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A B S T R A C T

Columns that are at the intersection of frames in two different directions are subjected to biaxial shear when
lateral loads are simultaneously applied in two directions. Using the resultant shear and evaluating one-way
shear strength along the direction of the resultant force, as most design codes do, is unconservative especially
when significant shear co-exist about both axes. The conservatism of one-way shear strength in some expressions
of ACI 318 (14) balances the not consideration of biaxial shear design in the code. However, the use of more
refined or accurate expressions as in ACI 318 (19) makes the consideration of biaxial shear for design a need.
Experimental data from the literature is used to compare ACI 318 expressions and validate the trilinear inter-
action diagram approach included in ACI 318 (19) for biaxial shear loading, showing that it is a simple and
reliable method for design.

1. Introduction

Reinforced concrete columns prone to shear failure should be
avoided in seismic design, due to their poor load-deformation perfor-
mance [1] and fragile failure mode [2]. Short columns commonly fall
within this category, given the high lateral load required to reach their
flexural capacity. Although it is desirable to avoid such elements, short
columns are often incorporated on purpose or as the result of a struc-
tural modification not considered in the original design. A clear type of
unintentional short columns are the so-called captive columns, which
have their effective length reduced when walls are incorporated in their
lateral faces, restricting the movement in that direction [1]. Other
structural elements that require special attention are the external cor-
ners columns in buildings, because during an earthquake they are
subjected to biaxial loads, which might degrade the shear strength. The
importance of the bidirectional response of frames in buildings during
seismic events was recognized, after the Tokachi-Oki earthquake in
1968 and the San Fernando earthquake in 1971. More recently, re-
searches have sought to understand the behavior of structural elements
under multidirectional loads [3,4,5], but typically with an especial
focus on slender columns exhibiting flexure-controlled response. Taking
into consideration that flexure and shear strength in columns might
degrade due to biaxial or multidirectional loads, actions in several di-
rections require attention. In particular, the case of shear failure due to
biaxial loading requires a review given that the effect of biaxial loading

in flexure is nowadays commonly included in current versions of design
codes, but not necessarily incorporated for shear design.

Umehara and Jirsa [4] examined the strength of short columns with
square and rectangular sections under loading directions corresponding
to the principal axes of the sections, as well as loading in diagonal di-
rections. The results from 20 tests helped them to conclude that the
shear capacity of short columns under skewed loading with respect to
the principal axes could be estimated simply and accurately by using
interaction curves. The curve that best represents the square column
test results is an arch of a circle, and an ellipse for the case of the
rectangular column tests. In the investigation by Joh and Shibata [6],
nine specimens with a square cross-section and four specimens with a
rectangular cross-section were subjected to biaxial lateral forces until
they reached their shear failure. In their research, the interaction curve
was normalized by the shear strength in the principal direction,
yielding to Eq. (1). Pham and Li [5] presented an experimental and
numerical investigation carried out on reinforced concrete columns
with light transverse reinforcement with an emphasis on how varying
the directions of seismic loading influences the failure mechanisms of
the columns. Seven half-scale RC columns were tested subjected to an
axial load and a cyclic lateral force under double-curvature bending. In
this investigation, similar results were drawn, as with previous authors,
validating the use of an interaction curve for design. All these results
indicate that by normalizing the biaxial shear strength projected in each
direction by the correspondent uniaxial shear strength, it is possible to
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propose an interaction curve that represents square and rectangular
columns; which can be expressed as,

+ =V V V V( / ) ( / ) 1dx nx dy ny
2 2 (1)

where Vnx, Vny are the shear strength values in the strong and weak
directions, Vdx, Vdy are the components of strength in the diagonal di-
rection when projecting to the strong and weak directions, such that the
shear strength in the diagonal direction is calculated as +V Vdx dy

2 2 . This
acknowledges that a rectangular column under biaxial shear loading
cannot withstand simultaneous loads that are consistent with the uni-
axial shear strength in each direction and the better representation of
biaxial shear strength is an elliptical (circular for symmetrical square
columns) interaction curve based on the uniaxial shear strength in each
direction.

