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Abstract: In this article, we study how the rates of diffusion in a reaction-diffusion model for a stage
structured population in a heterogeneous environment affect the model’s predictions of persistence
or extinction for the population. In the case of a population without stage structure, faster diffusion
is typically detrimental. In contrast to that, we find that, in a stage structured population, it can be
either detrimental or helpful. If the regions where adults can reproduce are the same as those where
juveniles can mature, typically slower diffusion will be favored, but if those regions are separated,
then faster diffusion may be favored. Our analysis consists primarily of estimates of principal
eigenvalues of the linearized system around (0, 0) and results on their asymptotic behavior for large
or small diffusion rates. The model we study is not in general a cooperative system, but if adults
only compete with other adults and juveniles with other juveniles, then it is. In that case, the general
theory of cooperative systems implies that, when the model predicts persistence, it has a unique
positive equilibrium. We derive some results on the asymptotic behavior of the positive equilibrium
for small diffusion and for large adult reproductive rates in that case.
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1. Introduction

The question of how dispersal interacts with spatial heterogeneity to influence population
dynamics and species interactions has been studied extensively in recent years, specifically from
the viewpoint of reaction-diffusion systems and related models—see, for example, [1–3] and the
references cited therein. Most work on that topic assumes that each population is structured only
by space and has only one mode of dispersal. However, populations are often structured by age,
stage, or other attributes, and there may be variation among individuals in their dispersal rates or
patterns. Here we will examine how the presence of a stage structure influences how diffusion rates
influence population dynamics in a class of reaction-diffusion models for a population with two
stages. In the case of a population with logistic growth, without age or stage structure, diffusing
in a closed bounded spatially heterogeneous environment that is constant in time, it is well known
that reaction-diffusion models predict that slower diffusion rates are advantageous relative to faster
diffusion—see [4,5]. The results in [5] also hold for patch models. More broadly, a wide class of models
arising in population genetics, population dynamics, and related areas display some version of the
reduction principle, which says that dispersal, which causes faster mixing, typically reduces the rate of
population growth—see [6]. However, the situation seems to be quite different in the case of stage
structured populations. In [7], the authors considered a discrete-time patch model for a structured
population and found that, in some cases, there was no selection against faster dispersal. The goal of
the present paper is to use a spatially explicit reaction-diffusion model to understand how the spatial
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distributions of habitats that are favorable for reproduction by adults and those that are favorable for
survival and growth by juveniles affect whether faster diffusion is advantageous or harmful for a stage
structured population. We will see that the answer depends on the details of the spatial distribution of
favorable and unfavorable habitats.

The type of reaction-diffusion model we will study is

∂u
∂t

= d1∆u + r(x)v− s(x)u− a(x)u− b(x)u2 − c(x)uv in Ω, t > 0,

∂v
∂t

= d2∆v + s(x)u− e(x)v− f (x)v2 − g(x)uv in Ω, t > 0,

∇u · ν = ∇v · ν = 0 on ∂Ω, t > 0.

(1)

Ω is a bounded domain in RN , and ν is the outward unit normal to ∂Ω, such that the system has
Neumann boundary conditions, which are the no-flux boundary conditions for simple diffusion. In this
system, u and v represent the population densities of juveniles and individuals that have reached
reproductive age, i.e. adults, respectively, of the same species. Thus, the term s(x) represents the rate
at which juveniles mature into adults, which is determined by the fraction of individuals that reach
reproductive age and the rate at which they mature, while r(x) accounts for the local fecundity of adults
such that r(x)v(x) describes that rate at which new juveniles are produced by an adult population
with density v at location x. The terms a(x), b(x), c(x), e(x), f (x), and g(x) account for per-capita
death rates and saturation factors due to logistic self-limitation. The diffusion coefficients d1 and d2

account for the the dispersal rates of juveniles and adults, respectively. The coefficients are all assumed
to be nonnegative and continuous in Ω. This is the type of model for a stage structured population
introduced in [8]. Related models with a different interpretation are discussed in [9,10] and in the
references in those papers. The model expressed in Equation (1) is not an explicitly age-structured
model. It assumes that individuals in the juvenile stage mature at some spatially dependent rate but
does not track the age of individuals within each stage. Explicitly age structured models are considered
in [11–13]. A different way of modeling an age-structured population, based on delayed reaction
diffusion equations, is developed in [14]. Our focus here is on how spatial heterogeneity, dispersal,
and stage structure interact, so we chose to use the simplest possible formulation of stage structure.
In the case where c = g = 0, the system is cooperative, and the methods and results of [15,16] would
apply to it. The linearization of Equation (1) around (0, 0) is cooperative, so the results of [15] apply to
it; in particular, with a few technical assumptions, they imply that it has a principal eigenvalue.

The main questions we will address in this work are related to understanding the roles of the
different functions and coefficients in Equation (1) in the persistence of the species. For the remainder
of the paper we will focus primarily on understanding how the principal eigenvalue of the linearization
of Equation (1) around (0, 0) depends on the coefficients and what that dependence means biologically.
We will see that whether faster diffusion is harmful or helpful for the persistence of the population
depends on the details of the distribution of habitats that are favorable for adult reproduction and
those that are favorable for juvenile survival and maturation. In some cases slower diffusion is still an
advantage, but sometimes faster diffusion turns out to be helpful, and sufficiently fast diffusion may
even be necessary for persistence. The spatial distribution of habitats favorable to adult reproduction
(r(x) large) relative to those favorable to juvenile development (s(x) large) turns out to be important
in some cases. Our analysis here is similar in spirit to the sorts of results obtained for diffusive
Lotka-Volterra competition models in [3,17–19]. In particular, we will examine the behavior of the
system for small, large, and general diffusion rates. Related results for some epidemiological models
are derived in [20,21].

