Tabla de Contenido

1	Intr	roducción 1
	1.1	Motivación
	1.2	Hipótesis
	1.3	Metodología
	1.4	Objetivos
		1.4.1 Objetivo general
		1.4.2 Objetivos específicos
2	Ant	secedentes
	2.1	Cáncer gástrico
		2.1.1 Epidemiología del cáncer gástrico
		2.1.2 Clasificación de cáncer gástrico
		2.1.3 Proteína HER2
	2.2	Imágenes digitales y patología digital 18
	2.3	Aprendizaje de máquinas
		2.3.1 Aprendizaje supervisado y no supervisado
		2.3.2 Clasificación y regresión
		2.3.3 Teoría de aprendizaje de máquinas
		2.3.4 Conjuntos de entrenamiento, validación y evaluación
	2.4	Redes Neuronales
	2.5	Aprendizaje profundo
		2.5.1 Transferencia de aprendizaje
	2.6	Otros modelos de aprendizaje de máquinas
		2.6.1 Máquinas de soporte vectorial
		2.6.2 Árboles de decisión y bosques aleatorios
	2.7	Métricas de evaluación
	2.8	Estado del arte de clasificación de sobre expresión de HER2 mediante ML $\ . \ . \ 40$
3	Bas	es de datos 43
-	3.1	Estudio PRECISO 43
	3.2	Etiquetado previo
	3.3	Etiquetado generado para esta tesis
4	Solı	ición propuesta y resultados 52
-	4.1	Macroexperimento I
		4 1 1 Procesamiento de datos 55
		4.1.2 Metodología experimental 54
		4.1.3 Resultados

	4.2	Macroexperimento II	66
		4.2.1 Metodología experimental	67
		4.2.2 Resultados	70
5	Disc	cusión	79
	5.1	Comparación con otros modelos de ML	79
	5.2	Macroexperimento I	80
	5.3	Macroexperimento II	82
		5.3.1 Estado del arte y limitaciones	85
6	Con	clusiones	88
	6.1	Trabajo futuro	89
Bi	bliog	rafía	91
A	péndi	ices	99
	А	Matrices de confusión sin normalizar, macroexperimento I	99
	В	Matrices de confusión sin normalizar, macroexperimento II	102
		B.1 Evaluación de parches	102
		B.2 Evaluación de biopsias	103

