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Abstract. We study an inverse problem for Light Sheet Fluorescence Microscopy

(LSFM), where the density of fluorescent molecules needs to be reconstructed. Our

first step is to present a mathematical model to describe the measurements obtained by

an optic camera during an LSFM experiment. Two meaningful stages are considered:

excitation and fluorescence. We propose a paraxial model to describe the excitation

process which is directly related with the Fermi pencil–beam equation. For the

fluorescence stage, we use the transport equation to describe the transport of photons

towards the detection camera. For the mathematical inverse problem that we obtain

after the modeling, we present a uniqueness result, recasting the problem as the

recovery of the initial condition for the heat equation in R×(0,∞) from measurements

in a space–time curve. Additionally, we present numerical experiments to recover the

density of the fluorescent molecules by discretizing the proposed model and facing

this problem as the solution of a large and sparse linear system. Some iterative and

regularized methods are used to achieve this objective. The results show that solving

the inverse problem achieves better reconstructions than the direct acquisition method

that is currently used.

Keywords : LSFM, Fermi pencil–beam equation, radiative transport equation, backward

uniqueness, heat equation.
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1. Introduction

Modern microscopy techniques allow researchers to observe phenomena on a sub–

cellular, cellular and supra–cellular level. The observation of cells at different scales

gives insights of key biological questions within modern science fostering more and more

systematic approaches to understand the essence of life [1]. Contemporary microscopy

offers wide spectra of different techniques with distinct advantages and disadvantages.

Particularly, fluorescence microscopy allows biologists to observe live specimens and

dynamic processes within a tissue or specimen. This technique is based on the addition

of fluorescent molecules named fluorophores, which attach to target proteins or cellular

structures on a sub–cellular or cellular level like DNA, membranes, cytoskeleton, or

extra cellular matrix [23]. Fluorophores are excited by photons, usually a laser beam,

and fluorescent emission is captured by a photonic detector or camera. Fluorescence

microscopes vary in the excitation procedure, observation and volumetric resolution. In

the last decades, fluorescence microscopy became the standard tool for in vivo and in

toto (whole sample) imaging, however, photo–toxicity, photo–bleaching, out–of–focus

contribution and acquisition speed limit its application.

Particularly, Light Sheet Fluorescence Microscopy (LSFM) is a technique which

uses a thin light sheet (plane) to excite the fluorophores in the focal plane of the

detection objective [29]. This technique has some advantages compared to the regular

confocal fluorescence microscopes. Thanks to the perpendicular excitation through

the thin plane, an optical sectioning occurs. This excitation reduces the out–of–focus

contribution, due to the light sheet only excites fluorophores present in the observed

focal plane. The photo–toxicity and photo–bleaching are also trimmed down (the energy

load is reduced from 103 E to E [22, 32]), allowing acquisition of specimen in–vivo for

long periods of time. Moreover, the reduced out–of–focus contribution improves the

edges and contrast of the images. Additionally, its acquisition speed can achieve a

few seconds for an entire 3D scan and it can observe big specimens (in the size of

millimeters/centimeters) [35]. Thus, LSFM is currently one of the preferred techniques

to acquire a wide range of applications, especially for big specimen and long observation

times, obtaining a reasonable image contrast for cell segmentation and time resolution

for cell tracking [16]. Another related LSFM technique is the so–called lattice light–

sheet microscopy where the laser beam consists in a very narrow Bessel type lattice,

intended to capture much smaller spatial scales of nanometers [10, 31]. In this study,

we will only consider LSFM with gaussian type laser beams.
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During the image acquisition process, it occurs that the farther we are from the

point of light emission, the higher the loss of image resolution (see e.g. Figure 2 in [20]

and Figure 3 in [21]). We also see an increasing dominance of blur and shadows as

the laser goes through the object [20, 30]. The standard reconstruction procedure used

to overcome these issues consists of merging different images by using the opposite and

complementary excitation directions [21, 20, 30] (left and right), as in the three images in

Figure 1. This process is feasible in practice since the design of the microscope structure

is set up in such a way that the laser beam can illuminate the object from opposite sides

preventing the interference of the lasers. A critical problem with this merging process

is the presence of artifacts in the middle plane of the final images. On the other hand,

there exist calibration problems in the experimental setting for the acquisition process,

such as: errors in the position and orientation of the lasers respect to the cameras,

object displacements, opposite laser correspondence, etc.

To avoid this merging technique and hence improve the final images, we establish a

mathematical model that allows us to understand the laser behaviour and the subsequent

fluorescence process. Even more, we propose to study this imaging technique as an

inverse problem, where we seek to reconstruct the distribution µ of the fluorophore

from the set of (images) measurements obtained by the camera.

0 0.5 1 1.5

Figure 1: An example of a LSFM image (density of the fluorescent molecules µ). The first and second

images show the scattering effects observed by the camera when left and right excitations are applied.

The third one is the “fused image”, taking the best side of the previous ones (as in [20, 21]).

In Section 2, we first describe an operator P that relates the measurements with

our unknown variable µ, identifying two meaningful stages in an LSFM experiment:

excitation and fluorescence. To model the first stage, we use the Fermi–Eyges pencil–

beam equation to describe the space and angular distributions of the laser beam when

it propagates in a near–transparent object. This equation was first presented by Fermi

in 1940 and studied later by Rossi and Greisen in [33, Section 23]. In [7, 8], Börgers
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et al. present an asymptotic derivation of the Fermi Pencil–Beam equation from the

Fokker–Planck equation and from the linear Boltzmann equation under two different

conditions.

On the other hand, the fluorescence stage takes place once the fluorescent molecules

has been activated by the laser beam. For the second stage we use the Radiative

Transport Equation (RTE) (see e.g. [2]) to describe how the photons propagate until

reaching the collimated camera. In this way, we completely define the forward operator

P describing the proposed mathematical model.

In Section 3 we summarize the mathematical model obtained and the description

of the inverse problem that we will study.

In Section 4 we show that there is unique reconstruction of the function µ in the

proposed inverse problem. Injectivity of the operator P is presented in Theorem 1. We

obtain this results by considering the relationship between the solutions of the Fermi

pencil–beam and heat equations. By interpreting our measurements in terms of heat

propagation, we obtain injectivity of P by reducing the problem to one of backward

uniqueness for a heat equation from a nontrivial space–time curve, and the uniqueness

for such problem is presented in Section 5.

Finally, in Sections 6 and 7, we present a discretization version of the forward

operator to numerically solve the direct and inverse problems. We propose to find a

numerical solution for the LSFM reconstruction problem by solving a linear system. In

this context, we use different algorithms that are already available to optimally solve this

problems. Mainly, we refer to [17, 18, 13] where discrete inverse problems are studied

and iterative regulatization methods for sparse and large–scale problems are detailed.