The vast majority of design codes do not include the effect of biaxial
loading in the calculation of shear strength. Only the Japanese design
code [7] has incorporated for many years a recommendation for the
shear design of reinforced concrete columns when they are loaded
biaxially. Lately, the ACI 318 code in its 2019 [8] version includes a
section that treats biaxial loading with a similar approach as the Ja-
panese code. The Japanese code for design incorporates the concept of
the interaction curve by adding the consideration of Eq. (1) as a limit
state in the commentary section of Chapter 9. It indicates that biaxial
shear loading in column sections must lie within the interaction surface
defined by Eq. (1), and also a structure importance factor (varying
between 1 and 1.2) should be applied to the strength in the diagonal
(Vd).

The current work, based on a collection of biaxial and uniaxial shear
tests on columns from the literature, validates the use of the design code
equations of ACI 318. First, by looking into the code equations that do
not explicitly recognize the impact on shear strength of biaxial loading
(ACI 318-14 [9]), and by looking into revised (and accurate) expres-
sions in ACI 318 (19) [8] that recognize the impact of biaxial loading by
incorporating a trilinear interaction curve in shear design.

2. Analysis of database

The database was collected from several works available in the lit-
erature [1, 3, 4, 5, 6, 10, 11, and 12]. Only the specimens that failed by
shear and the load pattern were unidirectional or biaxial (also called
diagonal) are used here. Thus, a total of 69 specimens were collected.
Of the total tests, 53 specimens are columns with square cross-sections
and 16 with rectangular cross-sections. The number of tests loaded in
unidirectional and biaxial directions are 29 and 40, respectively. All
specimens, except for three (all under unidirectional loading), were
tested under lateral cyclic loads. The loading protocol for cyclic cases
considered either one or three cycles per drift level with increasing drift
levels in a unique direction in each test, either in one of the principal
directions (uniaxial) or diagonally (biaxial). The loading system used in
all the experimental programs is similar. The lower end of the specimen
is fixed to a strong floor and the upper part is restricted to rotate, such
that the tests represent a column under double curvature (both ends
fixed).

Table 1 and Table 2 provide design parameters for square and
rectangular specimens considered in this study; these design parameters
fall within the ranges observed commonly in current design practice.
The compressive strength of concrete, fc

', used in the tests ranged from
22 to 43 MPa, with an average of 30 MPa. The longitudinal steel ratio,

w, ranged between 2.2% and 4.5%; and the transverse steel ratio, t, is
between 0.09% and 0.51%. The shear span-to-depth ratio of the spe-
cimens is between 1.1 and 3.4 averaging a value of 1.5. The range of the
axial load level, N A f/( )g c

' , with Ag = cross-section and N = the axial
load, for the compressed columns is between 0.15 and 0.54; and the
range for the tensioned columns is between −0.09 and −0.11.

2.1. Interaction diagrams based on principal direction tests

A subset of the data in Tables 1 and 2, which includes only those
columns for which specimen mechanical properties (geometry, long-
itudinal and transverse steel ratio and distribution, steel and concrete
strength) are similar (ideally, they should be identical) for specimens
subjected to uniaxial and biaxial loading, is used to validate an inter-
action surface such as that presented in Eq. (1). Limiting the dataset for
model validation to these test specimens is required since the model
assumes that strength measured in the principal directions (uniaxial
loading) corresponds to the strength specimens loaded in the diagonal
direction would have exhibited if loaded in the principal directions. In
this case, a total of 61 specimens (49 square columns and 12 rectan-
gular columns) are included out of 69. All experimental data in this
section is presented normalizing the biaxial shear strength by the
strength in both principal directions using measured uniaxial shear
strength in the correspondent principal direction.