Índice de Tablas

2.1.1	Incidencia estandarizada por edad y mortalidad estandarizada por edad para Chile durante el año 2018, para ambos sexos, sólo hombres y sólo mujeres. Fuente: Elaboración propia con datos extraídos de Ferlav y col. [28].	9
2.1.2	Relación entre clasificaciones de OMS y Lauren, Fuente: Hu y col. [39].	11
2.1.3	Etapas patológicas del cáncer gástrico. Fuente: González [33].	14
214	Etapas clínicas del cáncer gástrico. Fuente: González [33]	14
2.1.5	Pauta de clasificación para interpretación de inmunohistoquímica HER2 en carcinoma gástrico. *Un <i>cluster</i> de células tumorales se define como un grupo de 5 o más células neoplásicas. Traducido desde Bartley y col. [10]	17
2.7.1	Interpretación de distintos valores de κ de Cohen. Fuente: Landis y Koch [52].	40
3.1.1	Resumen de la evaluación realizada por patólogo 0, original del estudio PRE- CISO, desagregada por tipo de biopsia.	45
3.2.1	Resumen de las evaluaciones de biopsias realizadas por patólogos 1 y 2, des-	
	agregadas por tipo de biopsia.	45
3.2.2	Estadísticas de anotaciones realizadas por patólogos 1 y 2	46
3.2.3	Concordancia entre patólogos 0, 1 y 2, desglosada por tipo de biopsia. α de Krippendorff fue calculado utilizando las clasificaciones realizadas por los	
	tres patólogos	47
3.2.4	Estadísticas de clasificaciones de biopsias y ROIs, tras aplicar proceso de	
	filtrado basado en voto de mayoría y eliminar ROIs de patólogo 1	47
3.3.1	Anotaciones realizadas por patólogo 3 y clasificación HER2 correspondiente,	10
	de acuerdo a método de Ruschoff/Hofmann para biopsias por resección	49
3.3.2	Resumen de las evaluaciones realizadas por patólogo 3	51
3.3.3	Estadísticas de anotaciones realizadas por patólogo 3	51
3.3.4	Concordancia de patólogo 3 con patólogos 0, 1 y 2, utilizando esquemas de 4 clases $(0, 1+, 2+ y 3+)$ y 3 clases (Negativo, Equívoco, Positivo). Todas las muestras evaluadas corresponden a biopsias por resección. * α de Krippendorff puede ser computado aún con datos faltantes; así, el α calculado para el grupo de todos los patólogos corresponde a las 34 biopsias evaluadas por	
	el patólogo 3. ** N°de muestras es igual en ambos esquemas. \ldots . \ldots	51
4.1.1	Estadísticas de dataset 1, formado por los parches extraídos de los ROIs anotados por los patólogos 1 y 2, desagregados por magnificación. Filtro aplicado corresponde a parches con proporción de tejido mayor a 20 %	55
412	Resumen de cada configuración experimental del macroexperimento I	57
413	Hiperparámetros seleccionados mediante k-fold anidado magnificación 10x	60
4.1.4	Hiperparámetros seleccionados mediante k-fold anidado, magnificación 20x.	61
	•••••••••••••••••••••••••••••••••••••••	

4.1.5	Hiperparámetros seleccionados mediante k -fold anidado, magnificación 40x.	61
4.1.6	Resumen de resultados conseguidos con magnificación 10x. En el caso de	
	precisión, recuperación y F1-score, se calculó un promedio ponderado. $\ .$.	62
4.1.7	Resumen de resultados conseguidos con magnificación 20x. En el caso de	
	precisión, recuperación y F1-score, se calculó un promedio ponderado. $\ .$.	63
4.1.8	Resumen de resultados conseguidos con magnificación 40x. En el caso de	
	precisión, recuperación y F1-score, se calculó un promedio ponderado. $\ .$.	64
4.2.1	Estadísticas de dataset 2, formado por los parches extraídos de los ROIs ano-	
	tados por el patólogo 3. Todos los parches fueron extraídos a magnificación	
	10x. Filtro aplicado corresponde a parches con proporción de tejido mayor a	
	20%	66
4.2.2	Resumen de cada configuración experimental del macro experimento II	68
4.2.3	Resumen de resultados conseguidos en experimento todo en uno, evaluación	
	de clasificación de parches de ROIs. En el caso de precisión, recuperación y	
	F1-score, se calculó un promedio ponderado.	72
4.2.4	Resumen de resultados conseguidos en experimento en cascada, evaluación	
	de clasificación de parches de ROIs. En el caso de precisión, recuperación y	
	F1-score, se calculó un promedio ponderado.	72
4.2.5	Resumen de resultados para clasificación de biopsias, considerando clases 0,	
	1+, 2+ y 3+. En el caso de precisión, recuperación y F1-score, se calculó un	
	promedio ponderado	75
4.2.6	Resumen de resultados para clasificación de biopsias, considerando clases	
	Negativo, Equívoco y Positivo. En el caso de precisión, recuperación y F1-	
	score, se calculó un promedio ponderado	76

