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THE IMPACT OF LOCALITY IN THE BROADCAST CONGESTED
CLIQUE MODEL\ast 

F. BECKER\dagger , P. MONTEALEGRE\ddagger , I. RAPAPORT\S , AND I. TODINCA\dagger 

Abstract. The broadcast congested clique model (BClique) is a message-passing model of
distributed computation where n nodes communicate with each other in synchronous rounds. First,
in this paper we prove that there is a one-round, deterministic algorithm that reconstructs the input
graph G if the graph is d-degenerate, and rejects otherwise, using bandwidth b = \scrO (d \cdot logn). Then,
we introduce a new parameter to the model. We study the situation where the nodes, initially,
instead of knowing their immediate neighbors, know their neighborhood up to a fixed radius r. In
this new framework, denoted BClique[r], we study the problem of detecting, in G, an induced cycle
of length at most k (Cycle\leq k) and the problem of detecting an induced cycle of length at least k+1
(Cycle>k). We give upper and lower bounds. We show that if each node is allowed to see up to
distance r = \lfloor k/2\rfloor + 1, then a polylogarithmic bandwidth is sufficient for solving Cycle>k with only
two rounds. Nevertheless, if nodes were allowed to see up to distance r = \lfloor k/3\rfloor , then any one-round
algorithm that solves Cycle>k needs the bandwidth b to be at least \Omega (n/ logn). We also show the
existence of a one-round, deterministic BClique algorithm that solves Cycle\leq k with bandwitdh

b = \scrO (n1/\lfloor k/2\rfloor \cdot logn). On the negative side, we prove that, if \epsilon \leq 1/3 and 0 < r \leq k/4, then
any \epsilon -error, R-round, b-bandwidth algorithm in the BClique[r] model that solves problem Cycle\leq k

satisfies R \cdot b = \Omega (n1/\lfloor k/2\rfloor ).
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1. Introduction. The broadcast congested clique BClique model is a message-
passing model of distributed computation where n nodes communicate with each other
in synchronous rounds over a complete network [1, 2, 4, 6, 7, 8, 16, 19, 21, 24, 30]. The
joint input to the n nodes is an undirected graph G on the same set of nodes, with
node u receiving the list of its neighbors in G. Nodes have pairwise distinct identities,
which are the numbers between 1 and n. All nodes know n, the size of the network.

Each node broadcasts, in each round of the algorithm, a single b-bit message
along each of its n - 1 communication links. The size of the messages is known as the
bandwidth of the system, and it is a parameter of the model (which could grow with n).
Broadcasting is equivalent to writing the messages on a whiteboard, visible to every
node. In each round every node produces its message using its input, the contents of
the whiteboard, and a sequence of public random bits. An algorithm is correct if it
terminates with every node knowing the correct answer with high probability. The
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round complexity of an algorithm is the maximum number of rounds over all possible
input graphs (of size n).

Few fast algorithms are known in the BClique model. In fact, if the bandwidth
is b = \scrO (log n), then there exist one-round, deterministic algorithms for deciding
whether the input graph G has bounded degeneracy [6] or if it contains a fixed for-
est [16]. If randomization is allowed, then we can decide, in one round, whether the
input graph is a cograph [24]. Also, if b = \scrO (polylog n), then there is a one-round,
randomized algorithm for deciding whether G is connected [1, 2].

One way to increase the computing power of the model is to lift the broadcast re-
striction and to allow the nodes the possibility of sending different messages through
different links. This general model, known as unicast congested clique [16, 28], gives
the possibility to perform a load balancing procedure efficiently. Such enormous in-
trinsic power has allowed some authors to provide fast algorithms for solving natural
problems: an\scrO (log log log n)-round algorithm for finding a 3-ruling set [20], \scrO (n0.158)-
round algorithms for counting triangles, for counting 4-cycles, and for computing the
girth [12], an \scrO (1)-round algorithm for detecting a 4-cycle [12], an \scrO (1)-round algo-
rithm constructing a minimum spanning tree [23], an \scrO (log log\Delta )-round algorithm
for computing a maximal independent set [18], etc.

Another very natural, much more limited and less dramatic way to increase the
computing power of the BClique model is to expand the local knowledge the nodes
initially have about G. The idea of a constant-radius neighborhood independent of
the size of the network is present in the research on local algorithms pioneered by
Angluin [3], Linial [27], and Naor and Stockmeyer [29].

We therefore use the KTr notion, introduced by Awebuch et al. [5], which means
knowledge of topology up to distance r, excluding edges with both endpoints at dis-
tance r. More precisely, we call BClique[r] the extension of the broadcast con-
gested clique model where each node u ``sees"" (receives as input) the set of all
edges lying on a path of length at most r, starting in u. Hence, BClique[1] cor-
responds to the classical broadcast congested clique model, and is simply denoted
BClique.

1.1. The problems. In the present paper we study several problems, first, Re-
construction. This problem consists in recovering all the edges of the input graph
G in the case that G belongs to a particular class of graphs \scrG . The algorithm must
reject when G /\in \scrG . Therefore, provided that G \in \scrG , Reconstruction consists in
computing the function f(G) = E(G). The particular class \scrG that we reconstruct
in this paper is the class of d-degenerate graphs. (A graph is d-degenerate if, by
iteratively removing vertices of degree at most d, we obtain the empty graph.)

The decision problems Cycle\leq k and Cycle>k consist in deciding, respectively,
whether the input graph has an induced cycle of length at most k and strictly
larger than k. (The value k is a fixed parameter). Problems Sub-Cycle\leq k and
Sub-Cycle>k are defined in a similar way, but in this case we ask whether the input
graph has a cycle as a subgraph (induced or not) of length at most k and strictly
larger than k.

The decision problems Even-Sub-Cycle and Odd-Sub-Cycle consist in de-
ciding, respectively, whether the input graph contains a cycle of even length, in the
first case, and odd length, in the second. Finally, Connectivity is also a decision
problem, where nodes need to decide whether the input graph G is connected.

1.2. Our results. In section 2 we prove that there is a one-round, deterministic
algorithm in the BClique model that reconstructs the input graph G if the graph
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is d-degenerate and rejects otherwise, using bandwidth b = \scrO (d \cdot log n). This result
represents an improvement with respect to the bandwidth b = \scrO (d2 \cdot log n) presented
in [6]. We also prove that our algorithm is tight, even if we allowed randomization
and multiple-rounds.

In section 3 we apply our above-mentioned algorithm for solving Cycle\leq k and
Sub-Cycle\leq k. More precisely, we show the existence of a one-round, deterministic
BClique algorithm that solves both problems---which are in fact equivalent---using
bandwidth b = \scrO (ex(n, k) log n/n), where ex(n, k) is the maximum number of edges
of an n-vertex graph not containing, as a subgraph, a cycle of length at most k. From
a result of Bondy and Simonovits [10], we conclude that b = \scrO (n1/\lfloor k/2\rfloor log n). On the
negative side, we prove that if \epsilon \leq 1/3 and 0 < r \leq k/4, then any \epsilon -error, R-round, b-
bandwidth algorithm in the BClique[r] model that solves problem Cycle\leq k satisfies
R \cdot b = \Omega (ex(n, k)/n). Assuming the Erd\H os girth conjecture1 [17] we conclude that
R \cdot b = \Omega (n1/\lfloor k/2\rfloor ).

In section 4 we develop an algorithm for solving problem Cycle>k. For do-
ing this, we give a useful, ``local"" characterization of graphs which do not have long
induced cycles. With such characterization, together with a technique inspired by
the linear sketches of [1, 22], we show that if each node is allowed to ``see"" at dis-
tance \lfloor k/2\rfloor + 1, then a polylogarithmic number of bits is sufficient for detecting in
two rounds an induced cycle of length strictly larger than k. More precisely, we
prove that for every k \geq 3, there exists a two-round, randomized algorithm in the
BClique[\lfloor k/2\rfloor + 1] model that solves Cycle>k with high probability using band-
width b = \scrO (log4 n). On the negative side, we prove that the two characteristics of
our algorithm, that is, the two rounds and the local, \lfloor k/2\rfloor + 1 knowledge the nodes
have about their neighborhood, are key requirements for achieving a polylogarithmic
bandwidth. In fact, we prove that with only one round together with a little bit less
local knowledge, any algorithm that solves Cycle>k would need the bandwidth to
be b = \Omega (n/ log n). For problem Sub-Cycle>k we apply the degeneracy approach.
We show that there exists a one-round, deterministic BClique algorithm that solves
problem Sub-Cycle>k and uses bandwidth b = \scrO (k log n).

