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ESTEBAN JAVIER AGUILERA MARINOVIC

PROFESOR GUÍA:
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MAGNONES EN FERROMAGNETOS COLINEALES DE BAJA DIMENSIONALIDAD

Esta tesis se centra en el estudio teórico de los magnones en el contexto de una red
ferromagnética colineal en una y dos dimensiones. Este estudio se dedicó a dos modelos
diferentes. El primer modelo busca comprender el comportamiento de los magnones en una
monocapa de CrI3. Mientras el segundo corresponde a un modelo de juguete unidimensional
desarrollado para comprender el acoplamiento magnón-fonón que puede surgir debido a la
existencia de un campo magnético que vaŕıa en el espacio.

En el primer caṕıtulo, se presentan los antecedentes matemáticos necesarios para compren-
der los dos modelos analizados en esta tesis. El tema más crucial cubierto en este caṕıtulo
es la transformación de Holstein-Primakoff y su aplicación en la red de esṕın más general
que encapsula cada sistema discutido en esta tesis. En este caṕıtulo, también se resumen los
métodos numéricos utilizados para resolver las enerǵıas propias y los estados propios de los
sistemas bosónicos.

El segundo caṕıtulo está dedicado al estudio de los magnones en una capa bidimen-
sional de CrI3. La descripción teórica de este sistema se realiza a través del modelo de
Heisenberg-Kitaev, que se propuso recientemente como la teoŕıa subyacente que describe su
fenomenoloǵıa. En este trabajo, se demuestra constructivamente que los magnones tienen
una topoloǵıa no trivial, y se realiza una predicción teórica del efecto Hall térmico, donde
se muestra que el signo de la conductividad térmica de Hall depende de la temperatura del
sistema.

En el último caṕıtulo, se estudia la interacción entre magnones y fonones. La caracteŕıstica
esencial de la teoŕıa detrás de este caṕıtulo es que la forma de un campo magnético, que vaŕıa
en el espacio podŕıa controlar el acoplamiento entre magnones y fonones. En este caṕıtulo,
se utilizan los datos conocidos del YIG para mostrar qué gradiente de campo magnético se
necesita para obtener resultados comparables a los observados naturalmente en el mismo
material debido al acoplamiento descrito fenomenológicamente por Kittel.
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MAGNONS IN LOW-DIMENSIONAL COLLINEAR FERROMAGNETS

This thesis is focused on the theoretical study of magnons in the context of one and
two-dimensional collinear ferromagnetic lattice. This study was devoted to two different
models. The first model seeks to understand the behavior of magnons in a monolayer of
CrI3. The second model is a unidimensional toy-model developed to understand magnon-
phonon coupling that can emerge due to the existence of a space-varying magnetic field.

In the first chapter, the mathematical background needed to understand the two models
analyzed in this thesis is introduced. The most crucial topic covered in this chapter is the
Holstein-Primakoff transformation and its application in the most general spin-lattice that
encapsulates every system discussed in this thesis. In this chapter, the numerical methods
used to solve the eigenenergies and eigenstates of bosonic systems are also overviewed.

The second chapter is devoted to the study of magnons in a bidimensional layer of CrI3.
The theoretical description of this system is done through the Heisenberg-Kitaev model,
which was recently proposed as the underlying theory that describes its phenomenology. In
this work, it is constructively demonstrated that the magnons have non-trivial topology, and
a theoretical prediction of the thermal Hall effect is performed, where it is shown that the
sign of the thermal Hall conductivity depends on the temperature of the system.

In the last chapter, the interaction between magnons and phonons is studied. The essential
feature of the theory behind this chapter is that the shape of a space-varying magnetic field
could control the coupling between magnons and phonons. In this chapter, it is used data of
YIG to show what magnetic field gradient is needed to obtain results comparable to the ones
observed naturally in the same material due to the coupling described phenomenologically
by Kittel.
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Chapter 1

Introduction

1.1 Heisenberg Model

Throughout this thesis, the work will be devoted to the study of collinear ferromagnets.
These materials are magnetized, with a ground state in which every magnetized atomic site
has a parallel magnetization relative to each other. The Heisenberg model [1] describes these
materials effectively. This model considers that each site i, with spin Si, is coupled to each
other site j through exchange interaction Jij. Mathematically, the Hamiltonian of the system
is:

H = −1

2

∑
i,j

JijSi · Sj − µBg
∑
i

Bi · Si . (1.1)

In the literature [2], the Heisenberg model is usually understood just as the first term of
equation 1.1, and it may also have the restriction that only nearest-neighboring interactions
are considered. In this thesis, we will refer to the Heisenberg model to the systems that are
described by stated Hamiltonian, where the second term is the Zeeman energy due to an
external magnetic field Bi is also included [3].

Materials described by the proposed Hamiltonian can be studied either from a classical or
quantum point of view. In the first case, the time evolution of the material’s magnetization
is given by the Landau-Lifschitz-Gilbert equation [4]:

dM i

dt
= −γM i × hi − λM i ×

(
M i × hi

)
, (1.2)

where,

hµi = − δH
δMµ

i

(1.3)

and
M i = g

q

2m
Si . (1.4)

Alternatively, from the quantum mechanical perspective, the system’s dynamics are de-
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scribed employing Heisenberg’s picture [3]:

dSi
dt

=
i

~
[
H,Si

]
. (1.5)

Depending of the context, either equation 1.2 or equation 1.5 can be used to describe
a material’s dynamics. This thesis will not be about the resolution of the exact problem,
meaning that the presented methods will not be employed. Instead, the focus of the study
will be the behavior of quantized spin waves, called magnons.

1.2 Holstein-Primakoff

This section is devoted to the introduction of the Holstein-Primakoff transformation [5],
which allows to transform spin variables such as the ones present in Hamiltonian 1.1 to vari-
ables that describe magnons. Before formally introducing the transformation, its important
to remark that its main motivation is that the quantization of classical waves is achieved
through second quantization [6]. In particular, they are described by bosoninc creation and
annihilation operators, where one of the most common examples are photons [7] and phonons
[2]. Following this spirit, the Holstein-Primakoff transformation takes us from spin operators
Si to bosonic operators ai and a†i , which describe the creation and annihilation of magnons
in site i.

As it was previously mentioned, magnonic operators are bosons. This means that they
must obey the commutation relations proper of bosons [8]:[

ai, aj
]

= 0 (1.6a)[
ai, a

†
j

]
= δi,j . (1.6b)

And, in the case of our original spin operators Si, they must obey the angular momenta
commutation relations [9]: [

Sαi , S
β
i

]
= iεαβγS

γ
i . (1.7)

Where summation over repeated indices is implied and it will be assumed throughout the
thesis, unless stated otherwise.

To express spin operators as bosonic creation and annihilation operators, it is crucial that
the corresponding commutation relations are preserved. In the seminal work by Holstein and
Primakoff [5], it is shown that the transformation that preserves both commutation relations
is:

S+
i = Sxi + iSyi =

√
2S − a†iaiai (1.8a)

S−i = Sxi − iSyi = a†i

√
2S − a†iai (1.8b)

Szi = S − a†iai . (1.8c)

Where S is the total spin of the site i.

As we have achieved our goal of transforming spin variables to bosonic variables, the
most confortable spanning of the Hilbert space will not longer be the eigenvector of the spin
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operators. The Hilbert space is completely spaned by a reduced Fock space, which is described
by the eigenvectors |ni〉 of the number operator a†iai with eigenvalues ni ∈ {0, 1, ..., 2S}:

a†iai |ni〉 = ni |ni〉 . (1.9)

With the Holstein-Primakoff transformation defined, it is time to be more accurate about
its interpretation. From equation 1.8 it is direct to see that the operators a†i and ai represent
creation and annihilation of bosonic excitations away from the spin eigenstate |s, s〉. As it will
be shown later, the excitations are not localized in the material. Thus, they are propagating
through the material, giving them a wave-like behavior as it was expected from the initial
intuition we developed [5].

Looking closely into equation 1.8, it is not clear how this may help to understand the
behavior of magnons in the material, because of the difficulty of working with the square-
root term. This problem can be sorted out if we work in the low magnon nuber limit,
where we will have that ni << 2S. Meaning that the operator a†iai can be treated as a

small perturbation, allowing us to expand the term
√

2S − a†iai in series. To first order, the

Holstein-Primakoff transformation can be approximated to:

S+
i ≈
√

2Sai (1.10a)

S−i ≈
√

2Sa†i (1.10b)

Szi = S − a†iai . (1.10c)

An important detail that was not mentioned in the process to obtain equation 1.10, is that
it was implicitly assumed that classicaly, the magnetization is constant and pointing in the ẑ
throghout the whole material. To extend this approximation to a material with a magnetic
texture S0(r) or a noncollinear (anti)ferromagnet, a local system of coordinates {x̂′i, ŷ′i, ẑ′i}
can be defined at each site i in such a way that ẑ′i = S0(ri)/|S0(ri)| [10]. Mathematically,
this change of coordinates can be simply introduced by means of rotation matrices:

S′i =

cos(θi) 0 − sin(θi)
0 1 0

sin(θi) 0 cos(θi)

 ·
 cos(φi) sin(φi) 0
− sin(φi) cos(φi) 0

0 0 1

 · Si (1.11)

where the angles θi and φi are the spherical angles that describe spin texture locally: S0(ri) =
S
(

sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)
)
. For a more explicit discossion on this procedure

please check reference [11].

1.3 Magnons in a One-dimensional Lattice

We will now proceed to show explicitly how the Holstein-Primakoff transformation allows
us to understand the properties of magnons. For this, we will start by the simplest case we
can consider, which is a one-dimensional spin-lattice with lattice constant a, as it is shown
in figure 1.1. Mathematically, we will work in the particular case where Hamiltonian 1.1
consists of nearest-neighbor interactions. This means that the exchange interaction is given
by:
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Jij =

{
J if i = j ± 1

0 ∼ (1.12)

i− 2

J

i− 1

J

i

J

a

i+ 1

J

i+ 2

Figure 1.1: One-dimensional spin lattice with nearest-neighbor exchange coupling J and
interatomic distance a. Magnons are studied around the equilibrium in the ẑ direction.