Índice de Ilustraciones

2.1.1	Partes del estómago. Fuente: American Cancer Society [6]	6
2.1.2	Capas de la pared estomacal. Fuente: American Cancer Society [6]	6
2.1.3	Incidencia del cáncer gástrico en el mundo, para ambos sexos, estandarizada	
	por edad; resaltada está la incidencia de Chile. Fuente: Elaboración propia	
	con datos extraídos de Ferlay y col. [28].	7
2.1.4	Incidencia estandarizada por edad del cáncer gástrico en distintas partes del	
	mundo para ambos sexos. Fuente: Bray y col. [13]	8
2.1.5	Incidencia y mortalidad estimada para distintos tipos de cáncer en Chile.	
	Fuente: Ferlav v col. [28]. \ldots	9
2.1.6	Clasificación de Lauren para carcinomas gástricos tempranos: A) tipo intes-	
	tinal, B) tipo difuso y C) tipo mixto. Fuente: Chong y col. [18]	10
2.1.7	Análisis inmunohistoquímico en muestras representativas de expresión de	
	HER2 en cáncer gástrico. A) 0. negativo. B) 1+, negativo. C) 2+, equívoco.	
	D) 3+, positivo. Fuente: Bartley v col. [10]	15
2.1.8	Imágenes de cáncer gástrico y cáncer de mama teñidas inmunohistoquími-	
	camente. Ambos tumores son HER2-positivos (IHC 3+), pero se aprecian	
	diferencias importantes: mientras en el cáncer de mama se verifica que cada	
	célula inmunopositiva presenta una tinción completa de su membrana, en el	
	cáncer gástrico esto no ocurre, teniéndose que muchas membranas no están	
	teñidas completamente y quedan "abiertas". Fuente: Ross y Mulcahy [73].	16
2.1.9	ISH e IHC y sus respectivos objetivos de análisis; ejemplo en cáncer gástrico.	
	Fuente: Dako [20]	17
2.2.1	Representación de una imagen digital como un conjunto de tres matrices.	
	Fuente: Gonzalez y Woods [32].	18
2.2.2	Ejemplo de imagen piramidal con múltiples magnificaciones. En este caso,	
	biopsia de cáncer gástrico con tinción inmunohistoquímica. A) 0.5x, B) 5x,	
	C) 20x, D) 40x. Fuente: Elaboración propia con datos provenientes del estudio	
	PRECISO [61]	19
2.3.1	Esquema básico de un problema típico de aprendizaje de máquinas, con ejem-	
	plos relativos a la pregunta de si aprobar o rechazar créditos bancarios a	
	potenciales clientes. Fuente: Abu-Mostafa, Magdon-Ismail y Lin [2]	20
2.3.2	Izquierda: ejemplo de problema de clasificación binaria; el objetivo es en-	
	contrar una función que permita separar los datos correctamente. Derecha:	
	ejemplo de problema de regresión; el objetivo es encontrar una función que	
	se aproxime a la distribución de los datos. Fuente: Soni [84]	22
2.3.3	Esquema general de un problema de aprendizaje de máquinas supervisado,	
	considerando distribuciones de probabilidad y ruido. Fuente: Abu-Mostafa,	
	Magdon-Ismail y Lin [2]. \ldots	23

