Tabla de contenido

Capítulo	1: Introducción	.1
1.1.	Motivación	.1
1.2.	Objetivos	.2
	1.2.1. Objetivo general	2
	1.2.2. Objetivos específicos	2
1.3.	Alcance	.2
Capítulo	2: Marco teórico	.3
2.1.	Estabilidad en sistemas eléctricos de potencia	.3
	2.1.1. Introducción	3
	2.1.2. Clasificación de estabilidad	4
	2.1.3. Tipos de estabilidad	4
2.2.	Características relevantes de las ERNC	.9
	Inercia	9
	Niveles de cortocircuito	9
2.3.	Efectos de las ERNC en la estabilidad	10
	2.3.1. Estabilidad de ángulo de rotor	10
	2.3.2. Estabilidad de voltaje	13
	2.3.3. Estabilidad de frecuencia	19
2.4.	Sistemas de potencia longitudinales	24

2.5. Estabilidad de pequeña señal	29
2.5.1. Conceptos fundamentales de estabilidad en sistemas dinámicos	29
2.5.2. Propiedades de la matriz de estados	35
2.5.3. Características de los problemas de estabilidad en pequeña señal	45
2.6. Norma Técnica de Seguridad y Calidad de Servicio	46
2.7. Importancia de las estrategias de control en las ERNC	46
Capítulo 3: Escenarios energéticos futuros para el sector eléctrico nacional	49
Capítulo 4: Metodología	52
4.1. Definición de escenario	52
4.2. Planificación de la transmisión	54
4.3. Selección de puntos de operación	55
4.4. Desarrollo de modelo dinámico	56
4.5. Estudio de pequeña perturbación	56
Capítulo 5: Resultados y análisis	57
5.1. Puntos de operación en estudio	57
5.2. Modos presentes en los puntos de operación en estudio	58
5.2.1. Mínima demanda neta	58
5.2.2. Máxima generación renovable	58
5.2.3. Máximo flujo por enlace SIC-SING (→)	60
5.2.4. Máximo flujo por enlace SIC-SING (←)	61

5.3. Medidas correctivas para modos mal amortiguados	64
5.3.1. Mínima demanda neta	65
5.3.2. Máxima generación renovable	66
5.3.3. Máximo flujo por enlace SIC-SING (→)	67
5.3.4. Máximo flujo por enlace SIC-SING (←)	68
5.4. Efectos de los modos mal amortiguados	69
5.4.1. Mínima demanda neta	69
5.4.2. Máxima generación renovable	71
5.4.3. Máximo flujo por enlace SIC-SING (→)	73
5.4.4. Máximo flujo por enlace SIC-SING (←)	75
Capítulo 6: Conclusiones y trabajo futuro	77
6.1. Trabajo futuro	79
Bibliografía	80
Capítulo 7: Anexos	84
7.1. Anexo A: Resultados modelo de planificación de transmisión	

Índice de tablas

TABLA 1: ESCENARIOS DE PENETRACIÓN DE GENERACIÓN PV	12
TABLA 2: CARACTERÍSTICAS DEL SISTEMA EN EL CASO BASE SIN GENERACIÓN FOTOVOLTAICA	13
TABLA 3: MÁRGENES DE POTENCIA REACTIVA DE ACUERDO CON CARGA DEL SISTEMA	17
Tabla 4: Márgenes de potencia reactiva en la barra 5 para niveles crecientes de carga y penetración eólica	EN EL SISTEMA.
	18
TABLA 5: VALORES UTILIZADOS PARA SIMULACIONES EN [1]	20
TABLA 6: CAPACIDAD INSTALADA A INCORPORAR POR REGIÓN PARA EL ESCENARIO C EN MW.	51
Tabla 7: Caso de estudio, capacidad instalada para el año 2046 obtenido de acuerdo con el plan de obras d	e la PELP en
MW	51
TABLA 8: CASO DE ESTUDIO DEFINITIVO, CAPACIDAD INSTALADA MODIFICADA PARA EL AÑO 2046 EN MW	53
TABLA 9: CARACTERÍSTICAS DE LOS PUNTOS DE OPERACIÓN EN ESTUDIO	57
TABLA 10: RESULTADOS DEL MODELO DE PLANIFICACIÓN, LÍNEAS QUE SE DEBEN AGREGAR.	84
TABLA 11: RESULTADOS DEL MODELO DE PLANIFICACIÓN, TRANSFORMADORES QUE SE DEBEN AGREGAR.	85
TABLA 12: LÍNEAS A AGREGAR EN BASE A SIMULACIÓN DE FLUJOS DE POTENCIA	86
TABLA 13: TRANSFORMADORES A AGREGAR EN BASE A SIMULACIONES DE FLUJOS DE POTENCIA.	87

