme through relaxing binary variables to
reduce the complexity. Numerical simulations have been
conducted to demonstrate the convergence and the effec-
tiveness of our proposed schemes. Simulation results have
shown that our proposed schemes converge rapidly, and the
EE loss caused by the integer relaxation is very minor. We
have illustrated the impact of various network parameters,
including the number of maximum data slots, the maximum
allowed transmission power, and the cell radius, on the system
performance, which could provide some useful guidance for
future pilot designs.

APPENDIXES
APPENDIX A
DERIVATION PROCESS OF CHANNEL COEFFICIENT
COVARIANCE
According to (7), σ 2

hi−ĥi
is defined as

σ 2
hi−ĥi
= E

[(
hi − ĥi

) (
hi − ĥi

)H]
= E

[(
ρih0 +

(
1− ρ2i

) 1
2
e− ĥ0

)
(
ρih0 +

(
1− ρ2i

) 1
2
e− ĥ0

)H]
. (67)
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Recalling (3), we have

ĥ0 =
σ 2
h x

H
0 y0

σ 2
hGP0 + σ

2
n
. (68)

Since h and e are statistically independent, we haveE[heH ] =
E[ehH ] = 0, therefore

σ 2
hi−ĥi
= E

[(
ρih+

(
1− ρ2i

) 1
2
e−

σ 2
h x

H
0 y0

σ 2
hGP0 + σ

2
n

)

×

(
ρih+

(
1− ρ2i

) 1
2
e−

σ 2
h x

H
0 y0

σ 2
hGP0 + σ

2
n

)H
= E

[
ρ2i hh

H
+

(
1− ρ2i

)
eeH

+
σ 4
h x

H
0 y0y

H
0 x0(

σ 2
hGP0 + σ

2
n
)2 − 2ρiσ 2

h hx0x
H
0 h

H

σ 2
hGP0 + σ

2
n

]
. (69)

Recalling that E[hhH ] = σ 2
h , E[ee

H ] = σ 2
e , E[x0 x

H
0 ] = P0,

y0 =
√
Gh0 x0 + n, and E[y0 yH0 ] = σ

2
h GP0 + σ

2
n , we have

σ 2
hi−ĥi
= ρ2i σ

2
h +

(
1− ρ2i

)
σ 2
e +

σ 4
hP0 − 2ρiσ 4

hP0
σ 2
hGP0 + σ

2
n

=
aiGPi + bi
GPiσ 2

h + σ
2
n
, (70)

where ai =
(
1− ρ2i

)
σ 2
h σ

2
e + (1− ρi)2 σ 4

h and bi =
ρ2i σ

2
h σ

2
n +

(
1− ρ2i

)
σ 2
n σ

2
e .

Note that when we consider the case of perfect correlation,
i.e. ρi = 1, (70) degenerates into

σ 2
h σ

2
n

GPiσ 2
h + σ

2
n
, (71)

which is exactly the same as that in [21].

APPENDIX B
PROOF OF PROPOSITION 1
If i ≤ N , we have xi = 1. Hence, R̃i = xi Ri = Ri,
P̃i = xiPi = Pi and the constraint C4 becomes Ri ≥ Rth.
If N < i ≤ L, such xi = 0, we have R̃i = B log2 (1+ 0) =
0, P̃i = xiPi = 0 and the constraint C4 becomes 0 ≥ 0.
Therefore,

R̃ =
L∑
i=1

R̃i =
N∑
i=1

Ri = R,

P̃ =
L∑
i=1

P̃i =
N∑
i=1

Pi = P. (72)

This result means that η̃ (P, x) = η
(
P[N ],N

)
and constraint

C4 is equivalent to constraint C1.

