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RELACIONES ENTRE EL NIÑO – OSCILACIÓN DEL SUR Y RESPUESTA 
HIDROLÓGICA EN CHILE CENTRO-SUR 

Si bien existe evidencia de teleconexiones entre El Niño Oscilación del Sur (ENOS) y la 
hidroclimatología de la zona centro-sur de Chile, no es todavía clara la propagación de la 
señal ENOS a través del ciclo hidrológico, debido a efectos complejos de los procesos 
hidrológicos que podrían compensar o amplificar las anomalías meteorológicas. En este 
trabajo se examina la respuesta hidrológica a las fases de ENOS, manifestadas como 
fluctuaciones en las condiciones climáticas locales, a lo largo de 54 cuencas de estudio 
en régimen cercano al natural. El dominio de estudio provee un marcado gradiente 
hidroclimático latitudinal, además del control altitudinal causado por la Cordillera de Los 
Andes. Se analiza la dependencia de variables climáticas e índices hidrológicos de 
acuerdo a las fases de ENOS – El Niño, La Niña y neutral –, en distintos regímenes 
hidrológicos – nival, pluvial y mixto. Además, se calcula la sensibilidad de los índices 
hidrológicos a las variables climáticas, y de esta forma, los patrones obtenidos para las 
sensibilidades empíricas son claves con miras a intentar separar el efecto individual de 
las fluctuaciones en precipitación y temperatura inducidas por ENSO, dentro del efecto 
integrado o total de ENOS sobre el ciclo hidrológico. 

Los resultados obtenidos confirman significancia estadística en las anomalías inducidas 
por ENOS sobre caudales y/o variables climáticas a escala de cuenca, en toda la zona 
de estudio. Los regímenes hidrológicos (i.e., estacionalidad) son exacerbados durante la 
fase El Niño, con un claro gradiente latitudinal. Se observa una estacionalidad distintiva 
de las anomalías de temperatura según ENOS, con condiciones más cálidas (más frías) 
en invierno y más frías (más cálidas) en primavera durante la fase El Niño (La Niña), 
presumiendo efectos dispares sobre el comportamiento de la nieve y caudales. Se 
observa concurrencia entre condiciones húmedas (secas) y menores (mayores) 
coeficientes de escorrentía, en cuencas de régimen nival. De esta manera, en cuencas 
nivales se observan relaciones compensatorias que impactan la respuesta de caudal. 
Finalmente, se busca desagregar los efectos de precipitación y temperatura modulados 
por ENSO, estimando que el rol de la temperatura es secundario frente a la precipitación 
pero no despreciable, y que este efecto es de signo distinto para cuencas nivales o 
pluviales. 

Esta memoria se presenta en idioma inglés y en formato tipo artículo de revista. 
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Linking ENSO teleconnections and hydrological responses in 
Central-Southern Chile: a climate sensitivity approach 

ABSTRACT 

Despite large evidence on teleconnections between the El Niño Southern Oscillation 
(ENSO) and the hydroclimatology of Central-Southern Chile, the propagation of the ENSO 
signal through the hydrological cycle is still unclear, because of the complex hydrological 
processes and compensatory/amplifying effects of meteorological anomalies on the 
hydrology. In this work, we examine the hydrological responses to contrasting ENSO 
phases, which manifest as fluctuations in local climatic conditions across 54 near-natural 
catchments, whose location provides a strong north-south latitudinal dry-wet gradient, with 
the Andes Cordillera acting as a longitudinal elevation control. We analyze the 
dependence of climatic variables and hydrological signatures according to ENSO phases 
– El Niño, La Niña and neutral – across different hydrologic regimes – snowmelt-
dominated, rainfall-dominated and mixed. Additionally, we calculate the sensitivity of 
hydrological signatures to climatic variables. Here, the patterns of empirical sensitivities 
are valuable keys in order to attempt to unravel the integrated effect of ENSO-related 
precipitation and seasonal temperatures fluctuations over the water cycle. 

Our results confirm statistically significant ENSO-related anomalies of streamflow and/or 
catchment-scale climatic variables in all basins within the domain. Hydrologic regimes (i.e. 
seasonality) are enhanced during El Niño years, showing a clear latitudinal gradient. We 
observe a distinct temperature timing according to ENSO, with warming (cooling) in winter 
and cooling (warming) in spring during El Niño (La Niña) events, with presumable uneven 
effects over snow behavior and streamflow. We note concomitancy between wetter (drier) 
conditions and lower (higher) runoff ratios in snowmelt-driven basins. Thus, for snowy 
catchments, we account compensatory relationships that buffer streamflow. Finally, we 
attempt to disaggregate the effects of ENSO-related precipitation and temperatures 
fluctuations on overall streamflow response, roughly estimating that temperature role is 
not negligible nor univocal. 
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1 INTRODUCTION 

Hydrology along Central-Southern Chile is modulated by contributions of several modes 
of natural variability – as El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation 
and Antarctic Oscillation – with notable influence of ENSO over winter and annual 
hydrology-related variability (Rubio-Álvarez and McPhee, 2010). Ultimately, ENSO 
represents the paramount fluctuation in the global climate-system variability at the year-
to-year scale (Timmerman et al., 2018; Grothe et al., 2020). Timmerman et al. (2018) 
reviewed the current understanding about the complexity of the ENSO phenomenon, 
identifying dynamics with a low-frequency mechanism during boreal spring – enough 
warming of Central Pacific pool – and a stochastic activation mechanism during boreal 
summer – westerly wind events – related to momentum transfer. The interaction between 
both mechanisms determines the apparition of “El Niño” phase or the opposite “La Niña” 
phase. It is worth noting that both phases are not symmetrical: while often El Niño phases 
are stronger than La Niña (larger amplitude of sea surface temperature anomalies), La 
Niña phases show greater persistence in time than El Niño (year-to-year consecutive 
occurrence), besides others nonlinear features. Despite ENSO manifests itself as an 
multi/interannual climate fluctuation, its causes are related to interactions of mechanisms 
that cover a myriad range of processes in temporal scales from weeks to decades 
(Timmerman et al., 2018). 

ENSO fluctuations determine pseudo-oscillatory perturbations in sea surface temperature 
and winds, which affect the general circulation of atmosphere-ocean and climate of vast 
regions around the globe, as Asia, America and Australia. The ENSO phenomenon must 
be understood as a continuum between El Niño and La Niña phases, subject to 
asymmetry and nonlinearity, where there are no events with identical manifestation 
(Timmerman et al., 2018) – with sometimes notable uneven evolution of El Niño events 
(e.g., Hu and Fedorov, 2016; Min et al., 2015). ENSO events may be classified as strong, 
moderate and weak, according to their amplitudes of sea surface temperature anomalies. 
Even more, at least two spatial characteristic configurations can be identified in El Niño-
phase events (i.e., “flavors”), since some events show major warming towards the East 
Pacific region, or major warming through the Central Pacific region (Timmerman et al., 
2018). 

ENSO has also been recognized as an important control over Central-Southern Chile 
hydroclimatology. Waylen et al. (1993) reported positive, statistically significant annual 
precipitation anomalies during El Niño years across fifteen stations between 27°S and 
38°S, located in basins within a wide range of hydrologic regimes. Montecinos and 
Aceituno (2003) analyzed the ENSO-related variability of precipitation in Central Chile for 
the second half of 20th century. They found that El Niño (La Niña) episodes can be 
associated to: above (below) average winter precipitation for the region between 30°S to 
35°S, above (below) average late spring precipitation in the region from 35°S to 38°S, and 
dry (humid) conditions during summer for the 38°S to 41°S region, showing larger 
amplitude the two first relationships mentioned above. The synoptic pattern of El Niño-
related precipitation anomalies indicates blocking activity over the Amundsen-
Bellingshausen Seas that forces to northward deviation of track-of-storms in the South 
East Pacific (Montecinos and Aceituno, 2003). 
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Nevertheless, hydrological response to ENSO fluctuations is not alleged to mimic ENSO-
related precipitation anomalies, due to further complexity related to catchment processes 
and dependence on other variables such as temperature. Cortés et al. (2011) identified a 
subregion within 30°S to 34°S where timing of streamflow (seasonality) is controlled by 
winter and spring temperature besides annual precipitation. During El Niño years, 
increased temperature and greater precipitation amounts seem to have compensatory 
effects on streamflow seasonality, making it difficult to recognize the overall effect of El 
Niño episodes. Greater snowpack accumulation is observed during El Niño years, 
although the opposite is not clear during La Niña events, as reported by Masiokas et al. 
(2006) within region spanning 30°S to 37°S and by Cortés and Margulis (2017) for the 
domain 27°S to 37°S, suggesting that a nonlinear modulation of ENSO phases on 
hydrological variables exists. Further assessments of the effects that precipitation and 
temperature anomalies have on hydrological responses are needed. 

Several approaches have been explored to assess water resources sensitivities to climate 
variability and change, including: empirical nonparametric-based techniques to 
characterize regional patterns of streamflow response and dependencies with storage 
processes and other factors (Sankarasubramanian and Vogel, 2003; 
Sankarasubramanian et al., 2001); multi-model frameworks to assess structural 
uncertainties in hydrologic responses to climate shifts (Vano et al., 2012); empirical 
regression-based techniques to explore implications of solid partition of precipitation in 
anomalies of streamflow (Berghuijs et al., 2014); Budyko frameworks to globally assess 
the dominance of precipitation temporal variability on streamflow (Berghuijs et al., 2017), 
and to better understand effects of temperature on evaporation and radiation feedbacks 
over streamflow (Milly et al., 2018); radiation parameterizations to assess albedo losses 
importance on streamflow anomalies due to warming (Milly and Dunne, 2020); and 
empirical methods fed with climate projections to constrain streamflow projections (Lehner 
et al., 2019). 

However, the interpretation of sensitivity calculations is challenging because they depend 
on the conceptualization of basin function. Hence, estimated sensitivities may not be 
numerically comparable between different studies. Moreover, the sensitivities depend on 
the historical period and length of recorded data (Sankarasubramanian et al., 2001), as 
well as measurement errors, temporal and spatial sampling errors that may undermine 
the true value of sensitivities (Milly et al., 2018). It may be worth noting that some 
formulations of sensitivities lay on imposition of an arbitrary change of a climatic variable. 
Likewise, as noted by Berghuijs et al. (2017), sensitivities by itself do not provide the 
observed (historical) magnitude of change of a climatic variable, but the degree of 
response to a reference change. 
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We relate hydrologic sensitivities to climatic variables to assess the compounded 
influence of ENSO on water resources. To our knowledge, the disentangled effects of 
ENSO-related precipitation and temperature anomalies on the water cycle in Central-
Southern Chile has not been achieved. This work explores the main patterns of ENSO 
modulation over climatic variables and hydrological signatures, and aims to separate 
ENSO-related intra-seasonal temperature signal and its implications. Hence, we explore 
hydrological sensitivities to climate over Central-Southern Chile, to roughly identify the 
individual effect of each climatic ENSO-anomaly on hydrological anomalies. We present 
our results based on a hydrologic regime classification, in order to frame our findings and 
implications around sub-regions with similar hydrologic behavior. Therefore, our main 
goals are: 

i. To identify and describe observed ENSO-related anomalies in the water cycle, with 
special focus on sub-regional patterns. 

ii. To link observed climate sensitivities on the study domain with plausible hypothesis 
reported on literature. 

iii. To unravel the individual roles of precipitation and temperature inside the integrated 
effect of ENSO anomalies over the hydrology. 
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2 STUDY DOMAIN 

The study area spans the region between 28°S and 41°S in Central-Southern Chile, which 
is bounded by the Pacific Ocean in the west, and by the Andes Cordillera in the east. 
Further north from the study domain, around 27°S offshore, the Southerneast Pacific 
Anticyclone blocks precipitation events boosting a strong north-south latitudinal dry-wet 
gradient. Further, the Andes Cordillera acts as a longitudinal elevation control, with peak 
elevation above 6500 m a.s.l. in the study domain (Table 1 and Figure 1). Most 
precipitation events along this territory are associated with frontal systems, which landfall 
in winter between 30°S and 40°S (subtropical), and during the entire year between 40°S 
and 55°S (midlatitude). Atmospheric rivers landfalling against the Andes Cordillera are an 
important feature that contribute nearby more than half of annual precipitation in 
subtropical and midlatitude Chile, whose intensity may reach up to two or three times 
compared to other storms due to the orographic enhancement of precipitation (Viale et 
al., 2018). 

