
Z. Angew. Math. Phys. (2020) 71:126
c© 2020 Springer Nature Switzerland AG
0044-2275/20/040001-22
published online July 8, 2020
https://doi.org/10.1007/s00033-020-01353-1

Zeitschrift für angewandte
Mathematik und Physik ZAMP

A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids

M. H. B. M. Shariff , R. Bustamante and J. Merodio

Abstract. In this communication a spectral constitutive equation for nonlinear viscoelastic-electroactive bodies with short-
term memory response is developed, using the total stress formulation and the electric field as the electric independent
variable. Spectral invariants, each one with a clear physical meaning and hence attractive for use in experiment, are used in
the constitutive equation. A specific form for constitutive equation containing single-variable functions is presented, which
are easy to analyze compared to multivariable functions. The effects of viscosity and an electric field are studied via the
results of boundary value problems for cases considering homogeneous distributions for the strains and the electric field,
and some these results are compared with experimental data.
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1. Introduction

In the last 2 decades there has been a renewed interest in the study of electromagnetic interactions with
solid media (see, for example, [23] and the references therein). In the particular case of electric interactions,
the interest comes mostly from the development of some composite materials, where electro (or magneto)
active particles are added to a rubber-like matrix during curing [4,12]. In other cases thin plates made of
rubber are coated with electrodes, which upon the application of an electric potential, are compressed due
to the electric forces that appear between the electrodes [3]. In biomechanics some types of soft tissues
such as muscles can react to electric fields (see [7] and the references mentioned therein). We note that
most of the early mechanical models of electro-active materials are simplified by assuming that these
materials are elastic, i.e., there is no dissipation of energy [10,11,23]. However, in reality, most materials
are not purely elastic and they exhibit some form of dissipation. In view of this, we are particularly
concerned with viscoelastic-electroactive bodies that represent a wide range of materials and physical
systems sensitive to mechanical forces and electric fields. Applications where these materials are used,
for example, include biomimetics, micro-robotics and actuators. This has created considerable interest
during the last years and many publications have resulted from attempts to understand the influence of
electric fields on the mechanical behaviour of viscoelastic solids (see, for example, [1,2,13,16,17]). For
example, in reference [8], Chen proposed a very general model for electro-thermo-viscoelastic solids with
memory, using a Gibbs’ potential. In references [5,9,19,43,44] models have been presented based on the
decomposition of the energy into an electro-elastic part plus a visco-electro-elastic part, with the use of
an evolution equation to find the viscous part of the deformation [5,9] or the internal variables [19,43,44].
In the case of specific models for applications in biomechanics, for example, an orthotropic visco-electro-
elastic model has been proposed for myocardium [7], where the energy of the body is split into an elastic
passive part and an active visco-electro-elastic counterpart. A general rate-dependent dissipation model
was presented, for example, by Saxena et al. [25], where not only the strains are decomposed into an
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elastic and a visco-elastic part, but the same happens with the electric field, which is decomposed into a
non-dissipative part and a dissipative (called viscous) part, in order to account not only for the dissipation
due to the mechanical interactions, but also the electrical interactions, where the viscous parts are found
from some evolution equation.

In the past, most of these viscoelastic-electroactive models used classical invariants [41] (or their vari-
ants) to describe their constitutive equations. Since the 1940s classical invariants have played an impor-
tant role in the development of constitutive laws in continuum mechanics. Rivlin and others developed
trace based invariants, because they are convenient and easy to evaluate. However, in many theoretical
works, where such invariants are used, there is no interest about fitting with experimental data, the
issue of propagation of error, nor being consistent with physics and the infinitesimal theory. Problems
arise because most of the classical invariants do not have an immediate physical meaning and, hence,
they are not attractive in seeking to design a rational program of experiments. For example, it is not
straightforward to design an experiment [14,27] (denoted by R-experiment), where to rigorously construct
a specific functional form of the energy function it requires to capture the behavior of a body in terms
of a single classical invariant while keeping the remaining (classical) invariants fixed. We note that an
R-experiment requires the number of independent invariants in the set of invariants of the corresponding
minimal integrity or irreducible basis. It is shown in references [30,38,39], that the number of independent
invariants is generally less than the number of invariants in the corresponding minimal integrity or irre-
ducible basis, and is far less if the number of classical invariants in a minimal integrity or irreducible basis
is large. Because of the unclear physical meaning of the classical invariants it is not clear how to select
the relevant independent classical invariants from the set of invariants in the corresponding minimal or
irreducible basis. In addition to this, researchers are not sure which invariants are best needed for a given
problem, and for simplicity a reduced number of invariants is commonly considered, which may create
problems in order to capture the response of the material [21,31]. However, it is shown by Shariff [27,28]
that spectral invariants, each one with a clear physical meaning, are easy to analyze and attractive for
use in R-experiment. Furthermore, to evaluate the number of independent classical invariants in a mini-
mal integrity basis is not straightforward due to the difficulty in constructing relations (syzygies) among
classical invariants. However, relations among the spectral variables are easily constructed [30,38,39] and,
hence, the number of independent spectral invariants can be easily obtained.