2. Mathematical model in LSFM

2.1. Notation and model scheme

Let Ω ⊂ R2 be an open set with smooth boundary, which represents the object studied

under the microscope. We assume that Ω is contained in the rectangle [0, s1]× [−y1, y1],

for some s1 > 0, y1 > 0, both large enough. And for each h ∈ [−y1, y1] we define

xh := inf{x : (x, h) ∈ Ω} (see in Figure 2 the corresponding terms).
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Figure 2: Geometric representation of the excitation and emission beams. An incident laser at point

(0, h) illuminates the object from left and propagates inside the object according to the Fermi pencil–

beam equation, exciting the fluorescent molecules within the sample. Then, the excited fluorescence

molecules emits photons in all directions. For collimated cameras, only photons emitted in straight

vertical directions are detected at different positions s.

The modelling of the LSFM experiment has two main stages, excitation and

fluorescence, that are divided in the following components (see Figure 2):

(i) The excitation beam is emitted at the point (0, h) in the direction ν = (1, 0). We

call h ∈ [−y1, y1] the height of incidence.

(ii) The laser follows a free transport equation, without attenuation or scattering, until

entering the domain Ω at the point (xh, h).

(iii) Once the laser enters the object, the propagation of the laser is described by

the Fermi pencil–beam equation (equation (3)). We denote by u := uh(x, y,ω)

the intensity of photons at position (x, y) ∈ [0, s1] × [−y1, y1] traveling in the

direction ω = (cos(ω), sin(ω)) for ω ∈ R/2πZ. Therefore, the total intensity

of excitation photons at (x, y), arising from an incident excitation at (0, h), is

vh(x, y) =
∫
uh(x, y,ω)dω.

(iv) The excitation beam reaching (x, y) excites the fluorescent molecules at that point,

and the excited fluorophores will be proportional to the density of fluorescent

molecules and the excitation intensity. Namely, if µ(x, y) is the density of fluorescent

molecules at (x, y), then the excited fluorophores will be wh(x, y) = c vh(x, y)µ(x, y),

where c is the activation constant.
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(v) The excited fluorescence molecules wh emit photons in all directions, which

propagates according to a linear transport equation (equation (8)). The camera is

vertically collimated, hence only measuring those photons traveling in the direction

(0, 1). We will denote by ph(s) the fluorescent measurement at pixel s ∈ [0, s1]

arising from an excitation at (0, h).

The previous description of LSFM considers some simplifications and does not

include all the possible physical phenomena involved in LSFM. The proposed model is

a step in trying to understand and tackle difficulties observed in LSFM, like blurring

effects among others, and an attempt in trying to improve such imaging technique

by analyzing the simplified and related inverse problem. LSFM can be considered

as a particular illumination-detection geometrical setting of Fluorescence Molecular

Tomography (FMT) (a review of Fluorescence Molecular Imaging and Fluorescence

Molecular Tomography can be found in [28] and [38]), but for a less diffusive media as the

one usually considered in FMT. This less diffusive media implies a number of differences

between our approach and the usual descriptions used in FMT, namely, in FMT the

photon propagation is usually described by a diffusion equation without directionality of

photons (see e.g. equation (1) in [24], and equations (1) and (2) in [38]), which translates

into a very different mathematical equation for the illumination model. Furthermore, the

detection model generally employed in FTM does not allow for directional collimation,

and also requires measurements from multiple angles (see e.g. [28] and [38]).

In the next subsection we present more details about stages (iii) and (v) that we

have briefly introduce above.

2.2. Excitation: the Fermi pencil–beam equation

In this part we look into the details of stage (iii) above, i.e. the propagation of the

excitation laser inside the object described by the Fermi pencil–beam equation.

To describe the transport of photons in highly scattering and highly peaked forward

regime, a possible model is the following Fokker–Planck equation (see [2]),

ω · ∇u(x,ω) + λ(x,ω)u(x,ω) = ψ(x)∆ωu(x,ω) (1)

where, x = (x, y) ∈ R2 and ω ∈ S1 is the direction of propagation, with ω =

(cos(ω), sin(ω)) for ω ∈ R/2πZ. The quantity u(x,ω) corresponds to the intensity of

photons at the point x that are moving in the direction ω. The coefficient λ := λh(x,ω)

represents the portion of photons that have been absorbed at the point x that were
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moving in direction ω. The operator ∆ω is the Laplace–Beltrami operator on S1 and

ψ(x) is the diffusion coefficient related to the scattering of the medium. In isotropic

media (when λ(x,ω) = λ(x)) and since we are in R2 (letting ω = (cos(ω), sin(ω))), we

can rewrite the Fokker–Planck equation (1) as

Lu(x, ω) = (cos(ω)∂x + sin(ω)∂y + λ(x)− ψ(x)∂2
ω)u(x, ω) = 0. (2)

And in the case that the diffusion coefficient ψ(x) is small enough and the source is

spatially and directionally concentrated, the photons will concentrated along a line and

direction determined by the source. Namely, in [8] it was shown that under adequate

smallness and ellipticity assumptions on the diffusion coefficient, the Fokker–Plank

equation

Lu(x, y, ω) =
(
cos(ω)∂x + sin(ω)∂y + λ(x)− ψ(x)∂2

ω

)
u(x, y, ω) = 0.

u(xh, y, ω) = δh(y)δ0(ω), x ∈ (xh,∞), y ∈ R, ω ∈ R/2πZ,

admits a paraxial approximation with ω ∼ 0, given by the Fermi pencil–beam equation

Lapproxu(x, y, ω) =
(
∂x + ω∂y + λ(x, h)− ψ(x, h)∂2

ω

)
u(x, y, ω) = 0. (3)

u(xh, y, ω) = δh(y)δ0(ω), x ∈ (xh,∞), y ∈ R, ω ∈ R,

here we have considered the approximations below inasmuch as ω is concentrated around

zero and satisfies:

cos(ω) ≈ 1, sin(ω) ≈ ω

and

|ω| � 1, ω ∈ R/2πZ ⇐⇒ |ω| � 1, ω ∈ R.

The Fermi equation has been derived from Fokker–Planck in [7] by means of

stereographic–type coordinates on the unit circle and by dropping higher order terms

coming from asymptotic expansions with respect to the diffusion magnitude.

Let λh(x) = λ(x, h) and ψh(x) = ψ(x, h). Equation (3) can be explicitly solved (see

e.g. [12]) and the solution for x ∈ (xh,∞), y ∈ R, ω ∈ R is given by

uh(x, y, ω) = exp

(
−
∫ x

xh

λh(τ)dτ

)
fZ(z), (4)
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where z = ((y − h)− ω(x− xh), ω)>, and where

fZ(z) =
1

2π
√

det Σ(x, h)
· exp

[
−1

2
z>Σ−1(x, h)z

]
,

with

Σ(x, h) :=

(
E2 −E1

−E1 E0

)
(x, h), Σ−1(x, h) =

1

det Σ

(
E0 E1

E1 E2

)
(x, h),

and

Ek(x, h) =

∫ x

xh

(τ − xh)kψh(τ)dτ, k = 0, 1, 2. (5)

By letting Λ =

(
1 (x− xh)
0 1

)
(hence det(Λ) = 1 and Λ−1 =

(
1 −(x− xh)
0 1

)
) then

z =

(
(y − h)− ω(x− xh)

ω

)
= Λ−1

(
y − h
ω

)
,

and

fZ(z) =
1

2π
√

det ΛΣ(x, h)Λ>
· exp

[
−1

2

(
y − h
ω

)> ((
Λ−1

)>
Σ−1(x, h)Λ−1

)(y − h
ω

)]
.