Índice de figuras

Figura 1: Clasificación de estabilidad [31].	4
FIGURA 2: MODELO DEL SISTEMA OESTE IEEJ DE 10 MÁQUINAS UTILIZADO EN [16].	10
Figura 3: Tiempo crítico de despeje de falla según el nivel de penetración de energías renovables para cada escen	ario11
FIGURA 4: DIAGRAMA UNILINEAL DEL SISTEMA DE ESTUDIO EN [17]	12
FIGURA 5: MÁXIMA DIFERENCIA DE ÁNGULO DE ROTOR PARA DIFERENTES ESCENARIOS DE PENETRACIÓN DE GENERACIÓN PV	13
FIGURA 6: DIAGRAMA UNILINEAL CERCANO A LA BARRA DONDE OCURRE LA FALLA TRIFÁSICA	14
FIGURA 7: TENSIONES EN LAS BARRAS AFECTADAS POR LA FALLA PARA DISTINTOS NIVELES DE PENETRACIÓN DE GENERACIÓN FOT	OVOLTAICA.
	14
FIGURA 8: COMPARACIÓN DE TENSIONES EN LA BARRA 1001 PARA EL CASO SIN GENERACIÓN PV Y EL CASO CON 20% DE GENERA	ACIÓN PV.
	15
FIGURA 9: DIAGRAMA UNILINEAL DE ESTUDIO EN EL CASO BASE.	16
Figura 10: Curvas Q-V para la barra 5 para niveles de carga crecientes	16
FIGURA 11: DIAGRAMA UNILINEAL DE SISTEMA DE ESTUDIO EN [19] AGREGANDO PENETRACIÓN DE GENERACIÓN EÓLICA	17
Figura 12: Curvas Q-V para niveles crecientes de carga en la barra 5, considerando una penetración eólica de 26	5.56%18
FIGURA 13: VARIACIÓN DE TENSIÓN EN BARRA 5 FRENTE A UNA FALLA EN LA LÍNEA 4-5, PARA UN CASO SIN PE Y OTRO CON PE	19
FIGURA 14: DIAGRAMA UNILINEAL UTILIZADO EN [21].	20
FIGURA 15: RESPUESTA EN FRECUENCIA EN CASO DE CONTINGENCIA PARA UNA CARGA DE 2,200[MW]	21
Figura 16: SIM modificado para el estudio.	22
Figura 17: Frecuencia y tasa de variación de frecuencia en las barras del sistema para diferentes escenarios de	
PENETRACIÓN EÓLICA PARA LA CONTINGENCIA DEL CASO 1.	23
FIGURA 18: FRECUENCIA Y TASA DE VARIACIÓN DE FRECUENCIA EN LAS BARRAS DEL SISTEMA PARA DIFERENTES ESCENARIOS DE	
PENETRACIÓN EÓLICA PARA LA CONTINGENCIA DEL CASO 2.	23
FIGURA 19: DIAGRAMA UNILINEAL SIMPLIFICADO DEL SIC CONSIDERANDO LAS BARRAS IMPORTANTES PARA EL ESTUDIO	24
Figura 20: Evolución en voltajes de barras del sistema	26
FIGURA 21: ACCIÓN DE CAMBIADORES DE TAP BAJO CARGA EN BARRA ALTO JAHUEL.	26
Figura 22: Voltajes de excitación de los principales generadores del sistema	27
FIGURA 23: EVOLUCIÓN DE POTENCIA ACTIVA EN PRINCIPALES PLANTAS GENERADORAS DEL SISTEMA	28
Figura 24: Evolución de potencia reactiva generada.	28
FIGURA 25: EVOLUCIÓN DE FRECUENCIAS EN GENERADORES PRINCIPALES DEL SISTEMA.	29
FIGURA 26: DIAGRAMA DE BLOQUES DE LA REPRESENTACIÓN EN EL ESPACIO DE ESTADOS.	34
FIGURA 27: PUNTOS SINGULARES CORRESPONDIENTES A SEIS POSIBLES COMBINACIONES DE PARES DE VALORES PROPIOS.	42
Figura 28: Control de frecuencia de un convertidor en modo <i>grid-following</i>	47
Figura 29: Control de frecuencia de un convertidor en modo <i>grid-forming</i>	48
Είς μαλ 20· Πεναλνίας εμέςταιςς απονέςτασα ένα α DELD αλάδα μος αιστινίτος εχοενιλαίος ενιεροέτισος	