In view of the advantages of using spectral invariants, in this paper, based on the authors’ previous
work [6,33,36,37], we develop a spectral constitutive model to describe the mechanical behaviour of
viscoelastic-electroactive bodies with short-term memory response.

This paper is organized as follows. In Sect. 2, the relevant kinematic variables and the material model
are introduced. The construction of a visco-elastic potential in the present of an electric field is presented
in Sect. 3 and its corresponding spectral formulation is given in Sect. 4. In Sect. 5, we propose a specific
form of the constitutive equation and its performance is evaluated in Sect. 6 by comparing our theory
with different experiments. Pure homogeneous boundary value problems are discussed in Sect. 7 and we
conclude our paper in Sect. 8.

2. Preliminaries

2.1. Kinematics

Let X denotes the typical position vector of a material particle in the reference configuration Br of
the body, and let x denotes the corresponding position vector of the same particle in the deformed
configuration Bt at time t. It is assumed that there exists a one-to-one mapping χ such that it assigns to
each point X just one point x at each instant t, i.e., x = χ(X, t) and X = χ−1(x, t). The deformation
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gradient tensor is F =
∂x

∂X
. The left and right Cauchy-Green stretch tensors, respectively B and C, are

given by B = FFT and C = FTF .

The particle velocity v is defined as v =
∂χ(X, t)

∂t
. The velocity gradient tensor, denoted by L, is the

gradient of the velocity. It follows immediately that Ḟ = LF , where the superimposed dot designates
the time derivative. In this paper repeated indices do not mean sum in those indices. More details about
the kinematics of continua can be found, for example, in [42].

2.2. Electrostatics

If there is no interaction with magnetic fields and there is no distribution of free charges and electric
current, then the simplified forms of the Maxwell equations are

curl(e) = 0, div(d) = 0, (1)

where e is the electric field and d is the electric displacement in the current configuration, and div and
curl are the divergence and curl operators with respect to x, respectively. In vacuum e and d are related
through

d = ε0e, (2)

where ε0 = 8.85 × 10−12 F/m is the electric permittivity in vacuum. For a condensed matter an extra
field is needed, which is called the electric polarization p, where

d = ε0e + p. (3)

In the present communication we use the concept of total the Cauchy stress T tensor defined in [10,11].
In the absence of surface electric charges d, e and T must satisfy the continuity equations

n · [[d]] = 0, n × [[e]] = 0, Tn = t̂ + TMn, (4)

where · and × denote the dot product and cross product, respectively, between vectors, n is the unit
outward normal vector to ∂Bt, t̂ is the external mechanical traction, [[ ]] denotes the difference of a
quantity from outside and inside a body and TM is the Maxwell stress tensor outside the body in vacuum
which is defined as

TM = d ⊗ e − 1
2
(d · e)I. (5)

More details about electrostatics and continuum mechanics can be obtained, from, for example, in
[18,23].

2.3. Mechanical balance laws

The conservation of mass equation for a continuum may be written in the form

Jρ = ρ0, (6)

where ρ0 and ρ are the mass densities in the reference and deformed configurations, respectively. The
first law of movement, in the absence of the external body force per unit mass which is independent of
the electrostatic field, is

ρv̇ = divσ + fe, (7)

where σ is the (elastic) Cauchy stress tensor and

fe = (grade)T p, (8)
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is the electric body force [10]. The Lagrangian counter part of the electric and displacement fields have
the forms [10]

eL = F T e, dL = JF −1d (9)

and satisfy

Div dL = 0, CurleL = 0, (10)

where Div and Curl are the divergence and curl operators with respect to X, respectively. In view of
(3), the balance of angular momentum requires that [10]

σ + d ⊗ e (11)

is symmetric. In view of of the identity

(grade)T p = div
[
d ⊗ e − 1

2
ε0(e · e)I

]
(12)

we can define the symmetric total Cauchy stress tensor

T = σ + d ⊗ e − 1
2
ε0(e · e)I (13)

and the first law of movement becomes

ρv̇ = divT . (14)

3. Electro-viscoelastic potential

In this communication, we only model electro-viscoelastic solids with short-term memory response; the
model is only capable of modeling rate dependent deformations but not the common phenomenon such as
stress-relaxation. From the principle of material objectivity [42] it follows that all constitutive relations
are independent of v. As a result, we assume the mechanical behaviour of electro-viscoelastic solids is
governed by the variables

F , Ċ, eL = ef , e =| eL | . (15)

We also assume there exist an electro-viscoelastic potential

Wv = W(v)(C, Ċ,f , e) (16)

that is responsible for the internal dissipation due to the viscous effects in the sense that [24]

tr
(

∂Wv

∂Ċ
Ċ

)
≥ 0. (17)