Denoting α2 = (ΛΣΛ>)11 = (E2(x, h)− 2(x− xh)E1(x, h) + (x− xh)2E0(x, h)) we get

(the marginal distribution on a multivariate normal distribution),∫
R
fZ(z)dw =

1

α
√

2π
exp

(
−(y − h)2

2α2

)
.

From the solution (4), the previous calculation gives us the total excitation intensity at

a point (x, y) ∈ (xh,∞)× (−y1, y1) arising from an incident excitation at (0, h), namely

vh(x, y) =

∫
R
uh(x, y, w)dw = exp

(
−
∫ x

xh

λh(τ)dτ

)∫
R
fZ(z)dw

=
1

αh(x)
√

2π
exp

(
−
∫ x

xh

λh(τ)dτ

)
exp

(
−(y − h)2

2α2
h(x)

)
, (6)
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where

α2
h(x) =

(
E2(x, h)− 2(x− xh)E1(x, h) + (x− xh)2E0(x, h)

)
=

∫ x

xh

ψh(τ)[(τ − xh)2 − 2(x− xh)(τ − xh) + (x− xh)2]dτ

=

∫ x

xh

(x− τ)2ψh(τ)dτ. (7)

We can notice that for a fix x, vx(y) = vh(x, y) in (6) is the density function

of a univariate normal distribution with mean h and variance α2
h(x) multiplied by an

exponential term depending on λh. This is explained in detail in Figure 3.

y

0
x1

h

1
α(x0)

√
2π

y

x
h

x1
0

x0
µ̂ = h

1
α(x1)

√
2π

y
µ̂ = h

A

B

C

Figure 3: Graphic interpretation of equation (6). Figure A shows the function vh when an illumination

is made at height y = h. For fix points x0 and x1, the expressions vh(x0, ·) and vh(x1, ·) are the density

distribution of a normal distribution multiplied by a constant that depends on λh. Figures B and C

show these normal distributions. In both cases, the mean is µ̂ = h with variance α2(x0) and α2(x1),

respectively.

Given the excitation intensity vh(x, y) and density of fluorescent molecules µ(x, y),

the fluorescent source is wh(x, y) = c vh(x, y)µ(x, y), and in the following we provide the

details of the model that relates the sources of photons and the measurements obtained

at the camera, using the linear transport equation.

2.3. Fluorescence: Radiative Transfer Equation

In this detection stage we assume a perfect collimation of the camera in the direction

(0, 1), this means that only photons travelling parallel to the y–axis are measured.
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The collimation at the camera allows us to remove the positive contribution in the

measurements of the scattered photons.

Let us denote by ph(x,θ) the intensity of photons at position x ∈ R2 traveling in

a direction θ ∈ S1, arising from an incident excitation at (0, h). We will consider that

the propagation of photons is governed by a linear transport equation with attenuation

a and source wh (see [4, 5]), namely we will assume that ph satisfies,

θ · ∇x ph(x,θ) + a(x)ph(x,θ ) = wh(x), ∀x ∈ R2, θ ∈ S1 (8)

lim
t→∞

ph(x− tθ,θ ) = 0, ∀x ∈ R2, θ ∈ S1,

where the boundary condition states that there are no external radiation sources, and

wh is supported inside Ω. Under mild regularity conditions on wh and a, the unique

solution of equation (8) is

ph(x,θ) =

∫ 0

−∞
wh(x+ rθ) exp

(
−
∫ 0

r

a(x+ τθ)dτ

)
dr,

hence providing an expression for the intensity of photons detected at position x if

collimated in direction θ.

Since the cameras are outside the bounded object supporting the source, it is useful

to consider the total number of photons traveling along lines. In order to do so, let us

parametrize the lines in the plane as L(s,θ⊥) = {x ∈ R2 : x ·θ = s}, where s ∈ R is the

distance of the line to the origin, θ ∈ S1 is the direction perpendicular to the line, and

θ⊥, the rotation of θ by π/2, is the direction of the line. The total intensity of photons

along the line L(s,θ⊥) is

ph(s,θ
⊥) = lim

τ→∞
ph(τθ

⊥ + sθ,θ⊥)

=

∫
R
wh(rθ

⊥ + sθ) exp

(
−
∫ ∞
r

a(τθ⊥ + sθ)dτ

)
dr

= c

∫
R
µ(rθ⊥ + sθ)vh(rθ

⊥ + sθ) exp

(
−
∫ ∞
r

a(τθ⊥ + sθ)dτ

)
dr, (9)

the last equality is obtained by the assumption wh(x, y) = c vh(x, y)µ(x, y) described in

(iv). The Figure 5 shows an example of the integral along one line.

Under the standard setup of the microscope, the object does not rotate with respect

to the camera, hence for the measurements we will consider only the fixed direction

θ⊥ = (0, 1). Rewriting (9), and including the expression for vh given by (6), we can
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finally write an expression for ph(s) = ph(s, (0, 1)) the intensity of fluorescent photos

measured in the camera pixel at position s ∈ [0, s1] arising from an incident excitation

at height h (see Figure 2):

ph(s) = c

∫
R
µ(s, r)vh(s, r) exp

(
−
∫ ∞
r

a(s, τ)dτ

)
dr

= c · exp

(
−
∫ s

xh

λh(τ)dτ

)∫
R

µ(s, r)e−
∫∞
r a(s,τ)dτ

αh(s)
√

2π
exp

(
−(r − h)2

2α2
h(s)

)
dr. (10)

We can observe that if a, λ and ψ are known, then for each h fixed, the operator

µ 7→ ph(s,θ
⊥) is a weighted X–ray transform resembling an attenuated X–ray transform

with an extra weight. The approach, here presented, considers observations in multiple

heights h for only one angle θ. But, another interesting problem can come out if we

additionally consider observations for several angles θ ∈ S1, to simultaneously recover

µ and the attenuation a (or λ) as in some related works presented in [19, 36, 37, 11].

In the next section, we introduce the measurement operator P to study the inverse

problem related with the reconstruction of µ from the expression (10).

3. Inverse problem

In this section we will summarize all the elements involved in the description of the

measurement operator P , we will discuss about the admissible sections of a domain Ω

where the model P is a more adequate description of the phenomena, and we will pose

the inverse problems of reconstructing µ as the inversion of the measurement operator

P .

3.1. Physical Quantities

In the previous section we considered the following quantities involved in the phenomena,

(i) λ(x, y) describing the attenuation for the incident laser inside the domain.

(ii) ψ(x, y) describing the diffusion of the laser as it propagates inside the domain.

(iii) µ(x, y) the density of fluorescent molecules at each point (x, y) in the domain.

(iv) a(x, y) describing the attenuation of the fluorescent light inside the domain.