Central-Southern Chile concentrates the most populated cities in the country, including 
the capital Santiago, and key water-intensive activities such as as mining, agriculture and 
forest plantations (DGA, 2016). Climate in this region is mainly Mediterranean-like, from 
cold semiarid climate at the north of the study domain, to temperate rain-oceanic climate 
at southmost, passing through subhumid and humid Mediterranean climates (Alvarez-
Garreton et al., 2018). 

Table 1. Main physiographic characteristics of the basins at the study domain, according 
to hydrologic regime classification. 

Basins 

Latitude of 

gauge 
(°S) 

Longitude 

of gauge 
(°W) 

Mean 

elevation 
(m a.s.l.) 

Peak 

elevation 
(m a.s.l.) 

Area 
(km2) 

Average 
slope (%) 

 

Minimum 
Median 

Maximum 

Minimum 
Median 

Maximum 

Minimum 
Median 

Maximum 

Minimum 
Median 

Maximum 

Minimum 
Median 

Maximum 

Minimum 
Median 

Maximum 

Snowmelt-
driven 

(n = 12) 

28.09 
32.41 
35.28 

71.02 
70.45 
69.94 

1,973 
3,303 
3,905 

3,282 
5,486 
6,550 

110 
777 

4,839 

19.6 
23.8 
29.6 

Mixed 

(n = 17) 

30.44 
32.92 
39.26 

72.23 
70.87 
70.54 

206 
1,857 
2,726 

833 
3,591 
5,539 

56 
559 

1,837 

12.3 
22.2 
25.6 

Rainfall-
driven 

(n = 25) 

33.17 
37.78 
40.71 

73.23 
72.44 
71.13 

152 
504 

1,564 

588 
1,510 
3,509 

103 
688 

4,510 

6.6 
12.6 
25.9 
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Figure 1. Location, elevation and hydrologic regime of basins across the study domain. 
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3 DATA AND METHODS 

3.1 Datasets 

We use the CAMELS-CL basin-scale dataset (Alvarez-Garreton et al., 2018), which 
contains daily time series of streamflow, precipitation, temperature and other 
hydrometeorological variables. The streamflow time series correspond to observed 
records collected in stations from the National Water Directorate (Dirección General de 
Aguas, DGA). Precipitation and temperature time series in CAMELS-CL are obtained from 
the CR2MET gridded product (http://www.cr2.cl/datos-productos-grillados/), which is already 
calibrated with DGA and National Weather Directorate (Dirección Meteorológica de Chile, 
DMC) observations. 

The study period is 1979-2015, i.e., 36 water years, defined from April 1st to March 31st. 
From all basins available in the CAMELS-CL dataset, 103 are classified as near-natural 
regime non-nested catchments, according to givens water rights criteria – consumptive 
water rights smaller than 5% of mean annual streamflow – and absence of dams (DGA, 
2019a). Based on quality criteria, we select 54 basins for further analyses. 

While the meteorological times series are complete, daily streamflow time series have 
missing values. Hence, we define four quality control steps for streamflow data to include 
a specific basin into our analyses: 

i. A monthly value is considered missing if it contains more than 20% of daily missing 

values. 

ii. An annual value is considered missing if it contains more than two monthly missing 

values. 

iii. We select a basin if it has at least 15 years of data (not necessarily consecutive); 

and, 

iv. we select a basin if it does not contain a 10-year gap of data. 

After applying the above constraints, we obtained 54 near-natural basins containing 

87.5% of daily streamflow data. We fill the missing data at the monthly time scale using 

the imputePCA R package (Josse and Husson, 2016), which consists of iterative Principal 

Component Analysis imputation, taking advantage of structures between individuals (i.e., 

months along years) and structures between variables (i.e., basins). We conduct 

imputation stratified per month, and we perform a similar procedure at the daily time step 

before compute flow duration curves (FDC). 

  

http://www.cr2.cl/datos-productos-grillados/
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3.2 Seasonality of streamflow and precipitation 

We calculate monthly Pardé coefficients of streamflow (e.g., Blöschl et al., 2013), for each 

water year. The Pardé coefficient is defined as the quotient of monthly streamflow over 

the corresponding annual streamflow (for each basin, twelve values per year). For 

simplicity, Pardé coefficients are scaled so that monthly values sum the unity for each 

water year, thus coefficients range from 0 to 1 (referred as fractional coefficients in later 

text). Additionally, we calculate identical coefficients for precipitation. 

At each basin, we calculate the averaged fractional coefficients for streamflow and use 

them as input variables for a K-means clustering procedure with fixed K=3, according to 

the well-known classification for hydrologic regimes: rainfall-driven, snowmelt-driven and 

mixed regimes. We also explore the inclusion of a precipitation-based Pardé coefficient 

as clustering variable, which forces to an attenuation or suppression of the number of 

mixed regime basins, strengthening the classification to snowmelt-driven and rainfall-

driven clusters (not shown). Therefore, we decide to keep catchment classification using 

only streamflow data. We also performed K-means clustering based on the mean centroid 

of the annual hydrograph, with little differences but slightly lesser coherent spatial patterns 

(not shown). Finally, we confirm the results of the classification process by individual 

inspection of seasonal streamflow curves at each basin (supplementary Figure B-1). 

3.3 ENSO type of year classification 

Past studies suggest that, because of ENSO complexities, each event is unique, and 

hence ENSO episodes should be interpreted as a continuum instead of strictly defined 

phases (e.g., Timmermann et al., 2018; Hu and Fedorov, 2016; Min et al., 2015). 

Notwithstanding, in this study we classify a year as El Niño, La Niña or neutral at the 

annual scale, according to the annual average Multivariate ENSO Index (MEI; Wolter and 

Timlin, 2011; https://www.esrl.noaa.gov/psd/enso/mei). MEI is one of most 

comprehensive ENSO indexes, based on Principal Components Analysis of five fields 

over the tropical Pacific basin. We define an El Niño year when the median MEI value is 

equal or larger than 0.5, a La Niña year when it is equal or smaller than -0.5, and neutral 

otherwise (supplementary Figure B-2). We compare this numerical criterion with 

previously published lists of ENSO events comprehensive classification (Yu and Kim, 

2013; Zheng and Yu, 2017), finding high correspondence with our results. 

  

https://www.esrl.noaa.gov/psd/enso/mei
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3.4 Flow duration curves 

For each basin and water year, we calculate the FDC with the daily streamflow normalized 

with the corresponding average daily streamflow (e.g. Yokoo and Sivapalan, 2011; 

Yaeger et al., 2012; Chouaib et al., 2018), in order to harmonize the effects of spatial 

variability and achieve comparable metrics between different catchments. 

When we aggregate annual FDC within a hydrologic regime cluster and within an ENSO 

phase, we calculate a mean annual FDC instead of a total-record FDC, according to 

McMillan et al. (2017) who emphasizes the more robustness of mean FDC, due the length-

of-data dependence of total-record FDC. 

3.5 Climatic variables and hydrological signatures 

In order to visualize the main effects of ENSO phases on the hydrological cycle, we select 

four climatic variables and four hydrological signatures (Table 2). Because of the large 

climate variability along the Chilean territory, we define a six-month winter season (April-

September) that encompasses 70% to 95% of annual precipitation, in mean terms, at the 

different basins. Additionally, we define a three-month spring season (October-

December). The remaining three-months summer are disregarded from our analyses, 

because of lack of statistical significance in January-March temperature anomalies 

according to ENSO phases (not shown). 

We define a winter precipitation event (or storm) when daily precipitation is larger than a 

2 mm threshold at any day during winter (April-September). Although 2 mm is a small 

threshold, we consider it appropriate because of the catchment-scale analyses, and also 

due to undercatch or underestimation issues on both observations and reanalyses 

datasets across the territory (DGA, 2019b; Beck et al., 2019). Further, an arbitrary 

threshold is needed because near to zero values may be produced by numerical artifacts 

of the gridded-product and because of catchment-scale averaging. 

We select a suite of hydrological signatures to cover distinct aspects of the hydrological 

cycle. The runoff ratio (𝑹𝑹) may be interpreted as water yield efficiency, while the centroid 

of annual hydrograph (𝑪𝑬𝑵) is used as indicator of streamflow seasonality (e.g. Cortés et 

al., 2011). In addition, the low-segment volume of the flow duration curve (𝑳𝑶𝑾𝑽; Yilmaz 

et al., 2008) is proposed as an alternative baseflow index (McMillan, 2019). 
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Table 2. Annual time series of climatic variables or hydrological signatures, for each basin. 

Type Name Description Units 

Climatic 
variable 

Cumulative 
precipitation of winter 

storm events (𝑷𝑹𝒔𝒕𝒐) 

For each water year, cumulative 
precipitation of daily winter precipitation 
events (as defined in text), normalized 

over long-term mean. 

% 

Climatic 
variable 

Mean temperature of 

winter storm events 
(𝑻𝑴𝒔𝒕𝒐) 

For each water year, mean air 
temperature of daily winter precipitation 

events (as defined in text). 
°C 

Climatic 
variable 

Mean temperature of 

winter days (𝑻𝑴𝒘𝒊𝒏) 

For each water year, mean air 
temperature of winter days (April-

September) 
°C 

Climatic 

variable 

Mean temperature of 

spring days (𝑻𝑴𝒔𝒑𝒓) 

For each water year, mean air 
temperature of spring days (October-

December) 
°C 

Hydrological 
signature 

Streamflow (𝑸) 
For each water year, annual streamflow, 

normalized over long-term mean. 
% 

Hydrological 
signature 

Runoff ratio (𝑹𝑹) 
For each water year, annual streamflow 
over annual accumulated precipitation. 