The linearization of Equation (1) around (0, 0) has a principal eigenvalue whose sign determines
whether the model predicts persistence or extinction. Since the sign of the principal eigenvalue of
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the linearization of Equation (1) around (0, 0) determines the fate that Equation (1) predicts for the
population it describes, we will study in detail the following problem:

d1∆ϕ + r(x)ψ− (s(x) + a(x))ϕ = λϕ in Ω,
d2∆ψ + s(x)ϕ− e(x)ψ = λψ in Ω,

∇ϕ · ν = ∇ψ · ν = 0 on ∂Ω.
(2)

2. Basic Properties

In this section, we discuss some basic properties of Equation (1). From now on, we assume that
r, s, a, b, c, e, f , g ∈ Cα(Ω̄), ∂Ω is of class C2,α, and that the following hypotheses hold:

Hypothesis 1 (H1). r(x), s(x) ≥ 0 in Ω, with r(xr) 6= 0, s(xs) 6= 0 for some xr, xs ∈ Ω.

Hypothesis 2 (H2). a(x), c(x), e(x), g(x) ≥ 0 in Ω.

Hypothesis 3 (H3). b(x) > 0, f (x) > 0 in Ω.

The model expressed in Equation (1) has many mathematical features in common with the
models discussed in [9,10] for populations where individuals can switch between two different
movement modes. A key feature is that the linear part of Equation (1) is cooperative, so it will
have a principal eigenvalue which determines the stability of the equilibrium (0, 0) and hence the
persistence or extinction of the population. Another key feature of Equation (1) is that the nonlinearity
is subhomogeneous. The maximum principle and existence of principal eigenvalues for cooperative
linear systems such as the linear part of the right side of Equation (1) are derived in [15]. The general
theory for systems such as Equation (1) is developed in [16] for the fully cooperative case (where
c = g = 0, such that adults only compete with other adults and juveniles with other juveniles) and
in the general case in [8–10,22]. As expected, the sign of the principal eigenvalue of the linearization
of Equation (1) around (0, 0) gives us the relevant information to study the persistence of the species.
If it is positive, the population will persist. If it is nonpositive, the population will go extinct. In the
case where the coefficients of c and g in Equation (1) are zero such that the system is cooperative, the
results and methods of [16] imply that, if the principal eigenvalue of the linear part is positive, then
the system has a unique globally attractive equilibrium. If those coefficients are small, the methods
of [9,10] can be applied to show that Equation (1) is asymptotically cooperative, and still has a unique
globally attractive positive equilibrium. Combining results that are given in [8–10,15,16] or that follow
directly by the same arguments used in those papers, we have the following:

Lemma 1. The eigenvalue problem expressed in Equation (2) has a unique principal eigenvalue λ1 that is
characterized by having a positive eigenvector (ϕ, ψ).

Lemma 2. If λ1 > 0, then the system expressed in Equation (1) is persistent and has at least one positive
equilibrium. If λ1 ≤ 0, then (0, 0) is globally asymptotically stable in Equation (1).

Lemma 3. If λ1 > 0 and c and g are sufficiently small, then the system expressed in Equation (1) has a unique
globally attracting positive equilibrium.

Remark 1. In the case that c = g = 0, the system expressed in Equation (1) is cooperative and hence generates
a monotone semi-flow on appropriate spaces.
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3. The Case of d1, d2 Small

Following the approach in [23], we will establish the asymptotic behavior of the principal
eigenvalue of Equation (2) when d1, d2 are small and, in the fully cooperative case (where c ≡ g ≡ 0),
the profile of the nonnegative solutions of the corresponding steady state system for Equation (1).

d1∆u + r(x)v− s(x)u− a(x)u− b(x)u2 = 0 in Ω,
d2∆v + s(x)u− e(x)v− f (x)v2 = 0 in Ω,
∇u · ν = ∇v · ν = 0 on ∂Ω,

(3)

as well. Related results are derived in [16]. We observe that the associated kinetic system, which
corresponds to Equation (1), is given by{

ut = r(x)V(x)− s(x)U(x)− a(x)U(x)− b(x)U2(x)− c(x)U(x)V(x) = 0,
vt = s(x)U(x)− e(x)V(x)− f (x)V2(x)− g(x)U(x)V(x) = 0,

(4)

for each x ∈ Ω.
For each x, this system shares the same properties as Equation (1) given in Lemmas 1–3, which

we state for convenience.

Lemma 4. Set x ∈ Ω. The linearization around (0,0) of Equation (4) has a principal eigenvalue λ1(x).
Moreover,

(i) If λ1(x) ≤ 0, then all the solutions with nonnegative initial condition of Equation (4) converge to (0,0)
when t→ ∞.

(ii) If λ1(x) > 0, then Equation (4) is persistent and has at least one positive equilibrium.
(iii) If c ≡ g ≡ 0 and λ1(x) > 0, then Equation (4) is cooperative and admits a unique positive equilibrium,

which is the global attractor for all nonnegative, non-trivial solutions.

Observe that, when d1 = d2 = 0, the eigenvalues of the linearization around (0,0) of Equation (4)
are the roots of det(A(x)− λI), with

A(x) =

[
−(s(x) + a(x)) r(x)

s(x) −e(x)

]
(5)

By a simple computation, we obtain that the maximum eigenvalue is given by

Λ(x) =
1
2

[
−(s(x) + a(x) + e(x)) +

√
(s(x) + a(x)− e(x))2 + 4r(x)s(x)

]
, (6)

which is positive provided that (s(x) + a(x))e(x)− r(x)s(x) < 0. Our first result, which is a direct
application of Theorem 1.4 of [23] (Theorem A1 in the Appendix A), states that this is indeed the
necessary and sufficient condition to have a positive principal eigenvalue when d1 and d2 are small.