(v) c the activation constant, describing the proportion of incident light that excite the

fluorophores.
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We will assume λ, µ, a ∈ Cpw(Ω) and ψ ∈ C1(Ω), where Cpw, C
1 denote the set of

piecewise continuous and continuously differentiable functions, respectively, we assume

that these functions vanish outside of Ω and that ψ > 0 in Ω. Under these conditions all

the solutions to the equations in Section 2 exist and are unique (piecewise continuous

regularity could be replaced by L1 regularity). We recall that we are using the notation

λh(x) := λ(x, h) and ψh(x) := ψ(x, h).

3.2. Admissible domain

It is important to observe that (4) is a solution to equation (3) only under the hypothesis

that ψh > 0. Therefore the model for the incident excitation is not as correct after the

laser exits the domain Ω, hence equation (10) describing the fluorescent measurement

ph(s) in pixel s arising from an incident excitation at height h, is more adequate if the

segment [xh, s]× {h} is contained in Ω. We will consider this aspect for the theoretical

part of this work, which motivates the following definitions.

Definition 1 (See Figure 4 for an illustration of the following definitions). Let Ω ⊂
[0, s1]× [−y1, y1] be an open set with smooth boundary. Recall that for h ∈ [−y1, y1] we

defined xh = inf{x : (x, h) ∈ Ω}. For s ∈ [0, s1] define

Ys = {h ∈ [−y1, y1] : xh ≤ s}

s− = inf{s : Ys 6= ∅},

and observe that Ys ⊂ Yr for s < r. We say that s ∈ [s−, s1] is admissible if

[xh, s] × {h} ⊂ Ω, for all h ∈ Ys. We define s+ as the supremum over the admissible

s, we define y(s) = inf(Ys) and y(s) = sup(Ys) for all s ∈ [s−, s+], and we let y− =

y(s+), y+ = y(s+). We define the admissible section of Ω as Ωad = {(x, y) ∈ Ω : x ≤ s+}
and we also define γ : Ys+ → [0, s+] as γ(h) := xh, i.e. as the unique smooth function

satisfying

Ωad = {(x, y) : γ(y) ≤ x ≤ s+}.

If the set Ω is additionally convex, then Ys+ = [y−, y+], and if the set Ω is convex

and oriented properly then Ωad covers half of Ω, in the sense that at both boundary points

(s+, y−) and (s+, y+) the boundary is tangent to an horizontal line (see Figure 5).
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Figure 4: Example of an admisible domain and the corresponding γ function for a generic set Ω.

Figure A presents the definition of the quantities s− and s+ and the set Ys+ . Figure B shows function

γ and its domain Ys+ in the new coordinates.
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Figure 5: Example of an admissible domain for a convex set Ω. On the left side, in figure A, we

present its admissible section Ωad filled. All variables are defined under this scenario. Figure B, at

right, shows the corresponding function γ and its domain Ys+ .

Following the discussion above, we will proceed to the theoretical analysis of the

inverse problem considering only the admissible section Ωad of the domain Ω, even

though the proposed model could still be used as an approximate description of the

whole phenomena in the full domain Ω. Once we are able to solve the inverse problem
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on an admissible section, the solution to the inverse problem in the full domain follows in

a similar fashion as the merging method suggested in [21]. For the right orientation of the

camera, which depends on the geometry of the sample, it is possible to solve the inverse

problem in Ω by solving two (or possible more) local problem for admissible regions. This

assumes of course the possibility of illuminating the domain from different directions

which might be limited by the particular microscope set up. From a numerical point

of view, when we leave domain Ω as we are considering that no diffusion is happening

(since ϕ ∈ C1(Ω)), integration along lines will be just a rough approximation of the

real experiment as in the line shown in Figure 5. But if we restrict our analysis to the

admissible domain Ωad, we guarantee that the integrals along L(x,θ⊥) after excitation

at height y with (x, y) ∈ Ωad fits the exact value given by the model and not just an

approximation. We explain this in Figure 5.

To complete the framework for the theoretical study we require one more condition

with respect to the shape of the domain Ω, prescribed in the following definition.

Definition 2 We will say that a domain Ω is admissible if it satisfies that Ω = Ωad and

if additionally γ ∈ C1(Ys) and γ′(y(s)) < 0,∀s ∈ (s−, s+).

3.3. Measurements and Inverse Problem

For the rest of the paper, we will assume that Ω = Ωad is an admissible domain, in

addition to the aforementioned conditions that λ, µ, a ∈ Cpw(Ωad), ψ ∈ C1(Ωad), that

these functions vanish at (x, h) if x < xh, and that ψ > 0 in Ωad. In terms of the inverse

problem we consider that λ, a and ψ are known, while µ is the unknown quantity.

Definition 3 (measurement operator) We define the measurement operator P
defined on functions µ ∈ Cpw(Ωad) given by (see equation (10))

P [µ](s, h) = ph(s), (s, h) ∈ Ωad.

And therefore, the inverse problem consists in recovering µ from the knowledge of P [µ],

i.e., we want to study the invertibility of the linear operator P .

In next section, we present an injectivity result for the operator P ; this will

guarantee that kerP = {0} and consequently if the data ph(s) is in the range of P , it will

uniquely characterize the unknown function µ [3]. In practice, our measurement operator

has to be discretized, and the available data contains noise. Hence, this discretized

measurement operator is often not injective, but it will be seen as an approximation of
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P , which we will prove is injective. We will overcome the ill-posedness generated by

noise data in the discretized inverse problem introducing some regularization techniques

as is described in Section 7.

4. Injectivity of the measurement operator

For an admissible domain Ωad and under the hypotheses described in the previous

section, we have the following injectivity result for the operator P .

Theorem 1 The measurements P [µ] uniquely determine the density of fluorophores µ

in Ωad., i.e. if P [µ](s, h) = P [ν](s, h) for all (s, h) ∈ Ωad then µ(x, y) = ν(x, y) for all

(x, y) ∈ Ωad.

This results is a direct consequence of a more localized injectivity property of the

linear operator P , described in the following theorem.

Theorem 2 Let s ∈ (s−, s+). If P [µ](s, h) = 0 for all h ∈ Ys then µ(s, y) = 0, ∀y ∈ Ys.

Proof: Let s ∈ (s−, s+) be fixed. Let us recall that for h ∈ Ys the measurements take

the form (see equations (7) and (10))

P [µ](s, h) = exp

(
−
∫ s

γ(h)

λh(τ)dτ

)∫
R

cµ(s, r)e−
∫∞
r a(s,τ)dτ√

2πα2
h(s)

exp

(
−(r − h)2

2α2
h(s)

)
dr,

where

α2
h(s) =

∫ s

γ(h)

(s− τ)2ψ(τ, h)dτ.