% 

Hydrological 
signature 

Centroid of annual 

hydrograph (𝑪𝑬𝑵) 

For each water year, center of mass of 
the daily streamflow record (Cortés et 

al., 2011). 
weeks 

Hydrological 
signature 

Low-segment volume 
of Flow Duration 

Curve (𝑳𝑶𝑾𝑽) 

For each water year, volume of the flow 
duration curve on semi log space, 

between exceedance probabilities 0.7 
and 1.0 (Yilmaz et al., 2008). 

units 
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3.6 Composites and grouping 

We compute composites of climatic variables and hydrological signatures (see Table 2) 

related to ENSO anomalies, as follows. For each basin and variable, the long-term mean 

is subtracted from the annual time series obtaining the anomalies time series, 

𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑜𝑓 𝑧 ∶= 𝑧𝑡
′ = 𝑧𝑡 − 𝑧̅  

where 𝑧𝑡 is either a climatic variable or hydrological signature annual time series, and 𝑧̅ is 

its mean. Then, composites are calculated as the average of annual anomalies from all 

years within a certain ENSO phase – El Niño, neutral or La Niña. A special composite is 

calculated as the average of annual anomalies of all years classified as El Niño minus the 

average of annual anomalies of all years classified as La Niña. This way, the latter 

composite indicates in a single term the amplitude or how much the analyzed variable 

shifts according to ENSO phenomenon – in mean terms. 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐸𝑙 𝑁𝑖ñ𝑜  𝑜𝑓 𝑧 ∶= 𝑚𝑒𝑎𝑛
𝑡 𝜖 {𝐸𝑙 𝑁𝑖ñ𝑜}

(𝑧𝑡
′) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑁𝑒𝑢𝑡𝑟𝑎𝑙  𝑜𝑓 𝑧 ∶= 𝑚𝑒𝑎𝑛
𝑡 𝜖 {𝑁𝑒𝑢𝑡𝑟𝑎𝑙}

(𝑧𝑡
′) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐿𝑎 𝑁𝑖ñ𝑎  𝑜𝑓 𝑧 ∶= 𝑚𝑒𝑎𝑛
𝑡 𝜖 {𝐿𝑎 𝑁𝑖ñ𝑎}

(𝑧𝑡
′) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐸𝑙 𝑁𝑖ñ𝑜−𝐿𝑎 𝑁𝑖ñ𝑎  𝑜𝑓 𝑧 ∶= 𝑚𝑒𝑎𝑛
𝑡 𝜖 {𝐸𝑙 𝑁𝑖ñ𝑜}

(𝑧𝑡
′) − 𝑚𝑒𝑎𝑛

𝑡 𝜖 {𝐿𝑎 𝑁𝑖ñ𝑎}
(𝑧𝑡

′) 

For time series composites of El Niño minus La Niña phases at every basin, we conduct 

a Fisher-Pitman permutation test to check the statistical significance of such differences, 

where the null hypothesis establishes that there is no difference (equal to zero) between 

means. This test is computed at the 95% significance level. 

We also perform a Wilcoxon (or Mann-Whitney) nonparametric test to assess the 

difference between annual time series grouped by: (i) ENSO-phases type of year (i.e., 

temporal grouping), and (ii) hydrologic regime clusters (i.e., spatial grouping). The 

Wilcoxon test lays on the null hypothesis that there is no difference between group means. 

This test is computed at the 95% significance level. 
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3.7 Hydrologic sensitivities 

In particular, streamflow sensitivity to precipitation – typically referred to as elasticity – is 
defined as the fractional change in streamflow due to a fractional, long-term change in 
precipitation (e.g. 1% of change in precipitation, so elasticity has units of %%-1). Sensitivity 
to temperature is analogous, but accounting an absolute change in temperature (e.g. 1°C 
of change in temperature, so sensitivity has units of %°C-1).  

We compute sensitivities of two hydrological signatures – 𝑸 and 𝑹𝑹 – against the four 

climatic variables, for each basin at the annual scale. These sensitivities are calculated 

assuming that each signature can be represented in a multiple linear model with the four 

climatic variables as the explanatory variables, extending the idea of Berghuijs et al. 

(2014). Also, due to correlations between climatic variables, we consider each climatic 

variable as a multiple linear model with the three remaining climatic variables as 

independent variables. This approach is convenient to attempt to correct multicollinearity 

between predictor variables. 

Regardless of the linear dependence assumption, all models for 𝑸 are statistically 

significant at the F-test (at 95% level of significance; supplementary Table B-1). Also for 

𝑸, all models are statistically significant at the t-test for 𝑷𝑹𝒔𝒕𝒐 as predictor (at 95% level of 

significance; supplementary Table B-1). For the temperature variables as predictors, 

models show varied behavior of t-test significance by basin (supplementary Table B-1). 

Although regression-based climate sensitivities are typically computed using partial 

derivatives, this approximation may be quite unrealistic because they rely on the 

assumption that the values of the remaining variables are fixed, ignoring interactions and 

correlations between variables. Hence, we calculate sensitivities as the total derivative, 

as discussed in Berghuijs et al. (2017). For each basin, we resolve each sensitivity in a 

4x4 linear system of equations, where the total derivatives are the unknowns and the 

partial derivatives are approximated by least squares as the coefficients of regression of 

the multiple linear models. Thereby, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑦𝑖  𝑡𝑜 𝑥𝑗 ∶=
𝑑𝑦𝑖

𝑑𝑥𝑗
=

𝜕𝑦𝑖

𝜕𝑥𝑗
+ ∑

𝜕𝑦𝑖

𝜕𝑥𝑘
⋅

𝑑𝑥𝑘

𝑑𝑥𝑗
𝑘≠𝑗

 

𝑤𝑖𝑡ℎ 
𝑑𝑥𝑘

𝑑𝑥𝑗
=

𝜕𝑥𝑘

𝜕𝑥𝑗
+ ∑

𝜕𝑥𝑘

𝜕𝑥𝑙
⋅

𝑑𝑥𝑙

𝑑𝑥𝑗
𝑙≠{𝑘,𝑗}

 

where 𝑦𝑖 is a hydrological signature, 𝑥𝑗 is a predictor climatic variable and 𝑥𝑘 are the 

remaining – three of the four – climatic variables. The explicit equations systems for 𝑸 and 

𝑹𝑹 climate sensitivities are shown in Supplementary A. 
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In order to avoid the influence of outliers in the multiple linear regression models, we 

conduct the following steps in the model adjustment process: (i) after adjusting a first 

model, we remove predictand observations when they are not contained in the range of 

fitted values ± 1.96 units of standard error of the regression (i.e. 95% confidence interval 

assuming normality), then (ii) a second and definitive model is adjusted. 

3.8 Weighted sensitivities 

Due that sensitivities by their own do not provide a realistic range of variations of the 
predictor climatic variable, we weight sensitivities by a certain variation of the climatic 
variable, as follows, 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑦𝑖  𝑡𝑜 𝑥𝑗 ∶=
𝑑𝑦𝑖

𝑑𝑥𝑗
⋅ 𝛥𝑥𝑗 

where 𝛥𝑥𝑗 is chosen as an observed amplitude of variation of the climatic variable 𝑥𝑗. In 

the following, we pick 𝛥𝑥𝑗 as the observed composite (El Niño minus La Niña) of 𝑥𝑗.This 

way, weighted sensitivities address the degree of response to the observed amplitude of 

ENSO-variation of 𝑥𝑗. 

Furthermore, we add all weighted sensitivities of 𝑸 to climate to obtain a “reconstructed” 

ENSO-variation amplitude of 𝑸, in a linear-dependence basis (e.g., Lehner et al., 2019), 

𝛿𝑄 ∶= ∑
𝑑𝑄

𝑑𝑥𝑗
⋅ 𝛥𝑥𝑗

𝑗

=
𝑑𝑄

𝑑𝑃𝑅𝑠𝑡𝑜
⋅ 𝛥𝑃𝑅𝑠𝑡𝑜 +

𝑑𝑄

𝑑𝑇𝑀𝑠𝑡𝑜
⋅ 𝛥𝑇𝑀𝑠𝑡𝑜 +

𝑑𝑄

𝑑𝑇𝑀𝑤𝑖𝑛
⋅ 𝛥𝑇𝑀𝑤𝑖𝑛 +

𝑑𝑄

𝑑𝑇𝑀𝑠𝑝𝑟
⋅ 𝛥𝑇𝑀𝑠𝑝𝑟 

where δ𝑄 is the – linear dependent – reconstructed amplitude of variation of 𝑸. As 𝛥𝑥𝑗 are 

chosen to be the observed composites (El Niño minus La Niña) of 𝑥𝑗, we contrast δ𝑄 to 

the observed composite (El Niño minus La Niña) of 𝑸, attempting to decompose the 

ENSO-related anomalies of 𝑸 into the climate weighted sensitivities terms of δ𝑄. 

Finally, in order to address the ENSO-related disentanglement of precipitation-anomalies 
effects against temperature-anomalies effects, we calculate a simple ratio of precipitation 
effect over the overall ENSO-related streamflow variation. 

𝑅𝑎𝑡𝑖𝑜 ∶= (
𝑑𝑄

𝑑𝑃𝑅𝑠𝑡𝑜
⋅ 𝛥𝑃𝑅𝑠𝑡𝑜) 𝛿𝑄⁄  

Values of ratio > 1 indicate that the overall streamflow response is less than the sole 
precipitation effect, so temperature effect is counterweighting. Values of ratio < 1 indicate 
that a part of the overall streamflow response is due to temperature effect, so precipitation 
and temperature effects are compounding. 
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4 RESULTS AND DISCUSSION 

4.1 Inter-annual variability of climatic variables and hydrological 
signatures 

Figure 2 and Figure 3 show standard deviation of climatic variables and hydrological 
signatures, respectively, in order to quantify their inter-annual variability within the study 
domain. 𝑷𝑹𝒔𝒕𝒐 (Figure 2) and 𝑸 (Figure 3) are already normalized by long-term means 
(see Table 2), so the standard deviation for these variables match with the coefficient of 
variation of raw variables. Standard deviations of 𝑷𝑹𝒔𝒕𝒐, 𝑻𝑴𝒔𝒕𝒐 and 𝑻𝑴𝒘𝒊𝒏 show a clear 
latitudinal gradient (Figure 2), with notable high variability of 𝑷𝑹𝒔𝒕𝒐 at northernmost of 
study domain. The latter is expected as annual precipitation amounts in northern basins 
are explained by just a few storms during the year. Regardless of latitudinal control, when 
grouping according to hydrologic regime classification we obtain mean within-cluster 
standard deviations of 66.3%, 49.5% and 23.5% for snowmelt-driven, mixed and rainfall-
driven hydrologic regimes, respectively. 𝑻𝑴𝒔𝒕𝒐 exhibit larger variability than 𝑻𝑴𝒘𝒊𝒏 trough 
all clusters (1.2°C, 1°C and 0.7°C; against 0.7°C, 0.7°C and 0.6°C; respectively), and 
mean 𝑻𝑴𝒔𝒑𝒓 variability shows an inverse but less clear pattern than remaining climatic 

variables (0.6°C, 0.7°C and 0.7°C). 

 

Figure 2. Standard deviation for annual time series of climatic variables. Left to right: 
precipitation of winter storms, mean temperature of winter storms, mean temperature of 
winter, and mean temperature of springs, respectively. 
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Figure 3 shows latitudinal variations for 𝑸, 𝑹𝑹 and 𝑪𝑬𝑵. For 𝑸, the gradient-pattern at the 
northernmost sub-domain is slightly different than for precipitation, with superposition of 
precipitation variability pattern and basin attenuation effect. Therefore, 𝑸 variability is 

larger than 𝑷𝑹𝒔𝒕𝒐 variability in most of basins (43 out of 54), excepting most of snowmelt-
driven cluster (9 out of 12) and a few mixed basins (2 out of 17). This is consistent with 
runoff attenuation effects of snow storage, and elasticities larger than 1 across mixed and 
rainfall-driven basins. Averaged standard deviations for 𝑸 are 55.6%, 68.9% and 33.8% 
among snowmelt-driven, mixed and rainfall-driven catchments, respectively. Mean 
standard deviations for 𝑹𝑹 are 56.6%, 23.4% and 12.7%, and for 𝑪𝑬𝑵 are 3, 3.4 and 2 

weeks. 𝑹𝑹 variability is notably high in certain basins at northernmost of study domain, 
likely beyond the true values because of uncertainties in precipitation data (DGA, 2019b; 
Beck et al., 2019) and numerical issues, as discussed later. 𝑳𝑶𝑾𝑽 shows no clear spatial 
patterns, with larger longitudinal variations compared to latitudinal. The standard 
deviations for the latter variable are 0.09, 0.17 and 0.14 units for snowmelt-driven, mixed 
and rainfall-driven catchments, respectively. 