Proposition 1. The principal eigenvalue λ1 of Equation (2) satisfies

λ1 → max
x∈Ω

Λ(x) as d1, d2 → 0. (7)

Thus, there exists a δ > 0 such that if

min
x∈Ω

((s(x) + a(x))e(x)− r(x)s(x)) < 0, (8)
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the principal eigenvalue of Equation (2) is positive for all 0 < d1, d2 < δ, while if

min
x∈Ω

((s(x) + a(x))e(x)− r(x)s(x)) > 0, (9)

the principal eigenvalue is negative.

As a consequence of this result, if Equation (9) holds, the unique nonnegative equilibrium of
the system expressed in Equation (3) is (0, 0), and that equilibrium is globally attracting, whenever
d1, d2 are small; if Equation (8) holds, the system expressed in Equation (3) is persistent, and has a
positive equilibrium for small d1, d2. If Equation (8) holds and c ≡ g ≡ 0, then by Lemma 3 the system
expressed in Equation (3) has a unique globally attracting positive equilibrium, which we denote by
(ud, vd) with d = (d1, d2).

Throughout the remainder of this section, we will assume that c ≡ g ≡ 0 in Ω, in which case, the
system expressed in Equation (1) is cooperative.

The next result establishes the convergence of (ud, vd) to the unique nonnegative steady state
(U(x), V(x)) of the kinetic system, which satisfies

(U(x), V(x)) is positive where (s(x) + a(x))e(x)− r(x)s(x) < 0,
(U(x), V(x)) = 0 where (s(x) + a(x))e(x)− r(x)s(x) ≥ 0.

(10)

Theorem 1. Suppose that Equation (8) holds. Then (ud, vd)→ (U, V) as d→ 0 locally uniformly in Ω.

To prove this theorem, we follow the proof of Theorem 1.5 of [23], specifically their Proposition 5.2
in [23] and its hypotheses, which are listed in [23] as (A1)–(A4) and are given in the Appendix A as
(L1)-(L4) to avoid confusion with the equation labels there. We should point out that Assumptions
(A2) and (A3) of [23] do not hold in our case, so we cannot apply that result directly. The difference is
that we allow situations where the kinetic system expressed in Equation (4) has a positive equilibrium
for some values of x ∈ Ω̄ but not for others, whereas Condition (A2) requires a positive equilibrium
for the kinetic system for all x. For that reason, we need to construct a version of the arguments in [23]
that is local in x. Condition (A3) in [23] is used only to prove the existence of a nontrivial subsolution
for a system corresponding to Equation (3), which is independent of d1, d2. We show the existence of
the analogous local subsolutions we need in our case in the next lemma.

Lemma 5. Suppose that x̃ ∈ Ω0, where

Ω0 = {x ∈ Ω / (s(x) + a(x))e(x)− r(x)s(x) < 0}. (11)

Then there exists d0 > 0, ρ0 > 0, and a function w0 > 0 in B(x̃, ρ) ⊂ Ω0, which is a subsolution of
Equation (3) for all 0 < d1, d2 < d0.

Proof. Let p = (p1, p2), a positive eigenvector of A(x̃) with p1 + p2 = 1, associated with its principal
eigenvalue σ̃ > 0. Set ε > 0 and small. We can choose ρ > 0 such that B(x̃, ρ) ⊂ Ω0 and

|a(x)− ã| < ε, |r(x)− r̃| < ε,
|s(x)− s̃| < ε and |e(x)− ẽ| < ε for all x in B(x̃, ρ),

(12)

where ã = a(x̃), r̃ = r(x̃), s̃ = s(x̃), and ẽ = e(x̃). Set η > 0 as the principal eigenfunction associated
with λ > 0, the principal eigenvalue of

∆η + λη = 0 in B(x̃, ρ), η = 0 on ∂B(x̃, ρ), (13)
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with maxB(x̃,ρ) η = 1. We claim that we can choose δ, ε, ρ, d0 > 0 such that δηp is a
subsolution of Equation (3) for all d1, d2 < d0. For simplicity and to keep the notation consistent with
that in [23], we define F(x, u, v) = (F1(x, u, v), F2(x, u, v)), with

F1(x, u, v) = rv− su− au− bu2 and F2(x, u, v) = su− ev− f v2 = 0, (14)

where we have omitted the variable x in a, b, e, r, s, f to shorten the expressions. Observe that

F1(x, δηp) = δη(σ̃p1 + (r− r̃)p2 − (s− s̃)p1 − (a− ã)p1 − bδp2
1η)

F2(x, δηp) = δη(σ̃p2 + (s− s̃)p1 − (e− ẽ)p2 − f δp2
2η),

and using Equation (12), we obtain that, if we choose ε > 0 and a small δ, we have that

F1(x, δηp) ≥ δη(σ̃p1 − εp2 − 2εp1 − bδp2
1η) > δη

σ̃

2
p1

F2(x, δηp) ≥ δη(σ̃p2 − εp1 − εp2 − f δp2
2) > δη

σ̃

2
p2.

(15)

Therefore, replacing these inequalities in Equation (3), we obtain

d1δp1∆η + F1(x, δηp) ≥ δη

(
−d1 p1λ +

σ̃

2
p1

)

d2δp2∆η + F2(x, δηp) ≥ δη

(
−d2 p2λ +

σ̃

2
p2

)
;

hence, if we set d0 = σ̃
2λ . we obtain the desired result.

Using this lemma we can follow the proof of Proposition 5.2 in [23]. To facilitate our exposition, we
will use the same notation. Set the operators D = diag (d1, d2), L = diag (∆, ∆). To prove Theorem 1,
we will state the needed lemmas, discussing their relationships with the lemmas in [23] leading to the
proof of Proposition 5.2.