We observe that by letting

f(y) := cµ(s, y) exp

(
−
∫ ∞
y

a(s, τ)dτ

)
,

g(h) := exp

(∫ s

γ(h)

λh(τ)dτ

)
P [µ](s, h), and

σ(h) := α2
h(s)/2,

then the theorem reduces to show that f(y) = 0,∀y ∈ Ys whenever g(h) = 0,∀h ∈ Ys,
where

g(h) =

∫
R

f(r)√
4πσ(h)

exp

(
−(r − h)2

4σ(h)

)
dr. (11)
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If U(t, y) is the unique solution to the following initial value problem for the heat

equation, 

(∂t − ∂2
y)U(t, y) = 0, (t, y) ∈ (0,+∞)× R,

U(0, y) = f(y), if y ∈ Ys,

U(0, y) = 0, if y /∈ Ys,

lim
|y|→∞

U(t, y) = 0, ∀t > 0,

(12)

then

U(t, y) =

∫
R

f(r)√
4πt

exp

(
−(r − y)2

4t

)
dr,

and

g(y) = U(σ(y), y), ∀y ∈ Ys, while f(y) = U(0, y), ∀y ∈ Ys.

Let Γ := {(σ(y), y) : y ∈ Ys} ∪ {(0, y) : y /∈ Ys}. Since g(y) = 0,∀y ∈ Ys if and only if

U |Γ = 0, then we can recast our problem as the problem of proving that

U |Γ = 0 implies U(0, y) = 0, ∀y ∈ Ys.

This is exactly what Theorem 3 in the following section shows. But to use Theorem 3

we need to check that Γ satisfies the required conditions, which reduces to prove the

following

(i) σ : Ys → R is C1.

(ii) σ(y) = 0 if y ∈ ∂Ys.

(iii) σ′(y) = 0 whenever σ(y) = 0.

(iv) There exists δ > 0 such that σ′(y) > 0 for y ∈ (y(s), y(s) + δ).

Let us prove this four points. Recall that for y ∈ Ys

σ(y) =
1

2

∫ s

γ(y)

(s− τ)2ψ(τ, y)dτ, (13)

therefore

σ′(y) = −1

2
γ′(y)(s− γ(y))2ψ(γ(y), y) +

1

2

∫ s

γ(y)

(s− τ)2∂ψ

∂y
(τ, y)dτ. (14)

The hypotheses on the regularity of γ and ψ clearly imply that σ ∈ C1(Ys) and

therefore (i) is satisfied. Property (ii) follows from the equation (13) and the fact
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that if y ∈ ∂Ys then γ(y) = s. In order to check (iii) let us recall that ψ > 0 in Ω,

therefore σ(y) = 0 only if γ(y) = s (see equation (13)), in which case equation (14)

implies σ′(y) = 0. To establish (iv), we observe that if m = inf(x,y)∈Ω |ψ(x, y)| > 0 and

M = sup(x,y) |∂ψ/∂y(x, y)| then from equation (14)

2σ′(y)

(s− γ(y))2
≥
[
− γ′(y)m− 1

3
(s− γ(y))M

]
y→y(s)
−→ −γ′(y(s))m,

since Ω is admissible, γ′(y(s)) < 0 and therefore σ′(y) > 0 for y ∈ (y(s), y(s) + δ], for

some δ > 0. �

5. A uniqueness result for the heat equation

The purpose of this section is to prove the next result.

Theorem 3 Let σ(y) ∈ C1
c (R) and denote Γ = {(t, y) ∈ R2 : t = σ(y)}. Let

y = inf(supp σ), y = sup(suppσ)

and assume there is δ > 0 so that σ′(y) > 0 in (y, y + δ). If U(t, y) is a solution to the

heat equation

(∂t − ∂2
y)U(t, y) = 0, (t, y) ∈ (0,+∞)× R,

U(t, y)→ 0 as |y| → ∞, ∀t > 0,

satisfying suppU |t=0 ⊂ suppσ and U |Γ = 0, then U = 0 everywhere in (0,+∞)×R. In

particular U(0, y) = limt→0+ U(t, y) = 0, ∀y ∈ R.

Proof: Let T = σ(y+δ), by hypothesis the restriction of σ to the interval (y, y+δ) has

an inverse ρ(t) = σ−1(t) ∈ C1(0, T ) ∩ C[0, T ], and since σ(y) = 0 then ρ(0) = y.

Then we can parameterize the section of Γ immediately to the right of (y, 0) as

{(ρ(t), t) : 0 ≤ t ≤ T} (see Figure 6). Let us define the following one–sided exterior

energy

I(t) :=
1

2

∫ ρ(t)

−∞
|U(t, y)|2dy, t ∈ [0, T ),

and notice that for all t ∈ (0, T )

d

dt
I(t) =

1

2
|U(ρ(t), t)|2 d

dt
ρ(t) +

∫ ρ(t)

−∞
U(t, y)∂tU(t, y)dy,
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T = σ(y + δ)
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supp U (0,y)
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Figure 6: Curve Γ in variables (y, t) ∈ R× (0,+∞). The filled zone {(y, t) : 0 ≤ t < T, y < ρ(t)} has

been denoted by S. The assumption that suppU |t=0 ⊂ suppσ is also represented, since y = inf(suppσ)

and y = sup(suppσ).

and the first term in the sum vanishes since U |Γ = 0. On the other hand, since U solves

the heat equation and integrating by parts,∫ ρ(t)

−∞
U(t, y)∂tU(t, y)dy =

∫ ρ(t)

−∞
U(t, y)∂2

yU(t, y)dy

= U(t, ·)∂yU(t, ·)
∣∣∣ρ(t)

−∞
−
∫ ρ(t)

−∞
|∂yU(t, y)|2dy,

and again the first term in the sum vanishes since U |Γ = 0. Therefore

d

dt
I(t) = −

∫ ρ(t)

−∞
|∂yU(t, y)|2dy ≤ 0, ∀t ∈ [0, T ),

and I(t) is a nonnegative decreasing function. But suppU(0, y) ⊂ suppσ, implying that

I(0) = 0 and concluding that I(t) = 0 for all t ∈ [0, T ). It follows that

U(t, y) = 0, ∀t ∈ [0, T ),∀y < ρ(t),

and from classical unique continuation results for parabolic equations (see for instance

[26]) we deduce that U must vanish in the whole upper-half plane.

�

In the next sections, we present the numerical implementation of the direct and

inverse problems.

6. Discrete direct and inverse problems

The main objective of this and next sections is to present a numerical analysis and

solution of the direct and inverse problems. This will allow us to bear out that the

diffusion and artifacts, observed during the traditional acquisition process, can be
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described by the proposed model.

6.1. Direct model

Here, we present how to simulate our data set using the proposed forward operator P .

Given the fluorescence density µ in a given domain Ω, we are able to compute the value

of ph(s) for all s thanks to the expression (10).

The density of fluophores µ and the two cases of attenuation λ that we will consider

in the experiments are presented in Figure 7. The variable attenuation is proportional

to the fluorophore density plus a constant value which represents the medium where

the object is submerged. We assume that the attenuation of the fluorescence stage a

satisfies the relation a = ĉ · λ. We choose a parameter ĉ so that the diffusion effect

got in the numerical experiments remains close to the one observed in the real data.