If We = W(e)(C,e) is the elastic free energy function for an electro-elastic solid, then the Clausius–Duhem
inequality takes the form

tr(T (2)Ċ)
2

− tr
(

∂Wv

∂Ċ
Ċ

)
− p · ė − ρẆe

=
1
2
tr

[(
T (2) − 2

∂Wv

∂Ċ
− 2ρ

∂We

∂C

)
Ċ

]
−

(
p + ρ

∂We

∂e

)
· ė ≥ 0, (18)

where T (2) is the second Piola–Kirchhoff stress tensor. Since Ċ and ė are arbitrary in (18), we have that

T (2) = S(e) + S(v), p = −ρ
∂We

∂e
. (19)
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where

S(e) = 2ρ
∂We

∂C
, S(v) = 2

∂Wv

∂Ċ
. (20)

Since σ is not symmetric, T (2) is not symmetric. If S(v) is assumed symmetric, it is clear in (19) that
S(e) is not symmetric.

Consider

W(e)(C,e) = W(e)(C,F −T eL) = Φ(e)(F ,eL). (21)

Then

F
∂Φ(e)

∂F
= 2F

∂W(e)

∂C
F T − ∂W(e)

∂e
⊗ e = 2F

∂W(e)

∂C
F T + p ⊗ e. (22)

Note that the Cauchy stress

σ = FT (2)F T = 2ρF
∂W(e)

∂C
F T + 2F

∂W(v)

∂Ċ
F T . (23)

Hence,

ρF
∂Φ(e)

∂F
= σ + p ⊗ e − 2F

∂W(v)

∂Ċ
F T . (24)

In view of (11) and (3) it is clear that F
∂Φ(e)

∂F
is symmetric. Using (24), we define the total stress

T = ρF
∂Φ(e)

∂F
+ FS(v)F

T + ε0

[
(e ⊗ e) − 1

2
(e · e)I

]
. (25)

Using the relation

∂(JeL · C−1eL)
∂F

= −2JF −1

[
e ⊗ e − 1

2
(e · e)I

]
(26)

we can write

JT = F
∂Ω(e)

∂F
+ JFS(v)F

T = 2F
∂Ω(e)

∂C
F T + JFS(v)F

T , (27)

where

Ω(e) = J
[
ρΦ(e) − ε0

2
eL · (C−1eL)

]
. (28)

The Lagrangian form of the polarization pL is related to p via

p = −ρF
∂Φ(e)

∂eL
= J−1FpL, (29)

where

pL = −ρ0
∂Φ(e)

∂eL
. (30)

Hence, the Lagrangian counterparts of d and p take the form [10]

dL = −∂Ω(e)

∂eL
, pL = dL − εoC

−1eL. (31)

In the case when the material is incompressible, we have J = 1, and

T = 2F
∂Ω(e)

∂C
F T + FS(v)F

T − pI, (32)

where

Ω(e) = ρΦ(e) − ε0
2

eL · (C−1eL) (33)
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and p is the Lagrange multiplier associated with the incompressibility constraint J = det(F ) = 1.

4. Spectral formulation

We assume that Ω(e) is independent of the signs of f , i.e., it depends on f ⊗ f , and for simplicity we
write

Ω(e) = Ω(a)(U ,f ⊗ f , e) = Ω(b)(U ,f , e) = Ω(b)(QUQT ,Qf , e) (34)

for any rotation Q [41], where U is the right stretch tensor with the relations C = U2. Hence, we can
express Ω(e) in terms of the isotropic invariants of the set S = {U ,f}. To obtain these isotropic invariants,
following the work of Shariff et al. [37], we simply express the components of the elements of S using the
basis {u1,u2,u3}, where ui is an eigenvector of U and

U =
3∑

i=1

λiui ⊗ ui. (35)

Hence, we can express Ω(e) in terms of e and the spectral component invariants

λi = ui · Uui = Qui · QUQT Qui, fi = ui · f = Qui · Qf . (36)

We must emphasize that the components of the vectors and tensors in the set S, with respect to an
arbitrary basis, are not, in general, invariants. Hence, we can express Ω(e) as (taking note that Ω(e)

depends on f ⊗ f):

Ω(e) = Ω(λ1,2,3, ζ1,2,3, e), (37)

where ζi = f2
i and the term such as λ1,2,3 represents the expression λ1, λ2, λ3 and the function Ω must

satisfy the P -property (see “Appendix”) as described in [31]. Since f is a unit vector, we must have the
constraint

3∑
i=1

ζi = 1. (38)

In the case of the electro-viscoelastic potential, we first note that

Ċ =
3∑

i=1

2λiλ̇iui ⊗ ui +
3∑

i�=j

Ωij(λ2
j − λ2

i )ui ⊗ uj , (39)

where Ωij = −Ωji = ui • u̇j . The electro-viscoelastic potential Wv can be expressed in terms of the
spectral invariants

λi, gij , ζi, e, (40)

where

gij = gji = ui · (Ċuj). (41)

It is clear that, in view of (38), only 11 of the invariants

λi, gij , ζi (42)

are independent. We note that if use the classical invariants [41], the number of classical invariants in the
minimal integrity basis for the set of tensors and vector

C, Ċ, f (43)

is 18 [41]. Since, the classical invariants can be expressed explicitly in terms of the spectral invariants
(42) [39], hence, it is clear that only 11 of the 18 classical invariants are independent. In [39], 7 relations
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between the classical invariants were given which, alternatively, proves that only 11 classical invariants
are independent.