Replacing the exchange interaction in equation 1.12 to the original Hamiltonian (equa-
tion 1.1), one obtains:

H = −J
∑
i

Si · Si+1 − µBg
∑
i

B · Si . (1.13)

Rewriting equation 1.10:

Sxi =

√
S

2

(
ai + a†i

)
, (1.14a)

Syi = −i
√
S

2

(
ai − a†i

)
, (1.14b)

Szi = S − a†iai , (1.14c)

and replacing them into equation 1.14 we obtain explicitly a Hamiltonian that allows us to
directly study its linear magnons:

H(m) = −JS
2

∑
i

[(
ai + a†i

)(
ai+1 + a†i+1

)
−
(
ai − a†i

)(
ai+1 − a†i+1

)
− 2a†iai

− 2a†i+1ai+1

]
− µBg

∑
i

[√
S

2
Bx
(
ai + a†i

)
− i

√
S

2
By
(
ai − a†i

)
−Bza†iai

]
. (1.15)

Reordering:

⇒ H(m) =
∑
i

[
− JS

(
a†i+1ai + a†iai+1

)
+
(

2JS + µBgB
z
)
a†iai

−
√
S

2
µBgB

x
(
ai + a†i

)
+ i

√
S

2
µBgB

y
(
ai − a†i

)]
. (1.16)
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Reviewing what was done to obtain Hamiltonian 1.16, it is important to note that to
obtain real magnons the magnetization in ẑ, must be a classical stable equilibrium of the
system. Otherwise, this magnons will decay as time passes and cease to exists. In this
particular case, it is clear that the only way in which the ẑ-direction is a stable equilibrium
of the system is by having a magnetic field pointing in the same direction, which in turn
cancels every linear term in Hamiltonian 1.16. This is no coincidence, as for every magnetic
Hamiltonian its magnonic expansion around a stable texture will always give as a result that
linear terms are zero. With this assumption, the Hamiltonian reads

H(m) =
∑
i

[
− JS

(
a†i+1ai + a†iai+1

)
+
(
2JS + µBgB

z
i

)
a†iai

]
. (1.17)

As with any Hamiltonian in quantum mechanics, we are interested in diagonalizing Hamil-
tonian 1.17. To accomplish this, we will make use of Bloch’s theorem, which in terms of
creation and annihilation operators can be expressed as

ai =
1√
N

∑
k

ake
ikRi , (1.18)

where Ri = ia.

Replacing equation 1.18 into equation 1.17 we obtain

H(m) =
∑
k

[
2JS

(
1− cos(ka)

)
+ µBgB

z

]
a†kak . (1.19)

From equation 1.19 it is direct that the dispersion relation is:

εk = 2JS
(

1− cos(ka)
)

+ µBgB
z , (1.20)

result that is ploted in figure 1.2.
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Figure 1.2: Dispersion relation for a one-dimensional spin lattice with nearest-neighbor
Heisenberg exchange as obtained in equation 1.20. To obtain this plot the values used were
S = 1, J = 1 and Bz = 0.

1.4 Magnons in Generalized Lattice

Throughout this thesis, we will work with different lattices with different basis. For this
purpose, it is convenient to develop a general derivation of the Hamiltonian described by a
basis of m sites, each with spin Sj, with j ∈ {0, 1, ...,m − 1}. Each site that composes the
basis of our lattice, there will exist an external magnetic field Bj and an easy-axis anisotropy
Aj. Between two sites, described by the number of their unit cell i, i′ ∈ {0, 1, ...N − 1} and
specific site within our basis j, j′ ∈ {0, 1, ...m − 1} there will exist an anisotropic exchange

given by a tensor J jj
′αβ

i−i′ , where we will use i− i′ ≡ Ri−Ri′ and α, β ∈ {x, y, z}. For the sake
of completeness, we will also take into account a Dzyaloshinskii-Moriya interaction (DMI)

term Djj′

i−i′ , even though we will make use of it in the rest of the thesis. Mathematically
speaking, this Hamiltonian is given by:

H = −1

2

∑
ii′jj′

SαijJ
jj′αβ
i−i′ Sβi′j′ +

1

2

∑
ii′jj′

Djj′

i−i′ ·
(
Sij × Si′j′

)
−
∑
ij

Aj

(
Szij

)2
− µBg

∑
ij

Bj · Sij . (1.21)

From equation 1.21, it is desired to obtain a Hamiltonian for magnons in k-space using
the same method developed in the previous section for the one-dimensional case. The first

6



step to achieve this is to use the linear Holstein-Primakoff transformation in its most general
form, which is given by:

Sxij ≈
√
S

2

(
a†ij + aij

)
(1.22a)

Syij ≈ i

√
S

2

(
a†ij − aij

)
(1.22b)

Szij = S − a†ijaij . (1.22c)

Replacing the Holstein-Primakoff transformation into equation 1.21, it is obtained that
the magnonic Hamiltonian in real space is:

H(m) = −
∑
ii′jj′

[
SJ jj

′xx
i−i′

4

(
a†ij + aij

)(
a†i′j′ + ai′j′

)
+ i

SJ jj
′xy

i−i′

4

(
a†ij + aij

)(
a†i′j′ − ai′j′

)
+ i

SJ jj
′yx

i−i′

4

(
a†ij − aij

)(
a†i′j′ + ai′j′

)
− SJ jj

′yy
i−i′

4

(
a†ij − aij

)(
a†i′j′ − ai′j′

)
− SJ jj

′zz
i−i′

2

(
a†ijaij + a†i′j′ai′j′

)]
+
∑
ii′jj′

[
i
SDjj′z

i−i′

4

((
a†ij + aij

)(
a†i′j′ − ai′j′

)
−
(
a†ij − aij

)(
a†i′j′ + ai′j′

))]
+
∑
ij

(
2SAj + µBgB

z
j

)
a†ijaij (1.23)

which, can be reordered as

H(m) = −S
4

∑
ii′jj′

[
Γjj

′−
i−i′ a

†
ija
†
i′j′ +

(
Γjj

′+
i−i′ − 2iDjj′z

i−i′

)
a†ijai′j′ +

(
Γ̄jj

′+
i−i′ + 2iDjj′z

i−i′

)
aija

†
i′j′

+ Γ̄jj
′−

i−i′ aijai′j′ − 2J jj
′zz

i−i′

(
a†ijaij + a†i′j′ai′j′

)]
+
∑
ij

(
2SAj + µBgB

z
j

)
a†ijaij . (1.24)

Where, the following variables were defined:

Γjj
′±

i−i′ = J jj
′xx

i−i′ ∓ iJ jj
′xy

i−i′ + iJ jj
′yx

i−i′ ± J jj
′yy

i−i′ (1.25a)

Γ̄jj
′±

i−i′ = J jj
′xx

i−i′ ± iJ jj
′xy

i−i′ − iJ jj
′yx

i−i′ ± J jj
′yy

i−i′ . (1.25b)

Using Bloch’s theorem for the creation and annihilation operators and the discrete Fourier
transform for the anisotropic exchange and DMI:

aij =
1√
N

∑
k

akje
ik·Rij (1.26a)

J jj
′αβ

i−i′ =
1

N

∑
k

J jj
′αβ

k eik·(Rij−Ri′j′ ) (1.26b)

Djj′α
i−i′ =

1

N

∑
k

Djj′α
k eik·(Rij−Ri′j′ ) , (1.26c)
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can be used to obtain the Hamiltonian in k-space:

H(m) = −S
4

∑
jj′k

[
Γjj

′−
k a†kja

†
−kj′ + Γ̄jj

′−
k a−kjakj′ +

(
Γjj

′+
k − 2iDjj′z

k

)
a†kjakj′

+
(

Γ̄jj
′+

k + 2iDjj′z
k

)
a−kja

†
−kj′ − 2J jj

′zz
0

(
a†kjakj + a†kj′akj′

)]
+
∑
jk

(
2SAj + µBgB

z
j

)
a†kjakj . (1.27)

Where the constants Γjj
′±

k and Γ̄jj
′±

k are defined through the inverse Fourier transform:

Γjj
′±

k =
∑
i−i′

Γjj
′±

i−i′ e
−ik·(Rij−Ri′j′ ) (1.28a)

Γ̄jj
′±

k =
∑
i−i′

Γ̄jj
′±

i−i′ e
−ik·(Rij−Ri′j′ ) (1.28b)

Djj′α
k =

∑
i−i′

Djj′α
i−i′ e

−ik·(Rij−Ri′j′ ) . (1.28c)

To conclude this section, it is important to note that we have reduced the problem of
finding the Hamiltonian in momentum space in to simply using equation 1.28 and replacing
that result in equation 1.27. It is also worth noting, that in general, the Hamiltonian presented
in equation 1.27 will not be diagonal, but one of our main interests throughout this thesis
will be to find the eigenenergies and the associated eigenvectors. In the next section, we will
introduce two different methods to obtain those values and make emphasize on the numerical
implementation of both routines.

1.5 Diagonalization of a Quadratic Bosonic Hamilto-

nian

To introduce the diagonalization routined, we will be working with the most general
quadratic Hamiltonian composed purely of m bosonic operators:

H =
∑
i,j

(
Tijα

†
iαj +

1

2

(
Uijαiαj + U∗ijα

†
iα
†
j

))
(1.29a)

=
1

2

(
α† α

)( T U
U∗ T ∗

)(
α
α†

)
, (1.29b)

where α =
(
α0, α1, ..., αm−1

)
is a vector composed of the m bosonic operators.