Here, we also assume that the diffusion term ψh is proportional to the attenuation λh,

i.e. ψh = c̃ · λh. For all the experiments we set this constant in c̃ = 0.6. Additionally,

recalling that wh = c · µ · vh, represents the amount of fluorescent molecules that is

activated after the excitation process, we took c = 1 throughout the experiments.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 7: From left to right: fluorophore density distribution (µ), constant and variable attenuation

(λ) for the excitation stage.

For all experiments, we work over the domain Ω = [0, 2]× [−1, 1] and with images

of size N × N with N = 257. The discretization step is given by τ = 2/(N + 1) in

x and y axes. We start by calculating the values vh(x, y) over Ω for a discretized set

of excitations points along the interval [−1, 1]. We take N heights of excitations with

step size τ . The excitation points are considered in two directions: left and right, since

the support of our object is a circle (as shown in Figure 7) by the Definition 1, two

directions are needed to guarantee the uniqueness of our solution in the whole domain.
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Then the total amount of excitation points is 2N .

The discretization of equation (6) is straightforward if we approximate the integrals

of λh as finite sums of its pixel intensities, since we are representing λh as an image of

size N ×N . The same is considered for the integrals of ψh in expression (5).

Figure 8 presents a single simulation of vh(x, y) when the excitation point occurs

at h = −0.1406, from both directions (left and right). We also included a visualization

of the function wh.

Figure 8: The left image corresponds to the vh image after illuminating at h = −0.1406 from left and

right, respectively. In the second image, we show the function wh for the same height. We included

the support of our object in broken red lines for visualization purposes.

To achieve the discretization of the equation (10), we define the set of discrete values

of h as {hl} for l = 1, . . . , 2N and analogously, for s we consider {sk} for k = 1, . . . , N.

Additionally, as images a and µ are seen as matrices, we index them as aij and µij

for i, j = 1, . . . , N . Finally, a line of observation is defined by the distance sk, and we

denote it by Lk.

In Figure 9, we describe all the discrete variables that we have introduced. The

filled pixels represent an example of the discretized function vh when the excitation

occurs at the point hl of our discrete domain. We denote by vijl the value of vh in the

pixel indexed by (i, j) when h = hl. We use the Kronecker delta to determine if a line

Lk is intersecting a pixel (i, j), this happens when we are at pixels where j = k, then:

δjk =

{
1, if j = k,

0, otherwise.

Then P [µ](sk, hl) = phl(sk) is calculated as:

P [µ](sk, hl) = c
N∑

i,j=1

δjkµijvijl exp (−Dik(a)) , (15)

= c
N∑
i=1

µikvikl exp (−Dik(a)) , (16)
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Figure 9: Discretization of the image and the variables used in the AtRt.

where

Dik(a) =
i∑

z=1

azk

is interpreted as partial sums along the columns of the attenuation a.

Under this discretization, our set of measurements is of size 2N2, for all (sk, hl) with

two–side excitations (we highlight that the density µ has N2 pixels that is the amount

of unknowns of our problem). In Figure 1, the first two images represent the matrix of

measurements obtained from left and right excitations, respectively. In the third one,

the fused image (as in [20] is presented to compare it with the reconstruction obtained

by the proposed model.

In Figure 10, we compare the fused image and the ground truth density µ under

the same scale of values. This figure shows that the density that is measured by the

camera is not as good and need to be corrected in the central zone, which was our

initial motivation. In the next section, we study the numerical inversion of the proposed

inverse problem and present possible improvements that can be obtained through our

approach.
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Figure 10: The fused image (see Figure 1) of measurements (left) compared to the ground truth

density (right).

6.2. Inverse model

We take advantage of the linearity of the operator P described in Definition 3, to

represent the solution of our discretized inverse problem as the solution of a linear

system of the form:

Aµ = b, A ∈ Rm×n, b ∈ Rm, µ ∈ Rn. (17)

To build the matrix A associated to our problem, we have to do small changes to

the previous discretization. We just reorder (µij) as a vector µ of size N2 × 1 as shown

in the expression below. We use the variable z to index pixels, so z = 1, . . . , N2. The

same is needed for vl := (vijl):

µ = (µz) =



µ11

µ21

µ31

...

µNN


, vl = (vzl) =



v11l

v21l

v31l

...

vNNl


, ∀l = 1, . . . , 2N.

Equivalent to the Kronecker delta we introduce a matrix that can tell us the whole

information about the intersections between lines Lk and a pixel z. For a fixed pixel z

and distance sk, we define

wzk =

{
1, if line Lk crosses the pixel z,

0, otherwise.
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Then, we can write a vector wk of size N2 × 1, as follows:

wk =
[
w1k, w2k, w3k, · · · , wN2k

]>
.

And defining Wkl = vl�wk, where � represents the Hadamard or point–wise product.

The only part that needs to be written as a vector in expression (15) is the exponential

term, for this, we define a matrix (Dz) as the cumulative sums of the attenuation matrix

a in the direction of the camera. The farther a pixel is from the camera, the greater

its accumulated value. As before, we rewrite this matrix as a (N2 × 1)–vector, that we

denote by D:

D =
[
D1, D2, D3, · · · , DN2

]>
.

Now, for each k and l, we write a row of our final matrix A as:

akl = Wkl � exp(−D),

where exp(−D) is understood as the exponential of each component ofD. Then varying

k and l, we built A of size m × n, with m = 2N2 and n = N2. To build the vector of

measurements b, as we obtain our set of observations (as the first two images presented

in Figure 1), we just need to reshape them as a column vector taking row by row and

transposing them. The shape of the matrix A and vector b are:

A =
[
a11 a21 · · · aN1 a12 a22 · · · aN2 · · · a1,2N a2,2N · · · aN,2N

]>
,

b =
[
b11 b21 · · · bN1 b12 b22 · · · bN2 · · · b1,2N b2,2N · · · bN,2N

]>
.

6.2.1. Solution of the linear system. As the matrix A is sparse and large, a factorization

process to solve (17) could be impossible or computationally expensive. For this reason,

the use of iterative methods is highly desirable to solve this type of linear systems.

Additionally, we consider that our measurements (represented by the right-hand

vector b) are corrupted by unknown vector of noise ε ∈ Rm, as is usual in the real cases.

For the different iterative algorithms that we will present, we assume that at least the

norm δ := ‖ε‖ is known.

Then, due to the ill–posedness produced by the presence of noise and the possible ill-

conditioned matrix A, a regularization process can be used to overcome these issues [9].

The regularized minimization problem associated to the solution of the linear
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system (17) is:

µ = arg min
x∈Rm

{
1

2
‖Ax− b‖2

2 + λR(x)

}
(18)

where the data–fit term ‖Ax − b‖2
2 forces the problem to find x that remains close

to the given data b, and the regularizer term R is chosen to overcome the particular

requirements of each problem. An alternative way to include the regularization is to

apply an iterative method directly on the data–fit term and use the number of iterations

as stop criteria when semi-convergence is achieved. The general principle of the semi–

convergence is to obtain a desired approximation before the noise starts to show up in

the current solution [17, Chapter 6]. The algorithms used to solve our problem consider

these two possible approaches.

In the next section, we briefly describe the algorithms that are used to solve our

linear system and hence, the inverse problem. We have implemented the discretization

of our problem in Matlab and we solve the linear system using the IR tools which

are detailed in [13].