To facilitate the construction of the P -property, we use the 6 independent invariants

αi = ui · (Ċui), βi = ui · (Ċ
2
ui) > 0 (44)

instead of the invariants gij . Hence the electro-viscoelastic potential is of the form

W(v) = W (λ1,2,3, α1,2,3, β1,2,3, ζ1,2,3, e), (45)

where the function W must satisfy the P -property as described in [31]. In view of (42), the mechanical
behaviour of an electro-viscoelastic material can be described using only 13 spectral invariants (including
e), where only 12 of them are independent. Due to the P -property described in [31], the constitutive
equations may be expressed in terms of a number of invariants (that depend on the spectral invariants
and material constants) that is much less than 13 as exemplified in Sect. 5 below.

4.1. Spectral components of the tensor derivatives

The evaluation of the spectral components of the stress requires the spectral components of the tensor

derivatives
∂Ω(e)

∂C
and

∂Wv

∂Ċ
. Following the work of Shariff [27], we have

∂Ω(e)

∂C
=

3∑
i,j=1

(
∂Ω(e)

∂C

)
ij

ui ⊗ uj , (46)

where (
∂Ω(e)

∂C

)
ii

=
1

2λi

∂Ω
∂λi

(there is no sum in i), (47)
(

∂Ω(e)

∂C

)
ij

=
1

λ2
i − λ2

j

(
∂Ω
∂ζi

− ∂Ω
∂ζj

)
fifj , i �= j. (48)

It is assumed that W has sufficient regularity to ensure that, as λi approaches λj , (48) has a limit. For
the electro-visco potential, we have,

∂W(v)

∂Ċ
=

3∑
i,j=1

(
ui · ∂W(v)

∂Ċ
uj

)
ij

ui ⊗ uj . (49)

We also require the relations
∂αi

∂Ċ
= ui ⊗ ui,

∂βi

∂Ċ
= ui ⊗ Ċui + Ċui ⊗ ui. (50)

4.2. Electric and displacement fields

Using the relations
∂e

∂e(L)
= f ,

∂f

∂e(L)
=

1
e
(I − f ⊗ f), (51)

we obtain the Lagrangian electric displacement [10,11]

d(L) = −∂Ω(e)

∂e(L)
= −∂Ω

∂e
f +

1
e
(I − H)T ∂Ω

∂f
, (52)

where H = f ⊗ f .
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The Lagrangian spectral components for the electric displacement d are:

d(L) = −
3∑

k=1

d(L)kuk, (53)

where

d(L)k =
∂Ω
∂e

(f · uk) +
1
e

[
(I − H)T ∂Ω

∂f

]
· uk. (54)

The electric field in the deformed configuration can simply be expressed by

d = −
3∑

k=1

λkd(L)kvk, (55)

where vk = Ruk, {v1,v2,v3} is the spectral Eulerian basis and the rotation R = FU−1.

5. Specific form

In order to give quantitative and qualitative results given in Sect. 7, we use simple specific forms for W(v)

and Ω(e) for incompressible bodies. So we propose

Ω(e) = μH1 + c(e)H2 − ε0e
2H3, (56)

where the material dependent invariants H1, H2 and H3 are defined as

H1 =
3∑

i=1

r1(λi), H2 =
3∑

i=1

ζir2(λi), H3 =
3∑

i=1

ζi
1

2λ2
i

, (57)

μ > 0 is a material constant [26]. In the absence of electric field Ω(e) should be independent of e and,
hence, we impose the condition c(0) = 0. To be consistent with infinitesimal elasticity, the following
conditions are required

r1(1) = r2(1) = r′
1(1) = r′

2(1) = 0, r′′
1 (1) = r′′

2 (1) = 2. (58)

For | λi −1 |<< 1, both r1(λi) and r2(λi) are approximately quadratic in λi −1. Extending the quadratic
behaviour to finite strain, we also impose the conditions

r1(λi), r2(λi) ≥ 0 (59)

and both derivative functions r′
1 and r′

2 are monotonically increasing. In the case of W(v), in view of (39),
we simply have

αi = 2λiλ̇i (60)

and propose the specific form

1
μ

W(v) =
ν1
2

3∑
i=1

βir3(λi) + ν2H4tr(Ċ
2
), (61)

where ν1 and ν2 are dimensionless material constants, and

tr(Ċ
2
) =

3∑
i=1

βi, H4 =
3∑

i=1

r4(λi) ≥ 0. (62)

The functions r3 and r4 have the same properties as that of the functions r1 and r2, described above. We
note that since rα (α = 1, 2, 3, 4) and c are general single-variable functions, they are much easier to handle
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than multivariable functions; this is evident when we compare our model with different experiments as
indicated in Sect. 6. It is clear from (61) that

