Table of Contents

1	Intr	roduction
	1.1	Radio astronomy and radio-astronomical instrumentation
		1.1.1 Radiation processes and radio observations
		1.1.2 Radio astronomy receivers
	1.2	Interferometry in astronomy
		1.2.1 Michelson stellar interferometry
		1.2.2 The demand for higher resolution: single dish v/s interferometer
		1.2.3 The uv-plane and visibility
		1.2.4 Fringes and coherence
		1.2.5 The van Cittert-Zernike theorem
		1.2.6 Aperture synthesis
		1.2.7 ALMA: the eye to look into the hidden universe
	1.3	Interferometric measurements in radio astronomy: loss of coherence and cor-
		rection techniques
		1.3.1 Atmospheric distortion and its wavelength dependence
		1.3.2 Effects of precipitable water vapour
		1.3.3 Phase referencing
		1.3.4 Band to Band calibration
		1.3.5 Sub-array experiment: self calibration transfer technique
	1.4	Benefits of allowing ALMA to operate in a dual-frequency observation mode
		1.4.1 Improvement in phase calibration
		1.4.2 Enabling the highest resolution for ALMA
		1.4.3 Observation of transient phenomena
	1.5	Proposed research
		1.5.1 Objectives \ldots
		1.5.2 Hypothesis
		1.5.3 Structure of this thesis work
າ	Cor	acoptual Design of a Dual Frequency Receiver for ALMA
4	2.1	Introduction
	$\frac{2.1}{2.1}$	State of the art of dual-frequency receivers
	2.2 2.3	Why using the Band 6 and 9 of $ALMA?$
	4.0	2.3.1 Specifications of Band 6 and 9 receivers
		2.3.1 Specifications of Dang C and 5 receivers
	21	Quasi-Optics and Gaussian beam approximation
	4.H	241 Gaussian beam theory
		2.4.1 Gaussian dealli theory

		2.4.2 The paraxial wave equation	37
		2.4.3 Gaussian beam propagation	40
		2.4.4 Asymptotic behaviour of Gaussian beams	41
		2.4.5 Edge Taper	43
		2.4.6 Quasioptical design: ABCD matrix formalism	45
	2.5	Sensitivity losses and beam distortion	46
		2.5.1 Cross-polarization	47
		2.5.2 Beam coupling efficiency	49
	2.6	Beam combiner assembly and performance analysis	54
		2.6.1 Zemax model	54
		2.6.2 Cross-polarization analysis	55
		2.6.2 Noise temperature analysis	56
		2.6.6 4 Sensitivity analysis	57
	27	Mechanical design and fabrication	61
	$\frac{2.1}{2.8}$		65
	2.0		00
3	\mathbf{Des}	ign, Construction and Characterization of Frequency Selective Surfaces	66
	3.1	Introduction	66
	3.2	State of the art on Terahertz technologies	67
	3.3	Dichroic filters theory	68
		3.3.1 Transmission line theory for dichroics and their spectral properties .	70
		3.3.2 Properties of Dichroic	71
		3.3.3 Theoretical analysis of dichoic filters	72
		3.3.4 Angular dependence	74
		3.3.5 Calculation methods	75
	3.4	Proposed configurations	75
	0.1	3.4.1 Simulated performance for proposed prototypes	78
	3.5	Fabrication of proposed prototypes	81
	3.6	Transmission characterization	84
	3.7	Performance analysis	87
	0	3.7.1 Experimental results for the flower-type configuration	88
		3.7.2 Experimental results for single-hole configuration	90
		3.7.3 Experimental results for Jerusalem-cross configuration	91
	38	Conclusions	92
	0.0		
4	\mathbf{Sm}	both-Walled Antennas for THz Frequency Range: Design and Evalua-	
	tion		94
	4.1	Introduction	94
	4.2	Smooth-Walled Spline-Profile Horns	94
		4.2.1 The historical development of horn antennas	94
		4.2.2 Diagonal-spline and Conical-spline horn designs	96
	4.3	Performance Evaluation of Designs	98
		4.3.1 Analysis of Far Field Beam Pattern Simulations	98
		4.3.2 Example of Application: Integration into ALMA Band-6 Receiver	101
		4.3.3 Construction	105
	4.4	Experimental methodology and Results	107
		4.4.1 Theoretical background	107
		-	

		4.4.2 Planar near-field technique	108
		4.4.3 Experimental set-up	110
		4.4.4 Beam performance analysis	113
	4.5	Conclusions	113
5	Sun	mary and Conclusions	115
	5.1	General summary	115
		5.1.1 Chapter 2	115
		5.1.2 Chapter 3	116
		5.1.3 Chapter 4	116
	5.2	Future work	116
	5.3	Conclusions	117
Bi	bliog	raphy	117