Suppose that Equation (8) holds, setting w0 = ηδp as in Lemma 5, and w0 = M where M > 0
is given in Assumption (A4) such that F1(x, u, v) ≤ −cu and F2(x, u, v) ≤ −cv for all u, v ≥ M and
x ∈ Ω, with c > 0 fixed. Set K > 0 such that K + ∂uF1(x, u, v) > 0 and K + ∂vF2(x, u, v) > 0 for all
0 ≤ u, v ≤ M, and we define z = wk as the unique solution of{

−DLz + Kz = Ku + F(x, u) in Ω,
∇z · ν = 0 on ∂Ω,

for u = wk−1.

Lemma 6. Suppose that Equation (8) holds. For every k, we have w0 < wk+1 < wk < w0, and as k→ ∞, wk

converges uniformly to the unique positive solution w of Equation (3), which satisfies w0 < w < wk in Ω for
all k ≥ 0.

Proof. We will prove that w0 < wk by induction. Suppose this is true for k. Observe that w0 < w0 by
construction. In the set, B(x̃, ρ) ⊂ Ω0 as in Lemma 5 wk+1 satisfies

−DL(wk+1 − w0) + K(wk+1 − w0) = K(wk − w0) + F(x, wk)− F(w0),
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in B(x̃, ρ). By the induction hypothesis w0 < wk, whence Kwk + F(x, wk) > 0; hence, by the strong
maximum principle applied to each component, we have that wk+1 > 0 in Ω̄. Thus, we have{

−DL(wk+1 − w0) + K(wk+1 − w0) > 0 in B(x̃, ρ),
wk+1 − w0 > 0 in ∂B(x̃, ρ),

such that we have that wk+1 − w0 > 0 in B(x̃, ρ). The remainder of the proof is a standard monotone
iteration argument, just as in the proof of Lemma 5.3 of [23]. We observe that{

−DL(w1 − w0) + K(w1 − w0) = Kw0 + F(x, w0)− Kw0 < 0 in Ω,
∇[w1 − w0] · ν = 0 on ∂Ω,

Thus, by the strong maximum principle, we have w1 < w0.

Similarly, if wk < wk−1, then
−DL(wk+1 − wk) + K(wk+1 − wk) =

Kwk + F(x, wk)− Kwk−1 − F(x, wk−1) < 0 in Ω,
∇[wk+1 − wk] · ν = 0 on ∂Ω.

By induction, the sequence {wk} is decreasing, and it is bounded below by max{0, w0(x)}, so by
standard elliptic theory, it converges to a nonnegative nontrivial solution of Equation (3) as k → ∞.
Since by Lemma 3 the nontrivial nonnegative solution of Equation (3) is unique, it coincides with the
one constructed as the limit of the sequence {wk}.

Define W0
= w0 and Wk+1

= Wk
+ F(x, Wk

) in Ω. Following the proof of Lemmas 5.6 and 5.7
in [23], we can prove the following result.

Lemma 7. Suppose that Equation (8) holds. For every k, we have

w0 < Wk+1
< Wk.

Then, Wk converges locally uniformly to W∞ as k→ ∞, with

W∞ = (U(x), V(x)) in Ω0, and W∞(x) = 0 in Ω \Ω0,

where Ω0 is given by Equation (11).

Proof. Observe that, by Equation (15), the function w0 is a subsolution of the kinetic system. Repeating
the proof of Lemma 5.6 in [23], or following the arguments leading to the monotonicity of the proof

of Lemma 6 above, we have that the sequence {Wk} is monotone decreasing and bounded below by

w0. Therefore, Wk →W∞ pointwise, which satisfies F(x, W∞) = 0, i.e. a nonnegative equilibrium of
the kinetic system. Therefore, if at some x ∈ Ω we have that (s(x) + a(x))e(x)− r(x)s(x) ≥ 0, then
W∞(x) = 0. On the other hand, W∞(x) ≥ w0(x) > 0 in B(x̃, ρ) ⊂ Ω0 for x ∈ Ω0. Since x is arbitrary
and the sequence does not depend on w0, we obtain that W∞(x) = (U(x), V(x)), the unique positive
kinetic equilibrium, whenever x ∈ Ω0. Particularly, W∞ is continuous. Using Theorem 5.8 of [23],
we obtain that the convergence is uniform in any compact set of Ω.

Lemma 8. For each k, as d1, d2 → 0, we have that wk converges to Wk uniformly in Ω̄.

The proof of this result is the same as the one of Lemma 5.5 in [23].
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Proof of Theorem 7. Using a diagonal argument, and Lemma (8), the unique positive solution w of
Equation (3) converges to W∞ as d1, d2 → ∞.

4. The Case of d1 and d2 Large

We will start by giving a proof of a result that is well known as a “folk theorem.” It is stated in
slightly more generality than is needed for the specific application. For i = 1, . . . , N, let Li denote the
operator

Liu = ∇ · µi(x)[∇u− u∇αi(x)] for x ∈ Ω (16)

with no-flux boundary conditions

[∇u− u∇αi] · ν = 0 for x ∈ ∂Ω. (17)

Assume that µi(x) ≥ µ0 > 0 on Ω̄ for all i. Let A = (aij(x)) be an N × N irreducible matrix with
aij ≥ 0 if i 6= j. Consider the eigenvalue problem

diLi ϕi +
N

∑
j=1

aij ϕj = λϕj, i = 1 . . . N (18)

where di > 0 for all i and ϕi satisfies the boundary condition expressed in Equation (17) for each i.
Note that, if we let Φi = exp(−αi(x))ϕi, then Φi satisfies Neumann boundary conditions such that the
system expressed in Equation (18) rewritten in terms of the variables Φi is still cooperative. Because of
the classical boundary conditions, the usual results on elliptic regularity and on maximum principles
for cooperative systems from [15,23] can be applied to the system for the Φi values, such that the
system and hence Equation (18) will have a principal eigenvalue under suitable conditions on the
domain Ω and the coefficients. This idea has been used in models for single populations without an
age structure or competing pairs of such populations—see, for example, [2,24].