Finally, in section 5, we exhibit one-round, deterministic algorithms for solv-
ing problems Even-Sub-Cycle, Odd-Sub-Cycle, and Connectivity. For solv-
ing Even-Sub-Cycle we use bandwidth \scrO (log n) in the BClique model. For
the other two problems, which are related between themselves, the bandwidth is
b = \scrO (n1/r log n) in the BClique[r] model.

The results of this article are summarized in Tables 1, 2, 3, 4, and 5.

1.3. Related work. The detection of cycles in the input graph G is one of the
most frequently addressed problems in the BCliquemodel. The first natural question
one can formulate, that is, deciding whether G contains a cycle, has been, until now,
the only question amenable to a simple algorithm. In fact, Becker et al. [6] show that
a simple set of logarithmic size messages is sufficient to recognize, deterministically
and in one round, whether the input graph G is acyclic.

Any other natural question concerning cycles has given strong negative results.
Drucker, Kuhn, and Oshman [16] showed that if \ell \geq 4, then any algorithm that
decides whether the \ell -node cycle C\ell is a subgraph (or an induced subgraph) of the
input graph G needs \Omega (ex(n,C\ell )/nb) rounds where ex(n,H) is the Tur\'an number
of H, i.e., the maximal number of edges of an n-node graph which does not contain

1This conjecture states that there exist graphs with n vertices and \Omega (n1+1/k) edges not containing
cycles of length less than or equal to 2k.
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Table 1
Results concerning problem Cycle\leq k. The first row corresponds to the upper-bound (algo-

rithm). The second and third rows correspond to te lower-bounds, which assume the Erd\H os girth
conjecture. Note that Sub-Cycle\leq k is equivalent to Cycle\leq k.

BClique[r] \#Rounds Bandwidth Randomized?

Theorem 3.1 r = 1 1 \scrO (n1/\lfloor k/2\rfloor logn) Deterministic

Theorem 3.5 r \leq k/3 1 \Omega (n1/\lfloor k/2\rfloor ) Randomized

Theorem 3.6 r \leq k/4 R \Omega (n1/\lfloor k/2\rfloor /R) Randomized

Table 2
Result concerning problem Sub-Cycle>k.

BClique[r] \# Rounds Bandwidth Randomized?
Theorem 4.1 r = 1 1 \scrO (logn) Deterministic

Table 3
Results concerning problem Cycle>k. The first row corresponds to the upper-bound (algo-

rithm). The second row corresponds to the lower bound.

BClique[r] \#Rounds Bandwidth Randomized?

Theorem 4.7 r \geq k/2 + 1 2 \scrO (log4 n) Randomized w.h.p.
Theorem 4.8 r \leq k/3 1 \Omega (n) Randomized \epsilon -error

Table 4
Result concerning problem Even-Sub-Cycle (upper bound).

BClique[r] \# Rounds Bandwidth Randomized?
Theorem 5.2 r = 1 1 \scrO (logn) Deterministic

Table 5
Results concerning problem Odd-Sub-Cycle (upper bounds). Note that deciding the existence

of odd cycles is equivalent to deciding bipartiteness.

BClique[r] \# Rounds Bandwidth Randomized?

Theorem 5.6 r \geq 2 1 \scrO (n1/r logn) Deterministic

[1, 2] r = 1 1 \scrO (log3 n) Randomized

a subgraph isomorphic to H. Remark that ex(n,C\ell ) is \Theta (n2) for odd values \ell , and
\Theta (n1+1/\ell ) for even values (assuming the Erd\H os girth conjecture [17]).

Moreover, even in the very powerful unicast congested clique model , the algorithms
for cycle detection are rather slow. In fact, the best known algorithm for detecting a
cycle C\ell uses \scrO (n0.158 log n) rounds for every \ell \geq 3 [12], the only exception being the
detection of squares C4, for which a nice \scrO (1)-round algorithm has been devised [12].

1.4. BCLIQUE[\bfitr ] model. Formally, theBClique[r] model is defined as follows.
There are n nodes which are given distinct identities, which we assume to be numbers
between 1 and n. The joint input to the nodes is a graph G. More precisely, each
node u receives as input the subgraph of radius r around itself (i.e., all edges lying on
a path of length at most r, starting in u). Nodes execute an algorithm, broadcasting
b-bit messages in synchronous rounds. Their goal is to compute some function f that
depends on G. When an algorithm stops every node must know f(G). Function f
defines the problem to be solved. A 0 - 1 function corresponds to a decision problem.

There are no restrictions on local computations: each node has unbounded com-
putational power. (In distributed systems the running time of an algorithm is mainly
determined by the time needed for the communication.) We are only interested in
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the number of bits that are communicated by an algorithm, and therefore the cost of
an algorithm is defined as the bandwidth b times the number of rounds R that the
algorithm requires in order to compute f(G). Note that BClique[1] corresponds to
the classical broadcast congested clique model, and it is simply denoted by BClique.

An algorithm may be deterministic or randomized. We distinguish two subcases
of randomized algorithms: the private-coin setting, where each node flips its own
coin, and the public-coin setting, where the coin is shared between all nodes. (In
this work we consider public-coin algorithms only). An \varepsilon -error algorithm \scrA that
computes a function f is a randomized algorithm such that, for every input graph G,
Pr\{ \scrA outputs f(G)\} \geq 1  - \varepsilon . In the case where \varepsilon \rightarrow 0 as n \rightarrow \infty , we say that \scrA 
computes f with high probability.

1.5. Some graph terminology. Let G = (V,E) be an undirected graph, and
let u \in V . We call NG(u) = \{ v \in V | uv \in E\} and NG[u] = NG(u) \cup \{ u\} the
open and closed neighborhoods of u, respectively. Similarly, for U \subseteq V , NG(U) =
\cup u\in UNG(u)  - U and NG[U ] = NG(U) \cup U are the open and closed neighborhoods
of U , respectively. When no ambiguity is possible, we omit the subindices. By
extension, we denote Nr[u] the set of vertices at distance at most r from u, and we
call it the closed r-neighborhood of u. Analogously, Nr(u) = Nr[u] \setminus \{ u\} is the open
r-neighborhood of u.

Let \ell > 1. A set of different vertices \{ x1, . . . , x\ell \} of G is called a path of length
\ell  - 1 from x1 to x\ell (also called x1, x\ell -path) if xixi+1 are edges of G for every i \in 
[\ell  - 1] = \{ 1, . . . , \ell  - 1\} . If \ell > 2 and x1x\ell is also an edge, then \{ x1, . . . , x\ell \} is
called a cycle of length \ell . In both cases, we call chord an edge that connects two
nonconsecutive vertices in a path or a cycle.

A graph H = (V \prime , E\prime ) is a subgraph of G = (V,E) if V \prime \subseteq V and E\prime \subseteq E. If
for any edge uv \in E with u, v \in V \prime we also have uv \in E\prime , we say that H is an
induced subgraph of G or that H is the subgraph of G induced by V \prime . Given a vertex
subset S, the subgraph induced by S is denoted by G[S]. We simply write G - S for
G[V \setminus S]. Also, if F is a subset of edges, we denote by G - F the graph obtained from
G by removing the edges of F . If S is a vertex subset of G = (V,E), the contraction
of S consists in replacing the whole subset S by a unique vertex vS , such that the
neighborhood of vS in the new graph is NG(S) while G - S remains unchanged.