 

Figure 3. Standard deviation for annual time series of hydrological signatures. Left to right: 
streamflow, runoff ratio, centroid of hydrograph, and low-segment volume of the flow 
duration curve, respectively. 
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4.2 Connection between ENSO phases and streamflow distributions 

As shown in Figure 4, the K-means clustering procedure successfully captures the distinct 

timing regimes. We compute the confidence intervals (shadowed areas) by nonparametric 

bootstrapping, in order to avoid the assumption of normality. The rainfall-driven cluster 

has the narrowest confidence intervals for both precipitation and streamflow, indicating a 

more homogeneous seasonality compared to snowmelt-driven or mixed regime clusters. 

We attribute a more heterogeneous seasonality of streamflow to systems with higher 

regulation capacity. Also, the more heterogeneous distribution of precipitation may 

indicate spatial features such as orographic precipitation enhancement (due to higher 

elevations of mixed and snowmelt-driven basins), wider latitudinal distribution of the 

basins, widespread longitudinal distribution (specially for mixed basins, as shown in 

Figure 1 and Table 1), and/or another micro-climate conditions. 

Figure 4 also displays a stratification based on ENSO-phases, showing similar shapes of 

El Niño and neutral phases streamflow seasonalities, and a distinct behavior during La 

Niña years, remarking nonlinearity between ENSO phases. This is, for La Niña (neutral or 

El Niño) years we notice earlier (later) hydrograph peaks at snowmelt-driven basins, 

apparent unimodal (bimodal) distribution for mixed catchments, and later (earlier) 

hydrograph peaks in rainfall-driven watersheds, following the anomalies observed in 

precipitation distribution. 

Since El Niño (La Niña) is related to generally wetter (drier) conditions in the study domain, 

these anomalies are also reflected on the probability distribution of daily streamflow, as 

shown by the FDCs in Figure 5. We obtain distinct upper high-segments of FDC during El 

Niño years in snowmelt-driven and mixed clusters, suggesting major effects of El Niño 

phases over peak snowmelt rates due to higher accumulation of snowpack (Cortés and 

Margulis, 2017; Masiokas et al., 2006). However, the opposite relationship – between La 

Niña and less snowpack – is not well established (Cortés and Margulis, 2017; Masiokas 

et al., 2006). At the low flow segment of FDCs, all clusters exhibit convergence between 

El Niño and neutral phases for larger exceedance probabilities. In particular, narrower 

differences are obtained for the snowmelt-driven cluster (shown at Figure 5-left). We 

observe the lowest flows during La Niña years, following previously reported connections 

between meteorological and hydrological droughts, and La Niña episodes (Oertel et al., 

2019). The mixed regime cluster shows wider confidence intervals as expected, because 

of a greater diversity of hydrological processes affecting low-flows. 
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Figure 4. Seasonality of precipitation (left) and streamflow (right), expressed as fractional 
coefficients, respectively. Results are stratified by hydrologic regimes and grouped by 
ENSO type of year. The solid line represents the cluster-averaged values, and the 
shadowed area indicates 95% confidence intervals obtained with nonparametric 
bootstrapping. 
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Figure 5. Flow duration curves of normalized streamflow (left) – daily streamflow over 
averaged daily streamflow – and zoomed in at the low flow segment of the curve (right). 
Results are stratified by hydrologic regimes and grouped by ENSO type of year. The solid 
line represents cluster-averaged values, and the shadowed area indicates the 95% 
confidence intervals obtained with nonparametric bootstrapping. 
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4.3 Spatial patterns of composite anomalies 

Figure 6 and Figure 7 show composite anomalies – averaged El Niño minus averaged La 

Niña – for climatic variables and hydrological signatures, respectively. 𝑷𝑹𝒔𝒕𝒐 anomalies 

are statistically significant for 52 out of 54 basins analyzed, while anomalies of 𝑻𝑴𝒔𝒕𝒐, 

𝑻𝑴𝒘𝒊𝒏 and 𝑻𝑴𝒔𝒑𝒓 are statistically significant for 37, 39 and 33 basins, respectively, out of 

54. Overall, all basins show positive composite anomalies of 𝑷𝑹𝒔𝒕𝒐, 𝑻𝑴𝒔𝒕𝒐 and 𝑻𝑴𝒘𝒊𝒏. 

Composite anomalies for 𝑻𝑴𝒔𝒑𝒓 are negative except for the northern region (below 31 °S). 

Our results confirm a strong modulation of catchment-scale climatic variables by ENSO 

in the entire study domain. 

We emphasize that 𝑷𝑹𝒔𝒕𝒐 anomalies must be examined in relative terms, since winter 

precipitation in northern basins is explained just by a few storms, while southern basins 

have many more days with precipitation during the same season. In this study, a winter 

storm is detected when a winter day has a cumulative precipitation amount over threshold 

– 2 mm – at the catchment scale. If we consider storm events with consecutive over-

threshold precipitation days during winter, we obtain a mean frequency of 10.5 (19.0) 

events, and a mean duration of 2.7 (4.8) days, in snowmelt-driven (rainfall-driven) 

catchments. This is also reflected at the variation coefficients for 𝑷𝑹𝒔𝒕𝒐 of Figure 2. 
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Figure 6. Composites of El Niño minus composites of La Niña for annual climatic variables. 
From left to right: precipitation of winter storms, mean temperature of winter storms, mean 
temperature of winter, and mean temperature of springs, respectively. Stroked markers 
represent non-zero differences that are statistically significant at the 95% confidence level 
under the Fisher-Pitman permutation test. The color palette is truncated at the 5% and 
95% percentiles for improved visualization. 

Figure 7 shows effects of ENSO on hydrological signatures. For 𝑸, composite anomalies 

are positive across the entire study domain, and differences are statistically significant in 

almost all basins (50 out of 54). Within-cluster averaging of 𝑸 composite (± one standard 

deviation) results in 56.3 ± 20.3 %, 71.3 ± 33.1 % and 43.3 ± 13.6 %, for snowmelt-driven, 

mixed and rainfall-driven hydrologic clusters, respectively. These values reflect the strong 

influence of ENSO on catchment-scale runoff, specially at mixed-regime basins where the 

anomalies are larger and spatially more heterogenous. 
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Furthermore, composite anomalies for 𝑸 (Figure 7) are greater than those for 𝑷𝑹𝒔𝒕𝒐 

(Figure 6) in most cases (43 of 54), except for snowmelt-driven (9 of 12) basins and some 

mixed-regime basins (2 of 17). The latter match with previous results of 𝑸 variability larger 

than 𝑷𝑹𝒔𝒕𝒐 variability in most of basins (Figure 2 and Figure 3) – since standard deviation 

and ENSO composites are not a priori supposed to share the same features, it may advise 

that ENSO is a primary source of variability in the study domain. This nonlinear response 

– composites of 𝑸 greater than composites of 𝑷𝑹𝒔𝒕𝒐 – is consistent with 𝑸 elasticity values 

reported to be larger than 1 by previous studies conducted in other regions of the world 

(e.g. Sankarasubramanian et al., 2001; Sankarasubramanian and Vogel, 2003; Vano et 

al., 2012; Berghuijs et al., 2017). Besides nonlinear storage processes, feedback 

mechanisms may be related with higher water yield efficiency due to favorable antecedent 

soil moisture. Also, a larger wet day fraction (i.e., fraction of days per year with non-zero 

precipitation) could be related to local meteorological conditions that reduce the 

evaporative fraction, through lower atmospheric aridity and cloudier skies. Additionally, 

Vargas Zeppetello et al. (2019) indicated that a lower (higher) soil moisture content may 

lead to amplified (softened) sensitivity of surface evaporative cooling to soil moisture 

variations, attributable to higher (lower) vapor pressure deficits. Because evaporation is 

mainly controlled by surface temperature, this feedback leads to nonlinear response of 

evapotranspiration to soil moisture – likewise enhancing the apparent two Budyko regimes 

(water- and energy-limited environments) and its nonlinearities. 
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Figure 7. Composites of El Niño minus composites of La Niña for annual hydrological 
signatures. From left to right: streamflow, runoff ratio, centroid of hydrograph, and low-
segment volume of the flow duration curve, respectively. Stroked markers represent non-
zero differences that are statistically significant at the 95% confidence level under the 
Fisher-Pitman permutation test. The color palette is truncated at the 5% and 95% 
percentiles for improved visualization. 

As shown in Figure 7, composite anomalies of 𝑹𝑹 show varied behavior, taking both 

positive and negative signs across the study domain. Positive composite anomalies are 

expected because wetter (drier) conditions related to El Niño (La Niña) phase may 

conduct to higher (lower) water yield efficiency due to favorable (unfavorable) antecedent 

moisture conditions, also wetter (drier) conditions are related to cloudy (clear) skies such 

that net radiation may decrease (increase), conducting to lower (higher) actual 

evapotranspiration. Nevertheless, only for rainfall-driven catchments – humid basins – the 

cluster-averaged composite anomaly is positive (9.9%), while for mixed regime basins, 

the averaged composite anomaly is near to zero (0.9%). 
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Interestingly, cluster-averaged composite anomalies of 𝑹𝑹 are strongly negative (-20.9%) 

for snowmelt-driven catchments. Thus, the fraction of water losses may be increased 

(decreased) during El Niño (La Niña) phase for snowmelt-driven basins. We relate 

sublimation as a possible reason of water losses behavior. Previous studies using 

physically-based models at the two-northernmost snowmelt-driven basins of the study 

domain demonstrate that snow accumulation reaches up to 77% and 87% of total of 

precipitation on average, and sublimation partition (static evaporation plus dynamic 

sublimation) arise to 70% and 76% of snow accumulation in mean terms (Jara et al., 

2017). Further, composite anomalies of 𝑹𝑹 are strongly driven by elevation 

(supplementary Figure B-3). From 3000 m a.s.l. and above, the sublimation partitioning 

may dominate over the snowmelt partition due to favorable lower temperature during 

winter and both greater wind speed and solar radiation (Schulz and de Jong, 2004). 

Accordingly, for basins with mean elevation above 3000 m a.s.l., we obtain negative 

composite anomalies of 𝑹𝑹 for almost all basins (8 of 9; all of them snowmelt-driven). The 

averaged composite anomaly for this subset is -26.1% and the respective standard 

deviation is 21.4%. For 3500 m a.s.l. as threshold, the values for average and standard 

deviation are -39.2% and 18.3%, respectively, and all composite anomalies are negatives 

(5 of 5). However, we note that wind speed variability is not incorporated in our analyses, 

despite of being a key driver of snow behavior. 