7. Numerical results

In this part, we propose to solve our discrete inverse problem using two different

minimization approaches, that we denote by (P1) and (P2) and are defining as follows:minimize
x

‖Ax− b‖2
2

subject to x ∈ C
(P1)

minimize
x

‖Ax− b‖2
2 + λTV(x)

subject to x ≥ 0
(P2)

The Problem (P1) is related to the semi–convergence case, where the regularization will

be included within the iterations of the optimization algorithms. We will compare the

results obtained by five different algorithms: the Modified residual norm steepest descent

method [27] (mrnsd), the Flexible CGLS method [15] (nnfcgls), Simultaneous algebraic

reconstruction technique [18] (sart) and the Fast Iterative Shrinkage-Thresholding

Algorithm (fista) [6] (that solves the Tikhonov problem with box constraints when

the parameter λ = 0, a penalized version is also available if λ 6= 0 but we are not

considering this case).

The problem (P2) has the shape of (18) where we have considered the total variation
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(TV, [34]) as our regularizer R . To solve it, we use a particular case of the Projected-

restarted iteration method (PRI) [9] which incorporates a heuristic TV penalization

term [14]. As in [13], we denote this method by (htv).

7.1. Simulated noise measurements

To avoid inverse crime in our reconstructions, we add noise to our simulated

measurements. For this, we consider an scaling factor β to generate a poisson distributed

noise (since this random variable returns normal values, it is necessary to amplify the

signal). The factor β controls the level of noise, i.e., if β takes large values, we will get

lower intensity images and therefore higher poisson noise [25]. Accordingly, each pixel

value p is replaced by a draw β · Pois
(
p
β

)
as in [25, eq. 2].

Examples 1 and 2 described below are implemented with values β = 0.01 and

β = 0.001, respectively.

7.2. Stop criteria

In this IR tools package, all algorithms mentioned above used the discrepancy principle

to stop in the best iteration. For the algorithms sart, fista, mrnsd and nnfcgls, this

means that the algorithms stop as soon as the relative norm of the residual b−Ax(k) is

sufficiently small, typically of the same size as the norm of the noise ε, i.e. when

‖b− Ax(k)‖2

‖b‖2

≤ η · NoiseLevel

where η is a “safety factor” slightly larger than 1, and NoiseLevel is the relative noise

‖ε‖2/‖b‖2.

For the algorithm htv that is a PRI method with inner–outer iterations, the

discrepancy principle is used to stop the inner iterations, whilst the outer iterations are

stopped when ‖x(k)‖, ‖TV(x(k))‖2 or the value of the regularizer parameter λ, becomes

stable.

7.3. Initialization

We use the fused image of measurements (see Figure 1) as initial value x(0) (see

Figure 10), this initializing helps to improve the speed of the algorithms and reduce

the number of iterations.

When the parameter η is needed, we considered η = 1.01. Additionally, since we
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simulate the data as shown in Section 6, we have at our disposal the true value of the

unknown image µ which is included in the algorithm to calculate the relative error.

Example 1:

In this first simulated example, we consider that the attenuations λ and a are constant

over the domain Ω. This means that we are only considering the effects of the medium

where our object of interest in submerged. In Table 1, we present the results in terms

of number of (outer) iterations, time of execution, the relative error (NRE) and the

structural similarity coefficient (SSIM, [39]) between the reference (true) density and the

reconstruction. In this example, all the algorithms present a quantitative improvement

compared to the values of the fused image. The htv method gives the smallest NRE

value (0.139%) and fista the highest value of the SSIM (0.98439). In Figure 12, we

can visually compare the different results.

Table 1: Number of iterations, execution time, relative error and SSIM for the different algorithms

when attenuation is assume to be known and constant. The “fused image” row corresponds to the

third image in Figure 1, which has been perturbed by noise.

Algorithm iterations time (s) ‖x− x(k)‖2/‖x‖2 SSIM

fused image – – – – 0.1637 0.96402

fista 31 4.8129 0.15077 0.98439

htv 34 1.2496 0.13914 0.98349

mrnsd 150 2.8388 0.14965 0.98278

nnfcgls 106 3.7828 0.14001 0.98383

sart 10 1.9969 0.15856 0.98305
∗x is the truth solution.

In Figure 13, we draw the profiles of the reconstructions along x = 1 in order to

observe the improvements reached in the central region of the image.

Example 2:

In this case, the simulated measurements are generated using variables attenuations λ

and a, in order to include some attenuation effects produced by the presence of the

fluorescent molecules. However, as in more real cases, the attenuation could be also

unknown, we propose to reconstruct the density µ with a constant attenuation a which

could be experimentally determined. In our case, we take a = 1.1 over Ω. We have

included Poisson Noise with NoiseLevel = 0.01. The results are presented as before in
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Figure 11: True simulated density, with zoomed zone to visual comparisons.

Figures 14–15 and Table 2. The values of the nnfcgls and sart methods are slightly

better than the other algorithms, but all of them improve the fused image values.

We do not focus on which algorithm is better; we are just interested in the

improvements observed in the proposed reconstruction independently of the selection of

the optimization algorithm.

Table 2: Number of iterations, execution time, relative error and SSIM for the different algorithms

when the attenuation is variable but is considered as constant during the reconstruction. The “fused

image” row corresponds to the third image in Figure 1, which has been perturbed by poisson noise.

Algorithm iterations time (s) ‖x− x(k)‖2/‖x‖2 SSIM

fused image – – – – 0.40466 0.92454

fista 29 5.3721 0.29567 0.95875

htv 41 2.0133 0.26267 0.96326

mrnsd > 2000 27.976 0.24255 0.97345

nnfcgls > 2000 96.577 0.22798 0.97695

sart > 2000 45.802 0.22783 0.97994

∗x is the truth solution, the symbol > means stops with a maximum number of iterations.

In Figure 15, we draw the profiles of the reconstructions along x = 1 as before.

Here we observe that the assumption of the attenuation is constant implies in some

parts a underestimation of the true value. This will depend directly from the constant

value that we choose for a.
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(a) Noise measurements (b) fista

(c) htv (d) mrnsd

(e) nnfcgls (f) sart

Figure 12: For Example 1: zoomed images to visualize the difference between the reconstructions.

8. Conclusions and outlook

We presented a novel mathematical model for the Light Sheet Fluorescence Microscopy.

To our best knowledge, this is the first approach in this direction and is an initial step in
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Figure 13: For Example 1: Profiles of reconstruction at x = 1 that corresponds to the column 129 of

the images.

trying to understand and tackle some of the issues observed in LSFM. This work shows

that by considering the acquisition of the density µ as an inverse problem a better

reconstruction can be obtained, compared to the traditional merging method that is

currently used.

From the theoretical point of view, we presented a uniqueness result for the proposed

inverse problem, by reducing it to the recovery of the initial condition in a heat equation

with measurements in a space–time curve. The stability in the reconstruction of µ is

not considered in this article. However, due to the clear link between the microscopy

inverse problem and backward heat propagation the former is expected to be severely

ill-posed. The question then is whether Logarithmic stability is the optimal result or

if it is possible to obtain a Hölder-type inequality, this kind of result would also open

the door to obtain stability results for more physically complete models. This type of

question are expected to be addressed in future works.