A graph G is called connected if for every pair of vertices x, y, there exists
an x, y-path in G. A vertex set X \subseteq V (G) is connected if the induced subgraph
G[X] is connected. A connected component of G is an inclusion-maximal set of
vertices inducing a connected graph. An induced path (resp., cycle) of a graph G
is called a chordless path (cycle). A graph is called k-chordal if it does not con-
tain any induced cycle of length greater than k. The 3-chordal graphs are known
as chordal graphs. The girth of a graph G is the shortest length of a cycle in
G.

A graph is d-degenerate if, by iteratively removing vertices of degree at most d,
we obtain the empty graph. The degeneracy of a graph G is the minimum d \in \BbbN such
that G is d-degenerate.

The Tur\'an number ex(n, k) is the maximum number of edges of an n-vertex graph
not containing, as a subgraph, a cycle of length at most k.

A very helpful result in the study of graphs without short cycles is the one that
relates the nonexistence of short cycles in G with the degeneracy of G. More precisely,
graphs with no cycles of length at most k (as subgraphs) have a relatively small
degeneracy.
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Proposition 1.1 (see [16]). Graphs with no cycles of length at most k are of
degeneracy at most 4 \cdot ex(n, k)/n.

2. Reconstruction of graphs with bounded degeneracy. We start this
section by proving that graphs of degeneracy at most d can be recognized, and even
reconstructed, by a one-round algorithm in the BClique model using bandwidth
b = \scrO (d \cdot log n). Recall that reconstruction means that, at the end of the algorithm,
every node knows all the edges of the input graph.

Theorem 2.1. There is a one-round, deterministic algorithm in the BClique
model that reconstructs the input graph G if the graph is d-degenerate and rejects
otherwise, using bandwidth b = \scrO (d \cdot log n).

For proving Theorem 2.1 we need to prove the existence of a linear function that
compresses integer vectors and such that, if the compressed vector x is Boolean and
d-sparse, then x can be recovered. (x is d-sparse if its components are nonzero in at
most d coordinates.)

\BbbF p denotes the field of integers modulo p, where p > 0 is prime. In contrast
with the setting of linear sketches [1]---which, in fact, we are going to use in the next
sections---the following lemma does not consider randomization. Our technique is a
form of derandomization of a classical equality testing technique in communication
complexity [25].

Lemma 2.2. Let n, d > 0. There exists a function f : \BbbZ n \rightarrow \BbbF p, for some prime
number p = 2\scrO (d\cdot logn), such that

\bullet f is linear and
\bullet f is injective when restricted to d-sparse Boolean inputs.

Proof. Let \scrB = \{ b \in \{ 0, 1\} n :
\sum n

i=1 bi \leq d\} be the family of d-sparse Boolean
vectors of dimension n, and \scrT = \{ t \in \{  - 1, 0, 1\} n : \exists distinct b, b\prime \in \scrB , t = b  - b\prime \} .
Let p = p(n, d) be the smallest prime number greater than (1 + n)2d \cdot n. Recall that
this number is at most twice the lower bound by the theorem of Chebyshev [15]. Let
now P (\scrT ) be the family of polynomials over the field \BbbF p associating to each t \in \scrT 
the polynomial P (t,X) =

\sum n
i=1 tiX

i - 1 (values are taken modulo p). Let x = x(n, d)
be the minimum integer in \BbbF p which is not a root of any polynomial in P (\scrT ); x
exists because there are at most | \scrT | polynomials in P (\scrT ), each polynomial has at
most n roots in \BbbF p, and p > | \scrT | \cdot n. We define then, for each v \in \BbbZ n, the function
f(v) = P (v, x). Clearly, f is linear, and, by definition of x, for any distinct b, b\prime \in \scrB ,
we have f(b) = P (b, x) \not = P (b\prime , x) = f(b\prime ).

Proof of Theorem 2.1. The reconstruction algorithm is the following. Each node
i broadcasts the message Mi = (M1

i ,M
2
i ) = (di, f(ai)), where di is its degree, ai is

the row of the adjacency matrix corresponding to node i, and f is the function of
Lemma 2.2. The number of communicated bits is \scrO (d log n). (We recall that, in our
model, there are no restrictions on the time complexity of local computations.) Note
that the second coordinate M2

i of the message sent by node i is an element of \BbbF p, and
hence all arithmetic operations performed on M2

i are modulo p.
Let M = \{ Mi\} i\in V (G) be the vector of messages. Nodes use M to prune the graph

in at most n phases (computed locally, without any communication). We denote
G1 = G and M(1) = M . The input of phase t is the vector of messages M(t) of a
graph Gt, starting with t = 1. The idea is to look in Gt for a node ut of degree at most
d, together with all its adjacent edges E(ut) in Gt. Afterward, nodes update M(t) to
obtain the new vector of messages M(t + 1) consistent with the graph Gt+1, which
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corresponds to the deletion of ut from Gt. The output of each phase t is M(t + 1)
together with ut and E(ut). If no such ut exists, the algorithm deduces that the input
graph is not d-degenerate and rejects.

The first step of phase t is to look for a node ut such that M(t)1ut
\leq d. Then,

using M(t)2ut
, nodes obtain E(ut). This can be done by testing, for each b \in \scrB (the

set of Boolean d-sparse vectors), whether f(b) = M(t)2ut
. Since M(t)1ut

\leq d, we have
that the adjacency vector of ut in Gt is d-sparse, and then, according to the injectivity
property of f , the unique vector of \scrB such that f(b) = M(t)2ut

is the adjacency vector
of ut in Gt.

Finally, we can use E(ut) and M(t) to compute M(t+1) = \{ M(t+1)i\} i\in V (Gt+1)

as follows:

M(t+ 1)i =

\biggl\{ 
M(t)i if uti /\in E(ut),
(M(t)1i  - 1,M(t)2i  - f(eut

)) if uti \in E(ut),

where ek is the Boolean vector of dimension n with a single one in the kth coordinate.
Note that, if M(t) corresponds to the vector of messages of Gt, then M(t + 1)

corresponds to the vector of messages of Gt+1 = G[V (Gt)  - \{ ut\} ]. Let a(t)i, d(t)i
and a(t + 1)i, d(t + 1)i be the adjacency vectors and degrees of node i in G(t) and
G(t + 1), respectively. On one hand, if uti /\in E(ut), then a(t)i = a(t + 1)i and
d(t)i = d(t + 1)i; therefore, M(t)i = M(t + 1)i. On the other hand, if uti \in E(ut),
then M(t+1)i = d(t+1)i = d(t)i  - 1 = M(t)i  - 1 and a(t+1)i = a(t)i  - eut

. By the
linearity of f , we obtain that M(t+ 1)i = f(a(t)i  - eut) = M(t)i  - f(eut).

2.1. Lower bounds. Here we show that the previous algorithm is essentially
tight, in the following sense. Let d = d(n) be such that log(n/d) = \Theta (log n). (This
holds, for instance, if 1 \leq d \leq n\delta for any fixed 0 \leq \delta < 1.) If an algorithm \scrA 
reconstructs the class of a d-degenerate graphs in the BClique model, then \scrA must
communicate, at least, the number of bits communicated by the algorithm of Theorem
2.1. Moreover, this holds even for multiround, \epsilon -error randomized algorithms.

Theorem 2.3. Let d = d(n) be such that log(n/d) = \Theta (log n) and let 0 < \epsilon < 1/3.
If an \epsilon -error, randomized algorithm reconstructs the class of d-degenerate graphs in
the BClique model using R rounds and bandwidth b, then Rb = \Omega (d log n).