List of Tables

1.1	Optical parameters of the ALMA antennas	15
1.2	ALMA frequency bands	18
2.1	ALMA cryostat design specification	34
2.2	Optical train description of ALMA Band 6	37
2.3	Optical train description of ALMA Band 9	38
2.4	Dimension of the SWZ	38
2.5	Reference Values for the Gaussian beam $T_{\rm e}$ and $F_{\rm e}$	44
2.6	Values of diameter for each element forming the beam combiner optical system.	54
2.7	Beam size, requiered taper and optimal diameter at each reflecting surface $\ .$	64
3.1	Design specifications for a suitable dichroic filter.	75
3.2	Values of the optimization parameters for each dichroic configuration \ldots	76
4.1	Table 1: Design specifications. .	98
4.2	Table 2: Profile parameters than define the wall shape for each horn design.	98
4.3	Calculated parameters of the diagonal-spline horn	101
4.4	Calculated parameters of the conical-spline horn.	101
4.5	Optical train parameters for existing Band-6 receivers.	103

List of Figures

1.1	Atmospheric windows at Chajnantor.
1.2	Types of heterodyne receivers
1.3	Types of heterodyne receivers
1.4	Schematic representation of an interferometric measurement using the Very
	Large Telescope (VLT).
1.5	Relationship between uv-plane and image plane.
1.6	Image of ALMA site by night.
1.7	Images of the HL-Tau protoplanetary disk (left) and the event horizon of black
	hole (right).
1.8	Schematic of an ALMA antenna.
1.9	Atmospheric distortion producing lost of coherence
1.10	Schematic illustration of Kolmogorov turbulence model
1.11	Temporal dependence of atmospheric fluctuation
1.12	Spatial dependence of atmospheric fluctuation
1.13	Antennas paired for sub-array experiment
1.14	Atmospheric calibration problem.
1.15	Contribution functions of the continuum intensity $\ldots \ldots \ldots \ldots \ldots \ldots$
2.1	ALMA cryostat lavout
2.2	Optical train representation.
2.3	Cold optics drawing of Band 6 and 9
2.4	Images of the cryostat.
2.5	The Safe Work Zone
2.6	Gaussian beam representation.
2.7	Transformation of a Gaussian-beam.
2.8	General elliptical mirror configuration.
2.9	Axially aligned beam missmatch
2.10	Tilted beam missmatch
2.11	Offset beam missmatch
2.12	Proposed System.
2.13	Cross polarization distortion calculation
2.14	Resulting cascade system for each receiver,
2.15	Noise temperature calculation for each receiver band. For this calculation the
	highest reported noise temperature for each receiver has been used.
2.16	Coupling Efficiency Analysis
2.17	Tolerance Analysis

2.18	Layout of the bands in the ALMA cryostat and mechanical design of the optical	
	system	52
2.19	Rendering of the beam combiner system once is mounted on the cryostat	53
2.20	Constructed beam combiner optical system	i4
3.1	Dichroic plate geometry	38
3.2	Applications of dichroic filters	39
3.3	Metallic grids and their equivalent circuits	70
3.4	Angular dependence of the spectral properties of a dichroic.	74
3.5	Proposed configurations for a dichroic filter	76
3.6	Simulated dichroic band-coverage as a function of the plate thickness 7	77
3.7	Simulated performance for each configuration at normal beam incidence	79
3.8	Simulated performance for each configuration at non-normal beam incidence.	30
3.9	Constructed JC dichroic configuration.	32
3.10	Constructed SH dichroic configuration.	33
3.11	Constructed FT dichroic configuration viewed from its front and back face.	34
3.12	Michelson Interferometer	35
3.13	Relation between interferogram and polychromatic light spectrum 8	36
3.14	Diagram of the experimental setup used for the characterization	37
3.15	FTS experimental set-up	38
3.16	Experimental results for FT dichroic	39
3.17	Experimental results for SH dichroic	<i>)</i> 0
3.18	Implemented super-cell	€1
3.19	Experimental results for JC dichroic)2
4.1	The two horns under study	<i>)</i> 5
4.2	Basic 1-D profile of the smoothed-wall horn antennas)7
4.3	Simulated radiation beam pattern	99
4.4	Simulated return loss)0
4.5	Optical train description of the ALMA cold optics)2
4.6	Edge taper versus frequency)3
4.7	Simulated far field radiation pattern)4
4.8	Return loss comparison)5
4.9	Final mechanical design of the horn using the split-block technique 10)5
4.10	One of the blocks of the constructed horn)6
4.11	The propagation regions of an electromagnetic beam 10)7
4.12	Schematic of the receiver system used to characterize the horn)9
4.13	Experimental set-up to measure near-field radiation pattern	LO
4.14	Experimental results for far field radiation pattern	1
4.15	$Comparison \ between \ experimental \ results \ (dotted \ lines) \ and \ simulations \ (dashed$	
	lines) for far field radiation pattern	12