We will understand diagonalization as the procedure through which m new bosonic op-
erators γi are obtained such that they are linear combinations of the original creation and
annihilation operators and the Hamiltonian takes the form [12]:

H =
m−1∑
j=0

ωjγ
†
jγj . (1.30)
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As we are dealing with a Hamiltonian that is purely described on bosons, the new operators
γi must also satisfy the bosonic commutation relations. We will now show two methods
in which we can obtain the diagonalization, both of which are different but equally valid
whenever their assumptions are satisfied.

1.5.1 Bogoliubov Transformation

As it has already been stated, our goal is to find operators γi such that:

γi = Aijαj +Bijα
†
j

γ†i = B∗ijαj + A∗ijα
†
j

} (
γ
γ†

)
= T

(
α
α†

)
. (1.31)

This, combined with the requirement that new operators also satisfies the bosonic commu-
tation relations, we obtain that our solution must be restricted to:

AA† −BB† = 1 (1.32a)

ABᵀ −BAᵀ = 0 . (1.32b)

Where the first restriction of equation 1.32 comes from the fact that [γi, γ
†
j ] = δi,j and the

second comes from [γi, γj] = 0. Both of this restrictions can be summarized in a single
equation: (

A B
B∗ A∗

)(
1 0
0 −1

)(
A† Bᵀ

B† Aᵀ

)
=

(
1 0
0 −1

)
. (1.33)

Which can be reordered to show that the transformation presented in equation 1.31 cannot
be a unitary one: (

A B
B∗ A∗

)(
A† −Bᵀ

−B† Aᵀ

)
=

(
1 0
0 1

)
. (1.34)

Now, we can just replace the change of basis of equation 1.31 into the quadratic form of
Hamiltonian 1.30 to show that the problem we need to solve is:(

T U
U∗ T ∗

)
=

(
A† Bᵀ

B† Aᵀ

)(
Ω 0
0 Ω

)(
A B
B∗ A∗

)
. (1.35)

Where Ω is a diagonal matrix. From this expression, it is important to note that equation 1.29
has a factor 1/2 that has been canceled with the same factor that appears in the right-hand
side of equation 1.35 hand because Ω appears twice.

Replacing equation 1.33 into equation 1.35 and reordering we obtain:(
T U
U∗ T ∗

)
=

(
1 0
0 −1

)(
A† −Bᵀ

−B† Aᵀ

)(
1 0
0 −1

)(
Ω 0
0 Ω

)(
A B
B∗ A∗

)
(1.36)

⇒
(

1 0
0 −1

)(
T U
U∗ T ∗

)
=

(
A† −Bᵀ

−B† Aᵀ

)(
Ω 0
0 −Ω

)(
A B
B∗ A∗

)
. (1.37)

Noting closely, it is clear that the diagonalization problem for bosons is reduced to the
diagonalization of the original Hamiltonian multiplied to the left by the para-unitary matrix.
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When done numerically, it has to be done with care because the eigenvalues must be ordered
so that they match their negative counterpart.

Although the presented algorithm does work as a diagonalization technique in the sense
defined in equation 1.30 and it gives the correct eigenvalues, its eigenvectors are found in an
inconvenient form because they do not meet the usually desired property that

T †HT = diag
(
ω0, ω1, ..., ω2m−1

)
. (1.38)

But, it is also important to note that this operation gives a diagonal matrix, but its elements
are not the eigenvalues found in the matrix Ω.

1.5.2 Colpa’s Algorithm

The second algorithm that can be used to diagonalize equation 1.29 is explained in its full
extent in reference [12]. Here we will study the practical implementation of this algorithm
and in the end, we will make a full comparison with the previously presented method. The
main advantage this algorithm has to offer is that the obtained eigenvectors satisfy with
equation 1.38. We will also limit our study to the particular case in which the Hamiltonian
has the form:

H =
1

2

∑
k

(
α†k α−k

)
Hk

(
αk
α†−k

)
. (1.39)

Where Hk is a (2m, 2m) matrix and αk =
(
α0k, α1k, ..., αm−1k

)
.

As described in Colpa’s original publication [12], we need for Hk to be a positive definite
matrix to assure that it has real eigenvalues and the algorithm will only work when that
assumption is true. The first step is to perform the Cholesky decomposition [13], which is
defined as

H = WW † , (1.40)

where W is a lower triangular matrix.

The algorithm continues by diagonalizing the matrix W †σ3W , where σ3 is the para-unitary
matrix. Here we obtain the diagonal matrix L with its eigenvalues and the matrix U , where
each column corresponds to an eigenvector. For the correct functioning of this algorithm,
their eigenvalues and corresponding eigenvectors must be ordered in such a way that:

L = diag
(
ω0, ω1, ..., ωm−1,−ω0,−ω1, ...,−ωm−1

)
, with ω0 6 ω1 6 ... 6 ωm−1 . (1.41)

With this we are ready to obtain the eigenvalues E = JL and the transformation matrix
T , which is given by:

T =
(
W †)−1U√E . (1.42)

As it was already mentioned, both algorithms return the same eigenvalues, but their eigen-
vectors are different. In the case of the first algorithm, we obtain normalized eigenvectors,
while in Colpa’s algorithm they are not normalized. They are also different in that the
returned relative phase between each eigenvector is different with each algorithm.

10



Throughout this thesis, every numerical diagonalization will be done with Colpa’s algo-
rithm. Even though it is important to emphasize that in most calculations it does not matter
which algorithm we choose. The only case where this matters is in the calculation of the
Berry curvature done in Chapter 2.
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Chapter 2

Topological Magnons in CrI3

We will now focus our study of magnons in the two dimensional CrI3 lattice. The ma-
terial’s monolayer was first reported in 2017 [14] and it was the first two-dimensional ferro-
magnet, with a Curie temperature of 45K. It is currently believed that the Cr atoms are the
ones responsible for the magnetism in the material. This means that to study the magnetic
properties of the material it should be enough to consider only the Cr atoms. If we take a
look at figure 2.1, it can be seen that by taking into account only the Cr atoms, a honeycomb
lattice is formed. This fact alone is a huge motivation to study in-depth magnons in CrI3,
because it has already been shown for different Hamiltonians for electrons in honeycomb lat-
tice [15, 16], interesting (topological) properties may arise due to the geometrical properties
of the honeycomb lattice.

Figure 2.1: Bidimensional CrI3 lattice seen from above. The Cr atoms are shown in black
and the I atoms in grey. In pink we can see the unit cell, which is composed of two Cr atoms
A and B and six I atoms.
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We will begin the analysis of CrI3 by stating the geometrical properties of a CrI3 that we
will be using in our study. As any honeycomb lattice, it has a basis composed of two atoms
with nearest-neighbor distance a = 4.07Å. Relative to the unit cell’s coordinates, the first
one is in position (0, 0, 0) and the second one in position (a, 0, 0). The rest of the lattice can
be formed by considering the following Bravais lattice vectors:

a1 =

√
3a

2

√3
1
0

 a2 =

√
3a

2

√3
−1
0

 . (2.1)

It is also important to note that each site has three nearest-neighbors. Relative to a site
Sa, the position of its nearest-neighbors are:

δ1 =

a0
0

 δ2 =
a

2

−1√
3

0

 δ3 =
a

2

 −1

−
√

3
0

 . (2.2)

To define the reciprocal lattice vectors bi, one must use the condition ai · bj = 2πδi,j.
With this condition one obtains:

b1 =
2π

3a

 1√
3

0

 b2 =
2π

3a

 1

−
√

3
0

 . (2.3)

Figure 2.2: Wingner-Seitz cell produced by the reciprocal lattice. The highly symmetric
points Γ, K+ and K− are also shown in the figure.

By building the first Brillouin zone (1BZ) as the Wigner-Seitz cell of the reciprocal lattice,
one obtains a hexagonal-shaped 1BZ, as it is showed in figure 2.2. In the 1BZ there are four
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important points called the highly symmetric points, which correspond to:

Γ =

0
0
0

 M =
2π

3a

1
0
0

 K+ =
2π

3
√

3a

√3
1
0

 K− =
2π

3
√

3a

√3
−1
0

 . (2.4)

To end with the geometrical considerations, we must notice from figure 2.3 that between
two neighboring Cr sites, there exists a plane that is formed by Cr2I2. This plane changes
for each nearest neighbor and a normal vector to each plane can be defined. For each nearest
neighbor, we have that vector normal to the Cr2I2 plane are given by:

γ̂1 =
1√
3

 0

−
√

2
1

 γ̂2 =
1√
6

√3
1√
2

 γ̂3 =
1√
6

−√3
−1√

2

 (2.5)

Figure 2.3: Side view of CrI3. Where only one type-A Cr site is included and its three
nearest Cr. In blue, red and green we can see the three possible Cr2I2 planes and their
respective normal vectors γ̂1, γ̂2 and γ̂3.

With all these geometrical properties of CrI3 we can begin with the analysis of magnons in
CrI3. In the existing literature, the material has been extensively studied as a Honeycomb fer-
romagnet described by a nearest-neighbor Heisenberg interaction and next-nearest-neighbor
DMI [17, 18]. Where its main prediction is the existence of topological magnons. Recently,
it has been proposed as an alternative model to CrI3 a Honeycomb ferromagnet described
by a nearest-neighbor Heisenberg-Kitaev interaction. In the next section, we are going to
introduce this model and show explicitly what is the resulting magnonic Hamiltonian for this
particular case.

2.1 Heisenberg-Kitaev Model

The Heisenberg-Kitaev model consist of the usual Heisenberg Hamiltonian presented in
equation 1.1 with an aditional anisotropic term that comes from the Kitaev model [19]. This
way, CrI3 will be modeled as a Honeycomb spin lattice with the Hamiltonian:

H = −
∑
<i,j>

[
JSi · Sj +K

(
Si · γ̂δ

)(
Sj · γ̂δ

)]
− A

∑
i

(
Szi
)2

. (2.6)
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Where γ̂δ is the direction upon which the the Kitaev parameter is acting, which depends
directly on the link δ ≡ Ri−Rj we are dealing with. In the case of CrI3, they are precisely
the vectors normal to the Cr2I2 planes defined in equation 2.5.