2.3.4	Esquema de K-Fold, con $K = 10$. Fuente: Norena [66]	25
2.4.1	Arquitectura típica de una red neuronal artificial completamente conexa.	
	Fuente: Dertat [25]. \ldots	26
2.4.2	Esquematización de la heurística de descenso de gradiente. Es posible apreciar	
	que dependiendo del punto de partida es posible alcanzar un mínimo local,	
	mas no necesariamente el global. Fuente: Zhang [93]	27
2.5.1	Arquitectura típica de una red neuronal convolucional. Fuente: Saha [79].	30
2.5.2	Campos receptivos locales en una red neuronal convolucional	30
2.5.3	Ejemplos de distintos filtros de tamaño 5x5 aprendidos por una red neuronal convolucional. Bloques más oscuros representan un mayor peso, lo cual impli- ca que dicho filtro responde con mayor fuerza a los pixeles correspondientes.	
	Fuente: Nielsen [64]	31
2.5.4	Ejemplos de aplicación de <i>max pooling</i> y <i>average pooling</i> , con una ventana de 2x2 neuronas. Fuente: Saha [79]	32
2.6.1	Izquierda: múltiples hiperplanos que dividen un conjunto de datos en base a sus clases. Derecha: hiperplano de margen máximo sobre el mismo conjunto de datos. Fuente: Candhi [31]	34
2.6.2	Ejemplo de árbol de decisión en un espacio bidimensional, junto a las parti-	01
0 - 1	ciones generadas en dicho espacio. Fuente: James y col. [42].	35
2.7.1	Esquema de matriz de confusión, junto a fórmulas derivadas	37
2.7.2	Ejemplo de curva ROC. Fuente: Brownlee [14]	38
3.1.1	Ejemplo de biopsias del estudio <i>PRECISO</i> . A) Tinción H&E, magnificación 0.21x B) Tinción IHC, magnificación 0.25x. Es posible apreciar que en la	
3.2.1	biopsia IHC, en el lado izquierdo se encuentra el tejido de control Ejemplo de anotaciones realizadas por patólogos 1 (azul) y 2 (verde) sobre	44
3.2.2	biospia endoscópica. Magnificación 1.25x	48
3.3.1	x10. A) 0, B) 1+, C) 2+, D) 3+ Ejemplo de anotaciones realizadas por patólogo 3, todas provenientes de la misma biopsia por resección a magnificación 10x. A) No tumor, B) sin reac- tividad, C) reactividad positiva no lineal, D) reactividad lineal casi imper-	48
	ceptible, E) reactividad lineal débil, F) reactividad lineal fuerte	50
4.1.1	Esquema de extracción de parches desde un ROI. Todos los parches extraídos de un ROI de tipo $3\pm$ también son de tipo $3\pm$	53
4.1.2	Ejemplos de parches extraídos de ROIs, junto a la proporción de tejido pre- sente en cada uno de ellos. Además, en la esquina de cada parche, se encuentra	50
410	anotada la clase a la que pertenece.	54
4.1.3	Arquitectura de Inception v3. Fuente: Isang [88]	55
4.1.4	Parche extraido de ROI (esquina superior izquierda) junto a ejemplos de transformaciones aleatorias aplicadas sobre dicho parche.	57
4.1.5	Esquema de generación de subconjuntos para entrenamiento con técnica de validación cruzada k -fold, con $k = 5$	58
4.1.6	Esquema de k -fold anidado. Adaptado desde Jin [43]	60
4.1.7	Matrices de confusión normalizadas de experimentos con mejores resultados	
	para magnificación 10x	62