Furthermore, we have Li(exp(αi(x)) = 0 such that the principal eigenvalue of Li is zero, and the
eigenfunction is a multiple of exp(αi). Let A be the matrix defined by

Aij :=

∫
Ω aijexp(αi)dx∫

Ω exp(αi)dx
. (19)

Denote the principal eigenvalue of Equation (18) as λ1(~d) where ~d = (d1, . . . , dN). Denote the
principal eigenvalue of A as Λ.

Lemma 9. Suppose that, for some γ ∈ (0, 1), the coefficients of Equation (18) satisfy α ∈ C2,γ(Ω), µ ∈
C1,γ(Ω), and aij ∈ Cγ(Ω) for i, j = 1 . . . N, and that ∂Ω is of class C2,γ. Suppose further that A is irreducible.
If min{di : i = 1, . . . N} → ∞, then λ1(~d)→ Λ.

Proof. Choose any sequence ~dn = (d1n, . . . dNn) such that min{din : i = 1, . . . N} → ∞. Choose any
subsequence, then renumber it as ~dn. Let λn be the principal eigenvalue of Equation (18) corresponding
to ~dn and let ϕin(x) > 0 be the ith component of the eigenvector, where the eigenvector is normalized
by max{ϕin(x) : x ∈ Ω, i = 1, . . . , N} = 1. Integrating the ith equation of Equation (18) over Ω and
summing over i yields

λn

∫
Ω

N

∑
i=1

ϕin(x)dx =
∫

Ω

N

∑
i,j=1

aij(x)ϕjn(x)dx ≤ A1

∫
Ω

N

∑
i=1

ϕin(x)dx
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where A1 is a constant, depending only on A. It follows that λn is uniformly bounded from above.
Similarly, λn is uniformly bounded from below. Thus, any subsequence of λn itself has a convergent
subsequence. It then follows from dividing the ith equation of Equation (18) by din that Li ϕin is
uniformly bounded, and Li ϕin → 0 as n → ∞. By elliptic regularity, the sequence ϕin is uniformly
bounded in W2,p(Ω) for any p < ∞, then by Sobolev embedding, it has a subsequence that is
convergent in C1(Ω) and weakly convergent in W2,p(Ω). This will be true for any i. Taking a further
subsequence if necessary and renumbering again, we obtain a sequence where λn → λ∗ for some
λ∗ and ϕin → ϕ∗i for all i, with Li ϕ

∗
i = 0. We then must have ϕ∗i = ciexp(αi) for some nonnegative

constant ci, and with max{ϕ∗i (x) : x ∈ Ω, i = 1 . . . N} = 1. Integrating Equation (18) over Ω and
using the no-flux boundary conditions gives

N

∑
j=1

[∫
Ω

aij(x)ϕ∗j (x)dx
]
= λ∗

∫
Ω

ϕ∗i , i = 1 . . . N, (20)

such that
N

∑
j=1

[∫
Ω aij(x)exp(αj(x))dx∫

Ω exp(αi(x))dx

]
cj = λ∗ci, i = 1 . . . N. (21)

It follows that (c1, . . . , cN) must be a nontrivial nonnegative eigenvector of A with the normalization
prescribed by max{ciexp(αi(x)) : x ∈ Ω, i = 1, . . . N} = 1. These last conditions uniquely determine
the limits of the subsequence of the original subsequence {λ(dn), ~ϕn}. Since every subsequence of the
original sequence {λ(dn), ~ϕn} has a subsequence converging to the values determined by Equation (21),
the same must be true for the original sequence. Since the original sequence of values {~dn} could be
any increasing sequence that approaches infinity as n→ ∞, the conclusion of the lemma follows.

In the specific system expressed in Equation (1) that we consider, Li = ∆, such that αi and µi are
constants. In that case, we have Aij = aij, where aij is the average of aij over Ω. Denote the averages of
the coefficients in Equation (1) by r̄, s̄, etc. Calculations analogous to those in Equation (5), Equation (6),
and the related discussion then yield the following:

Corollary 1. Suppose that the hypotheses of Lemma 9 are satisfied. There exists a D > 0 such that if

ē(s̄ + ā)− r̄s̄ < 0,

the principal eigenvalue λ1 of Equation (2) is positive for all d1, d2 > D, while if

ē(s̄ + ā)− r̄s̄ > 0,

the principal eigenvalue is nonpositive.

Remark 2. In the ODE system corresponding to Equation (1) with coefficients averaged over Ω, one can
compute R0 as r̄s̄/[ē(s̄ + ā)] via the methods of [25]. The first inequality in Corollary 1 is equivalent to R0 > 1,
while the second is equivalent to R0 < 1. By writing R0 = [r̄/(s̄ + ā)][s̄/ē], we can interpret the condition
for persistence as saying that the products of the ratios of the growth terms over the loss terms for adults and
juveniles should be greater than 1 for persistence.

5. General Diffusion Rates

Case1: Persistence or extinction for all diffusion rates
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Proposition 2. If ∫
Ω

√
rs dx− 1

2

∫
Ω
(s + a + e)dx > 0 (22)

then λ1 > 0 for all positive diffusion rates.

If
minx∈Ω[4(s(x) + a(x))e(x)− (r(x) + s(x))2] > 0 (23)

then λ1 < 0 for all positive diffusion rates.