1
μ

∂W(v)

∂Ċ
=

ν1
2

3∑
i=1

[r3(λi)(ui ⊗ Ċui + Ċui ⊗ ui)] + 2ν2H4Ċ. (63)

The internal dissipation (17) becomes

ν1
2

3∑
i=1

[r3(λi)(βi + Ċui · Ċui)] + 2ν2H4tr(Ċ
2
) ≥ 0. (64)

Since r3,H4, βi ≥ 0, hence

ν1, ν2 ≥ 0 (65)

are necessary and sufficient for the inequality (64).
The restriction on the material constant c(e) is evaluated at quasi-static deformation when Ċ = 0

using the strong ellipticity condition at the reference configuration (F = I). Mathematically, the strong
ellipticity condition for an incompressible bodies requires that (see [22])

m · [Q(n)m] > 0, m · n = 0 (66)

where m and n are unit vectors, and where, in Cartesian components, we have

(Q(n))ij =
3∑

p,q=1

(
∂2Ω(e)

∂F 2

)
piqj

npnq, (67)

where ni is a Cartesian component of n. The ellipticity condition in the reference configuration is obtained
in a similar manner as in the work of Shariff et al. [32], where

Q(n) = Q1(n) + Q2(n) + Q3(n) (68)

where

Q1(n) = μ(I + n ⊗ n), (69)

Q2(n) =
c(e)
2

[Hn ⊗ n + n ⊗ Hn + (n · Hn)I + H], (70)

Q3(n) = −ε0e
2(n ⊗ Hn + Hn ⊗ n + H). (71)

In this section, we deal with problems that can be considered as two dimensional, we only consider the
case for m and n are in a plane. Take note that when F = I, the basis [u1,u2,u3] is arbitrary. the
necessary and sufficient condition for (66) is

b1 > 0 and 4b1b2 > b3, (72)

where

b1 = μ +
c(e)
2

(f2
1 + f2

2 ) − ε0e
2f2

2 , (73)

b2 = μ +
c(e)
2

(f2
1 + f2

2 ) − ε0e
2f2

1 , (74)

b3 = 2ε0e
2f1f2. (75)

Using (9)2, (52) and (54), the Eulerian electric displacement and polarization then simply take the
forms

d = −F
∂ℵ

∂e(L)
+ ε0e, p = −F

∂ℵ
∂e(L)

, (76)
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where

ℵ =
3∑

i=1

c(e)ζir2(λi). (77)

The components d(L)k (54) simply take the form

d(L)k = (f • uk)

[
∂ℵa

∂e
+

2
e

(
∂ℵa

∂ζk
−

3∑
i=1

∂ℵa

∂ζi
ζi

)]
, (78)

where ℵa = ℵ − ε0
∑3

i=1 ζi
e2

2λ2
i

.

6. Comparison with experimental data

In this section, we compare our theory with experiments on three different types of materials; the elastic
experiment of Jones and Treloar biaxial data [15], the viscoelastic experiment of soft biological tissues [24]
and the electro-viscoselastic experiment of Menhert et al. [20]. We note that values of the ground-state
constants used to curve fit the experiments satisfy the inequalities (65) and (72).

6.1. Jones and Treloar biaxial data [15]

In the absence of an electric field and in quasi-static deformations (Ċ = 0), we have T = σ, and for an
incompressible biaxial deformation of a thin (in the 3-direction) purely elastic solid [26],

U = λ1u1 ⊗ u1 + λ2u1 ⊗ u1 + λ3u3 ⊗ u3, (79)

σ =
3∑

i=1

σiui ⊗ ui, (80)

and

σ1 − σ2 = μ[λ1r
′
1(λ1) − λ2r

′
1(λ2)], (81)

where σi is a principal component of the Cauchy stress σ and σ3 = 0. Following the work of Shariff [26],
we use the function

r1(λ) = ln(λ)2 + κ1

[∫ λ

1

es − 1
s

ds + λ − 2 ln(λ) − 1

]
+ κ2

(∫ λ

1

1 − es

s
ds − λ + 1

)
, (82)

for the rubberlike material, where κ1 and κ2 are dimensionless parameters. In Fig. 1 the theoretical
curves σ1 − σ2 versus λ1 at fixed λ2 is compared with the biaxial experimental data of Jones and Treloar
experiment data [15] using the values

μ = 0.4MPa, κ1 = 2.4669, κ2 = 0.3771. (83)

It is clear in Fig. 1 the our theory fits the experimental data well.
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Fig. 1. Comparison of theory with the biaxial experimental data of Jones and Treloar [15]. Quasi-static deformation in the

absence of electric field e = 0 and Ċ = 0

6.2. Simple tension viscoelastic experiment data of soft biological tissues [24]

For a simple tension stretch in the 3-direction of a rectangular strip, we have,

F =
1√
λ

(g1 ⊗ g1 + g2 ⊗ g2) + λg3 ⊗ g3, (84)