APPENDIX C
PROOF OF LEMMA 1
1) Assume that

θ1, θ2, . . . , θm ≥ 0,
m∑
j=1

θj = 1, (73)

x1, x2, . . . , xm ≥ 0. (74)

Recalling that ln(x) is a concave function, based on Jensen’s
inequality, we have

m∑
j=1

θj ln
(
xj
θj

)
≤ ln

 m∑
j=1

θj ·
xj
θj

 = ln

 m∑
j=1

xj

 , (75)

which is equivalent to
m∑
j=1

xj ≥
m∏
j=1

(
xj
θj

)θj
. (76)

Notice that in (26) we have α1i + α2i + α3i + α4i = 1, and
we will use (76) to get the inequality we need. Let m = 4,(
ai + |ĥ|2σ 2

h

)
G2 P0 Pi = x1,

(
bi + |ĥ|2σ 2

n

)
GPi = x2,

σ 2
h σ

2
nGP0 = x3, and σ 4

n = x4, then the left term in (76)
becomes gi (P0,Pi) and the right term becomes γi (P0,Pi).
Specifically, we get

gi (P0,Pi) ≥ γi (P0,Pi) .

2) Recalling that the Jensen’s inequality (76) is tightened
when x1

θ1
=

x2
θ2
= · · · =

xm
θm
, thus, in (50) and (52), when

P[N ] = P(0)
[N ], we have(

ai + |ĥ|2σ 2
h

)
G2P0Pi

α1i
=

(
bi + |ĥ|2σ 2

n

)
GPi

α2i

=
σ 2
h σ

2
nGP0
α3i

=
σ 4
n

α4i
= α0i, (77)

which satisfies the equal condition. Therefore, the inequality
(33) is tightened when P[N ] = P(0)

[N ], namely

gi
(
P(0)0 ,P

(0)
i

)
= γi

(
P(0)0 ,P

(0)
i

)
. (78)

3) From the chain rule, we have ∇Ri = Ri∇ lnRi and ∇ζi =
ζi∇ ln ζi. We will prove ∇Ri

(
P(0)0 ,P

(0)
i

)
= ∇ζi

(
P(0)0 ,P

(0)
i

)
by calculating all the first-order partial derivatives of lnRi and
ln ζi as follows
∂ ln γi
∂P0

(
P(0)0 ,P

(0)
i

)
=
∂ ln gi
∂P0

(
P(0)0 ,P

(0)
i

)
=
α1iP

(0)
i + α3i

P(0)0

,

∂ ln γi
∂Pi

(
P(0)0 ,P

(0)
i

)
=
∂ ln gi
∂Pi

(
P(0)0 ,P

(0)
i

)
=
α1iP

(0)
0 + α2i

P(0)i
,

∂ ln γi
∂Pj

(
P(0)0 ,P

(0)
i

)
= 0, i 6= j.

Accordingly,

(∇ lnRi)
(
P(0)0 ,P

(0)
i

)
= (∇ ln ζi)

(
P(0)0 ,P

(0)
i

)
. (79)

Hence, from (78) and (79), we have

∇Ri
(
P(0)0 ,P

(0)
i

)
= ∇ζi

(
P(0)0 ,P

(0)
i

)
. (80)
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APPENDIX D
PROOF OF LEMMA 2
In iteration k , p(k−1) is the initial value of p. According to (33)
and (34), we have

η(k−1) ≤ η[N ](p(k−1)), (81)

η[N ](p(k−1)) = η(p(k−1)), (82)

η(p(k−1)) ≤ max
p[N ]

η
[N ]
= η(k). (83)

Hence, η(k−1) ≤ η(k).

APPENDIX E
PROOF OF LEMMA 3
Let sequence p(k) converge to

p∗ = [p∗0, p
∗

1, . . . , p
∗
N ].

Hence, P(0)
[N ] in (26) equals to Pmax[ep

∗

0 , ep
∗

1 , . . . , ep
∗
N ].

According to (35), we have

∇Ri
(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
= ∇ζi

(
Pmaxep

(0)
0 ,Pmaxep

(0)
i

)
.

Consequently, the objective function and each condition have
the same gradient as the original problem P3 at point p∗

when Algorithm 2 converges. Moreover, p∗ satisfies the KKT
conditions of P4, i.e.,

∇η
[N ]

(
p∗
)
+

N∑
i=1

µi∇ζi − Pmax

N∑
j=0

νj∇epj = 0, (84)

where µi and νj are the KKT multipliers. Considering
Corollary 1, it alsomeans that p∗ satisfies theKKT conditions
of P3, i.e.,

∇η[N ]
(
p∗
)
+

N∑
i=1

µi∇Ri − Pmax

N∑
j=0

νj∇epj = 0. (85)
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