Proof. Consider \scrG , the family of n-node bipartite graphs G = (V1 \cup V2, E),
with | V1| = | V2| = n/2, and such that every vertex v \in V1 has exactly d neigh-
bors in V2. (We are assuming, for simplicity and without loss of generality, that

n is even.) Clearly, any graph in \scrG is d-degenerate, and | \scrG | =
\bigl( 
n/2
d

\bigr) n/2
. Hence,

log | \scrG | = \Omega (nd log(n/d)) = \Omega (nd log n).
There must be at least one outcome of the coin tosses for which the correct

algorithm reconstructs the input graph in at least (1 - \varepsilon ) of the cases. Therefore,

(n - 1)Rb+ n = \Omega (log((1 - \varepsilon )| \scrG | )) = \Omega (log | \scrG | ) = \Omega (nd log n).

The value (n - 1)Rb+ n corresponds to the total number of bits received by any
node v of the network: (n  - 1)Rb bits are received from the other nodes and n bits
are known by v at the beginning of the algorithm. (This is the indicator function of
its neighborhood.) This implies that R \cdot b = \Omega (log | \scrG | /n) = \Omega (d log n).

Remark 2.4. The previous lower bound also holds in the much more powerful
unicast congested clique model, where, instead of simply broadcasting, nodes are
allowed to send different messages to different nodes.



8 BECKER, MONTEALEGRE, RAPAPORT, AND TODINCA

3. Detection of short cycles. Consider first problem Sub-Cycle\leq k. Recall
that Proposition 1.1 states that a graph without cycles of length at most k has de-
generacy at most 4 \cdot ex(n, k)/n. Then, using the algorithm of Theorem 2.1, we can
give an answer to problem Sub-Cycle\leq k.

Theorem 3.1. There exists a one-round, deterministic BClique algorithm that
solves problem Sub-Cycle\leq k and uses bandwidth b = \scrO (ex(n, k) log n/n).

Proof. By Proposition 1.1, the No-instances of problem Sub-Cycle\leq k must be
(4 \cdot ex(n, k)/n)-degenerate. Therefore, we simply apply Theorem 2.1 on the input
graph assuming that its degeneracy is indeed 4 \cdot ex(n, k)/n. Hence, in one round, and
using bandwidth b = \scrO (ex(n, k) log n/n), each node either (1) fully reconstructs the
graph and decides the property or (2) notices that the degeneracy of the input graph
is larger than the degeneracy of any No-instance and concludes that the graph is a
Yes-instance.

Remark 3.2. Observe that problems Sub-Cycle\leq k and Cycle\leq k are equivalent.
Indeed, if a graph G is a Yes-Instance of Cycle\leq k, then G contains an induced cycle
of length at most k, which is also a subgraph of G. For the other direction, note
that any cycle of length \ell that is a subgraph of G has an induced cycle of length
smaller than or equal to \ell . Therefore, the upper and lower bounds of these problems
coincide.

Corollary 3.3. There exists a one-round, deterministic problem Cycle\leq k that
uses bandwidth b = \scrO (ex(n, k) log n/n).

Remark 3.4. Bondy and Simonovits [10] showed that ex(n, k) = \scrO (n1+2/k) if
k is even and ex(n, k) = \scrO (n1+2/(k - 1)) if k is odd. Therefore, the bandwidth of
the one-round, deterministic BClique algorithm that solves both Sub-Cycle\leq k and
Cycle\leq k is such that b = \scrO (n2/k log n) if k is even and b = \scrO (n2/(k - 1) log n) if k
is odd. On the other hand, the Erd\H os girth conjecture states that these bounds are
tight, implying the results of Table 1. Currently, the best constructions provide a
lower bound for ex(n, k) = \Omega (n1+4/(3k - 7)) if k is even and ex(n, k) = \Omega (n1+4/(3k - 9))
if k is odd [26].

3.1. Lower bounds. The previous algorithm is rather restrictive. It is deter-
ministic, it works in one-round, and the information each node has about the graph
is minimal, consisting of the 1-neighborhood. The question we ask here is the fol-
lowing: is it possible, by lifting previous restrictions, to decrease the total number of
bits broadcasted by each node? The next results give a negative answer to this ques-
tion, at least up to logarithmic factors. In other words, the one-round deterministic
algorithm based on the degeneracy seems to be the best we can do.

Recall that BClique[r] is the extension of the broadcast congested clique model
where each node u receives as input the set of all edges lying on a path of length at
most r, starting in u.

Theorem 3.5. Let \epsilon \leq 1/3, k \geq 4, and 0 < r \leq k/4. Then, any \epsilon -error, R-
round, b-bandwidth algorithm in the BClique[r] model that solves problem Cycle\leq k

satisfies R \cdot b = \Omega (ex(n, k)/n).

Proof. The proof of this theorem is very similar to a proof in [16] (where the
authors proved the same result for the BClique model, i.e., for r = 1). Let \scrP be an
\epsilon -error, one-round algorithm in the BClique[r] model that solves, on input graphs of
size n, Cycle\leq k in R(n) rounds and using bandwidth b(n). Let \{ Gn\} n be a family
of graphs of size n with the maximum number of edges not containing a cycle of
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length at most k. Notice that, by definition, the number of edges m is such that
m = \scrO (ex(n, k)).

We show that we can use \scrP to solve the communication complexity problem
DISJm, where two players (Alice and Bob) receive, each, a subset of \{ 1, . . . ,m\} 
and have to decide if the intersection of their sets is nonempty. The communication
complexity of DISJm is \Omega (m) [25].

The reduction works as follows: Alice and Bob interpret their inputs as subsets
of E(Gn), called EA and EB , respectively. Let \~Gn be the graph composed by two
copies of V (Gn), called VA and VB , and where each node in VA is connected by a
path of length 2\lfloor k/4\rfloor with its corresponding copy in VB . The edges between nodes
in VA (resp., VB) are given by EA (resp., EB). Notice that \~Gn has a cycle of length
at most k if and only if EA \cap EB \not = \emptyset .

Let u be a vertex in V (Gn) and let uA and uB be the copies of u in VA and VB ,
respectively. We call Pu the path of length 2\lfloor k/4\rfloor from uA to uB in \~G. For each
u \in V (G), Alice (resp., Bob) can simulate \scrP on each node uA (resp., uB \in VB) and
in the first (resp., the last) r nodes in Pu, since the messages sent by those nodes only
depend on EA (resp., EB). We say that Alice (resp., Bob) owns those nodes. Observe
that if a vertex w belongs to Pu \setminus (Nr(uA) \cup Nr(uB)), then the message of w can be
produced by any node of the graph, since its message does not depend on the edges
of \~Gn.

We obtain a communication algorithm for DISJm, where at each round Alice
and Bob exchange the messages produced by simulating algorithm \scrP on all the nodes
they own. This implies that algorithm \scrP on graphs of size 2n\lfloor k/4\rfloor is such that
2n\lfloor k/4\rfloor \cdot R(2n\lfloor k/4\rfloor ) \cdot b(2n\lfloor k/4\rfloor ) = \Omega (m(n)). Therefore, algorithm \scrP on n-vertex
graphs is such that R \cdot b = \Omega (ex(n, k)/n).

In the case where the nodes have more knowledge of the graph, i.e., when r \leq k/3,
we can obtain lower bounds for one-round algorithms.

Theorem 3.6. Let \epsilon \leq 1/3, k \geq 3, and 0 < r \leq k/3. Then, any \epsilon -error, one-
round, b-bandwidth algorithm in the BClique[r] model that solves Cycle\leq k satisfies
b = \Omega (ex(n, k)/n).

Proof. Let \scrP be an \epsilon -error, one-round randomized algorithm in the BClique[r]
model that solves Cycle\leq k using messages of size b(n). We are going to show that \scrP 
can be turned into an \epsilon -error protocol solving the two-party communication problem
Indexm, with messages of size 3rn \cdot b((n  - 2)r + k). In Indexm, Alice receives a
Boolean vector a \in \{ 0, 1\} m, Bob receives an index 1 \leq \ell \leq m, and both of them have
to output a\ell . It is well-known (see [25]) that the one-round communication complexity
of Indexm is \Omega (m). This lower-bound also holds to \epsilon -error randomized protocols, for
\epsilon \leq 1/3.