The clearer way to make this analysis is to write Hamiltonian 2.6 with a unique exchange
tensor Jµν , represented in the basis defined by the vectors γ̂δ:

Jµν =

J 0 0
0 J 0
0 0 J +K

 . (2.7)

The problem with the coordinate system of equation 2.7 is that it will be different for the
three possible links. This issue can be sorted by using the rotation matrices Rδ, defined as
those that allow us to transform from γ̂δ to ẑ:

ẑ = Rδ · γ̂δ ≡

cos(θδ) 0 − sin(θδ)
0 1 0

sin(θδ) 0 cos(θδ)

 ·
 cos(φδ) sin(φδ) 0
− sin(φδ) cos(φδ) 0

0 0 1

 γ̂δ . (2.8)

Where we are considering that θδ and φδ are the spherical coordinate angles that describe
γ̂δ.

Using equation 2.8, we can transform the exchange interaction Jµν in the link-dependent
coordinate system to an link-dependent exchange interaction J αβ

δ described in the usual
{x, y, z} basis, where ẑ is the out-of-plane axis to the bidimensional lattice:

Jδ = Rᵀ
δJRδ . (2.9)

Using this change of coordinates to write J αβ
δ , we obtain that Hamiltonian 2.6 can be

rewritten as:
H = −

∑
i

j∈nn(i)

SαiaJ αβ
δ Sβjb −

∑
i,σ

A ·
(
Sziσ
)2

. (2.10)

Where the index i goes through all the unit cells, j are the neighboring unit cells and lastly,
σ ∈ {a, b} points the particular site of the honeycomb lattice basis we are dealing with.

As it was previously mentioned, our objective is to understand the nature of magnons in
the Kitaev model for CrI3. To obtain the Hamiltonian for magnons in k-space, we could
just use equation 1.27. This method would not yield a clear form of the bulk’s Hamiltonian,
which is going to make its analytical analysis more cumbersome. Because of this reason is
that we are going to realize this description from scratch and reserve equation 1.27 for section
2.3, when we analyze the eigenenergies and eigenstates of the nanoribbon.

To obtain the Hamiltonian for magnons, we must begin by using Holstein-Primakoff’s
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transformation. Which is given by:

S
(x)
ia =

√
S

2

(
a†i + ai

)
S
(x)
ib =

√
S

2

(
b†i + bi

)
(2.11a)

S
(y)
ia = i

√
S

2

(
a†i − ai

)
S
(y)
ib = i

√
S

2

(
b†i − bi

)
(2.11b)

S
(z)
ia = S − a†iai S

(z)
ib = S − b†ibi . (2.11c)

Replacing the transformation into equation 2.10, we obtain

H =
S

2

∑
i

j∈nn(i)

[
−
(
J xx
δ − iJ xy

δ − iJ yx
δ − J yy

δ

)
aibj

−
(
J xx
δ + iJ xy

δ − iJ yx
δ + J yy

δ

)
aib
†
j −

(
J xx
δ − iJ xy

δ + iJ yx
δ + J yy

δ

)
a†ibj

−
(
J xx
δ + iJ xy

δ + iJ yx
δ − J yy

δ

)
a†ib
†
j + 2J zz

δ

(
a†iai + b†jbj

)]
+ 2AS

∑
i

(
a†iai + b†ibi

)
. (2.12)

To further simplify equation 2.12, we will use the fact that the anisotropic exchange is
symmetric

(
Jαβδ = Jβαδ

)
, meaning that we obtain:

H =
S

2

∑
i

j∈nn(i)

[
−
(
J xx
δ + J yy

δ

)
aib
†
j −

(
J xx
δ + J yy

δ

)
a†ibj −

(
J xx
δ − J yy

δ − i2J xy
δ

)
aibj

−
(
J xx
δ − J yy

δ + i2J xy
δ

)
a†ib
†
j + 2J zz

δ

(
a†iai + b†jbj

)]
+ 2AS

∑
i

(
a†iai + b†ibi

)
. (2.13)

From equation 2.13 we will proceed by using Bloch’s theorem in ai and bi, to obtain the
Hamiltonian in k-space:

H =
S

2

∑
k,δ

[
−
(
J xx
δ + J yy

δ

)(
eik·δa†kbk + e−ik·δb†kak

)
−
(
J xx
δ − J yy

δ − 2iJ xy
δ

)
e−ik·δakb−k

−
(
J xx
δ − J yy

δ + 2iJ xy
δ

)
eik·δb†−ka

†
k + 2J zz

δ

(
a†kak + b†kbk

)]
+ 2AS

∑
k

(
a†kak + b†kbk

)
.

(2.14)

2.2 Bulk’s dispersion relation

Now, we are ready to write equation 2.14 in a quadratic form and use Colpa’s Algorithm
to obtain the eigenenergies. In figure 2.4 we can see the bulk dispersion relation for CrI3
for K = 0meV and K = 4.07meV, which is a value that has been suggested in recent
publications [20]. Both plots were made by considering the path in k-space that starts in
Γ, passes through M , K+ and ends back in Γ. It is also important that in this figure
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and throughout this entire section, a Heisenberg exchange of J = 0.53meV and an easy-axis
anisotropy of A = 0.44meV [20, 21].

Bulk’s dispersion relation of CrI3

(a) (b)

Figure 2.4: Bulk’s dispersion relation for CrI3 with J = 0.53meV and A = 0.44meV. (a)
Case with K = 0, where there is no energy gap between the two bands. (b) corresponds to
the case with K = 4.07meV, where it can be seen that a gap opens at K+.

Comparing both dispersion relations in figure 2.4 it can be seen that a gap opens K =
4.07meV at the point K+, and the same can be checked for the point K−. As it can be seen
from figure 2.5, where we plot the value of the energy gap at point K+ for different values
of K, this gap only closes for K = 0, which corresponds to describing the material with a
pure Heisenberg model.

Bulk’s energy gap in CrI3

Figure 2.5: Gap between the lower and upper band of CrI3 at point K+ for different values
of K. From this plot it is clear that the gap only closes for K = 0. The energy gap for
K = 4.07meV has been highlighted, as it is the value most commonly used throughout the
chapter.
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In tight-binding models, it is common to see the appearance of gaps when a new term is
incorporated into the bulk Hamiltonian of a material. When this occurs, it is not uncommon
to think that this might lead to topologically protected states, though the appearance of a
gap does not imply directly that we are dealing with topologically protected states. As an
example, we can take graphene with the nearest-neighbor hopping. A gap will open if we
have that the on-site energies are different for sites a and b but, this gap leads to topologically
trivial states. Another way of opening a gap in graphene is by adding a complex next-nearest
neighbor hopping [15], where the resulting eigenstates lead to topologically protected edge
states with non-zero Chern number.

The similarity between equation 2.14 and electronic tight-binding Hamiltonians is clear.
So, because a gap opening could be of topological topological nature, we will undertake the
task of studying thism and show that topological states will indeed appear.

To demonstrate that the gap is indeed topological, we will start by analyzing a nanoribbon.
In this case, we expect the same behavior it is seen in topological states in tight-binding
models. This means that there should exist a band that goes from the lower set of bands to
the upper set of bands and the eigenstates corresponding to those energies should be located
in the boundary of the nanoribbon.

2.3 Nanoribbons

To study nanoribbons we must start by choosing a border for the honeycomb lattice. To
begin this analysis we will begin studying the zig-zag border. Because of the existence of a
finite border, we will have only one lattice vector

α =
(
0,
√

3 a, 0
)

(2.15)

and a unit cell with a basis composed of m distinct but identical sites as shown on figure 2.6.

Figure 2.6: CrI3 nanoribbon with zigzag border.

To obtain the eigenenergies and eigenstates of the nanoribbon we will make use of equa-
tion 1.27 and Colpa’s algorithm. This means that we need to start by calculating J jj

′

k . To
accomplish this, we will start by noticing that in real space we have that:

J jj
′αβ

i−i′ =


(
J αβ

3 δi−i′,0 + J αβ
2 δi−i′,−a

)
δj,j′+1 + J αβ

1 δi−i′,0δj,j′−1 if j is odd(
J αβ

3 δi−i′,0 + J αβ
2 δi−i′,a

)
δj,j′−1 + J αβ

1 δi−i′,0δj,j′+1 if j is even .
(2.16)
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Where we are using the same notation used before, where i− i′ ≡ Ri−Ri′ . Using the inverse
fourier transform defined from equation 1.26 we obtain:

J jj
′αβ

k =


(
J αβ

3 + J αβ
2 eik·α

)
δj,j′+1 + J αβ

1 δj,j′−1 if j is odd(
J αβ

3 + J αβ
2 e−ik·α

)
δj,j′−1 + J αβ

1 δj,j′+1 if j is even .
(2.17)

With equation 2.17 we are ready to use Colpa’s algorithm to obtain the eigenenergies and
eigenvalues of the zigzag nanoribbon. Considering the same values used to obtain figure 2.4
the dispersion relations in figure 2.7 are obtained. In blue, the bulk’s gap has been marked.
A single band crosses through it, which is a main hint that there could be topological edge
states.

(a)(a) (b)

Figure 2.7: Dispersion relation of the CrI3 nanoribbon with m = 100 sites of width. (a)
Case with K = 0, where the small gap between the top and lower set of bands due to
finiteness effects. (b) Case with K=4.07meV, where the bulk’s gap is marked in blue. It is
also important to notice that in this situation the gap of the nanoribbon is bigger and the
band that crosses from one set of bands to the other is also the only one that crosses the
bulk’s gap.