𝑪𝑬𝑵 shows a clear latitudinal gradient (Figure 7), where hydrologic regimes are enhanced 

due to ENSO modulation. This pattern is consistent with previous studies (Cortés et al., 

2011) and also coherent with results of anomalies in seasonal patterns (Figure 4) and 

FDCs (Figure 5). For snowmelt-driven basins, 𝑪𝑬𝑵 composite anomalies are greater than 

those for the remaining hydrologic regimes (mean 2.2 weeks, i.e., later), associated to 

larger precipitation anomalies in terms of relative variations (Figure 6). However, for the 

northernmost region of the domain, composite anomalies of temperature (Figure 6) show 

higher 𝑻𝑴𝒔𝒕𝒐 – related to fraction of rainfall – and higher 𝑻𝑴𝒘𝒊𝒏 – related to snow losses 

–, which seem to have little effect on 𝑪𝑬𝑵 anomalies (so on snowpack accumulation) 

when face against the signal of positive 𝑷𝑹𝒔𝒕𝒐 anomalies. For rainfall-driven catchments, 

𝑪𝑬𝑵 composite anomalies are lower than those for the remaining hydrologic regimes 

(mean -1.2 weeks, i.e., earlier), while the precipitation distribution within this cluster is 

lesser winter-concentrated (Figure 4), so the anomalies of 𝑷𝑹𝒔𝒕𝒐 are counterweighted. 
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Regarding the 𝑳𝑶𝑾𝑽 – as an alternative proxy to baseflow (McMillan, 2019) –, we find no 

distinct spatial patterns of ENSO modulation, contrary to composite anomalies of all 

hydroclimatic variables examined here. In fact, basins with the largest standard deviation 

(over 50% percentile) of 𝑳𝑶𝑾𝑽 exhibit averaged composite of ENSO anomalies similar 

to basins with lowest standard deviation (under 50% percentile), with near to zero 

difference between both subsets (-0.002 units). The latter suggests that physiographic 

descriptors (e.g., soil properties, topographic features, geology), in addition to climatic 

variables, are needed to explain baseflow. However, baseflow process are driven by 

subsurface and groundwater exchange that may occur on a different or even independent 

timescale than fast flow (Ghotbi et al., 2020) and the interannual approach of our study 

does not suffice to provide explanations. Because storage may play a key role on 

baseflows, Milly et al. (2018) and Milly and Dune (2020) used a simple linear-reservoir 

correction of streamflow to incorporate year-to-year variations in storage, in the context of 

improving calculations of streamflow sensitivities to climate. For sake of simplicity, we do 

not conduct any correction by storage, noting that lag-1 autocorrelation coefficients for 

annual streamflow are 0.1 ± 0.1 (within-cluster mean ± one standard deviation), 0 ± 0.1 

and 0.1 ± 0.1, for snowmelt-driven, mixed and rainfall-driven hydrologic clusters, 

respectively. The unclear spatial patterns of 𝑳𝑶𝑾𝑽 reaffirms the importance of physical 

attributes, besides climatic variables, to explain baseflow behavior. 

To better clarify the role of ENSO phases among hydrological clusters, we present 

anomalies of climatic variables (Figure 8) and hydrological signatures (Figure 9) as 

boxplots. For snowmelt-driven basins, we obtain averaged anomalies of 35.6%, -36.7% 

and 68.3% for El Niño, La Niña and difference between both, respectively, for 𝑷𝑹𝒔𝒕𝒐; 

30.6%, -25.7% and 56.3% for 𝑸; and -9.9%, 11.1% and -20.9% for 𝑹𝑹. We note that this 

cluster presents lower 𝑹𝑹 – interpreted as water yield efficiency – when ENSO conditions 

are wetter, and vice versa. Further, average anomalies for 𝑪𝑬𝑵 within this cluster are 1.1 

weeks, -1.1 weeks and 2.2 weeks, for El Niño, La Niña and difference between both, 

respectively (Figure 9-left). Here, we note concomitancy between greater (lower) 𝑷𝑹𝒔𝒕𝒐, 

later (earlier) 𝑪𝑬𝑵, and lower (higher) 𝑹𝑹. Thereby, snowmelt-driven hydrologic 

catchments seem to attenuate the variability of precipitation over the variability of 

streamflow accompanied to significant changes in runoff ratio. 
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Figure 8. Composites of ENSO phases for annual climatic variables: precipitation of winter 
storms, mean temperature of winter storms, mean temperature of winter, and mean 
temperature of springs, respectively (up to down). Composites are stratified by ENSO type 
of year (left panel) and by cluster of hydrologic regimes (right panel). Mean differences 
between groups are assessed under the Wilcoxon test, where ****, ***, **, *, and ns 
represent statistical significance at the 99.99%, 99.9%, 99%, 95% confidence levels and 
not significant at the 95% confidence level, respectively. 
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Figure 9. Composites of ENSO phases for annual hydrological signatures: streamflow, 
runoff ratio, centroid of hydrograph, and low-segment volume of the flow duration curve, 
respectively (up to down). Composites are stratified by ENSO type of year (left panel) and 
by cluster of hydrologic regimes (right panel). Mean differences between groups are 
assessed under the Wilcoxon test, where ****, ***, **, *, and ns represent statistical 
significance at the 99.99%, 99.9%, 99%, 95% confidence levels and not significant at the 
95% confidence level, respectively. 
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From Figure 8 (left) we confirm strong influence of ENSO over the climatic variables – 

precipitation and temperature – in all hydrologic regimes. When anomalies are grouped 

by hydrologic regime (Figure 8-right), we note that mostly there are no statistically 

significant differences between temperature anomalies. Hence, the catchments located 

within the study domain may be affected by similar 𝑻𝑴𝒔𝒕𝒐, 𝑻𝑴𝒘𝒊𝒏 and 𝑻𝑴𝒔𝒑𝒓 variations, 

due to the ENSO type of year, regardless of their hydrologic regimes. Figure 8 (right) 

shows a different behavior for 𝑷𝑹𝒔𝒕𝒐, where variations are also modulated by hydrologic 

regime. The latter is expected because the location of hydrological clusters is confounded 

with a latitudinal-like hydroclimatic gradient. As shown in Figure 1, snowmelt-driven and 

rainfall-driven clusters are located in different latitudinal ranges, while variability of 𝑷𝑹𝒔𝒕𝒐 

and ENSO modulation in the study domain are driven by latitude, accordingly to Figure 2 

and Figure 6, respectively. Additionally, snowmelt-driven and mixed hydrologic regimes 

enclose catchments with higher average and peak elevations than the rainfall-driven 

cluster (Table 1), so orographic enhancement of precipitation is a feature already 

distinguished by clustering classification. 

Figure 9 (right) indicates overall no statistically significant differences of ENSO-phases 𝑸 

anomalies between snowmelt-driven and mixed hydrologic regime clusters, while rainfall-

driven catchments show more distinct anomalies due to narrower dispersion. For 𝑪𝑬𝑵 

(Figure 9-right), a similar behavior is observed. 𝑹𝑹 anomalies are controlled by both 

ENSO phases and hydrologic regime (Figure 9-left and -right). Differences between 

averaged 𝑹𝑹 anomalies of snowmelt-driven and rainfall-driven catchments are quantified 

as -15%, 0.5% and 15.7% for El Niño, neutral and La Niña, respectively. On the other 

hand, the differences between within-phase El Niño and La Niña are obtained as -20.9%, 

0.9% and 9.9% for snowmelt-driven, mixed and rainfall-driven clusters, respectively, 

indicating that largest differences in 𝑹𝑹 are comparable across space (i.e. per basins) and 

time (i.e. per years). Finally, 𝑳𝑶𝑾𝑽 show no statistically significant differences when 

ENSO-phases anomalies are grouped by hydrologic regime (Figure 9-right). 
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4.4 Role of ENSO through hydrologic sensitivities 

We examine sensitivities of 𝑸 to climatic variables as the total derivative of multiple linear 

regression models (Figure 10-top). Because sensitivities might lack of historically realistic 

ranges of variation of climatic variables – precipitation and temperature –, we weight their 

values by multiplying by composite anomalies of El Niño minus La Niña of Figure 6 (Figure 

10-bottom). We prefer to multiply by ENSO composite rather than by standard deviation, 

because the latter may not be indicative of sign of change during ENSO events. 

Sensitivities of 𝑸 to 𝑷𝑹𝒔𝒕𝒐 (Figure 10-top) are obtained as (averaged within-cluster ± one 

standard deviation) 0.77 ± 0.25%%-1, 1.09 ± 0.20%%-1 and 1.20 ± 0.14%%-1, in snowmelt-

driven, mixed and rainfall-driven hydrologic regimes, respectively. Overall, sensitivities of 

streamflow to precipitation are expected to be positive and larger than 1 (e.g. 

Sankarasubramanian et al., 2001; Sankarasubramanian and Vogel, 2003; Vano et al., 

2012; Berghuijs et al., 2017; Milly et al., 2018), with likely higher (smaller) values at arid 

(humid) environments, due to minor (major) attenuation effects against changes on 

precipitation. However, sensitivities of streamflow to precipitation are reported to be less 

than 1 in basins with snowpack storage, related to the role of snowpack on buffering 

precipitation variability (Sankarasubramanian et al., 2001). Similarly, sensitivities of 

streamflow to precipitation are reported to be lower and more spatially homogeneous in 

regions whose temperature and precipitation are in-phase (Sankarasubramanian et al., 

2001), where a precipitation surplus is prone to be softened by greater evaporative 

fraction. 

Figure 10 (bottom) displays 𝑸 sensitivities multiplied by observed ENSO composite 

anomalies of 𝑷𝑹𝒔𝒕𝒐 (i.e., weighted sensitivities of 𝑸 to 𝑷𝑹𝒔𝒕𝒐), exhibiting greater effects on 

the northern of the study domain, where ENSO-driven 𝑷𝑹𝒔𝒕𝒐 composite anomalies are 

larger (Figure 6). For better visualization, we present boxplots of weighted sensitivities of 

𝑸 in Figure 11. Note that averaged within-cluster weighted 𝑸 sensitivities to 𝑷𝑹𝒔𝒕𝒐 (Figure 

10-bottom and Figure 11) roughly reach the order of magnitude of ENSO composites of 

𝑸 (Figure 7), suggesting that 𝑸 anomalies during ENSO events are strongly driven by 

precipitation anomalies rather than temperature anomalies. 
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Figure 10. (Top panel) Left to right: Sensitivities of annual streamflow to winter storm 
precipitation, winter storm mean temperature, winter mean temperature and spring mean 
temperature, respectively. (Bottom panel) Same as top but sensitivities are multiplied by 
El Niño minus La Niña composite anomalies shown at Figure 6. For better visualization, 
the color palette is truncated at the 5% and 95% percentiles. 
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Figure 11. Boxplots of weighted sensitivities of annual streamflow to winter storm 
precipitation, mean winter storm temperature, mean winter temperature and mean spring 
temperature, respectively (left to right). Colored horizontal lines indicate cluster averages. 
Weighted sensitivities are obtained by multiplying each sensitivity by respective El Niño 
minus La Niña composite anomalies shown at Figure 6. As a reference, averaged within-
cluster ENSO composite anomalies for streamflow are 56.3%, 71.3% and 43.3% in 
snowmelt-driven, mixed and rainfall-driven hydrologic regimes, respectively (Figure 7). 