Let G be an n-node graph not containing any cycle of length at most k, such that
the number of edges in G is maximum. In other words, if m = | E(G)| is the number
of edges of G, then m = ex(n, k). Let us name e1, . . . , em the edges of G. For a vector
a \in \{ 0, 1\} m, we call Ga the subgraph of G such that ei \in E(Ga) if and only if ai = 1.
Since Ga is a subgraph of G, all cycles of Ga have length greater than k.

Let us define a family of graphs Ga(s, t), indexed by two parameters s, t \in 
\{ 0, 1, . . . , n\} . Each graph Ga(s, t) has (n  - 2)r + k vertices, which are numbered
from 1 to (n - 2)r + k. Graph Ga(s, t) is constructed as follows:

\bullet The graph induced by vertices \{ 1, . . . , n\} is Ga.
\bullet For each i \in \{ 1, . . . , n\} the vertices i, i+n, i+2n, . . . , i+(r - 1)n form a path

of length r  - 1, called Pi.
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\bullet Vertices rn+ 1, . . . , (n - 2)r + k form path of length k  - 2r  - 1, called P \ast .
\bullet If s \not = 0, then vertex s + (r  - 1)n is adjacent to rn + 1, and if t \not = 0, then
vertex t+ (r + 1)n is adjacent to (n - 2)r + k.

We claim that Ga(s, t) is a Yes-instance of problem Cycle\leq k if and only if s, t
are adjacent in Ga. Indeed, if s, t are adjacent, then Ps \cup P \ast \cup Pt is an induced cycle
of length k. Conversely, by definition of G, if Ga(s, t) contains a cycle a of length at
most k, then this cycle must contain the path Pu \cup P \ast \cup Pv, which already contains
k nodes, and then necessarily \{ s, t\} is an edge of Ga.

Now observe that for each i \in \{ 1, . . . , n\} and each j \in \{ 1, . . . , r  - 1\} , the r-
neighborhood of vertex i + jn \in Pi is contained in Nr(i) \cup Pi if i /\in \{ s, t\} and is
contained in Nr(i)\cup P \ast \cup Pi otherwise. Intuitively, the vertices in Pi have at most the
same knowledge of Ga as vertex i. Moreover, the vertices in P \ast have no knowledge of
the edges of Ga.

Given a \in \{ 0, 1\} m and s, t \in \{ 0, 1, . . . , n\} , we call Ms,t(u) the message that
vertex u \in V (Ga(s, t)) produces when protocol \scrP runs on input Ga(s, t). Previous
observations imply the following facts, for each i \in \{ 1, . . . , n\} and u \in Pi:

\bullet Mi,t(u) equals Mi,0(u) for all t \in \{ 0, 1, . . . , n\} such that t \not = i.
\bullet Ms,i(u) equals M0,i(u) for all s \in \{ 0, 1, . . . , n\} such that s \not = i.
\bullet Ms,t(u) equals M0,0(u) for all s, t \in \{ 0, 1, . . . , n\} such that s \not = i and t \not = i.

Now let a in\{ 0, 1\} m, \ell \in \{ 1, . . . ,m\} be an input of Indexm, and call \scrP \prime the
following one-round protocol: Alice uses \scrP to produce three messages, for each node
u \in \{ 1, . . . , rn\} , that we call M1(u) = M0,0(u), M2(u) = Mi,0(u), and M3(u) =
M0,i(u), where i \in \{ 1, . . . , n\} is such that u belongs to Pi. Bob simply communicates
\ell to Alice. Therefore, in the communication round Alice communicates 3rn \cdot b((n  - 
2)r + k) bits. After the communication round, Alice outputs a\ell . Bob, on the other
hand, computes s, t \in \{ 1, . . . , n\} such that \{ s, t\} = e\ell . Then, for each u \in \{ rn +
1, . . . , (n - 2)r+ k\} Bob produces M(u) = Ms,t(u). Bob can produce these messages
without any knowledge of a because the vertices u \in \{ rn+1, . . . , (n - 2)r+k\} belong
to P \ast , and then Nr(u) \subseteq Ps \cup P \ast \cup Pt. Then, Bob gathers the set of messages
\~M = \{ \~M(u) : u \in \{ 1, . . . , (n - 2)r + k\} \} , where

\bullet \~M(u) = M1(u) if u \not = Ps \cup Pt,
\bullet \~M(u) = M2(u) if u \in Ps,
\bullet \~M(u) = M3(u) if u \in Pt,
\bullet \~M(u) = M(u) if u \in P \ast .

Observe that \~M is exactly the set of messages that protocol \scrP produces on input
Ga(s, t). Then, Bob runs \scrP on \~M obtaining the answer of problem Cycle\leq k on
input Ga(s, t) with probability \epsilon . As we explained above, this answer is affirmative
if and only if a\ell = 1. We conclude that \scrP \prime solves Indexm with messages of size
3rn \cdot b((n - 2)r+ k). Therefore 3rn \cdot b((n - 2)r+ k) = \Omega (ex(n, k)). We conclude that
b(n) = \Omega (ex(n, k)/n).

Remark 3.7. Bondy and Simonovits [10] showed that ex(n, k) = \scrO (n1+2/k) if k
is even, and ex(n, k) = \scrO (n1+2/(k - 1)) if k is odd. The Erd\H os girth conjecture states
that this bound is tight, implying the results of Table 1 for Cycle\leq k. Currently, the
best constructions provide a lower bound for ex(n, k) = \Omega (n1+4/(3k - 7)) if k is even,
and ex(n, k) = \Omega (n1+4/(3k - 9)) if k is odd [26].

From the remarks above, we obtain the following.

Corollary 3.8. Let \epsilon \leq 1/3, k \geq 4, and 0 < r \leq k/4. Then, any \epsilon -error,
R-round, b-bandwidth randomized algorithm in the BClique[r] model that solves
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Cycle\leq k requires bandwidth b = \Omega (n1/(\lfloor k/2\rfloor )). This bound assumes the Erd\H os girth
conjecture.

Corollary 3.9. Let \epsilon \leq 1/3, k \geq 3, and 0 < r \leq k/3. Then, any \epsilon -error,
one-round, b-bandwidth randomized algorithm in the BClique[r] model that solves
Cycle\leq k requires bandwidth b = \Omega (n1/(\lfloor k/2\rfloor )). This bound assumes the Erd\H os girth
conjecture.

4. Detection of long cycles. Problems Sub-Cycle>k and Cycle>k, unlike
the \leq case of previous section, are obviously very different between themselves. Con-
sider, for example, the n-node complete graph Kn. It has a cycle of length n. But its
induced cycles are all triangles. Problem Sub-Cycle>k can be solved using again the
degeneracy approach. In fact, from a result of Birmel\'e [9], the treewidth (and hence
the degeneracy) of graphs with no cycles of length greater than k is at most k.

Theorem 4.1. There exists a one-round, deterministic BClique algorithm that
solves problem Sub-Cycle>k and uses bandwidth b = \scrO (k log n).

Proof. We simply apply Theorem 2.1 assuming that the input graph is
k-degenerate. If it is indeed k-degenerate, then the algorithm reconstructs it (and
each node locally verifies whether the input graph has a cycle of length at least k+1).
Otherwise, it is not k-degenerate, and it must correspond to a Yes-instance.

Recall that graphs without induced cycles of length greater than k are called
k-chordal [11]. 3-chordal graphs, i.e., graphs in which every cycle (not necessarily
induced) of 4 or more vertices has a chord, are called chordal graphs. It is known
that a graph G is chordal if and only if, for each vertex u \in V , and each connected
component C in G  - N [u], the neighborhood N(C) of this component induces a
clique in G. This ``local"" characterization has been exploited by Chandrasekharan
and Iyengar [13] for devising a fast parallel algorithm recognizing chordal graphs.
We begin this section by extending previous characterization to arbitrary chordalities
k > 3 in order to take advantage of this in our distributed framework.