To obtain a better picture of the nanoribbon, the eigenergies and eigenstates for a nanorib-
bon with m = 20 sites of width are plotted in figure 2.8. In this figure we find plotted the
eigenstates for the two states that cross the gap in the nanoribbon, where the radii of the
grey circles shows the probability of finding the magnon in a particular site. From this plot,
it is clear that there is no edge-localization in the left panel, where we have that K = 0. On
the other hand, in the right panel, where K = 4.07meV, we find one state localized in the
left border and the other on the right border.
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Figure 2.8: Dispersion relation and states corresponding to the marked energies for the zigzag
nanoribbon. Left Panel: Situation with K = 0. There is a resemblance with graphene,
where two of the top bands lower their energies due to the on-site energy discrepancy at the
edge. The plots below represent the magnitude of the probabilities for the two possible states
with E = 3.26meV. The probability is proportional to the radii of the grey circles. Right
Panel: Situation with K = 4.07meV. Bands preserve their basic structure and the two
central bands are separated. The light-blue colored area is the gap of the bulk, which shows
which band should have a topological behavior. The lower plots represent the probability of
the states with E = 8.53meV. There is a clear localization at both edges of the ribbon.

The analysis performed on figure 2.8 can also be performed in the case where the nanorib-
bon has armchair borders. In this case we have a unit cell with m sites, as it is shown on
figure 2.9.
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Figure 2.9: CrI3 nanoribbon with armchair border.

In this case, we have the exchange tensor in k-space is given by:

J jj
′αβ

kkk =


J αβ

1 eikkk·αααδj,j′−1 + J αβ
2 δj,j′+2 + J αβ

3 δj,j′−2 if j = 4n

J αβ
1 e−ikkk·αααδj,j′+1 + J αβ

2 δj,j′−2 + J αβ
3 δj,j′+2 if j = 4n+1

J αβ
1 δj,j′−1 + J αβ

2 δj,j′−2 + J αβ
3 δj,j′+2 if j = 4n+2

J αβ
1 δj,j′+1 + J αβ

2 δj,j′+2 + J αβ
3 δj,j′−2 if j = 4n+3 .

(2.18)

With this, the obtained eigenenergies and eigenstates are shown on figure 2.10. In this figure
we can check that, similar to the zigzag case, there are no chiral edge-states in the case where
K = 0 (left panel) in the artificial gap produced be the finiteness of the gap. In the case
with K = 4.07meV (right panel) the chiral edge-states do exist in the states corresponding
to the energies inside the bulk’s energy gap.
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Figure 2.10: Dispersion relation and states corresponding to the marked energies for the
armchair nanoribbon. Left Panel: Situation with K = 0. There is a resemblance with
graphene, where two of the top bands lower their energies due to the on-site energy discrep-
ancy at the edge. The plots below represent the magnitude of the probabilities for the two
possible states with E = 3.40meV. The probability is proportional to the radii of the grey
circles. Right Panel: Situation with K = 4.07meV. Bands preserve their basic structure
and the two central bands are separated. The light-blue colored area is the gap of the bulk,
which shows which band should have a topological behavior. The lower plots represent the
probability of the states with E = 8.64meV. There is a clear localization at both edges of
the ribbon.

From figures 2.8 and 2.10, we see that the states corresponding to the energies that cross
between bands effectively are located in the border of the nanoribbon. This is a bigger hint
that we are dealing with topologically protected states, but we still have to find a topological
invariant to claim that the states of the Hamiltonian are topologically protected. To achieve
this, we will start by analyzing the time reversal symmetry (TRS) of equation 2.14. Just
as with topological tight-binding models, a broken TRS might give non trivial values of the
Chern number. By finding that TRS is broken for the magnonic Hamiltonian, we will proceed
to calculate the Chern number of our model with the care that we are dealing with bosons
and not fermions.
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2.4 Time Reversal Symmetry

In Quantum Mechanics, the time reversal operator is defined as T = UK. Where U is a
unitary operator and K is complex conjugation. A Hamiltonian has TRS if T H(q)T † = H(q).
To prove this, it must be noted that T SijT † = −Sij . This implies that performing time
reversal symmetry es equivalent to change the quantization axis from z to−z. So we just have
to rotate our axis around the x axis, which implies that Holstein-Primakoff’s transformations
are of the form:

S
(x)
ia =

√
S

2

(
a†i + ai

)
S
(x)
ib =

√
S

2

(
b†i + bi

)
(2.19a)

S
(y)
ia = −i

√
S

2

(
a†i − ai

)
S
(y)
ib = −i

√
S

2

(
b†i − bi

)
(2.19b)

S
(z)
ia = −S + a†iai S

(z)
ib = −S + b†ibi (2.19c)

Replacing this transformation into equation 2.6 leads to the complex conjugation of the
coefficients in equation 2.14, which mathematically means that after applying time reversal
symmetry the Hamiltonian is:

T HT † =
S

2

∑
k,δ

[
−
(
J xx
δ + J yy

δ

)(
eik·δa†kbk + e−ik·δb†kak

)
−
(
J xx
δ − J yy

δ + 2iJ xy
δ

)
e−ik·δakb−k −

(
J xx
δ − J yy

δ − 2iJ xy
δ

)
eik·δb†−ka

†
k

+ 2J zz
δ

(
a†kak + b†kbk

)]
+ 2AS

∑
k

(
a†kak + b†kbk

)
(2.20)

From equation 2.20 it is clear that we will only have that T HT † = H when Jxyδ = 0,
which in the case of the model we have been describing we have that that condition is met
only when K = 0. With this, we conclude that Kitaev’s parameter breaks TRS and it is
worth calculating the Chern number because it might have a non-trivial value.

2.5 Chern Number

The Chern number of the j-th energy band is [22, 23]

Cj =
1

2π

∫
BZ

iεµν Tr

[(
1− Pj

)(
∂kµPj

)(
∂kνPj

)]
dk2 , (2.21)

where the integrand used to obtain the Chern number is called the Berry curvature and the
operators Pj are the projection operators, which are defined as:

Pj = TkΓjσ3T
†
kσ3 . (2.22)

Where Tk is the transformation matrix obtained from Colpa’s algorithm, σ3 is the paraunitary
matrix and Γj is a (2N, 2N) matrix with every element equal to 0, except for the j-th diagonal
component that is equal to 1.
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Ploting the values of the Berry curvature for two different and big K in the same path in
k-space used for the dispersion relation of the bulk, figure 2.11 is obtained. In the left panel
we see the values for K = 2.03meV and in the right panel the case with K = 4.07, and in
both cases the Berry curvature for the lower band is plotted in blue and for the top band in
orange.

Figure 2.11: Berry curvature for CrI3 given by the integrand of equation 2.21. In the left
panel it can be seen the case with K = 2.03meV and in the right panel the case with
K = 4.07meV. The importance of this plot relies on noticing that the case with lower value
of K has a steeper maximum, which eventually diverges when K → 0. The behavior seen at
K+ in this plot can also be observed at K−.

From figure 2.11 it is important to acknowledge two important aspects. First, for lower
values of K, the curve loses its smoothnes and eventually, for K = 0 it cannot be correctly
defined as it was introduced in equation 2.21 because there is a degeneracy in the eigenener-
gies. The second important aspect is that for the same value of K, the shape of the curves
for both energy levels is the same, but with opposite signs.

Integrating the Berry curvature in the first Brillouin zone, the actual Chern numbers are
obtained. The lower band has Chern number C1 = −1, while the upper band has C2 = 1.
The Chern must comply with the summation rule: For a Hamiltonian with 2N bands, we
must have that sum of the first N Chern numbers must be zero

(∑N
j Cj = 0

)
[23]. The values

obtained for the Chern of each band sum zero, so no errors are expected on this calculation.

It is also important to note that the value of the Chern numbers do not change of sign
when K passes from a positive value to a negative one. This is because the chirality has
already been defined, when the quantization axis z was chosen. To change the sign of the
Chern number (i.e. obtain C1 = 1) the quantization axis must be reversed in the same way
as it was done for the analysis of the TRS.
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2.6 Thermal Hall Effect

To finalize this chapter, we will study the thermal Hall effect in the presented model. In the
context of bidimensional materials, it is common to study the great variety of Hall effects [24],
where a potential difference in one direction implies the generation of an electric current in
the perpendicular direction. When studying this effect in the particular case of topological
insulators, it has been seen that the topological invariant is related to the existence of a
quantum Hall state, where we can see as an example than in Haldane’s model for graphene,
the Hall conductivity in the topological state is [15]

σxy =
e2

h
. (2.23)

As magnons do not have electric charge, we cannot study the Hall effects usually studied in
topological insulators. In this case, it is well-known that magnons contribute to the thermal
currents that are produced in the existence of a thermal gradient [25]

T (r) = T0
(
1− χ(r)

)
, (2.24)

where χ(r) is a parameter that describes the temperature’s space-dependence. In the small
gradient limit, it can be shown through linear response theory [] that the thermal current
produced the thermal gradient is

〈Jµ〉 = Lµν

(
T∂ν

(
1

T

)
− ∂νχ

)
, (2.25)

where Lµν are the thermal transport coefficients, which can be used to express the thermal
conductivity as

κµν =
Lµν

T
. (2.26)

In reference [25] it is proven that in the particular case of non-interacting magnons, the
thermal hall conductivity reads

κxy(T ) =
k2BT

(2π)2~
∑
j

∫
BZ

c2(nB(εjk))Ωjkdk2 . (2.27)

Where the index i runs over the m = 2 energy levels, εik is the eigenenergy for the momen-
tum k, Ωik is the Berry curvature given by the integrand of equation 2.21, nB is the Bose
distribution and c2 is:

c2(x) = (1 + x)

(
log

(
1 + x

x

))2

−
(

log x
)2
− 2Li2(−x) , (2.28)

Lin(z) being the polylogarithm.

In figure 2.12 it is plotted the thermal Hall conductivity by direct numerical calculation
of equation 2.27 for multiple values of the Kitaev parameter K. From the figure, it is

25



important to note that for the different values of K, the thermal Hall conductivity changes
at different temperatures, making this effect a strong predictor that the Heisenberg-Kitaev
model describes CrI3. From the values of K that could be used, it should be pointed out
that for K = 4.07meV, the conductivity changes of sign at T = 7.51K.
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Figure 2.12: Thermal Hall conductivity as given by equation 2.27 for different values of
K. For different values of K, the thermal Hall conductivity changes of sign at different
temperatures.