We interpret the sensitivities of 𝑸 to 𝑻𝑴𝒔𝒕𝒐 (Figure 10-top) as the sensitivity in runoff to 

changes in the fraction of precipitation falling as rain or snow. This sensitivity is inversely 

proportional to basin elevation (supplementary Figure B-4). A larger rainfall fraction could 

be related to favorable antecedent soil moisture for precipitation events during winter, so 

normalized streamflow would be higher. Also, a smaller snowfall fraction might be related 

to a general decrease in evaporation and sublimation fluxes, in areas where snowmelt 

and sublimation dominate. Spatially averaged sensitivities (± one standard deviation) are 

2.5 ± 7 %°C-1 for snowmelt-driven basins, 6.1 ± 9.1 %°C-1 for mixed-regime basins, and 

11.7 ± 7.5 %°C-1 for rainfall-driven basins. Weighted 𝑸 sensitivity to 𝑻𝑴𝒔𝒕𝒐 (Figure 10-

bottom) shows that 𝑻𝑴𝒔𝒕𝒐 effects are smaller in northern basins, which are also controlled 

by snowfall, but it should be noted that the amplitude of ENSO anomalies in this region is 

smaller (Figure 6). Also, weighted sensitivities (Figure 10-bottom) indicate that the impact 

of 𝑻𝑴𝒔𝒕𝒐 is also small in southern basins, where elevations (Figure 1) are low enough to 

make rainfall fraction insensitive to temperature changes. 
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Despite the attempts to correct multicollinearity effects between explanatory variables on 

𝑸, this purpose is only partially achieved. In particular, the effects of 𝑻𝑴𝒔𝒕𝒐 and 𝑻𝑴𝒘𝒊𝒏 are 

confounded, especially in rainfall-driven catchments, where a considerably larger number 

of storms occur. Indeed, the average wet day fraction during winter is 17.4%, 27.8% and 

49.3%, in snowmelt-driven, mixed and rainfall-driven catchments, respectively. 

Nonetheless, Figure 10 (top) shows a clear spatial pattern of 𝑸 sensitivities to 𝑻𝑴𝒘𝒊𝒏, 

where northern (southern) and higher (lower) elevation basins tend to have negative 

(positive) sensitivities. Generally speaking, negative sensitivities of 𝑸 to 𝑻𝑴𝒘𝒊𝒏 are 

expected due to an energy surplus that raises the evaporative fraction. Further, negative 

feedbacks of streamflow to temperature may be invoked due to nonlinear temperature 

dependence of vapor pressure saturation that affects latent heat fluxes (Milly et al., 2018; 

Milly & Dunne, 2020). On the other hand, physical processes related to positive 

sensitivities are commented by Vano et al. (2012) for mid-elevated basins by adopting the 

“Dettinger hypothesis”, which indicates that warmer conditions may produce earlier 

releasing of water from snowpack storage, at a time of year when evaporative demand is 

smaller so transformation into runoff is more efficient (e.g., earlier melting of transient 

snows and/or more liquid fraction of precipitation). Besides, earlier melting of transient 

snows might induce favorable antecedent moisture conditions for runoff generation during 

rainfall events. We consider the aforementioned mechanisms as suitable in cold, humid 

and low-elevated catchments, where positive sensitivities are present (southern of study 

domain). 

We note dissimilar spatial patterns between 𝑸 sensitivities against 𝑻𝑴𝒘𝒊𝒏 vs. 𝑻𝑴𝒔𝒑𝒓 

(Figure 10-top) – both related to snow processes. ENSO composites (Figure 6) show a 

particular behavior of seasonal temperature anomalies, with warmer (colder) winters 

during El Niño (La Niña), and cooler (warmer) springs across the study domain, except 

for northern basins where spring variations are minor and slightly positive (Figure 6). Such 

peculiar ENSO signal could explain potential shifts in snow processes. Sensitivities of 𝑸 

to 𝑻𝑴𝒘𝒊𝒏 exhibit different signs – negative to northern (high elevation) basins and positive 

in southern basins –, which may indicate the major effect of snow on climate sensitivities. 

Accordingly, snow could act as a shield to radiation absorption through albedo, while 

decreasing albedo in response to rising temperature may dominate the negative 

sensitivity of streamflow to temperature (Milly and Dunne, 2020). Moreover, snowfall 

fraction has been positively correlated with streamflow anomalies in time and space 

(Berghuijs et al., 2014). Similar results with a process-based model were obtained by Milly 

and Dunne (2020), although distinction between snow albedo and snowfall fraction must 

be noted as both may be correlated. However, Barnhart et al. (2016) related warming with 

earlier snowmelt during spring, which may produce slower snowmelt due to less energy 

available by solar radiation. Thus, earlier and slower snowmelt leads to shallow soil water 

and decreased baseflow production, moving streamflow to negative anomalies. 
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Estimated sensitivities of 𝑸 to 𝑻𝑴𝒘𝒊𝒏 (Figure 10) are -17.1 ± 11.9%°C-1,                                       

-13.7 ± 23.9%°C-1 and 12 ± 7.5%°C-1 (averaged within-cluster ± one standard deviation), 

for snowmelt-driven, mixed and rainfall-driven hydrologic clusters, respectively. In 

snowmelt-driven and mixed basins, negative sensitivities may be related to reduced 

albedo, earlier, slower snowmelt, and/or increased latent heat fluxes. Due to noticeable 

correlation between 𝑻𝑴𝒔𝒕𝒐 and 𝑻𝑴𝒘𝒊𝒏 in rainfall-dominated catchments, both sensitivities 

are similar (11.7 ± 7.5 %°C-1 for 𝑸 sensitivity to 𝑻𝑴𝒔𝒕𝒐, Figure 10-top), and we relate them 

to the aforementioned “Dettinger hypothesis”. Dichotomous sensitivities signs are also 

transmitted to weighted sensitivities, as shown at Figure 11. 

Overall, we obtain negative sensitivities of 𝑸 to 𝑻𝑴𝒔𝒑𝒓 (Figure 10-top), with -17.1 ± 

14.2%°C-1, -18 ± 12.7%°C-1 and -6.5 ± 3.2%°C-1, for snowmelt-driven, mixed and rainfall-

driven catchments, respectively. For snowmelt-driven and mixed hydrologic clusters, we 

argue that the same reasoning provided for 𝑸 sensitivity to 𝑻𝑴𝒘𝒊𝒏 applies. Rainfall-driven 

basins exhibit smaller 𝑸 sensitivity to 𝑻𝑴𝒔𝒑𝒓 (Figure 10-top), presumably due to lack of 

snow-related feedbacks. However, latent heat fluxes could be enhanced with warming, 

albeit in this cluster during spring the runoff is slight but still present (Figure 3). Weighted 

sensitivities of 𝑸 to 𝑻𝑴𝒔𝒑𝒓 are smaller in northern basins (Figure 10-bottom), where ENSO 

effects on spring temperature are small and slightly positive (Figure 6). 

Our estimations of streamflow climate sensitivities exhibit coherent patterns, that are 

consistent with backgrounds. The latter is a primary finding, due to simplicity of estimators 

as total derivatives of linear models (see Data and methods). Moreover, multiple linear 

dependences to climate are a priori unrealistic because of nonlinearities of 

thermodynamics and feedbacks. Streamflow sensitivities to precipitation are within the 

ranges of previous studies in other regions worldwide, conducted with varied 

methodologies – empirical nonparametric-based (Sankarasubramanian et al., 2001; 

Sankarasubramanian and Vogel, 2003), empirical regression-based (Milly et al., 2018), 

simulation-based (Vano et al., 2012), and Budyko framework-based (Milly et al., 2018). 

On the other hand, as well as we obtain aforesaid consistent patterns of streamflow 

sensitivities to temperature, we underpin that these sensitivities are not comparable with 

those that would be obtained with respect to annual temperature, due to the approach 

followed here to split temperature time series into storms, winter and spring sub-periods. 

Besides, lack of simultaneous statistical significance of all regression coefficients related 

to temperature (see Data and methods) undermines particularly individual values – i.e., 

per basin. Notwithstanding, we advise that central tendencies might be more trustworthy. 
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In the context of climate change, historical streamflow sensitivities to climate have been 

used together with climate projections to obtain streamflow projections in a simple additive 

scheme (i.e. linear dependent). Further comparisons between physically-based and these 

empirically-based runoff projections show that historical sensitivities of streamflow to 

climate are prominent first-order drivers (Lehner et al., 2019). In this work, we carefully 

adopted this approach by adding weighted sensitivities, obtaining an estimation of 

streamflow anomalies to roughly assess separate contribution of ENSO climate anomalies 

to overall ENSO streamflow anomaly. As well as additive principle might be mistrusted 

due to interactions, Vano et al. (2012) found that added precipitation and temperature 

changes computed separately are around equal to changes computed combinedly, in 

physical-based hydrological simulation. 

Table 3 shows ENSO 𝑸 anomalies estimated by adding weighted sensitivities of 𝑸 to 

climate. Temperature effects are considered in a single term by the sum of all 

temperature-related weighted sensitivities – i.e., 𝑸 to 𝑻𝑴𝒔𝒕𝒐, to 𝑻𝑴𝒘𝒊𝒏 and to 𝑻𝑴𝒔𝒑𝒓 (Table 

3-[2]). Table 3-[3] is the overall effect of ENSO on 𝑸 using the climate sensitivities 

approach, which is in the order of magnitude than observed ENSO 𝑸 composites (Figure 

7), as shown in Table 3-[4]. Finally, in order to roughly estimate the effect of ENSO 

precipitation-anomalies – so ENSO temperature-anomalies, by discarding –, we calculate 

a ratio (Table 3-[5]) between weighted 𝑸 sensitivity to 𝑷𝑹𝒔𝒕𝒐 (Table 3-[1]) and the overall 

sum of weighted 𝑸 climate sensitivities (Table 3-[3]). 

Individual basin-related ratios (see Data and methods) are equal or larger than 0.5, 

suggesting that ENSO-related precipitation variability is the main driver over streamflow 

variability in all basins across the study domain – in agreement with previous global-scale 

results (Berghuijs et al., 2017). Besides, central tendencies for these ratios indicate that 

the effect of ENSO-related 𝑷𝑹𝒔𝒕𝒐 anomalies on ENSO-related 𝑸 anomalies is 1.32 ± 0.78 

(averaged within-cluster ± one standard deviation) within snowmelt-driven basins. Here, 

ratio values greater (smaller) than 1 indicate that the temperature effect is 

counterweighting (compounding) the precipitation aftermath. The ratio values for rainfall-

driven and mixed-regime catchments come to 0.63 ± 0.06 and 0.96 ± 0.42, respectively. 

Thereby, the effects of ENSO-related temperature anomalies in snowmelt-driven (rainfall-

driven) catchments may be related to -32% (+37%) – around a third – of compensation 

(enhancement) of ENSO-related precipitation anomalies effects on 𝑸 response. As 

expected, mixed-regime basins show varied ratio values, reflecting a transition between 

snowmelt-driven and rainfall-driven outcomes. We emphasize that these precipitation or 

temperature ratios are highly dispersed among snowmelt-driven and mixed-regime 

catchments (dispersion is same magnitude order than central value), while for rainfall-

driven cluster the dispersion is one order of magnitude lower than the central value. 

  



33 

Table 3. Estimated ENSO streamflow anomalies by adding weighted sensitivities of 
streamflow to climate (see in text). *As reference, [4] are observed ENSO composites 
anomalies of streamflow from Figure 7. By fitting [3] to [4] through linear regression 
(individual values) we obtain R2 = 0.26 and p-value < 0.0001. 