Let G be a graph, u \in V (G), and k > 0. Let D1, . . . , Dp be the p connected com-
ponents of G - N\lfloor k/2\rfloor [u] (obtained by removing the vertices at distance at most \lfloor k/2\rfloor 
from u). Let Hk

u denote the graph obtained from G by contracting each component
Di into a single node di.

Lemma 4.2. Let G be a graph. G is k-chordal if and only if, for every u \in V (G),
Hk

u is k-chordal.

Proof. Suppose first that G is not k-chordal. Let u \in V (G) be a vertex of some
chordless cycle of length greater than k. Among the chordless cycles of length greater
than k containing u, let Cl be one that has minimum intersection size with N\lfloor k/2\rfloor [u].
We call u0, . . . , ul - 1 the nodes of the cycle Cl, where u0 = u and ui is adjacent to
ui - 1 mod l and ui+1 mod l.

First, observe that if Cl is contained in N\lfloor k/2\rfloor [u], then necessarily Cl is also
contained in Hk

u and then Hk
u is not k-chordal. Therefore, we suppose that at least

one vertex of Cl is not contained inN\lfloor k/2\rfloor [u]. The cycle Cl may leave the setN\lfloor k/2\rfloor [u]
and then get in again, potentially many times. We will show that each time that it
does so, the cycle intersects a different connected component of G - N\lfloor k/2\rfloor [u]. Thus,
when we contract each such component into a single node, we obtain a chordless cycle
of length greater than k. For t \geq 0, call P1, . . . , Pt the connected components of
G[Cl]  - N\lfloor k/2\rfloor [u]. Since Cl is chordless, there exists for each i \in \{ 1, . . . , t\} a pair
ai, bi \in \{ 0, . . . , l  - 1\} such that Pi = \{ uj \in Cl : ai < j < bj\} and | Cl \cap N(Pi)| =
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\{ uai
, ubi\} . Moreover, since Pi \cap N\lfloor k/2\rfloor [u] = \emptyset , uai

and ubiare at distance exactly
\lfloor k/2\rfloor from u in G.

For i \in \{ 1, . . . , t\} , let Di be the component of G  - N\lfloor k/2\rfloor [u] that contains Pi.
Notice that N(Di) \cap Cl = \{ ai, bi\} . Indeed, suppose that | Di \cap Cl| \geq 3, and let
J \subset \{ 1, . . . , l\} be such that j \in J if uj \in N(Di). Let m = min(J) and M =
max(J), and call P \prime a shortest path between um and uM contained in Di. Clearly,
uj /\in N(Ci) for any j \in \{ 0, . . . ,m  - 1,M + 1, . . . , l  - 1\} . Therefore, the cycle C \prime =
u0, . . . , um - 1, um, P \prime , uM , uM+1, . . . , ul - 1, u0 is chordless. Since um and uM are at
distance \lfloor k/2\rfloor from x in G, C \prime is of length greater or equal to k + 1. Then, C \prime is a
chodless cycle of length greater than k that contains u and whose intersection with
N\lfloor k/2\rfloor [u] is strictly smaller than the one of Cl, which contradicts the fact that, by
our choice of Cl, the intersection of Cl with N\lfloor k/2\rfloor [u] is a minimum one. We conclude
that each component of G - N\lfloor k/2\rfloor [u] contains at most one of \{ P1, . . . , Pt\} . Therefore,
in the graph Hk

u , each path Pi of Cl will be contracted into a different vertex di. The
new cycle is still a chordless cycle of length greater than k, in the graph Hk

u . So Hk
u

is not k-chordal.
For the converse, suppose that there exists u \in V (G) such that Hk

u contains a
chordless cycle of length l greater than k; call Cl = u0, . . . , ul - 1, u0 such a cycle.
Consider the set I = \{ i \in \{ 0, . . . , l - 1\} | ui \in Cl\setminus N\lfloor k/2\rfloor [u]\} of the indices of nodes in
Cl that correspond to contracted components of G  - N\lfloor k/2\rfloor [u]. For each i \in I, call
Di the connected component of G - N\lfloor k/2\rfloor [u] corresponding to ui. Notice that since
Cl is chordless, N(Di) \cap Cl = \{ ui - 1, ui+1\} (where the subindices are taken modulo
l). Let Pi be a chordless ui - 1, ui+1-path in G[Di \cup \{ ui - 1, ui+1\} ].

Call C the cycle of G corresponding to Cl when we replace for each i \in I the
subpath ui - 1, ui, ui+1 with Pi. Clearly, the length of C is greater than or equal to that
of Cl. Also, C is chordless since, for each i \in I, the node ui corresponds to a different
component Di, | N(Pi)\cap C| = \{ ui - 1, ui+1\} , and Pi is a chordless ui - 1, ui+1-path. We
conclude that G is not k-chordal.

Lemma 4.2 provides us with a strategy for deciding k-chordality, i.e., for deciding
whether the input graph G is a No-instance of problem Cycle>k. For doing this
every node x must compute the graph Hk

x and then decide whether Hk
x is k-chordal.

In order to compute Hk
x , each node x needs first to find the connected components of

G - N\lfloor k/2\rfloor [x].
Let Fx be the set of all edges lying on a path of length at most \lfloor k/2\rfloor +1 starting

in x. We need each node to compute the connected components of G  - Fx outside
N\lfloor k/2\rfloor [x].

4.1. Computing the connected components of \bfitG  - \bfitF \bfitx . Ahn, Guha, and
McGregor provide a probabilistic, one-round algorithm for computing a spanning
forest of the input graph G in the BClique model using bandwidth b = \scrO (log3 n) [1].
In their algorithm, each node constructs a message based on its neighborhood and
on a sequence of public random coins and broadcasts it to all other nodes. Using all
these messages, every node is able to construct a spanning forest of the graph with
probability 1 - \epsilon for a fixed \epsilon \leq 1/3.

We want each node x to compute the connected components of G  - Fx. Recall
that Fx is the set of all edges lying on a path of length at most \lfloor k/2\rfloor + 1 starting in
x. We place ourselves in the BClique[\lfloor k/2\rfloor + 1] model with bandwidth \scrO (log4 n).

We amplify the bandwidth by a log(n) factor, with respect to the spanning tree
algorithm of [1], to ensure that it succeeds with high probability. We do this by
running t = \scrO (log n) independent copies of the algorithm of [1], each one of them
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using a different set of random coins. The probability that all copies of the algorithm
fail is \epsilon t = (1/n)c.

Also, every node needs to know all the set of edges Fx, that is, why we choose
the BClique[\lfloor k/2\rfloor + 1] model. Using the spanning forest algorithm of [1], we prove
that each node x can construct a spanning forest of G - Fx with high probability.

The key observation is that the messages produced by the vertices are linear
functions (with respect to the edges of the graph). Therefore, from the messages of
G, each vertex x can compute the messages that the algorithm would have constructed
on G - Fx.

Definition 4.3. Let n, k, \delta > 0. A \delta -linear sketch of size k is a function

S : \{ 0, 1\} \scrO (logn) \times \{  - 1, 0, 1\} n \rightarrow \{ 0, 1\} k,

such that if Sr = S(r, \cdot ), then
\bullet Sr is linear for each r \in \{ 0, 1\} \scrO (logn);
\bullet if r is chosen uniformly at random, then there is an algorithm that, on input
Sr(x) \in \{ 0, 1\} k, returns ERROR with probability at most \delta and otherwise
returns a pair (i, xi) such that xi \not = 0 and coordinate i is picked uniformly at
random among the nonzero coordinates of x. Probabilities are taken over the
random choices of r.

Proposition 4.4 (see [22]). For each N, \delta > 0, there exists a \delta -linear sketch of
size \scrO (log2 N log \delta  - 1).

Let G = (V,E) be a graph of size n, and x \in V . We call ax the connectivity
vector of x in G, defined as the vector of dimension

\bigl( 
V
2

\bigr) 
such that

ax\{ u,v\} =

\left\{   1 if \{ u, v\} \in E, x = u and u < v,
 - 1 if \{ u, v\} \in E, x = v and u > v,
0 otherwise.