4.1.8	Matrices de confusión normalizadas de experimentos con mejores resultados	
	para magnificación 20x	63
4.1.9	Matrices de confusión normalizadas de experimentos con mejores resultados	
	para magnificación 40x	64
4.1.10	Ejemplos de clasificación de parches extraídos de ROIs en macroexperimento	
	I. Cada ROI está formado por varios parches, y sobre cada parche, se pintó	
	con transparencia la clasificación predicha (verde: HER2 negativo, amari-	
	llo: HER2 equívoco, rojo: HER2 positivo). Visualizaciones de lado izquierdo	
	fueron generadas usando las redes entrenadas en el experimento de reen-	
	trenamiento total a magnificación 10x, mientras que las del lado derecho	
	corresponden a reentrenamiento total con magnificación 40x. A) v B) ROI	
	de tipo 3+, C) v D), ROI de tipo 2+, E) v F) ROI de tipo 0, Todos los ROIs	
	fueron anotados por el patólogo 2	65
421	Esquema del experimento <i>todo en uno</i>	68
422	Esquema del experimento <i>en cascada</i>	69
4.2.2	Esquema de experimento en cusculu.	05
4.2.0	esquema de evaluación de parches extraidos directamente de biopsias en	70
494	Apélicia de umbrel de desisión para elegificación binario de turner / no turner	70
4.2.4	Anansis de unioral de decisión para clasificación binaria de <i>tumor</i> / no tumor.	11
4.2.3	Matriz de confusion normalizada para experimento todo en uno, evaluación	70
100	de clasificación de parches de ROIs.	73
4.2.6	Matrices de confusion normalizadas para experimento <i>en cascada</i> , evaluación	70
	de clasificación de parches de ROIs.	73
4.2.7	Matrices de confusión normalizadas para evaluación de clasificación de biop-	
	sias, usando clases $0, 1+, 2+y 3+$. En clasificación binaria de esquema en	
	$cascada$ se utilizó un umbral $T = 0,3,\ldots,\ldots,\ldots,\ldots,\ldots$	75
4.2.8	Matrices de confusión normalizadas para evaluación de clasificación de biop-	
	sias, usando clases <i>Negativo</i> , <i>Equívoco</i> y <i>Positivo</i> . En clasificación binaria de	
	esquema en cascada se utilizó un umbral $T = 0,3$	76
4.2.9	Biopsia con sobreexpresión HER2 negativa, correctamente clasificada. A)	
	biopsia original, B) visualización generada utilizando la clasificación produ-	
	cida por el modelo <i>en cascada</i>	77
4.2.10	Biopsia con sobre expresión HER2 equívoca, correctamente clasificada. A) $\label{eq:Biopsia}$	
	biopsia original, B) visualización generada utilizando la clasificación produ-	
	cida por el modelo <i>en cascada</i>	78
4.2.11	Biopsia con sobreexpresión HER2 positiva, correctamente clasificada. A)	
	biopsia original, B) visualización generada utilizando la clasificación produ-	
	cida por el modelo <i>en cascada</i>	78
5.2.1	Subexperimento de selección de parámetros simple utilizando parches a mag-	
	nificación 40x. Entrenamiento con subconjuntos 2, 3 y 5, y validación con	
	conjunto 1	81
5.2.2	Subexperimento de selección de parámetros con <i>fine tuning</i> y <i>data augmenta</i> -	
	tionutilizando parches a magnificación 10x. Entrenamiento con subconjuntos	
	1, 4 y 5, y validación con conjunto 2	81
5.2.3	Subexperimento de selección de parámetros con reentrenamiento total y $data$	
	augmentation utilizando parches a magnificación 20x. Entrenamiento con	
	subconjuntos 1, 3 y 4 y validación con conjunto 5	82

5.3.1	Ejemplos de ROIs pertenecientes a clases que las redes suelen confundir. A) Reactividad no lineal, B) Reactividad lineal casi imperceptible, C) Reactivi- dad lineal débil. Todos los ROIs provienen de la misma biopsia	83
5.3.2	Biopsia con sobre expresión HER2 negativa, incorrectamente clasificada como equívoca. Tejido de tipo 2+ o $3+$ calculado por algoritmo corresponde a 16,5% del tejido canceroso. A) biopsia original, B) visualización generada	
	utilizando la clasificación producida por el modelo <i>en cascada</i>	86
A.1	Matrices de confusión sin normalizar para macroexperimento I, magnificación 10x	99
A.2	Matrices de confusión sin normalizar para macroexperimento I, magnificación	100
Δ3	20x	100
11.0	40x	101
B.1	Matriz de confusión sin normalizar para experimento todo en uno, evaluación	
ВЭ	de clasificación de parches de ROIs	102
D.2	de clasificación de parches de ROIs.	103
B.3	Matrices de confusión sin normalizar para evaluación de clasificación de biop-	
	sias, usando clases 0, 1+, 2+ y 3+. En clasificación binaria de esquema en	
D (cascada se utilizó un umbral $T = 0,3.$	103
B.4	Matrices de confusión sin normalizar para evaluación de clasificación de biop-	
	sias, usando clases Negativo, Equivoco y Positivo. En clasificación binaria de	104
	esqueina en cascada se utilizo un umbrai $I = 0.5$.	104