In Fig. 1, Vbi(x) and Vbi(y) represent the shear capacity of the biaxial
test projected in “x” and “y” directions, respectively; and, Vuni(x) and
Vuni(y) represent the shear capacity of the uniaxial tests. It is worth
mentioning that Vuni(x) and Vuni(y) are identical for square columns. In
Fig. 1a, the results are shown for square columns, and given the sym-
metry, the same data is shown in the “x” and “y” directions. It can be
observed that there is a good correlation between the test results and
the interaction curve (Eq. (1)), especially for cases with no axial load or
compressive axial load. The dark triangles are columns with tensile
axial load (N < 0), with failure close to its flexural capacity. In general,
specimens with tensile axial load tend to show slightly higher biaxial
shear capacity than specimens without axial load or compressive axial
load, making the approach conservative (see Fig. 1a). Considering all
square specimens, the mean value between the measured or experi-
mental and the predicted strength (interaction curve – Eq. (1)) is

=V V/ 1.0exp n with a standard deviation of 0.10 (Table 1).
From the database only three authors performed experiments with

rectangular sections, which is shown in Fig. 1b, separated by test pro-
gram. The plot shows a predictive curve using Eq. (1) and the values
obtained from the tests. Again, the strength is normalized by the ex-
perimental shear strength obtained in each principal direction. The
results obtained by Joh and Shibata [6] and Pham and Li [5] lie near
the interaction curve; results obtained by Umehara and Jirsa [4] fall
farther from the elliptical interaction curve. This may be due to the
difference between the concrete compression strength for the uni-
directional and biaxial tests in Umehara and Jirsa [4] experiments
( =f 35 MPac

' for unidirectional tests and =f 43 MPac
' for biaxial

tests), with a higher concrete compression strength in the biaxial tests.
Ideally, for a direct comparison, all material properties should be
identical, which is highly unlikely. In all other cases, the material
properties used for unidirectional and biaxial tests present fewer dif-
ferences. The results from the other two experimental programs provide
a good correlation with the interaction curve. Considering all rectan-
gular columns, the mean value between measured and predicted (in-
teraction curve) strength is =V V/ 1.03exp n with a standard deviation of
0.10 (which reduces to 0.03 without Umehara and Jirsa tests). It should
be noted that all rectangular specimens were conducted under con-
siderable axial compression (N A f/( )g c

' > 0.13).

2.2. Interaction diagrams based on principal direction predictions by ACI
318 (2014) code

In this section, the biaxial experimental data is normalized by the
uniaxial shear strength estimated with ACI 318 (2014) [9], as a way to
see the accuracy of the code. The uniaxial ACI 318 (2014) equations
used here are the simple and sophisticated equations for shear strength
( = +V V Vn c s), which are separated in the concrete (Vc) and steel

components ( =Vs
A f d

s
v y , where d is the effective longitudinal
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Table 1
Characteristics and strength estimates of square column specimens. (See below-mentioned references for further information.)
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reinforcement distance, Av is the stirrups cross-sectional area, fy is the
steel yield stress, and s is the stirrups spacing). The simple and so-
phisticated equations differ in the number of variables considered for
the concrete shear strength component (Vc).

(a) ACI 318 (2014) – simple concrete shear strength equation

The simple equation for the shear strength of concrete, in this case,
is defined as,

=
+ >

+ <

( )
( )

V
f b d if N

f b d if N

0.17 1 , 0

0.17 1 , 0
(SI units)c

N
A c w

N
A c w

14
'

0.29 '

g

g (2)

where bw is the column width.
Analogous to Fig. 1, Fig. 2 presents a normalized biaxial experi-

mental data (along with uniaxial tests in both axes) for square columns,
but in this case, the values of the tests are normalized with the shear
strength in the principal axis calculated with the ACI 318 (2014) code
equation (Eq. (2)) using the actual material properties. In this case,
since the columns are symmetric (identical strength in both directions),
the strength in any direction would be the strength in the principal
direction. That is, according to Eq. (1),

+ = + =V V V V V V V V( / ) ( / ) ( / ) ( / ) 1dx nx dy ny dx n dy n
2 2 2 2 , such that,

+ =V V V( ) ( ) ( )dx dy n
2 2 2, which indicates that the diagonal strength is

equal to the strength in the principal directions. Similar to the previous
case, the data is also separated by the level of axial load given the better
accuracy observed in Fig. 1a for specimens with zero or compressive
axial loads. Besides, the ACI 318 (2014) code equations also depend on
the axial load. In this case, along both axes (same data), there is ex-
perimental data since the uniaxial prediction by ACI 318 is not ne-
cessarily identical to the experimental value.