2.7 Conclusion

In this section, a monolayer of CrI3 was studied through the Heisenberg-Kitaev model
of ferromagnets. It was numerically demonstrated that a gap opens between the two bands
present in the dispersion relation when Kitaev’s parameter is turned on. It was later proved
that the nanoribbon possesses chiral edge states for the energies inside the bulk’s energy
gap for both zigzag and armchair borders, which is a strong sign of topological properties.
Finally, it was shown that time-reversal symmetry is broken in the system due to Kitaev’s
parameter to ultimately show that the Chern number is non-trivial in CrI3 with a nonzero
Kitaev’s parameter.

The idea that a Kitaev’s parameter produces states with non-trivial topology turns most
interesting when comparing it to previous publications, where signatures of topological
magnons [17] were used to show that a nearest-neighbor DMI should describe bidimensional
CrI3. As it was constructively shown, this is not necessarily true due to the topological
properties predicted through the Heisenberg-Kitaev model, and more experimental results
are required to obtain the actual Hamiltonian of the bidimensional material. Because of this
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last argument is that the calculation of the thermal Hall conductivity is crucial, as it provides
as an outstanding signature of the Heisenberg-Kitaev model.
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Chapter 3

Magnon Polarons in a Magnetic Field
Gradient

The focus of this chapter is the study of Magnon polarons. These quasiparticles form
due to the interaction between magnons and phonons [26]. These are usually studied by
incorporating, to the magnon and phonon Hamiltonians, a phenomenological coupling [27],
where there is no possibility of controlling the coupling because it is an intrinsic property of
the material. The primary motivation for this chapter will be to study how a magnon-phonon
interaction can be induced and ultimately controlled. For this, the formalism of phonons will
be introduced in the simple case of a unidimensional lattice and later, generalize the study
to an arbitrary lattice.

After the introduction of phonons, a Hamiltonian of a system with elastic and spin inter-
actions will be presented. From this, it will be shown that a space-dependent magnetic field
can generate magnon polarons. The main interest is to compare and contrast the properties
of the coupling induced by the magnetic field with the phenomenological coupling that is
usually studied.

3.1 Phonons in a Lattice

The simplest model where phonons can be studied is a unidimensional lattice, where each
site has mass M and is coupled to its nearest-neighbor through springs with natural frequency
ω0 and natural length a. To further simplify the problem, it will assume that each site can
only move in the longitudinal direction, as shown in figure 3.1.

i− 2 i− 1

a

i

ui

i+ 1 i+ 2

Figure 3.1: Unidimensional lattice with elastic coupling.
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With all the mentioned considerations in mind, and using ui to denote the displacement
of each atom from its equilibrium position, the Hamiltonian that describes this system is:

H =
∑
i

[
pi

2

2M
+
Mω0

2

2

(
ui+1 − ui

)2]
. (3.1)

As previously stated, the main interest of this system is the study of its phonons. This
study will be accomplished by transforming Hamiltonian 3.1 into a form, in terms of bosonic
annihilation and creation operators c. For this, the variables pi and xi, are expressed in
k-space through the discrete fourier transform:

xi =
1√
N

∑
k

xke
ikia , (3.2a)

pi =
1√
N

∑
k

pke
ikia . (3.2b)

Replacing the previous expression into Hamiltonian 3.1 gives us the Hamiltonian in k-
space, which reads

H =
∑
k

[
pkp−k
2M

+Mω0
2
(
1− cos(ka)

)
uku−k

]
. (3.3)

We can now express the operators pk and uk in terms of annihilation and creation operators
ck and c†−k as [28]:

xk =

√
~

2Mωk

(
c†−k + ck

)
, (3.4a)

pk = i

√
~Mωk

2

(
c†−k − ck

)
, (3.4b)

where,

ωk = ω0

√
2− 2 cos(ka) = 2ω0

∣∣∣∣ sin(ka2
)∣∣∣∣ . (3.5)

Replacing the previous transformation into Hamiltonian 3.3, the Hamiltonian of phonons
for the unidimensional lattice is:

H =
∑
k

2~ω0

∣∣∣∣ sin(ka2
)∣∣∣∣(c†kck +

1

2

)
. (3.6)

It is worthy to note that because Hamiltonian 3.6 is already diagonalized, the dispersion
relation is just equation 3.5, which is plotted in figure 3.2. From continuum mechanics, it’s a
well-known fact that acoustic sound waves have linear dispersion relations: Ωk = v|k|, where
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v is the speed of sound. From equation 3.5, it is clear that in the long-wavelength limit (small
k), the dispersion relation is ωk = ω0a|k|. To have an accurate classical limit of the model,
the sound velocity must be v = ω0a. This fact will be used later to find the elastic constants
from the nearest-neighbor distance a and sound speeds v.

Unidimensional phonons dispersion relation

Figure 3.2: Dispersion relation for the unidimensional lattice of longitudinal phonons who’s
analytical expression is given by equation 3.5. The known values of YIG [26] have been used:
v‖ = 7209ms−1, a = 1.24nm and M = 9.810−24kg.

A central weakness of the introduced model is that only longitudinal phonons exist. To
include transversal phonons, Hamiltonian 3.1 can be extended to allow displacements in the
three spatial dimensions. This means that the Hamiltonian can be rewritten as

H =
∑
i

[
pi

2

2M
+

1

2

(
uαi+1 − uαi

)
Φαβ

(
uβi+1 − uβi

)]
, (3.7)

where the elastic constant Mω2
0 has been replaced with the elastic tensor Φαβ, which will

allow us to work with the three spatial displacements and later in this section we will show
how this parameter can be adjusted to fit the longitudinal and transversal sound speeds to
have a good enough approximation of the material been studied.

To obtain the Hamiltonian that describe phonons we will develop a similar method to the
one introduced for the purely unidimensional model. To express the position and momentum
operators in k-space, we must first note that Φαβ must be real and symmetric as this tensor
is theoretically obtained from the second order series expansion of the interaction potential
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V (uαi+1 − uαi ) between two neighboring sites [28]. This implies that Φαβ is diagonalizable

Φαβεβλ = φλε
α
λ , (3.8)

with λ = {0, 1, 2} eigenvalues and eigenvectors. This fact allows us to express xi and pi in
k-space space as:

xαi =
1√
N

∑
kλ

xkλε
α
kλe

ikia (3.9a)

pαi =
1√
N

∑
kλ

pkλε
α
kλe

ikia . (3.9b)

Replacing equation 3.9 into Hamiltonian 3.7 leads us to

H =
∑
kλ

[
pkλp−kλ

2M
+
φλ
2

(
eika − 1

)(
e−ika − 1

)
ukλu−kλ

]
, (3.10)

where the operators xkλ and pkλ can be expressed in terms of creation and annihilation
operators as

xk =

√
~

2Mωkλ

(
c†−kλ + ckλ

)
pk = i

√
~Mωkλ

2

(
c†−kλ − ckλ

)
(3.11)

with,

ωkλ =

√
φλ
m

√
2− 2 cos(ka) = 2

√
φλ
m

∣∣∣∣ sin(ka2
)∣∣∣∣ , (3.12)

to obtain the Hamiltonian for phonons

H =
∑
kλ

2~
√
φλ
m

∣∣∣∣ sin(ka2
)∣∣∣∣(c†kλckλ +

1

2

)
. (3.13)

As a first approximation, the values of Φαβ will be chosen in such a way that the dispersion
relations given by equation 3.12 correctly reproduce the dispersion relation in the long-
wavelength limit, which is known to be

ωλk = cλ
∣∣k∣∣ . (3.14)

As an example, we can note that a material whose waves are classically described by a
transversal sound speed of v⊥ and a longitudinal sound speed of v‖ is obtained from the
following tensor:

Φαβ =
M

a2

v‖2 0 0
0 v⊥

2 0
0 0 v⊥

2

 . (3.15)
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In figure 3.3 we can see the dispersion relation of our model. Where we have used the
values reported for YIG [26], which are v‖ = 7209ms−1, v⊥ = 3843ms−1, M = 9.8 · 1024kg
and a = 1.24nm.

Figure 3.3: Dispersion relation for a unidimensional lattice with threedimensional phonons
for the sound speeds of YIG. Its analytical expression is given by equation 3.12.

In this introduction on phonons, it was shown how transversal and longitudinal phonons
appear naturally by considering a quadratic potential between sites. It was also explained how
the parameters of Hamiltonian 3.7 can be fitted to correctly reproduce the long-wavelength
limit.

To finish this introduction on phonons, we will study them in an arbitrary lattice. For this,
we will drop the assumption that only nearest-neighbor exist, meaning that the Hamiltonian
that describes the system becomes:

H =
∑
ijα

pjαi
2

2M
+
∑
ii′jj′

1

2
ujαi Φjαj′β

i−i′ u
j′β
i′ , (3.16)

where we have that i, i′ ∈ {0, 1, ..., N} symbolizes the specific unit cell, j, j′ ∈ {0, 1, ...,m−1}
is the specific site in the basis and α, β ∈ {x̂, ŷ, ẑ} are the three spatial coordinates. To
obtain the Hamiltonian in k-space we must start by using the following transformation:

Φjαj′β
i−i′ =

∑
k

Φjαj′β
k eik·(Ri−Ri′ ) , (3.17)
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where it is important to note that because Φjαj′β
i−i′ is real and symmetric, then Φjαj′β

k is also
real and symmetric, which implies that it can be diagonalized as∑

j′β

Φjαj′β
k εj

′β
kλ = φkλε

jα
kλ , (3.18)

with λ ∈ 0, 1, ..., 3m− 1 eigenvalues and eigenvectors.