Cluster Snowmelt-driven Mixed Rainfall-driven 

 

(averaged 

within-cluster ± 

standard 

deviation) 

(averaged 

within-cluster ± 

standard 

deviation) 

(averaged 

within-cluster ± 

standard 

deviation) 

[1] Weighted sensitivity to 

precipitation 
48.9 ± 19.6 % 62.9 ± 29.3 % 34.6 ± 14.9 % 

[2] Added weighted 

sensitivities to temperature 
1.5 ± 20.2 % 4.9 ± 25.1 % 20.5 ± 9.4 % 

[3] Added weighted 

sensitivities ([1] + [2]) 
50.4 ± 30.2 % 67.8 ± 26.6 % 55.1 ± 23.1 % 

[4] Observed composite* 56.3 ± 20.3 % 71.3 ± 33.1 % 43.6 ± 13.6 % 

[5] Ratio of precipitation to 

overall ([1] / [3]) 
1.32 ± 0.78 0.96 ± 0.42 0.63 ± 0.06 

A similar climate sensitivity analyses with 𝑹𝑹 – instead of 𝑸 – would be desirable to 
achieve better understanding of water balance behavior, especially in snow-dominated 
catchments within the study domain where sublimation may be a key component of 
evapotranspiration (Jara et al., 2017). We highlight that uncertainties in the true value of 
precipitation due to undercatch issues across the territory (DGA, 2019b; Beck et al., 2019) 
may be propagated through annual 𝑹𝑹. Furthermore, because annual precipitation in 

northernmost catchments is explained by only a few storms, 𝑹𝑹 could be undermined by 
numerical artifacts when precipitation is near to zero. We address the latter as crucial for 
non-reliable spatial patterns obtained for sensitivities of 𝑹𝑹 to climate (supplementary 
Figure B-5). 
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Figure 12. Boxplots of weighted sensitivities of runoff ratio to winter storm precipitation, 
mean winter storm temperature, mean winter temperature and mean spring temperature, 
respectively (left to right). Colored horizontal lines indicate cluster averages. Weighted 
sensitivities are obtained by multiplying each sensitivity by respective El Niño minus La 
Niña composite anomalies shown at Figure 6. As a reference, averaged within-cluster 
ENSO composite anomalies for runoff ratio are -20.9%, 0.9% and 9.9% in snowmelt-
driven, mixed and rainfall-driven hydrologic regimes, respectively (Figure 7). 

Figure 12 displays the boxplots of weighted sensitivities of 𝑹𝑹 to climatic variables. The 

results indicate that distributions of 𝑹𝑹 weighted sensitivities are well-centered when 
grouping by hydrologic cluster. We note that weighted sensitivities of 𝑹𝑹 to 𝑷𝑹𝒔𝒕𝒐 are 
prominent in comparison with weighted sensitivities to 𝑻𝑴𝒔𝒕𝒐, 𝑻𝑴𝒘𝒊𝒏 and 𝑻𝑴𝒔𝒑𝒓, whose 

central tendencies are mostly near to zero. In rainfall-driven catchments, we explain 

positive weighted sensitivities of 𝑹𝑹 to 𝑷𝑹𝒔𝒕𝒐 by more efficient runoff generation due to 
antecedent soil moisture conditions. Also, a more humid environment due to ENSO-
anomalies of 𝑷𝑹𝒔𝒕𝒐 may enhance the nonlinear response of evapotranspiration processes 
(e.g. Vargas Zeppetello et al., 2019), affecting 𝑹𝑹 anomalies. Finally, wetter conditions 
are related to cloudier skies and less atmospheric aridity, decreasing the evaporative 
fraction. 

On the other hand, the amplitude of cluster-averaged 𝑹𝑹 composite anomalies in 
snowmelt-driven basins is larger than for rainfall-driven catchments (-20.9% against 9.9%, 
respectively; Figure 7 and Figure 9-left), suggesting sharp effects of water losses to 
atmosphere in snowmelt-driven basins, while rainfall-driven catchments lack of snowmelt- 
and sublimation-related important losses, showing minor amplitude and a narrower 
dispersion of individual values – i.e., per basin (Figure 9-left). Thus, for snowmelt-driven 
basins, since weighted sensitivities of 𝑹𝑹 to 𝑷𝑹𝒔𝒕𝒐 seem to dominate the overall effect of 
ENSO on this variable (Figure 12), more (less) precipitation could generate a thicker 
(shallower) snowpack that remains further (closer) inside the season, being more (less) 
prone to losses. This relationship enlightens previously reported asymmetries between 
significantly larger snow accumulation during El Niño, but no notable lack of snowpack 
during La Niña (Masiokas et al., 2006; Cortés and Margulis, 2017), with remarkable 
changes in 𝑹𝑹 through ENSO-phases. Nevertheless, due to beforementioned non-

reliable spatial patterns of 𝑹𝑹 climate sensitivities (supplementary Figure B-5), further 

analyses for 𝑹𝑹 are not presented. 
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Finally, it is worth noting that this work does not analyze ENSO-related variability in 
several key variables – such as wind, which controls evaporation and snow dynamics by 
advection of heat and humidity –, physiographic controls – e.g., topography or exposure 
of catchments to air masses, which may be suggested to relate the patterns of response 
against ENSO (Mosley, 2000) –, and storm parameters such as duration or frequency, 
which presumably contribute to nonlinearity of ENSO-related hydrological response 
(Cayan et al., 1999). Moreover, any perturbation in atmospheric circulation – as ENSO – 
could perturb the dominant storm patterns, frequency and persistence of precipitation 
events, which are all related to rainfall-runoff generation mechanisms (Sharma et al., 
2018). Nevertheless, this work is aimed to complement other large-sample hydrology 
studies (Gupta et al., 2014) by unraveling general patterns of ENSO effects on 
hydroclimatic variables, specifically precipitation, temperature and streamflow signatures. 
Further understanding of ENSO effects on physical mechanisms, using data from 
process-based models capable to simulate nonlinear feedbacks, should be contrasted. 
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5 CONCLUSIONS 

This work investigates the effects of ENSO-related fluctuations on primary climatic 
variables – winter precipitation and winter-storms, mean-winter and mean-spring 
temperatures – and hydrological signatures in Central-Southern Chile. Our results confirm 
a strong influence of ENSO on catchment-scale climatic variables. Indeed, all catchments 
across the entire study domain (27°S to 41°S) exhibit statistically significant changes in at 
least one of the climatic variables analyzed. Due to simultaneous changes in precipitation 
and temperature, ENSO-related climate effects on the hydrology is not straightforward 
because of compensatory effects or amplifying signals. Our results show that catchments 
with different hydrologic regimes provide different catchment responses to ENSO 
fluctuations, despite the sharper latitudinal and longitudinal controls across the territory 
that set climate and physiographic characteristics in Central-Southern Chile. The main 
findings of our work are as follows: 

i. ENSO represents a peculiar variability signal along seasonal temperature. At the 
catchment scale, El Niño (La Niña) events are related to warming (cooling) during 
winters and cooling (warming) during springs. The latter provides uneven effects over 
streamflow. We obtain positive sensitivities of streamflow to storm temperature and 
negative sensitivities to spring temperature in around all basins, but sensitivities of 
streamflow to mean winter temperature are negative (positive) at northern (southern) 
catchments within the study domain. This feature is a challenging claim for realistic 
timing of temperature in water resources estimations, especially for snowy 
catchments. 

ii. In snowmelt-dominated basins, El Niño (La Niña) phase is associated with wetter 
(drier) conditions and smaller (greater) runoff ratios, as compensatory feedback. Due 
to large sublimation losses, we presume that this compensatory relationship is driven 
by precipitation anomalies, where thicker (shallower) snowpack remains for a longer 
(shorter) time inside the season, being more (less) prone to losses. This relationship 
reconciles previously observed asymmetries between El Niño and La Niña regarding 
snow accumulation. 

iii. Overall, wetter conditions and warmer (cooler) winters (springs) are observed during 
El Niño phases compared to La Niña. In snowmelt-driven catchments, temperature 
anomalies moderate precipitation-induced streamflow responses. Conversely, 
streamflow anomalies (El Niño minus La Niña) are exacerbated by both precipitation 
and temperature anomalies in rainfall-driven catchments, compounding 63% and 
37%, respectively. These estimates are scattered for snowmelt-driven and mixed 
regime basins (i.e., dispersion has the same order of magnitude than central 
tendencies), although the spread is small (i.e., magnitude order below central 
tendency) in rainfall-driven basins. Therefore, air temperature anomalies play a key 
role in the integrated streamflow responses to ENSO. 

iv. The variability in low-flow volumes (between 100% to 70% exceedance probability) 
is not primarily controlled by ENSO in the study domain. Moreover, inter-annual 
variability patterns related to these low-flows do not seem to match with a latitudinal 
hydroclimatic gradient, suggesting that physical descriptors such as geology and soil 
properties have a primary role on baseflow generation. 
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ANEXO Y APÉNDICES 

Se presentan dos anexos con los siguientes contenidos: 

1. Material Suplementario A. Ecuaciones explícitas (sistemas 4x4) para cada una de 
las siguientes sensibilidades: 

• Sensibilidad de 𝑸 a 𝑷𝑹𝒔𝒕𝒐 

• Sensibilidad de 𝑸 a 𝑻𝑴𝒔𝒕𝒐 

• Sensibilidad de 𝑸 a 𝑻𝑴𝒘𝒊𝒏 

• Sensibilidad de 𝑸 a 𝑻𝑴𝒔𝒑𝒓 

• Sensibilidad de 𝑹𝑹 a 𝑷𝑹𝒔𝒕𝒐 

• Sensibilidad de 𝑹𝑹 a 𝑻𝑴𝒔𝒕𝒐 

• Sensibilidad de 𝑹𝑹 a 𝑻𝑴𝒘𝒊𝒏 

• Sensibilidad de 𝑹𝑹 a 𝑻𝑴𝒔𝒑𝒓 

 
2. Material Suplementario B. Resultados no presentados en texto principal: 

• Curvas estacionales de cuencas, comparadas con los resultados del 
procedimiento de clasificación de regímenes hidrológicos. 

• Clasificación de años según fases ENSO. 

• Estadísticos resumen (F-test y t-test) de modelos de regresión lineal múltiple. 

• Control altitudinal de anomalías de coeficiente de escorrentía. 

• Control altitudinal de sensibilidades de caudal anual según temperatura media 
de tormentas de invierno. 