Proof. If we divide the first equation in Equation (2) by ϕ and integrate over Ω, using Green’s formula
to integrate the term ∆ϕ/ϕ, we obtain the inequality

|Ω|λ1 ≥
∫

Ω
r
(

ψ

ϕ

)
dx−

∫
Ω
(s + a)dx. (24)

Similarly, if we divide the second equation by ψ and integrate we obtain

|Ω|λ1 ≥
∫

Ω
s
(

ϕ

ψ

)
dx−

∫
Ω

e dx. (25)

If we add Equations (24) and (25) and divide by 2, we obtain

λ1 ≥
1

2|Ω|

(∫
Ω

[
r
(

ψ

ϕ

)
+ s

(
ϕ

ψ

)]
dx−

∫
Ω
(s + a + e)dx

)
. (26)

By Cauchy’s inequality, rz + sz−1 ≥ 2
√

rs for all z > 0, so from Equation (26) we obtain

λ1 ≥
1
|Ω|

[∫
Ω

√
rs dx− 1

2

∫
Ω
(s + a + e)dx

]
(27)

Thus, λ1 > 0 if Equation (22) holds, so the first part of Proposition 2 holds. Going in the other direction,
if we multiply the first equation of Equation (2) by ϕ and integrate, using integration by parts on the
ϕ∆ϕ term, and similarly multiply the second equation by ψ and integrate, and then add the results,
we get

λ1

∫
Ω
(ϕ2 + ψ2)dx ≤

∫
Ω
[−(s + a)ϕ2 + (r + s)ϕψ− eψ2)dx]. (28)

The integrand on the right side of Equation (28) is a quadratic form in ϕ and ψ, which will be
negative definite if

4(s + a)e > (r + s)2, (29)

so λ1 < 0 if Equation (23) holds, which proves the second part of Proposition 2.

Remarks: Note that the first integral in Equation (22) is what appears in the formula for the
Bhattacharyya coefficient [26,27], which is used to compare how well probability distributions match
each other. Specifically, if two probability distributions P and Q have probability density functions
p(x) and q(x) for x ∈ U ⊂ Rn, the Bhattacharyya coefficient is

BC(P, Q) =
∫

U

√
p(x)q(x)dx.

For any P and Q, 0 ≤ BC(P, Q) ≤ 1. If BC(P, Q) = 1, then P and Q are the same, that is, p = q a.e.
If BC(P, Q) = 0, then the supports of p and q are disjoint. If we write r(x) = r0ρ(x) and s(x) = s0σ(x)
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such that
∫

Ω ρ(x) =
∫

Ω σ(x) = 1, then we can compute r0 = r̄|Ω| and s0 = s̄|Ω|. We can treat ρ and σ

as if they were probability density functions for distributions R and S. We then have∫
Ω

√
rsdx = |Ω|

√
r̄s̄BC(R, S). (30)

The maximum of BC(R, S) is 1, corresponding to the case where r and s are multiples of each
other, and the minimum is 0, corresponding to the case where the supports of r and s are disjoint.
Thus, the degree to which ρ and σ match each other has a strong impact on the estimate for λ in
Equation (27).

Using Equation (30) and the fact that BC(R, S) ≤ 1 in Equation (22) shows that Equation (22)
implies 2

√
r̄s̄ > [(s̄ + ā) + ē]. Squaring both sides and using Cauchy’s inequality implies ē(s̄ + ā)−

r̄s̄ < 0 as in the first case of Corollary 1. Similarly, if Equation (22) holds, then 2
√

r(x)s(x) >

(s(x) + a(x)) + e(x) for some x ∈ Ω, and it then follows in the same way that the inequality in the first
case of Proposition 1 holds. If Equation (23) holds, then Equation (29) holds, and then by Cauchy’s
inequality the second case of Proposition 1 holds. Thus, the conditions expressed in Equation (22) and
Equation (23) in Proposition 2, which imply λ1 > 0 or λ1 < 0 for all diffusion rates, also imply some of
the corresponding conditions we have obtained for either large or small diffusion rates.

In the situation where the spatial distributions of habitat quality r for reproduction by adults and
s for survival and maturation of juveniles into adults are perfectly correlated, such that r(x) = r1s(x)
for some constant r1, the eigenvalue problem expressed in Equation (2) can be rewritten as a weighted
symmetric eigenvalue problem by multiplying the second equation in Equation (2) by r1, which yields

d1∆ϕ(x)− (s(x) + a(x))ϕ + r(x)ψ = λϕ

d2r1∆ψ + r(x)ϕ− r1e(x)ψ = λr1ψ.
(31)

The principal eigenvalue for Equation (31) has a variational characterization of λ1 as

λ1 = max
ϕ,ψ∈W1,2(Ω)

∫
Ω(−d1|∇ϕ|2 − d2r1|∇ψ|2 − (s + a)ϕ2 + 2rϕψ− r1eψ2)dx∫

Ω(ϕ2 + r1ψ2)dx
. (32)

It follows in that case that λ1 is decreasing in both d1 and d2, such that slower diffusion is
advantageous.

Case 2: Asymptotic behavior for large reproductive rates

Suppose that r(x) = nr0(x) and that s(x)r0(x) > 0 for x ∈ Ω0 with Ω0 6= ∅; therefore, there is a
region where both the adult reproduction rate and the juvenile maturation rate are positive. The factor
n scales the reproductive rate of adults in regions where r0(x) > 0. For any fixed diffusion rates,
it turns out that, for sufficiently large values of the scaling coefficient n, the principal eigenvalue of
Equation (2) is positive, so the system expressed in Equation (1) is persistent. We will characterize
the asymptotic behavior of the principal eigenvalue as n → ∞. If we make the further assumption
that g ≡ c ≡ 0, then the system expressed in Equation (1) is cooperative, so for an n large enough that
the principal eigenvalue of Equation (2) is positive, Equation (1) has a unique positive equilibrium,
and we will characterize the behavior of that equilibrium as n→ ∞ as well in that case.