Additional future work also includes the extension of these results to the three

dimensional case, where some extra assumptions might be necessary and we would need

to discuss a light-sheet illumination or a beam illumination as the natural extension of

the technique presented here.

Questions about a simultaneous reconstruction are also open. For example, about

the possibility of recovering the density and the attenuation (either in the illumination or
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(a) Noise measurements (b) fista

(c) htv (d) mrnsd

(e) nnfcgls (f) sart

Figure 14: For Example 2: zoomed images to visualize the difference between the reconstructions.

The images are re-scaled to the range of the ground truth density.

fluorescence) at the same time, by considering additional measurements when rotating

the object in multiple directions.
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Figure 15: For Example 2: Profiles of reconstruction at x = 1 that corresponds to the column 129 of

the images.

A more ambitious extension of this work would be to consider more complete and

less simplified physics for the illumination and fluorescence stages. In this paper we

are heavily reliant in the explicit solution of the Fermi pencil beam equation, which

makes it very challenging to extend our results to other illumination models. We are

also considering a perfect collimation of the fluorescence measurement and different

collimation schemes would give rise to other difficulties. Another ambitious extension

of this work would be to include the stochastic nature of the fluorescence stage, which

would require an MLEM or similar reconstruction techniques to be considered.
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Boğaziçi University, Istanbul, Turkey, as part of this work was completed as a visiting

researcher at the institution.



2D LSFM image reconstruction 32

S.H. and V.C. are part of SCIAN-Lab funded by Fondecyt #1181823, EQM140119,

CONICYT (PIA ACT 1402), CENS CORFO (16CTTS-66390) and BNI (ICM P09-

015-F). SCIAN-Lab is a selected member of the German-Chilean Center of Excellence

Initiative (DAAD 57220037 and 57168868). V.C. is also partially funded by CONICYT

grant Fondecyt #11170475.

B.P. was partially funded by ONR grant N00014-17-1-2096.

We acknowledge M.D. Miguel Concha for providing us with light-sheet microscopy data

(funded by Fondequip EQM130051).

References

[1] Alison Abbott. Cell culture: biology’s new dimension, 2003.

[2] Guillaume Bal. Inverse transport theory and applications. Inverse Problems, 25(5):053001, 2009.

[3] Guillaume Bal. Introduction to inverse problems. 2019.

[4] Guillaume Bal and Alexandre Jollivet. Combined source and attenuation reconstructions in spect.

Tomography and Inverse Transport Theory, Contemp. Math, 559:13–27, 2011.

[5] Guillaume Bal and Alexandru Tamasan. Inverse source problems in transport equations. SIAM

Journal on Mathematical Analysis, 39(1):57–76, 2007.

[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[7] Christoph Börgers and Edward W Larsen. Asymptotic derivation of the fermi pencil-beam

approximation. Nuclear science and engineering, 123(3):343–357, 1996.

[8] Christoph Börgers and Edward W Larsen. On the accuracy of the fokker–planck and fermi pencil

beam equations for charged particle transport. Medical Physics, 23(10):1749–1759, 1996.

[9] D Calvetti, G Landi, L Reichel, and F Sgallari. Non-negativity and iterative methods for ill-posed

problems. Inverse Problems, 20(6):1747, 2004.

[10] Bi-Chang Chen, Wesley R Legant, Kai Wang, Lin Shao, Daniel E Milkie, Michael W Davidson,

Chris Janetopoulos, Xufeng S Wu, John A Hammer, Zhe Liu, et al. Lattice light-sheet

microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science,

346(6208):1257998, 2014.

[11] Matias Courdurier, Francois Monard, Axel Osses, and Francisco Romero. Simultaneous source and

attenuation reconstruction in spect using ballistic and single scattering data. Inverse Problems,

31(9):095002, 2015.

[12] Leonard Eyges. Multiple scattering with energy loss. Physical Review, 74(10):1534, 1948.

[13] Silvia Gazzola, Per Christian Hansen, and James G Nagy. Ir tools: a matlab package of iterative

regularization methods and large-scale test problems. Numerical Algorithms, 81(3):773–811,

2019.

[14] Silvia Gazzola and James G Nagy. Generalized arnoldi–tikhonov method for sparse reconstruction.

SIAM Journal on Scientific Computing, 36(2):B225–B247, 2014.

[15] Silvia Gazzola and Yves Wiaux. Fast nonnegative least squares through flexible krylov subspaces.

SIAM Journal on Scientific Computing, 39(2):A655–A679, 2017.



2D LSFM image reconstruction 33

[16] John M Girkin and Mariana Torres Carvalho. The light-sheet microscopy revolution. Journal of

Optics, 20(5):053002, 2018.

[17] Per Christian Hansen. Discrete inverse problems: insight and algorithms, volume 7. Siam, 2010.

[18] Per Christian Hansen and Jakob Sauer Jørgensen. Air tools ii: algebraic iterative reconstruction

methods, improved implementation. Numerical Algorithms, 79(1):107–137, 2018.

[19] Alexander Hertle. The identification problem for the constantly attenuated radon transform.

Mathematische Zeitschrift, 197(1):13–19, 1988.

[20] Jan Huisken. Slicing embryos gently with laser light sheets. Bioessays, 34(5):406–411, 2012.

[21] Jan Huisken and Didier YR Stainier. Even fluorescence excitation by multidirectional selective

plane illumination microscopy (mspim). Optics letters, 32(17):2608–2610, 2007.

[22] Philipp J Keller and Ernst HK Stelzer. Quantitative in vivo imaging of entire embryos with digital

scanned laser light sheet fluorescence microscopy. Current opinion in neurobiology, 18(6):624–

632, 2008.

[23] Joseph R Lakowicz. Principles of fluorescence spectroscopy. Springer Science & Business Media,

2013.

[24] S Lam, F Lesage, and X Intes. Time domain fluorescent diffuse optical tomography: analytical

expressions. Optics Express, 13(7):2263–2275, 2005.

[25] Jizhou Li, Florian Luisier, and Thierry Blu. Pure-let image deconvolution. IEEE Transactions

on Image Processing, 27(1):92–105, 2017.

[26] Fang Hua Lin. A uniqueness theorem for parabolic equations. Communications on Pure and

Applied Mathematics, 43(1):127–136, 1990.

[27] James G Nagy and Zdenek Strakos. Enforcing nonnegativity in image reconstruction algorithms.

In Mathematical Modeling, Estimation, and Imaging, volume 4121, pages 182–190. International

Society for Optics and Photonics, 2000.

[28] Vasilis Ntziachristos. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 8:1–33, 2006.

[29] Omar E Olarte, Jordi Andilla, Emilio J Gualda, and Pablo Loza-Alvarez. Light-sheet microscopy:

a tutorial. Advances in Optics and Photonics, 10(1):111–179, 2018.
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