Ċ = − λ̇

λ
(g1 ⊗ g1 + g2 ⊗ g2) + 2λλ̇g3 ⊗ g3, (85)

where λ is the axial strain and {g1, g2, g3} is a fixed orthonormal basis. The axial component of second-
Piola Kirchhoff stress

τ =
μ

λ2
[λr′

1(λ) − 1√
λ

r′
1(

1√
λ

) + sv1 − sv2], (86)

where

sv1 = 4λ3λ̇[ν1r3(λ) + 2ν2H4], (87)

sv2 = −2
λ̇

λ2

[
ν1r3(

1√
λ

) + 2ν2H4

]
. (88)

For this type of soft tissue biological materials, following the work of Shariff [29,34] on passive myocardium,
we use, for simplicity, the functions

r1 = r3 = r4 = s2, (89)

where

s(x) =
2

ρ0
√

π
erf−1(ρ0 ln(x)) + ρ1(e1−x + x − 2), (90)
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Fig. 2. Comparison of theory with the axial experimental biological soft tissues of Pioletti and Rakotomanana [24]. The
axial stress is the second-Piola Kirchhoff stress. λ is the axial strain. The curves for strain rates h = 0.6%/s and h = 24%/s
are fitted in an ad-hoc manner. The curves for strain rates h = 11%/s and h = 17%/s are predicted using fitted material
constant values

erf−1(x) is the inverse error function and, ρo and ρ1 are dimensionless material parameters.
In Fig. 2, we fit the experimental data of Pioletti and Rakotomanana [24] with the ad-hoc values

ρ0 = 4.0, ρ1 = 10, μ = 2.0MPa, ν1 = ν2 = 0.05, (91)

for strain rates h = 0.6%/s and h = 24%/s. Using the values given in (91), we predict the data for
h = 11%/s and h = 17%/s. From Fig. 2, it seems that our simple constitutive equation reasonably
describes the mechanical behaviour of a short-term memory response visco-elastic material.

6.3. Axial tension of a thin electro-viscoelastic VHB 4905TM sheet [20].

The experiment of Menhert et al. [20] uses a thin rectangular strip of VHB 4905TM polymer with thickness
500 microns, width 70 mm and length 100 mm. In view of this, we consider the undeformed configuration
(dimensions are in metres)

−2.5 × 10−4 ≤ X ≤ 2.5 × 10−4, −3.5 × 10−2 ≤ Y ≤ 3.5 × 10−2,

−0.05 ≤ Z ≤ 0.05. (92)

The strip is clamped at Z = −0.05 and Z = 0.05 and stretch in the Z-direction. Although the deformation
is not homogeneous, but it is mainly homogeneous near Z = 0. Hence, near Z = 0 we approximate the
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deformation as a homogeneous axial tension deformation and the deformation gradient is given by (84).
Details of the experiment are given in [20] and hence, we will not discuss them here. The area of the
undeformed surface, where the force acts, is 0.35 × 10−4 m2 and the electric field is

e = η g1, (93)

where η =
V

5 × 10−4
V/m and V is the applied voltage. For this material we use

r′
1(x) =

ln(x) +
e(a1(x−1)) − 1

a1
+

a2

100
erf(100(x − 1))

1 +
a2√
π

, (94)

r2(x) = (x − 1)2, c(e) = c1e
2, r3(x) = r4(x) =

√
πerf(1000(x − 1))r′

1(x)
4000x2

, (95)

where a1, a2 are dimensionless parameters, erf is the error function and e2 = eL · eL =
η2

λ
. The Cartesian

components of the Maxwell stress outside the body is

(T m)11 =
ε0η

2

2
= −(T m)22 = −(T m)33 (96)

and,in view of

σ11 = (T m)11, (97)

the axial total stress is given by

σ33 = λr′
1(λ) − λ1r

′
1(λ1) − η2(

c1λ1r
′
2(λ1)

λ
+

ε0
2

), (98)

where σ11 and σ33 are Cartesian components of the total stress T . The applied force TF acting on the
material is

TF =
3.5 × 10−5σ33

λ
. (99)

We do an ad-hoc curve fitting of Menhert et al. [20] experiment with the constant values

μ = 0.55MPa, a1 = −4, a2 = 7, ν1 =
2000√

π
, ν2 =

4√
π

, c1 = −0.35 × 10−9 F/m. (100)

In Fig. 3, we curve fit the loading data of Menhert et al. [20] in an ad-hoc manner. From the figure,
the simple functions in (94) and (95), seem able to model the loading experiment results of Menhert et
al. [20].