Now, we can continue with the same spirit as in the three-dimensional case and define the
fourier trasnform of the position and momentum operators as

xjαi =
1√
N

∑
kλ

xkλε
jα
kλe

ik·Ri (3.19a)

pjαi =
1√
N

∑
kλ

pkλε
jα
kλe

ik·Ri . (3.19b)

and replace it into Hamiltonian 3.16 together with equation 3.17 to obtain that the Hamil-
tonian in k-space reads

H =
∑
kλ

[
pkλp−kλ

2M
+
φkλ
2
ukλu−kλ

]
. (3.20)

All that remains is to write the position and momentum operators in term of creation and
annihilation operators defined in the same way as in equation 3.11 to obtain

H =
∑
kλ

~ωkλ
(
c†kλckλ +

1

2

)
, (3.21)

where the dispersion relation is

ωkλ =

√
φkλ
M

. (3.22)

Numerically, it can be seen that the results of figure 3.3 are completely reproduced through
the correct definition of the elastic tensor, which in this case reads

Φαβ
Ri−Ri′

= V αβ
(

2δi,i′ − δi,i′+1 − δi,i′−1
)

, (3.23)

and can be transformed through equation 3.17 to obtain

Φαβ
k = V αβ

(
2− e−ika − eika

)
. (3.24)

Where V αβ must have the same structure as Φαβ in equation 3.15.

The same analysis can be made more interesting by considering the same unidimensional
lattice can be studied as if the base was described by two identical sites, a and b. In this
case, the elastic tensor is

Φjαj′β
Ri−Ri′

= V αβ

(
2δi,i′δj,j′ −

(
δi,i′ + δi,i′+1

)
δj,0δj′,1 −

(
δi,i′ + δi,i′−1

)
δj,1δj′,0

)
, (3.25)
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which in k-space reads

⇒ Φjαj′β
k = V αβ

(
2−

(
1 + e−i2ka

)
δj,0δj′,1 −

(
1 + ei2ka

)
δj,1δj′,0

)
. (3.26)

In figure 3.4, it is shown the dispersion relation obtained with the elastic tensor given
in equation 3.26. In this plot, it can be appreciated that there is no energy gap between
the acoustic and optical bands, which is a direct consequence of the fact that both sites are
identical. If there were to have different masses, an energy gap would appear, as shown in
reference [29].

Figure 3.4: Dispersion relation for a unidimensional lattice with two identical sites. It was
considered an elastic tensor given by equation 3.26 and energies written as in equation 3.22.

With this introduction of phonons, the theoretical floor to study the appearance of a
magnon-phonon coupling from a space-varying magnetic field has been presented. But before
examining this topic in depth, it must be noted that a magnetic field gradient induces forces
to the system, so the equilibria of this system may vary. Recalling that in Holstein-Primakoff
it was assumed that the classical equilibrium is S = (0, 0, S) is an equilibrium, and in
the phonon quantization the stable equilibrium is u = (0, 0, 0), it is essential to show that
classically, both equilibria are still stable after incorporating the magnetic field gradient. In
the next section, the stability of a system composed of a single spin in a quadratic potential
and a space-varying magnetic field will be studied.
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3.2 Equilibrium in a Space-Varying Magnetic Field

Up to now, the Hamiltonian for phonons and magnons were obtained separately. Before
proceeding onto studying the coupling between both quasiparticles, it is essential to analyze
the classical equilibrium of the system. This study is crucial because a magnetic field gradient
creates a force on every magnetic dipole, which could change the behavior of its equilibria.
The equilibria will be studied in a system composed of a single spin attached to a spring to
generate in a space-varying magnetic field. The presented toy model will be used to create
a strong intuition so that the later equilibria analysis in the unidimensional lattice appears
more natural.

The analysis of equilibria will be done by considering a system composed of a single spin
attached to a spring and coupled to a magnetic field gradient, which is described by:

H =
p2

2M
+
mω0

2

2
u2 − µBgB · S . (3.27)

Classically, the spin’s time evolution is governed by Newton’s second law and Landau-
Lifschitz-Gilbert equation. To make the study of system’s equilibria more comfortable, the
spin variable can be written in spherical coordinates angles θ, φ and, it can be considered the
particular case where B = (Bx(x), 0, Bz), meaning that the Hamiltonian is given by:

H =
p2

2M
+
Mω0

2

2
u2 − µBgSBx sin(θ) cos(φ)− µBgSBz cos(θ) . (3.28)

From equation 3.28, the equilibria of the system by minimizing the energy. For this, it
must be imposed that ∂xE = 0, ∂θE = 0 and ∂φE = 0:

Mω0
2x− µBgS

∂Bx

∂x
sin(θ) cos(φ) = 0 (3.29a)

Bx cos(θ) cos(φ)−Bz sin(θ) = 0 (3.29b)

Bx sin(θ) sin(φ) = 0 . (3.29c)

From equation 3.29, it is direct to see that (x, θ, φ) = (0, 0, 0) is a solution. Studying
the Hessian at the equilibrium point, it is clear that this is positive definite whenever the
following inequality complies: (

∂Bx

∂x

∣∣∣∣
x=0

)2

<
Mω2

0

gµBS
Bz (3.30)

Thus, the point (x, θ, φ) = (0, 0, 0) is a stable equilibrium whenever the condition es-
tablished by inequality 3.30 is fulfilled. The importance of analyzing the equilibrium of
Hamiltonian 3.27 comes from the fact that the equilibrium needs to be stable for it to have
spin waves. This toy model allows us to see that there exists a magnetic field gradient from
which the equilibrium is no longer stable.
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The most simple system with both magnetic and elastic interaction is given by:

H =
∑
i

[
pi

2

2M
+
mω0

2

2
(ui+1 − ui)2 − JSi · Si+1 − µBgB · Si

]
, (3.31)

where the unidimensional elastic interaction and Heisenberg exchange were considered. To
further simplify the model, the magnetic field B(x) will be assumed to be periodic with a
periodicity equal to that of the lattice.

Expanding to first order the arbitrary magnetic field B(x) around the equilibrium posi-
tions x0i, leads to:

H =
∑
i

[
pi

2

2M
+
mω0

2

2
(ui+1 − ui)2 − JSi · Si+1 − µBgB · Si − µBg

∂B

∂xµ
· Sixµ

]
, (3.32)

where the positions x0i = (ia, 0, 0) and the spins S0i = (0, 0, S) as possible equilibria of the
system.

To study the equilibria of Hamiltonian 3.31, the spin variable will be written in term of
its spherical angles θi and φi and, as in the single spin case, it will be assumed that the
magnetic field is given by B = (Bx(x), 0, Bz). With these considerations, the Hamiltonian
can be written explicitly as:

H =
∑
i

[
pi

2

2M
+
mω0

2

2
(ui+1 − ui)2 − JS2

(
sin(θi) sin(θi+1) cos(φi) cos(φi+1)

+ sin(θi) sin(θi+1) sin(φi) sin(φi+1) + cos(θi) cos(θi+1)

)
− µBg

(
SBx(x) sin(θi) cos(φi) + SBz cos(θi)

)]
. (3.33)

Using the single spin case as inspiration, the point (ui, θi, φi) = (0, 0, 0) as possible equi-
librium. Expanding Hamiltonian 3.33 to second order around the mentioned point:

H =
∑
i

[
pi

2

2M
+
mω0

2

2
(ui+1 − ui)2 − JS2

(
θiθi+1 − θi2 − θi+1

2
)
− µBgB · Si

]
. (3.34)

To find the stability of the system, Fourier’s theorem on ui and θi will be used. This will
lead to a Hamiltonian described by uk, u−k, θk and θ−k, which is given by:

H =
∑
k

[
pk

2

2M
+mω0

2
(

1− cos(ka)
)
uku−k − 2JS2

(
1− cos(ka)

)
θkθ−k

+ µBgSB
zθkθ−k − µBgSB′ukθ−k

]
, (3.35)
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where

B′ ≡ ∂Bx

∂x

∣∣∣∣
x=0

. (3.36)

From the Hamiltonian in k-space, it can be noted that the Hessian is a block diagonal
matrix, where each block is 4× 4, formed by the variables uk, θk, u−k and θ−k. With this, it
can be proved that every eigenvalue is positive if and only if(

SgµBB
′
)2

< 4mSω0
2
(
− 2JS

(
1− cos(ak)

)
+ µBgB

z
)

sin2

(
ak

2

)
. (3.37)

From equation 3.37, it is essential to recall that stable equilibrium is obtained if every
eigenvalue of the Hessian is positive. In this particular case it must be noted that there always
exists a value of k such that the obtained expression is not satisfied. This means that the
Holstein-Primakoff’s transformation expressed in equation 1.14 will not yield stable magnons.
As an extra note, it is essential to recognize that, intuitively, the proposed equilibrium could
never be stable because every site feels the same force, thus always pushing it away from the
equilibrium obtained with a constant magnetic field.

3.3 Magnon-Phonon Coupling

As it was proven analitically in the previous section, the problem with a space-varying
magnetic field with the same periodicity of the lattice is always unstable, which intuitively
makes sense. This problem can be sorted out by changing the periodicity of the magnetic
field to ma, where m ∈ N. This means that the originally unidimensional lattice has to be de-
scribed by a superlattice with m distinct but identical sites. Mathematically, the Hamiltonian
transforms to:

H = H(ph) +H(m) − µBg
∑
ij

B′
αβ
j Sjαi u

jβ
i . (3.38)

Where H(ph) and H(m) are described by equations 3.21 and 1.27 respectively. Additionally
we have defined

B′
αβ
j ≡

∂Bα

∂rβ

∣∣∣∣∣
r=Rj

, (3.39)

where Rj is the equilibrium position relative to the unit cell’s origin.