Let λn
1 denote the principal eigenvalue for Equation (2) with r(x) = nr0(x). Observe that, since

s(x)r0(x) > 0 for x ∈ Ω0 and Ω0 6= ∅, Proposition 2 implies that λn
1 > 0 for n sufficiently large, and in

fact by Equation (27), λn
1 → ∞ as n→ ∞. The following proposition states the asymptotic behavior of

λn
1 as n→ ∞.

Proposition 3. If r(x) = nr0(x) and s(x)r0(x) > 0 for x ∈ Ω0 with Ω0 6= ∅, then

lim
n→∞

λn
1√
n
→ max

x∈Ω
(
√

r0(x)s(x)).
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Proof. We start by noting that, if λn
1 , then (ϕn, ψn) are the principal eigenvalue and corresponding

eigenfunction of Equation (2) for r(x) = nr0(x); therefore, λn
1 /
√

n, ϕ̂n = ϕn, and ψ̂n =
√

nψn are the
principal eigenvalue and eigenfunction of the following problem:

d1√
n

∆ϕ̂− (s(x) + a(x))√
n

ϕ̂ + r0(x)ψ̂ = λ̂ϕ̂ in Ω,

d2√
n

∆ψ̂− e(x)√
n

ψ̂ + s(x)ϕ̂ = λ̂ψ̂ in Ω,

∇ϕ̂ · ν = ∇ψ̂ · ν = 0 on ∂Ω.

(33)

Considering the elliptic operators L1u = d1∆u − (s(x) − a(x))u and L2v = d2∆v − e(x)v,
D = diag

(
1√
n , 1√

n

)
and L = diag(L1, L2), the system expressed in Equation (33) satisfies the

hypothesis of Theorem 1.4 of [23]. Thus, n→ ∞

λn
1√
n
→ max

x∈Ω
λ(A(x)),

where

A(x) =

(
0 r0(x)

s(x) 0

)
,

which has eigenvalues ±
√

r0(x)s(x), from whence the result follows.

In the case where g ≡ c ≡ 0 such that Equation (1) is cooperative, Lemma 3 implies that
Equation (1) has a unique positive equilibrium if the principal eigenvalue of Equation (2) is positive.
The next result states the asymptotic behavior of the unique positive equilibrium of Equation (1) for n
large in that case.

Proposition 4. Suppose the hypotheses of Proposition 3 are satisfied and that g ≡ c ≡ 0. Let (un, vn) be the
unique positive solution of Equation (3). Then n−

2
3 (un, vn)→ (U∞, V∞) uniformly in Ω̄ where

U∞(x) =
r0(x)

2
3

b(x)
2
3

s(x)
1
3

f (x)
1
3

, V∞(x) =
s(x)

2
3

f (x)
2
3

r0(x)
1
3

b(x)
1
3

when s(x)r0(x) > 0

U∞(x) = 0, V∞(x) = 0 when s(x)r0(x) = 0.

(34)

Proof. To prove this result, we use a different scaling. After some simple computations, we find that

(wn, zn) =
(

unn−
2
3 , vnn−

1
3

)
,

is the unique positive solution of the scaled system
n−

2
3 [d1∆w− (s(x) + a(x))w] + r0(x)z− b(x)w2 = 0 in Ω,

n−
1
3 [d2∆z− e(x)z] + s(x)w− f (x)z2 = 0 in Ω,

∇w · ν = ∇z · ν = 0 on ∂Ω.

(35)

We set the operators

L1w = d1∆w− (s(x) + a(x))w and L2z = d2∆z− e(x)z,

D = diag
(

n−
2
3 , n−

1
3

)
and L = (L1, L2), and

F(x, w, z) = (r0(x)z− b(x)w2, s(x)w− f (x)z2).
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To prove the proposition, we can follow the same steps as in the proof of Theorem 1. Indeed, the
principal eigenvalue of the linearization around (0, 0) of the associated kinetic system of Equation (35)
is
√

s(x)r0(x), and when it is positive, the kinetic equilibrium is given by the right hand side of
Equation (34). This concludes the proof.

6. Conclusions

The most fundamental conclusion from our analysis is that reaction-diffusion models for
populations with a stage structure in spatially heterogeneous environments do not necessarily predict
that slower diffusion is advantageous for persistence. This is in contrast to the case where populations
are structured only by spatial location, where a version of the reduction principle [6] applies; in a
competition between otherwise identical populations with different diffusion rates, the prediction
is that “the slower diffuser wins” [4,5]. The mechanism underlying this observation is that, in our
structured model, the regions where it is possible for adults to produce offspring may be separated
from those where juveniles can survive and mature into adults. The conditions we find that imply
persistence generally require that the product r(x)s(x) of the reproductive rate of adults and the
maturation rate of juveniles be sufficiently large relative to their death rates. For slow diffusion,
the condition for persistence is that r(x)s(x) > e(x)(s(x) + (a(x)) at some point x ∈ Ω. For fast
diffusion, it is r̄s̄ > ē(s̄ + ā) where r̄, s̄, ē, and ā are the spatial averages of those quantities. If the spatial
distributions of r and s are closely correlated and are large in a few places but small in most, such that
the maximum of rs is large but the averages r̄ and s̄ are small, the condition for persistence with slow
diffusion may be satisfied, while the condition with fast diffusion may fail. In that type of environment,
slow diffusion is clearly favored. Furthermore, if r and s are perfectly correlated in the sense that they
are multiples of each other, the principal eigenvalue determining the growth rate of the population at
low density is decreasing with respect to the diffusion rates, as in the case of unstructured populations
in heterogeneous environments. On the other hand, if both r and s are large on some regions but very
small outside of them, and the regions where they are large are disjoint (that is, separated from each
other), then the product rs could be small everywhere, but the averages r̄ and s̄ could be large. In that
case, the condition for persistence with small diffusion may fail, but the condition with fast diffusion
may be satisfied, such that fast diffusion is favored.