7. Boundary value problems

For obtaining the numerical results in this section, we use r1 in (82) and the material-constant values in
(83) and, for simplicity, we use

r2(x) = r3(x) = r4(x) = (x − 1)2, c(e) = c1e
2, (101)

ν1 = ν2 = 0.001, c1 = 10−10 F/m. (102)

As well as this, for simplicity we only consider pure homogeneous deformations, and homogeneous distri-
butions for the electric field. Two problems are studied, namely the simple tension of a cylinder and the
simple shear of a slab, both at constant strain rates, using the proposed specific forms given in Sect. 5.
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Fig. 3. Force versus λ for various values of strain rate h = λ̇ and applied voltages

7.1. Simple tension of a cylinder

Here, we consider a solid cylinder and the deformation

r =
1√
λz

R, θ = Θ, z = λzZ, (103)



ZAMP A nonlinear spectral rate-dependent constitutive equation Page 15 of 22 126

Fig. 4. Plot of the total axial stress (113) versus λz when the electric field e = 0 V/m for various values of strain rate

h = λ̇z

where (r, θ, z) and (R,Θ, Z) are the polar coordinate in the deformed and undeformed configurations,
respectively. All tensor and vector components in this section are defined with respect to the cylindrical
polar basis {er,eθ,ez}. We have

F ≡

⎛
⎜⎜⎜⎝

1√
λz

0 0

0
1√
λz

0

0 0 λz

⎞
⎟⎟⎟⎠ , (104)

where λz > 0 is the uniaxial stretch that depends on time t. The principal stretches are

λ1 = λr =
1√
λz

, λ2 = λr =
1√
λz

, λ3 = λz, (105)

and the Lagrangian spectral vectors are given as

u1 = er, u2 = eθ, u3 = ez. (106)

Also

C ≡

⎛
⎜⎜⎜⎝

1
λz

0 0

0
1
λz

0

0 0 λ2
z

⎞
⎟⎟⎟⎠ ,
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Fig. 5. Plot of the total axial stress (113) versus λz for various values of electric field e and strain rate h = λ̇z

Ċ ≡

⎛
⎜⎜⎜⎜⎝

α1 = − λ̇z

λz
0 0

0 α2 = − λ̇z

λz
0

0 0 α3 = 2λzλ̇z

⎞
⎟⎟⎟⎟⎠ . (107)

Here, we consider the case e(L) = eez, where e is a constant. Hence, f = ez, the condition Curle(L) = 0
is automatically satisfied and

f1 = f2 = 0, f3 = 1, βi = α2
i . (108)

The Lagrangian components of the electric displacement are simplified to

d(L)1 = d(L)2 = 0, d(L)3 = 2e

[
3∑

i=1

c1ζir2(λi) − ε0

3∑
i=1

ζi
1

2λ2
i

]
. (109)

It is clear that d(L)3 is independent of X and hence Div(d(L)) = 0 is automatically satisfied. The electric
field is

e =
e

λz
ez. (110)

The non-zero Maxwell stress components in vacuo are

(TM)zz =
ε0e

2

2λ2
z

= −(TM)rr = −(TM)θθ. (111)
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Fig. 6. Plot of total shear stress T12 versus the amount of shear γ when h = γ̇ = 0/s

Let τrr, τθθ, τzz be the non-shear cylindrical polar components of the total stress T . If there is no mechan-
ical stress on the cylindrical free surface, we have for the total Cauchy stress at the free surface

τrr = −ε0e
2

2λ2
z

. (112)

We then have
τzz

μ
= λzr

′
1(λz) − λ1r

′
1(λ1) + c1e

2λzr
′
2(λz) +

ε0e
2

2λ2
z

+ svz − svr, (113)

where

svz = 4λ3
zλ̇z[ν1r3(λz) + 2ν2H4], (114)

svr = −2
λ̇z

λ2
z

[
ν1r3(

1√
λz

) + 2ν2H4

]
. (115)

It is clear from the constitutive equation that, since λ1 = λ2 (and also from the equilibrium equation),
that

τrr = τθθ = −ε0e
2

2λ2
z

. (116)

In Fig. 4 the plot of the total axial stress (113) versus λz when the electric field e = 0 V/m for various
values of strain rate λ̇z is depicted. It is clear from Fig. 4 that, as expected, the magnitude of the total
axial stress increases as the strain rate λ̇z increases. The behaviour of the total axial stress (113) for
various values of electric field e and strain rate λ̇z is depicted in Fig. 5. From Fig. 5, both the presence
of an electric field and strain rate increase the magnitude of the total axial stress.
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7.2. Simple shear of a slab

In this section, we give results for a simple shear deformation, where the principal directions ui change
continuously during deformation. Here, all the components of vectors and tensors are relative to a fixed
Cartesian system. Consider a simple shear for a slab, where the deformation gradient is of the form

F ≡
⎛
⎝1 γ 0

0 1 0
0 0 1

⎞
⎠ , (117)

where γ > 0 is the amount of shear that depends on time t. We then have,

C ≡
⎛
⎝ 1 γ 0

γ 1 + γ2 0
0 0 1

⎞
⎠ , Ċ ≡

⎛
⎝ 0 γ̇ 0

γ̇ 2γγ̇ 0
0 0 0

⎞
⎠ . (118)

The spectral invariants of C are obtained using the following methodology. Let θ denote the orientation
(in the anticlockwise sense relative to the 1-axis) of the in plane Lagrangean principal axes. The angle θ
is restricted accordingly by the following (see [27])