For r \in \{ 0, 1\} \scrO (logn), we say that Sr(G) = \{ Sr(a
x)\} x\in V (G) is a \delta -connectivity

sketch of G, where S is a \delta -linear sketch. Note that for any x \in V , each nonzero coor-
dinate of ax represents an edge of N(x), and for any U \subseteq V the nonzero coordinates
of

\sum 
x\in U ax are exactly the edges in the cut between U and its complement V \setminus U .
The one-round algorithm in the BClique model devised by Ahn, Guha, and

McGregor [1] for computing a spanning forest of G works as follows. Let t = \lceil log n\rceil .
Each node computes and sends t independent \delta -linear sketches of its connectivity
vector, using t random strings r1, . . . , rt picked uniformly at random. Using these
messages, any node can compute t independent \delta -connectivity sketches of G and
therefore it can compute a spanning tree using the following t steps procedure. First,
let us denote by \^V the set of supernodes, which initially are the n singletons \{ \{ u\} | u \in 
V \} . At step 0 \leq i < t, each node samples an incident edge to each set \^v \in \^V using
the ith collection of linear sketches

\sum 
x\in \^v Sri(a

x) and merges the obtained connected
components into a single supernode. The procedure finishes before t = \lceil log n\rceil steps
since the number of supernodes at least halves at each step. This idea is behind the
proof of the following proposition.

Proposition 4.5 (see Ahn, Guha, and McGregor [1]). Let n, \delta > 0 and t =
\lceil log n\rceil . There exists a (centralized) algorithm that receives t independent \delta -connectivity
sketches of an n-node graph G, produced with r1, . . . , rt \in \{ 0, 1\} \scrO (logn) random strings
picked uniformly at random, and outputs a spanning forest of G with probability 1 - \delta .
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Lemma 4.6. There is a one-round, randomized algorithm in the BClique[\lfloor k/2\rfloor +
1] model that computes, for every node x \in V , the connected components of G  - 
N\lfloor k/2\rfloor [x], using bandwidth b = \scrO (log4 n) and with high probability.

Proof. The algorithm works as follows. First, each node x sends t = \lceil log n\rceil 
different 1/n2-linear sketches of its connectivity vector ax, using t random strings
r1, . . . , rt. Note that each node knows Fx. Observe that the components of G  - 
N\lfloor k/2\rfloor [x] are exactly the components of G  - Fx without considering the nodes in
N\lfloor k/2\rfloor [x]. In the following, we show that after the communication round, each node
x can compute a spanning forest ofG - Fx with probability at least 1 - 1/n2. Therefore,
the whole algorithm succeeds with probability at least 1 - 1/n.

Let Sr(G) = (Sr(a
x1), . . . , Sr(a

xn)) be one of the 1/n2-connectivity sketches of G,
produced with the random string r, received in the communication round. Consider,
for each e \in Fx and u \in e, the vector bu,e of dimension

\bigl( 
n
2

\bigr) 
, where

bu,ee\prime =

\biggl\{ 
 - aue if e\prime = e,
0 otherwise

for each e\prime \in 
\biggl( 
n

2

\biggr) 
.

Let cu be the connectivity vector of node u in G - Fx. Note that, for each e \in 
\bigl( 
V
2

\bigr) 
,

cue = aue +
\sum 

\{ e\prime \in Fx:u\in e\prime \} 

bu,e
\prime 

e =

\biggl\{ 
aue if e \in E(G) \setminus Fx,
0 otherwise.

If we define Su
r = Sr(a

u) +
\sum 

\{ e\in Fx:u\in e\} Sr(b
u,e), we obtain, by the linearity of

Sr, that Su
r = Sr(c

u). Then, \{ Sr(c
u)\} u\in V is a 1/n2-connectivity sketch of G  - Fx

produced with r.
Once the communication round has finished, any node x can obtain t different

1/n2-connectivity sketches of G - Fx produced with random strings r1, . . . , rt picked
uniformly at random. Therefore, by Proposition 4.5, it can produce a spanning forest
of that graph with probability at least 1 - 1/n2.

4.2. Deciding \bfitk -chordality. Now we can show the distributed algorithm for
recognizing k-chordal graphs (see Algorithm 4.1).

Theorem 4.7. Let k \geq 3. There exists a two-round, randomized algorithm in the
BClique[\lfloor k/2\rfloor + 1] model that recognizes k-chordal graphs and thus solves problem
Cycle>k with bandwidth b = \scrO (log4 n) and high probability.

Proof. In the first round, each node x \in G computes the connected components
of G  - N\lfloor k/2\rfloor [x] using the algorithm of Lemma 4.6. After the first round, each
node x uses its knowledge of G to locally reconstruct Hk

x by identifying the connected
components D1, . . . , Dp of G - N\lfloor k/2\rfloor [x] and contracting each Di into a unique vertex
di. Note that x sees the edges between Di and N\lfloor k/2\rfloor [x]. Finally, x checks whether
Hk

x is k-chordal and communicates the answer in the second round. By Lemma 4.2,
the input graph is chordal if and only if each vertex x communicates a YES answer.
We emphasize that the second round is needed only because the nodes must all agree
on the output.

The algorithm may fail only when some node x fails to compute the components of
G - N\lfloor k/2\rfloor [x]; this event may occur, from Lemma 4.6, with probability at most 1/n.

4.3. Lower bounds. Now we are going to prove that the two rounds and the
local, \lfloor k/2\rfloor +1 knowledge the nodes have about their neighborhood, both features of a
previous algorithm, are key requirements for achieving a polylogarithmic bandwidth.
In fact, the next result proves that with only one round together with a little bit
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Algorithm 4.1 k-chordality.

Round 1
Each node x runs the algorithm of Lemma 4.6 in order to compute the components
of graph G - N\lfloor k/2\rfloor [x]
Round 2
Each node x builds Hk

x contracting each component of G - N\lfloor k/2\rfloor [x]
Each node x checks whether Hk

x is k-chordal and broadcasts the answer

less local knowledge, any algorithm that solves Cycle>k would need much more
bandwidth.

Theorem 4.8. Let \epsilon \leq 1/3, k \geq 3, and 0 < r < k/3. Then, any \epsilon -error, one-
round, b-bandwidth algorithm in the BClique[r] model that solves Cycle>k satisfies
b = \Omega (n).

Proof. Let \scrP be a protocol solving Cycle>k with bandwidth c(n). As we we did
for Theorem 3.6, we show that a protocol solving Cycle>k with bandwidth b(n) can
be used to solve Indexm with bandwidth 3rn \cdot b((2n  - 2)r + k), where in this case
m = \Omega (n2).

Let G be a graph on n vertices, partitioned in two sets V1 and V2, such that
| V1| = n1 = \lfloor n/2\rfloor and | V2| = n - n1. The vertices of V1 are numbered from 1 to n1,
and the vertices of V2 are numbered from n1+1 to n. The set of edges is such that V2

induces a complete graph and V1, V2 induce a complete bipartite graph. More formally,
the set of edges of G is the set of all pairs \{ v1, v2\} such that (v1, v2) \in V2 \times (V1 \cup V2).

Now let m = n1(n2  - 1) and let e1, . . . , em be the edges of the set \{ \{ v1, v2\} | v1 \in 
\{ 1, . . . , n1\} , v2 \in \{ n1+1, . . . , n - 1\} \} . A Boolean vector a \in \{ 0, 1\} m defines a subgraph
Ga of G, containing all edges of G except the edges of the set \{ ei| ai = 1\} . Observe
that, in Ga, the set V1 induces an empty graph, V2 induces a complete graph, and
all vertices of V1 are connected to vertex n \in V2. Therefore, Ga is a connected and
3-chordal graph for all a \in \{ 0, 1\} m. In particular, Ga is a No-instance of Cycle>k.