FIGURA 31: CAPACIDAD INSTALADA PROPUESTA PARA EL ESCENARIO ENERGÉTICO C50)
Figura 32: Diagrama de flujo de la metodología a desarrollar	<u>)</u>
Figura 33: Capacidad instalada en cada región correspondiente al SEN de acuerdo con la proyección realizada para el	
2046	1
FIGURA 34: MODOS PRESENTES EN EL PUNTO DE OPERACIÓN MÍNIMA DEMANDA NETA.	3
FIGURA 35: MODOS PRESENTES EN EL PUNTO DE OPERACIÓN MÁXIMA GENERACIÓN RENOVABLE)
Figura 36: Modos presentes en el punto de operación máximo flujo por el enlace SIC-SING (→)60)
Figura 37: Modos presentes en el punto de operación máximo flujo por el enlace SIC-SING (←)62	Ł
FIGURA 38: DIAGRAMA UNILINEAL SIMPLIFICADO QUE INCLUYE UBICACIÓN APROXIMADA DE CENTRALES QUE PARTICIPAN DE MODOS MAL	
AMORTIGUADOS	3
Figura 39: Modos presentes en el punto de operación mínima demanda neta tras aplicar metodología de	
AMORTIGUAMIENTO DE MODOS6	5
Figura 40: Modos presentes en el punto de operación máxima generación renovable tras aplicar metodología de	
AMORTIGUAMIENTO DE MODOS	5
Figura 41: Modos presentes en el punto de operación máximo flujo por enlace SIC-SING (→) tras aplicar metodología de	
AMORTIGUAMIENTO DE MODOS6	7
Figura 42: Modos presentes en el punto de operación máximo flujo por enlace SIC-SING (←) tras aplicar metodología de	
AMORTIGUAMIENTO DE MODOS	3
FIGURA 43: VELOCIDAD Y ÁNGULO DE ROTOR DE NUEVA ALDEA U3 PARA EL CASO CON MODOS MAL AMORTIGUADOS EN EL PUNTO DE	
OPERACIÓN MÍNIMA DEMANDA NETA6)
Figura 44: velocidad y ángulo de rotor de Nueva Aldea U3 para el caso con modos amortiguados en el punto de	
OPERACIÓN MÍNIMA DEMANDA NETA70)
FIGURA 45: VELOCIDAD Y ÁNGULO DE ROTOR DE SAN PEDRO U1 PARA EL CASO CON MODOS MAL AMORTIGUADOS EN EL PUNTO DE	
OPERACIÓN MÁXIMA GENERACIÓN RENOVABLE7	L
FIGURA 46: VELOCIDAD Y ÁNGULO DE ROTOR DE SAN PEDRO U1 PARA EL CASO CON MODOS AMORTIGUADOS EN EL PUNTO DE OPERACIÓN	
MÁXIMA GENERACIÓN RENOVABLE	<u>)</u>
Figura 47: velocidad y ángulo de rotor de San Pedro U1 para el caso con modos mal amortiguados en el punto de	
OPERACIÓN MÁXIMO FLUJO POR ENLACE SIC-SING (→)73	3
FIGURA 48: VELOCIDAD Y ÁNGULO DE ROTOR DE SAN PEDRO U1 PARA EL CASO CON MODOS AMORTIGUADOS EN EL PUNTO DE OPERACIÓN	
Máximo flujo por enlace SIC-SING ($ ightarrow$)	1
Figura 49: velocidad y ángulo de rotor de Antuco U2 para el caso con modos mal amortiguados en el punto de	
OPERACIÓN MÁXIMO FLUJO POR ENLACE SIC-SING (←)7!	5
FIGURA 50: VELOCIDAD Y ÁNGULO DE ROTOR DE ANTUCO U2 PARA EL CASO CON MODOS AMORTIGUADOS EN EL PUNTO DE OPERACIÓN	
MÁXIMO FLUJO POR ENLACE SIC-SING (←)	5