π

4
≤ θ <

π

2
. (119)

The principal directions are u1 ≡ [c, s, 0]T , u2 ≡ [−s, c, 0]T and u3 ≡ [0, 0, 1]T , where c = cos(θ) and
s = sin(θ). It can be easily shown (see [27]) that the principal stretches take the values

λ1 =
γ +

√
γ2 + 4
2

≥ 1, λ2 =
1
λ1

=

√
γ2 + 4 − γ

2
≤ 1, λ3 = 1 (120)

and

c =
1√

1 + λ2
1

, s =
λ1√

1 + λ2
1

, c2 − s2 = −γcs. (121)

We consider the case when the electric field e(L) ≡ [0, e, 0]T , where e is constant. Hence,

ζ1 = ss, ζ2 = c2, ζ3 = 0 (122)

and Curle(L) = 0. The nonzero components of the Maxwell stress in vacuo are

(T M )22 =
ε0e

2

2
= −(T M )11 = −(T M )33. (123)

The total shear stress

T12 = σ
(e)
12 + σ

(v)
12 , (124)

where

σ
(e)
12 = 2[l1(γs2 + cs) + l2(γc2 − cs) + l4γcs], (125)

where

lα =
1

2λα

{
μr′

1(λα) + e2ζα

[
c1r

′
2(λα) +

εo

λ3
α

]}
, α = 1, 2, (126)

l4 = e2
{

c1[r2(λ1) − r2(λ2)]
λ2
1 − λ2

2

+
ε0

2λ2
1λ

2
2

}
(127)

and

σ
(v)
12 = 2μ[P1 + 2ν2H2(γ̇ + 2γ2γ̇)], (128)

P1 =
ν1
2

{
r3(λ1)[γ̇(1 + 4csγ + 4γ2s2)] + r3(λ2)[γ̇(1 − 4csγ + 4γ2c2)]

}
. (129)
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Fig. 7. Plot of total shear stress T12 versus the amount of shear γ when e = 0 V/m

Fig. 8. Plot of total shear stress T12 versus the amount of shear γ for various values h = γ̇ and e
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In Fig. 6 we see that at γ̇ = 0/s, the magnitude of the shear stress increases as the electric field e
increases. In the case when the electric field is absent, e = 0 V/m, it is indicated in Fig. 7 that the
magnitude of the shear stress increases as the value γ̇ increases. In Fig. 8 we see that both the presence
of an electric field and shear rate γ̇ have the effect of increasing the magnitude of the shear stress.

8. Conclusion

In this article a model for short-term memory response visco-electro-elastic solids has been presented,
where the scalar potentials that are used to obtained the constitutive equations, are defined in terms
of spectral invariants. The use of such invariants, which have clearer physical meanings in comparison
with the classical invariants [41], permits to obtain simple but general expressions for the stresses and
the dependent electrical variable. In future works we will consider additionally the presence of one and
two preferred directions (transversely isotropic body and two directions elasticity), which are interesting
from the point of view of applications in biomechanics, and also in the modelling of some electro-active
polymers, where a rubber-like material is filled with electro-active particles that are aligned in a preferred
direction (chains of particles) [4].

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Appendix: P -property

The description of the P -property uses the eigenvalues (λi) and eigenvectors (ui) of the symmetric tensor
U . A general anisotropic scalar function Φ, such as that given in (37) and (45), where its arguments are
expressed in terms spectral invariants with respect to the basis {u1,u2,u3} can be written in the form

Φ = W̃ (λ1, λ2, λ3,u1,u2,u3), (130)

with the symmetrical property

W̃ (λ1, λ2, λ3,u1,u2,u3) = W̃ (λ2, λ1, λ3,u2,u1,u3) = W̃ (λ3, λ2, λ1,u3,u2,u1). (131)

In view of the non-unique values of ui and uj when λi = λj , a function W̃ should be independent of
ui and uj when λi = λj , and W̃ should be independent of u1, u2 and u3 when λ1 = λ2 = λ3. Hence,
when two or three of the principal stretches have equal values the scalar function Φ must have any of the
following forms

Φ =
{

W(a)(λ, λk,uk), when λi = λj = λ, i �= j �= k �= i
W(b)(λ), when λ1 = λ2 = λ3 = λ

(132)

As an example of (132), consider Φ = a • Ca =
3∑

i=1

λ2
i (a • u i)2, where a is a fixed unit vector and

∑
i=1

(a • u i)2 = 1. If λ1 = λ2 = λ, we have Φ = W(a)(λ, λ3,u3) = λ2 + (λ2
3 − λ2)(a • u3)2 and in the case

of λ1 = λ2 = λ3 = λ, Φ = W(b)(λ) = λ2. Note that, for example, C =
3∑

i=1

λ2
iu i ⊗ u i (or U ) and all the

classical invariants described in Spencer [41] , satisfy the P -property. In Refs. [35] and [40], the P -property
described here is extended to non-symmetric tensors such as the two-point deformation tensor F .
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