For each s, t \in \{ 0, 1, . . . , 2n\} we define Ga(s, t) in the same way as we did it in
the proof of Theorem 3.6. More precisely, Ga(s, t) is a graph on (n - 2)r+ k vertices,
numbered from 1 to (n  - 2)r + k. Graph Ga(s, t) is constructed attaching to each
vertex v of Ga a path Pv = i, i+n, . . . , i+n(r - 1) of length r - 1. Vertices numbered
nr+1 to (n - 2)r+k form a path P \ast . Finally, if s \not = 0, then vertex nr+1 is adjacent
to s, and if t \not = 0, then vertex (n - 2)r + k is adjacent to t.

Suppose that s, t \not = 0. We claim that Ga(s, t) is a No-instance of problem
Cycle>k if and only if vertices s and t are adjacent in Ga. Suppose that Ga(s, t)
contains a chordless cycle C of length k. Since Ga is 3-chordal, C must contain all
vertices in Ps \cup P \ast \cup Pt plus a shortest s, t-path P in Ga. Observe that such a path
P exists because Ga is connected. Since Ps \cup P \ast \cup Pt is a chordless path of length
k - 1, we deduce that P is of length at least 2. We conclude that Ga(s, t) is k-chordal
if and only if s and t are adjacent.

The rest of the proof is analogous to the proof of Theorem 3.6. Let a \in \{ 0, 1\} m
and 1 \leq \ell \leq m be an input of problem Indexm. Alice and Bob run protocol \scrP \prime 

defined in the proof of Theorem 3.6. Let s \in V1 and t \in V2 be such that \{ v1, v2\} = e\ell .
Using the information provided by Alice, Bob can construct the set of messages that
the vertices produce running protocol \scrP on input Ga(s, t). Using this information,
Bob can decide with error probability \epsilon whether Ga(s, t) contains an induced cycle
of length greater than k or not. As we explained above, the answer is affirmative if
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and only if a\ell = 1, and therefore protocol \scrP \prime solves Indexm with error probability
\epsilon \leq 1/3. We deduce that 3rn \cdot b((2n  - 2)r + k) = m = \Omega (n2). We conclude that
b(n) = \Omega (n).

5. Detection of even/odd cycles. The existence of odd cycles in a graph
(as subgraphs, not necessarily induced) is related to other properties of a graph. Of
course, bipartite graphs are those not having odd cycles. But as we are going to
see here, this is also related to other properties such as connectivity. We consider
problems Even-Sub-Cycle and Odd-Sub-Cycle, which consist in deciding, re-
spectively, whether the input graph contains a cycle of odd length, in the first case,
and of even length, in the second.

5.1. Even cycles. While graphs without even cycles as subgraphs have constant
degeneracy (and are therefore easy to study in our framework), graphs without even
induced cycles (called even-hole-free graphs in the literature [11]) contain all chordal
graphs. In centralized algorithms, the detection of even-hole-free graphs can be per-
formed in polynomial time. Nevertheless, to our knowledge, the best algorithm that
detects even-hole-free graphs requires \scrO (n11) time [14].

The next proposition relates the existence of cycles with the tree-width of a graph.

Proposition 5.1 (see [32]). For all integers m > 0 and \ell \geq 0 there exists an
integer k = k(\ell ,m) > 0 such that the tree-width of any graph with at most \ell vertex-
disjoint cycles of length 0 (mod m) is at most k.

The previous proposition implies that graphs without even cycles (cycles of length
0 (mod 2)) have constant tree-width. But graphs of tree-width k are of degeneracy at
most k, and, more generally, for each fixed graph H, the class of H-minor free graphs
is also of bounded degeneracy [31]. Therefore, by using Theorem 2.1, we deduce that
graphs without even cycles can be reconstructed in one round in the BClique model
using bandwidth \scrO (log n).

Theorem 5.2. There is a one-round, deterministic algorithm in the BClique
model that solves Even-Sub-Cycle using bandwidth \scrO (log n).

5.2. Odd cycles. In contrast with the previous even case, detecting odd induced
cycles is equivalent to detecting odd cycles as subgraphs. In fact, every noninduced
odd cycle contains a smaller odd cycle. As we are going to show now, there is a
strong connection between the existence of odd cycles and the connectivity of the
input graph.

Consider the following construction introduced in [1]. For a graph G = (V,E),
let D(G) be the graph constructed duplicating all vertices v in V into v1, v2. For each
edge \{ u, v\} \in E, we generate two edges in D(G): \{ u1, v2\} and \{ u2, v1\} .

Proposition 5.3 (see [1]). The number of connected componentes in D(G)
doubles the number of connected components in G if and only if G is bipartite.

Let G = (V,E) be a graph and r > 0. Let \sigma be some total ordering of E. For
each cycle of length at most 2r, pick the maximum edge of the cycle according to \sigma .
Call \~E the set of picked edges, and call \~G = (V,E  - \~E).

Proposition 5.4 (see [5]). G is connected if and only if \~G is connected; moreover,
any spanning forest of \~G is a spanning forest of G.

Notice that, from Remark 3.4, we know that \~G has degeneracy \scrO (n1/r). And,
from the previous proposition, it has the same number of connected components as
G. We deduce the following theorem.
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Theorem 5.5. There is a one-round, deterministic algorithm that computes the
connected components of the input graph in the BClique[r] model that uses bandwidth
b = \scrO (n1/r log n). The algorithm returns a spanning forest of the input graph.

Proof. Choose an ordering of the edges of G. For instance, if we denote the edges
e = (u, v) with u < v, then (u1, v1) < (u2, v2) if either u1 < u2 or u1 = u2 and
v1 < v2. In our algorithm, a node i looks for all cycles of length at most 2r in G that
contain it. Notice that nodes do this without any communication since they see all
neighbors at distance at most r. For each such cycle, i removes the maximum edge
according to the edge ordering, obtaining \~ai, the row of the adjacency matrix of \~G
corresponding to i. Then node i runs the algorithm of Theorem 2.1 on input \~ai for a
degeneracy s = \scrO (n1/r). Finally, each node uses the messages to reconstruct \~G and
outputs a spanning forest of \scrG computed locally using any classic algorithm.

Combining Proposition 5.3 with Theorem 5.5 we can solve Odd-Sub-Cycle.

Theorem 5.6. There is a one-round, deterministic algorithm in the BClique[r]
model solving Odd-Sub-Cycle with bandwidth b = \scrO (n1/r log n).

Proof. Let G be the input graph. First, each node v \in V (G) computes the row
of the adjacency matrix of D(G) corresponding to vertices v1 and v2 and simulates
the connectivity algorithm on input graph G and in D(G) (playing the role of v1 and
v2). Upon receiving all messages from other nodes, v can compute a spanning tree
of G and D(G) and then compute the number of connected components of G and
D(G). Finally, it checks using Proposition 5.3 whether G is bipartite, i.e., whether it
contains a cycle of odd length.

6. Conclusion. In this paper we considered the BClique model. We studied
the impact of the local knowledge each node has about its neighborhood on the
algorithmic complexity---measured in terms of the bandwidth and/or the number of
rounds---of different problems. In some cases the value of r, a parameter of our model,
corresponding to the radius that each node knows for free around itself, seems to make
a difference. Consider, for instance, the problem of deciding whether the input graph
is connected. We showed that we can solve it deterministically, in one round, using
bandwidth \scrO (n1/r log n). Therefore, for r \geq 2, the bandwidth is sublinear. What
happens in the classical case, where r = 1? Is \Omega (n) a lower bound for the bandwidth
in the deterministic, one-round case? A similar phenomenon occurs when one is
interested in detecting induced cycles of length at least k. In fact, if r = \lfloor k/2\rfloor + 1,
then it is possible to solve this problem in two rounds, with high probability and
polylogarithmic bandwidth b = \scrO (log4 n). On the other hand, if r = \lfloor k/3\rfloor , then
any one-round algorithm would need the bandwidth to be b = \Omega (n/ log n). For some
other problems, such as detecting cycles of length at most k, it seems that the the
value of r does not have any impact on the complexity of the problem (provided that
r is smaller tan k/4).
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