• Patrones espaciales de sensibilidades climáticas del coeficiente de escorrentía. 
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SUPPLEMENTARY A 

• Equations system (4x4) for sensitivity of 𝑸 to 𝑷𝑹𝒔𝒕𝒐. The total derivatives are 
the unknowns and the partial derivatives are approximated as regression 
coefficients by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑸 𝑡𝑜 𝑷𝑹𝒔𝒕𝒐 ∶=
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• Equations system (4x4) for sensitivity of 𝑸 to 𝑻𝑴𝒔𝒕𝒐. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 
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𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
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• Equations system (4x4) for sensitivity of 𝑸 to 𝑻𝑴𝒘𝒊𝒏. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑸 𝑡𝑜 𝑻𝑴𝒘𝒊𝒏 ∶=
𝑑𝑄

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑄

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑄

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑄

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑄

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑄

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
 

 

• Equations system (4x4) for sensitivity of 𝑸 to 𝑻𝑴𝒔𝒑𝒓. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑸 𝑡𝑜 𝑻𝑴𝒔𝒑𝒓 ∶=
𝑑𝑄

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑄

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑄

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑄

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑄

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑄

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
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• Equations system (4x4) for sensitivity of 𝑹𝑹 to 𝑷𝑹𝒔𝒕𝒐. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑹𝑹 𝑡𝑜 𝑷𝑹𝒔𝒕𝒐 ∶=
𝑑𝑅𝑅

𝑑𝑃𝑅𝑠𝑡𝑜
 

𝑑𝑅𝑅

𝑑𝑃𝑅𝑠𝑡𝑜
=

𝜕𝑅𝑅

𝜕𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑃𝑅𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑃𝑅𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑃𝑅𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑃𝑅𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑃𝑅𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑃𝑅𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑃𝑅𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑃𝑅𝑠𝑡𝑜
 

 

• Equations system (4x4) for sensitivity of 𝑹𝑹 to 𝑻𝑴𝒔𝒕𝒐. The total derivatives are the 
unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑹𝑹 𝑡𝑜 𝑻𝑴𝒔𝒕𝒐 ∶=
𝑑𝑅𝑅

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑅𝑅

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
 

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑠𝑡𝑜
=

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑡𝑜
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑡𝑜
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• Equations system (4x4) for sensitivity of 𝑹𝑹 to 𝑻𝑴𝒘𝒊𝒏. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑹𝑹 𝑡𝑜 𝑻𝑴𝒘𝒊𝒏 ∶=
𝑑𝑅𝑅

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑅𝑅

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑅𝑅

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑅𝑅

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
⋅

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
 

𝑑𝑇𝑀𝑠𝑝𝑟

𝑑𝑇𝑀𝑤𝑖𝑛
=

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
+

𝜕𝑇𝑀𝑠𝑝𝑟

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑤𝑖𝑛
 

 

• Equations system (4x4) for sensitivity of 𝑹𝑹 to 𝑻𝑴𝒔𝒑𝒓. The total derivatives are the 

unknowns and the partial derivatives are approximated as regression coefficients 
by least-squares: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑹𝑹 𝑡𝑜 𝑻𝑴𝒔𝒑𝒓 ∶=
𝑑𝑅𝑅

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑅𝑅

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑅𝑅

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑅𝑅

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑃𝑅𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑠𝑡𝑜

𝜕𝑇𝑀𝑤𝑖𝑛
⋅

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
 

𝑑𝑇𝑀𝑤𝑖𝑛

𝑑𝑇𝑀𝑠𝑝𝑟
=

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑃𝑅𝑠𝑡𝑜
⋅

𝑑𝑃𝑅𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
+

𝜕𝑇𝑀𝑤𝑖𝑛

𝜕𝑇𝑀𝑠𝑡𝑜
⋅

𝑑𝑇𝑀𝑠𝑡𝑜

𝑑𝑇𝑀𝑠𝑝𝑟
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SUPPLEMENTARY B 

 

Figure B-1. For each basin, averaged fractional coefficients of streamflow, as proxies of 
seasonality. These results are contrasted with the cluster classification procedure, 
indicating that K-means clustering classification successfully captures the distinct timing 
regimes. 
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Figure B-2. Multivariate ENSO Index (MEI) annual time series. For each water year, 
annual values are calculated as the median of the bimonthly values from 
https://www.esrl.noaa.gov/psd/enso/mei. Values above 0.5 (below -0.5) were classified 
as El Niño (La Niña) phase, and neutral otherwise. 

  

https://www.esrl.noaa.gov/psd/enso/mei
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Table B-1. For each basin, results of the F-test and t-test regarding performance of 
multiple linear regression models. Bold cells indicate p-value smaller than 5% (95% 
statistical level of significance). Results for F-test show that all models are significant on 
their overall performance. On the other hand, results for t-test indicate that 𝑃𝑅𝑠𝑡𝑜 is always 

significant as predictor; but 𝑇𝑀𝑠𝑡𝑜, 𝑇𝑀𝑤𝑖𝑛, and 𝑇𝑀𝑠𝑝𝑟 show varied behavior. 

Catchment 
(DGA code) 

Cluster classification 
F-test 

(p-value) 

t-test (p-value) 

𝑃𝑅𝑠𝑡𝑜 𝑇𝑀𝑠𝑡𝑜  𝑇𝑀𝑤𝑖𝑛 𝑇𝑀𝑠𝑝𝑟  

3414001 Snowmelt-driven 2.04E-07 4.73E-08 2.50E-02 8.29E-02 2.21E-01 

3421001 Snowmelt-driven 9.57E-03 4.59E-05 9.51E-01 2.13E-01 1.29E-01 

4302001 Snowmelt-driven 2.49E-03 1.05E-05 2.14E-01 3.36E-01 9.08E-01 

4311001 Snowmelt-driven 6.16E-11 1.48E-09 2.89E-01 7.37E-01 9.79E-01 

4313001 Snowmelt-driven 5.47E-11 3.28E-09 9.21E-02 9.18E-01 7.51E-01 

4503001 Mixed 1.59E-08 6.24E-09 5.24E-01 5.07E-01 2.87E-01 

4513001 Mixed 1.49E-51 1.31E-15 4.52E-01 3.95E-01 3.72E-01 

4515002 Mixed 4.29E-11 1.44E-09 4.80E-02 9.88E-01 8.30E-01 

4522002 Mixed 2.99E-09 1.11E-08 3.49E-01 2.75E-01 3.78E-01 

4531002 Mixed 1.42E-09 2.53E-09 1.39E-01 9.54E-01 1.65E-01 

4703002 Snowmelt-driven 2.19E-58 8.22E-16 2.57E-02 3.49E-01 9.66E-01 

5100001 Mixed 1.00E-40 2.12E-15 7.58E-01 5.52E-01 2.52E-01 

5101001 Mixed 6.86E-04 4.28E-05 4.22E-01 3.86E-01 2.94E-01 

5200001 Mixed 1.30E-11 1.82E-09 2.42E-01 2.41E-01 2.69E-01 

5410002 Snowmelt-driven 1.46E-48 3.74E-15 1.13E-01 1.08E-01 2.73E-01 

5411001 Mixed 1.07E-20 5.13E-12 7.23E-01 6.95E-01 5.56E-02 

5710001 Snowmelt-driven 2.04E-33 2.88E-12 1.95E-01 1.10E-01 1.43E-01 

5721001 Snowmelt-driven 8.39E-09 2.25E-07 3.48E-01 4.50E-01 6.07E-01 

5722001 Snowmelt-driven 8.63E-26 1.07E-12 7.67E-01 9.10E-01 3.84E-01 

5741001 Rainfall-driven 4.76E-32 5.22E-14 3.59E-02 7.23E-01 2.66E-03 

6027001 Mixed 6.66E-91 1.32E-18 6.18E-01 4.08E-01 4.25E-01 

7103001 Mixed 8.28E-05 5.24E-05 1.56E-01 4.30E-01 3.37E-01 

7112001 Snowmelt-driven 7.11E-21 1.67E-10 8.73E-01 6.10E-01 1.03E-01 

7115001 Snowmelt-driven 8.85E-12 1.72E-08 4.61E-01 6.68E-01 2.92E-01 

7330001 Rainfall-driven 7.52E-26 8.68E-13 8.47E-01 6.45E-01 1.45E-01 

7350003 Rainfall-driven 8.51E-48 8.28E-15 4.19E-01 6.47E-01 2.31E-01 

7354002 Rainfall-driven 5.02E-34 8.59E-13 5.68E-01 5.93E-01 4.68E-01 

7358001 Mixed 4.29E-12 1.96E-09 8.50E-03 3.60E-03 6.71E-02 

7381001 Mixed 4.99E-08 1.48E-08 2.17E-01 2.41E-02 1.58E-01 

7400001 Rainfall-driven 1.14E-05 1.01E-07 9.56E-01 3.13E-01 8.76E-01 

8104001 Mixed 3.60E-21 5.01E-12 2.63E-01 2.00E-01 1.59E-01 

8124001 Rainfall-driven 3.21E-52 8.65E-17 5.77E-01 9.46E-01 2.15E-01 

8135002 Rainfall-driven 1.07E-70 2.18E-18 7.37E-02 3.11E-01 6.04E-01 

8220001 Rainfall-driven 9.54E-03 9.12E-05 3.54E-01 9.02E-01 5.36E-01 

8317002 Rainfall-driven 7.82E-25 3.43E-13 6.48E-01 5.11E-01 1.53E-01 

8323002 Rainfall-driven 2.34E-17 2.31E-11 2.78E-01 1.99E-01 1.74E-01 
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Catchment 
(DGA code) 

Cluster classification 
F-test 

(p-value) 

t-test (p-value) 

𝑃𝑅𝑠𝑡𝑜 𝑇𝑀𝑠𝑡𝑜  𝑇𝑀𝑤𝑖𝑛 𝑇𝑀𝑠𝑝𝑟  

8330001 Rainfall-driven 2.24E-16 1.77E-11 9.94E-01 9.47E-01 1.69E-01 

8332001 Rainfall-driven 1.48E-27 1.80E-13 5.85E-01 8.62E-01 4.11E-01 

8342001 Rainfall-driven 1.04E-03 4.15E-06 9.61E-01 9.76E-01 2.37E-01 

8343001 Rainfall-driven 4.59E-12 1.37E-10 4.00E-01 4.97E-01 1.64E-01 

8351001 Rainfall-driven 2.10E-08 2.94E-09 1.78E-01 2.83E-01 9.05E-02 

8362001 Rainfall-driven 9.25E-11 5.11E-10 6.84E-01 8.25E-01 7.42E-01 

9102001 Rainfall-driven 2.77E-43 5.14E-16 9.27E-01 9.29E-01 3.01E-01 

9104002 Rainfall-driven 5.44E-10 3.63E-10 8.02E-01 8.68E-01 4.79E-01 

9107001 Rainfall-driven 1.91E-21 6.23E-13 7.59E-01 7.58E-01 4.35E-02 

9123001 Mixed 2.57E-07 9.20E-08 6.53E-01 6.07E-01 2.25E-02 

9135001 Rainfall-driven 3.91E-17 1.36E-11 1.46E-01 7.87E-02 4.67E-02 

9404001 Mixed 4.10E-21 6.12E-11 3.94E-02 6.21E-02 4.04E-02 

9416001 Mixed 3.41E-11 9.17E-09 2.77E-01 2.76E-01 4.82E-02 

9434001 Rainfall-driven 6.44E-17 7.19E-12 1.03E-01 1.16E-01 7.20E-02 

9436001 Rainfall-driven 2.58E-06 4.18E-08 8.23E-01 8.12E-01 2.99E-01 

10134001 Rainfall-driven 6.33E-13 1.61E-10 4.37E-02 5.64E-02 1.44E-01 

10137001 Rainfall-driven 2.18E-05 1.01E-07 2.73E-01 2.01E-01 3.41E-01 

10356001 Rainfall-driven 6.95E-05 1.46E-07 9.97E-01 5.35E-01 7.79E-01 
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Figure B-3. Altitudinal control of El Niño minus La Niña composites for annual runoff ratio. 
Catchments are stratified by cluster classification of hydrologic regimes. 

 

Figure B-4. Altitudinal control of sensitivity of annual streamflow to mean winter storm 
temperature. Catchments are stratified by cluster classification of hydrologic regimes. 
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Figure B-5. (Top panel) Left to right: Sensitivities of annual runoff ratio to winter storm 
precipitation, winter storm mean temperature, winter mean temperature and spring mean 
temperature, respectively. (Bottom panel) Same as top but sensitivities are multiplied by 
El Niño minus La Niña composite anomalies shown at Figure 6. For better visualization, 
the color palette is truncated at the 5% and 95% percentiles. 