We found that a sufficient condition for persistence for all diffusion rates is∫
Ω

√
rs dx− 1

2

∫
Ω
(s + a + e)dx > 0.

The first term can be written as
√

r̄s̄|Ω|BC(r(x)/r̄, s(x)/s̄), where BC denotes the Bhattacharrya
coefficient (see [26,27]), which measures how closely probability densities match each other.
For distributions that are equal to each other, BC = 1, but for distributions that are mutually exclusive
in the sense that the regions where they are positive do not intersect, BC = 0. This observation again
shows that the degree to which the spatial distributions of r and s match each other is significant in
determining the predictions of the model expressed in Equation (1).

Finally, we found that, if we scale the adult reproductive rate as r(x) = nr0(x) and there is some
overlap between the distributions of r and s such that s(x)r0(x) > 0 on some subset of Ω with positive
measure, then for any fixed diffusion rates the system expressed in Equation (1) will be persistent if n is
sufficiently large. This means a population with any diffusion rates can persist if there is even a modest
overlap between the regions where adults can reproduce and where juveniles can mature, provided
that the reproductive rate of adults is sufficiently large. We characterized the asymptotic behavior
as n → ∞ of the principal eigenvalue of Equation (2). In the cooperative case where g ≡ c ≡ 0, the
system expressed in Equation (1) will have a unique positive equilibrium if it is persistent, and in that
case we also characterized the asymptotic behavior as n→ ∞ of the equilibrium.

There are several directions for further research on the general topic of this paper. It would be
of interest to take the approach of [4] and consider the competition between two stage structured
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populations described by systems such as Equation (1) that differ only in their diffusion rates.
That would be somewhat challenging because it would involve systems of four equations, but at
least in the cooperative case where c = g = 0 the general theory of monotone dynamical systems
as in [28] and some of the ideas and methods of [10] would apply. It would also be interesting to
consider models with an explicit age structure, as introduced in [11] and studied in [12,13]. Finally,
it would be interesting albeit challenging to consider the case of time-periodic environments with
spatial heterogeneity. Temporal variation alone is sufficient to cause faster diffusion to be favored in
such environments in some cases (see [29]), but even without a stage structure, the time-dependent
case is challenging, and there are many open questions.
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Appendix A

In [23], the authors considered the equilibria and dynamics of the system
∂u
∂t = DLu + F(x, u) in Ω× (0, ∞),

Bu = 0 on ∂Ω× (0, ∞)

(A1)

where u = (u1, . . . , un)T is a vector of smooth functions, Ω is a bounded domain in RN with smooth
boundary, u = (u1(x), . . . un)T is a vector of smooth functions, D = diag(d1, . . . dn) is a diagonal matrix
of positive constants, L = diag(L1, . . . Ln) is a diagonal matrix of second order uniformly strongly
elliptic operators of the form

Li =
N

∑
j,k=1

αi
jk

∂2

∂xj∂xk
+

N

∑
j=1

βi
j

∂

∂xj
+ γi

with smooth coefficients, and B = (B1, . . . Bn), where for each i, Bi defines a Dirichlet, Neumann,
or Robin boundary condition. (They include Neumann as a case of Robin.) They also considered the
associated linearized problem, which they wrote as

DLφ + Auφ = −λφ in Ω,

Bφ = 0 on ∂Ω,
(A2)

where A = (aij) is an n × n matrix of smooth functions with aij ≥ 0 for i 6= j, and φ =

(φ1(x), . . . φn(x))T is a vector of smooth functions.
Note that, in our notation, we use the opposite sign convention to the one used in [23], such that

what they denote as −λ, we denote as λ.
For details on what the specific smoothness assumptions require, see [23]. Under those

assumptions, by the Perron-Frobenius theorem, for each x ∈ Ω, the matrix A has a principal eigenvalue,
which in our notation we denote as Λ(x). The first major result of [23] is their Theorem 1.4, which can
be stated as follows:
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Theorem A1. (Theorem 1.4 of [23]) The principal eigenvalue λ1 of the system expressed in Equation (A2) with
Dirichlet, Neumann, or Robin boundary conditions satisfies

lim
max{d1,...,dn}→0

λ1 = −max
x∈Ω̄

Λ(x).

Except for the adjustments needed for our different notation, that theorem applies directly to our
system in all cases.

The second major result of [23] gives conditions under which the system expressed in
Equation (A1) with small diffusion rates has the same dynamics as the kinetic system

dUi
dt

= Fi(x, U1, . . . , Un) for i = 1, . . . , n. (A3)

The conditions can be stated as follows, noting that we have replaced the A used in [23] with L to
avoid any confusion with equation numbers in this Appendix:

(L1) ∂Fi/∂Uj ≥ 0 (i.e. the systems expressed in Equations (A1) and (A3) are cooperative).

(L2) For each x0 ∈ Ω̄, the system expressed in Equation (A3) has a unique positive equilibrium
α(x0), which is globally asymptotically stable among positive solutions and is locally linearly stable,
and α(x) depends continuously on x.

(L3) There is a δ0 > 0 such that, for j = 1, . . . , n, Fj(x, U)/Uj > δ0 for all x ∈ Ω̄ provided
0 < Ui ≤ δ0 for i = 1, . . . , n.

(L4) There is a δ′0, M > 0 such that for j = 1, . . . , n, Fj(x, U)/Uj < −δ′0 for all x ∈ Ω̄ provided
Ui ≥ M for i = 1, . . . , n.

The second result of [23] that we use is Proposition 5.2, which can be stated as follows:

Theorem A2. (Proposition 5.2 of [23]) For any positive steady state wd of Equation (A1), we have that w→ α

uniformly in Ω as max{d1, . . . , dn} → 0, with the α given in Assumption (L2).
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