From equation 3.38, the bosonic form of the third term, which is going to be called H(mp),
is the only one missing. The first step is to express the spins Sij in terms of creation and
annihilation operators employing equation 1.10, which leads to:

H(mp) = −µBg
√
S

2

∑
ij

[(
B′

xβ
j + iB′

yβ
j

)
uβija

†
ij +

(
B′

xβ
j − iB′yβj

)
uβijaij

]
. (3.40)
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Using the discrete Fourier series as presented in equations 1.18 and 3.11 we obtain

H(mp) = −µBg
√
S

2

∑
kjλ

[(
B′

xβ
j + iB′

yβ
j

)
εβkλukλa

†
kj +

(
B′

xβ
j − iB′yβj

)
εβkλukλa−kj

]
. (3.41)

Finally, by expressing ukλ as creation and annihilation operators through equation 3.11 it
is obtained that the magnon-phonon coupling Hamiltonian is:

H(mp) = −µBg
∑
kjλ

√
S~

4Mωkλ

[(
B′

xβ
j + iB′

yβ
j

)
εβkλ

(
ckλ + c†−kλ

)
a†kj

+
(
B′

xβ
j − iB′

yβ
j

)
εβkλ

(
ckλ + c†−kλ

)
a−kj

]
. (3.42)

Now that the full Hamiltonian for magnons and phonons has been obtained, it is clear
its resemblance with the coupling due to the phenomenological coupling [27]. The main
difference between both mechanisms is that the coupling presented in this section can be
controlled to obtain a coupling with any phonon by choosing the direction where the magnetic
field varies, while Kittel’s phenomenological coupling only couples the magnon with the
transverse phonons [30]. As an example, under the influence of a field of the form B(x),
only the longitudinal phonons will couple to the magnons, while a magnetic field of the form
B(y, z) will couple the magnons to the transversal phonons.

Before continuing with the analysis of our system, we will make a brief parenthesis by
comparing the analytical results of the previous section with the numerical results obtained
through Colpa’s algorithm. For this comparisson, we will consider the constants reported on
YIG [26] shown in table 3.1, and a magnetic field is described by

B(y) = By sin

(
2π

a
y

)
ŷ +Bzẑ . (3.43)

Parameter Value

S 20

M 9.8× 10−24 kg

a0 12.376 Å

v‖ 7209 m/s

v⊥ 3843 m/s

J 0.24 meV

Table 3.1: Reported values of YIG.

What is interesting about this example, is that inequality 3.37 predicts the zone where
Colpa’s algorithm works correctly. This is shown in figure 3.5, where the vertical dotted line
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corresponds to the value of k where the inequality begins to be satisfied. This line matches
with the point where Colpa’s algorithm begins to work because the quadratic form of the
magnon-phonon Hamiltonian becomes definite possitive.

Figure 3.5: Magnon-Polarons’ dispersion relation for a magnetic field with the same peri-
odicity of the lattice. The colorbar is a measure of the probability that the corresponding
eigenstate is a magnon, where a probability of zero means the band is phononic band (blue)
and one is a magnonic band (green). The vertical dotted line corresponds to the theoretical
prediction of the value of k upon which the inequality 3.37 is no longer satisfied, which coin-
cides with the value from which the quadratic form of the Hamiltonian is no longer positive
definite.

The principal importance of this brief parenthesis is that if Colpa’s algorithm behaves
appropriately in every possible value of k, then the equilibrium upon which the expansion of
magnons and phonon was made is a stable equilibrium. It is also important to note that in
this particular analysis, the point k = 0 will not be included as ωkλ

∣∣
k=0

= 0, implying that
the creation and annihilation operators are not correctly defined in that precise point due to
a division over zero appearing in its definition given in equation 3.11.

Returning to the analysis of the magnon-phonon coupling, we are going to study a unidi-
mensional lattice describes by the constants given in table 3.1 and a space-varying magnetic
field that reads

B(x, y) = Bx sin

(
2π

ma
x

)
x̂+By sin

(
2π

ma
y

)
cos

(
2π

ma
x

)
ŷ +Bzẑ , (3.44)

where it is important to note that it has a different periodicity of the lattice and in the case
where m ∈ N there will be precisely m sites per unit-cell.

A completely stable system can be obtained in the case with m = 2, as it is shown in figure
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3.6, where we have plotted the dispersion relations for different values of the magnetic field
presented in equation 3.44. Here it is numerically shown that the coupling between magnons
and the different phonon polarizations depends directly on the magnetic field gradients’
direction. In the same figure, it can also be seen that magnons can couple to either acoustic
or optical phonons.

(a) (b)

(c) (d)

Figure 3.6: Dispersion relation obtained by diagonalizing the magnon-phonon Hamiltonian
for the values given in table 3.1 and the magnetic field described by equation 3.44, for
different values of Bx and By. The colorbar is the probability the corresponding eigenstate is
a magnon. (a) Case with no magnetic field gradient, where the magnon and phonon bands
are completely independent and no magnon polarons are seen. (b) Case where the magnetic
field variation occurs in the x̂-direction, where magnon polarons (red) are generated in the
anti-crossing points between the magnon and longitudinal phonon bands. (c) Case where
the magnetic field variation occurs in the ŷ-direction, where magnon polarons are generated
in the anti-crossing points between the magnon and transversal phonon bands. (d) Case
where the magnetic field variation occurs in the x̂ and ŷ directions. In this case magnon
polarons are created in the anti-crossing points between magnons and the longitudinal and
transversal phonon bands.

When studying figure 3.6.a in detail, it can be appreciated that there exist three crossing
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points between the magnonic bands and the longitudinal phonons, and three additional ones
for the transversal phonons bands. When the magnetic field gradient is turned on, the crossing
points become anti-crossing points and a local energy gap can be measured. Performing this
measurement for different magnetic field values of the magnetic field presented in equation
3.44, we obtain figure 3.7. In the left panel we see the case with variable Bx and By = 0,
while in the the left panel we have Bx = 0 and variable By. In both cases we have plotted the
gap at the values of k such that at zero magnetic field gradient the crossing point is found
at that value of k, which correspond to three points in both cases. The most important
aspect of this plots is that the energy gap depends linearly with respect to the magnetic field
gradient.

x y

Figure 3.7: Energy gap for different values of the magnetic field presented in equation 3.44.
In blue and orange, it is shown the gap in the two crossings between acoustic magnon and
acoustic phonons, while in green, it is shown the gap between an acoustic magnon band with
the optical band. (a) Coupling between magnons and the longitudinal phonons through a
gradient in the x̂ direction, where we have fixed By = 0. (b) Coupling between magnons and
the transversal phonons through a gradient in the ŷ direction, where we have fixed Bx = 0.

One fact that has been ignored until now, is that YIG actually has a nonzero phenomelog-
ical magnetoelastic coupling. In previous works it can be seen that the energy gap for YIG is
roughly ∆ ≈ 2.07µeV[26]. This value can be used to compare the effectiveness of our model,
where we have completely ignore the phenomelogical coupling. In table 3.2 we see what mag-
netic field and corresponding magnetic field gradient is needed to obtain the real gap found
in YIG for the anti-crossing points produced due to the coupling between magnons and the
longitudinal and transversal phonons. According to this results, it is needed an important
magnetic field gradient, but achievable with the already available experimental techniques.
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k-Point Magnetic field [T] Gradient [T/m]

0.010 π/a0 Bx = 1.66 · 10−10 0.421

0.369 π/a0 Bx = 2.81 · 10−11 0.071

0.449 π/a0 Bx = 2.38 · 10−11 0.060

0.020 π/a0 By = 8.49 · 10−11 0.216

0.173 π/a0 By = 2.93 · 10−11 0.074

0.334 π/a0 By = 1.63 · 10−11 0.041

Table 3.2: For each of the crossing points, we show what magnetic field is needed to obtain
a gap of 2.07µeV. The first three entries correspond to crossing points between magnons and
longitudinal phonons, while the last three correspond to the crossing points between magnons
and transversal phonons. The value of the magnetic field gradient is simply given by πBµ/a.

3.4 Conclusion

In this section, it was shown how magnons and phonons could couple through a space-
varying magnetic field to obtain magnon polarons near the crossing points of between both
bands in the absence of this coupling. In contrast to the usually used coupling generated
by Kittel’s phenomenological parameter, one of the most important features of the proposed
coupling is that it is not material dependent in the sense that, in principle, the magnetic field
shape could always be varied to obtain a desired coupling strength. The mentioned strength
is also its weakness due to the difficulty of producing big enough magnetic field gradients for
the effects to be measurable. Another outstanding feature the proposed coupling has to offer
is that in theory, the coupling could be controlled to choose if the magnon would couple to
the transverse or longitudinal phonon.
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Chapter 4

Conclusion

In this thesis we studied magnons in collinear ferromagnets in two different systems. In
the first system we showed that the topological magnons in monolayers of CrI3, which were
believed to come from a next-nearest-neighbor DMI, could also come from a nearest-neighbor
Heisenberg-Kitaev model. The second system we studied the generation of magnon-phonon
coupling through a space-varying magnetic field, where in the existing literature only the
phenomenological magnetoelastic coupling has been studied.

In the second chapter of this thesis, where we studied monolayers of CrI3 through the
Heisenberg-Kitaev model it was numerically demonstrated that a non-zero Kitaev parameter
opens an energy gap in the bulk’s dispersion relation of the material. The energy gap and the
similarity with the tight-binding models seen in topological insulators served as inspiration
to study nanoribbons of CrI3, where we found chiral edge-states. This lead us to study the
time-reversal symmetry, which is broken due to the Kitaev parameter and ultimately gives
rise to a non-trivial Chern number in the case with a nonzero Kitaev parameter. At the end
of this chapter we showed that our model present thermal Hall effect, with the singularity
that a change in the sign of the thermal Hall conducivity should exist when the temperature
is lowered.

In the third chapter, we studied the magnetoleastic coupling produced by a space-varying
magnetic field, where we obtained magnon polarons near the crossing points of between both
bands in the absence of this coupling. In contrast to the magnetoelastic coupling generated
by Kittel’s phenomenological parameter, the proposed magnon-phonon coupling can be tuned
by the control of the magnetic field’s shape. This coupling also presents the advantage that
the coupled phonon mode can be controlled by choosing the direction in which the magnetic
field varies.
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