As can be seen in Fig. 2, there are no test values below the biaxial
strength prediction (interaction curve), which means that if the inter-
action curve is used to estimate the biaxial strength (and the uniaxial
strength by ACI 318-14), it is conservative. The closest value to the
interaction curve shown in the figure is =V V/ 1.24exp n (Table 1), but if
only unidirectional strength estimation (without the interaction curve)
is considered (dotted red lines), there is one case below 1.0 in both
directions. When considering all test specimens, the mean value of the
measured compared with the predicted strength (interaction curve)
value is =V V/ 1.94exp n with a standard deviation (SD) of 0.39 (Table 1),
with similar results when the data is separated by the axial load (ten-
sion, compression and no axial load). This indicates that the level of the
axial load does not differentiate much the accuracy of the model.

On the other hand, the red dotted lines show the zone where the
specimens with a traditional uniaxial design are unconservative. In this
case (ACI 318 simple expression), only one specimen would fail before
reaching the required capacity (no strength reduction factors are con-
sidered) for biaxial loading. That is, if the strength were estimated
without the consideration of biaxial loading, as it is traditionally done
by most design approaches, including the ACI 318 (2014), the design
would not be conservative just for one specimen.

(b) ACI 318 (2014) – sophisticated concrete shear strength equation

A more sophisticated or refined expression is considered for the
concrete component of shear strength in square columns. In the case of
columns under compressive forces, Eq. (3) can be used as,

=
+

+

( )
V min

f b d

f b d

0.16 17

0.29 1
(SI units)c

c w
V d
M w

c w
N

A

'

' 0.29

u
n

u
g (3)
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where = ( )M M Nn u u
h d4

8 ; Vu, Mu, Nu is the factored design shear,
moment and axial force, respectively; w is the steel longitudinal re-
inforcement ratio, h is the length of the column section and λ is a factor
for lightweight concrete.

Thus, Fig. 2 is modified into Fig. 3a resulting in shear estimates less
conservative, lowering the average from =V V/exp n 1.94 to 1.57 (Table 1)
for square columns. In this case, more cases (increasing from 1 to 7
cases when the sophisticated equation is used instead of the simple
equation) fall within the unconservative zone (red lines) when no
biaxial design is considered, which are the specimens loaded in 45°.

Fig. 3b, similar to Fig. 3a, presents the normalized experimental
data for rectangular columns considering both expressions from ACI
318 (2014). In this case, since the columns are nonsymmetrical (dif-
ferent strength in each direction), the strength in the loading direction
is estimated according to Eq. (1), such that, the strength in the diagonal
direction is +V V( ) ( )dx dy

2 2 and the relationship between Vdx and Vdy is
= V Vtan /nx ny, where θ is the loading angle (measured from the y-axis).

As can be seen, all the points are over the interaction curve, being the
closest at =V V/ 1.10exp n , for the simple expression (Table 2). This means
that for rectangular columns the simple expression is also conservative

if the biaxial effect (interaction curve) is being considered. In this case,
2 columns, if analyzed without considering the interaction diagram
would be unsafe since they are within the zone <V V/ 1exp n , however,
those specimens present detailing that is not ACI 318 compliant (less
confinement). Such a number of specimens increases from 2 to 3 when
the more sophisticated equation of ACI 318 (2014) is considered.

2.3. Alternative biaxial strength estimation – mechanical model

This methodology is based on a concept used by Woodward and
Jirsa [1], which consists of applying directly the strength equations
given by ACI 318, or other design codes, for uniaxial loading, but on a
column whose cross-section is rotated to represent a diagonal or biaxial
loading. The specimen CDS30 [4] (Fig. 4a) with a rectangular section
and an axial load level of =N f A/ 0.14c g

' is considered as an example,
where the diagonal load was applied with an inclination of 30° with
respect to the strong axis. The first step is to find the location of the
neutral axis of the element (Fig. 4b), where the column is rotated. In
this case, the ultimate condition is imposed in flexure such that the
most compressed fiber reaches a compressive strain of 0.003. The
equilibrium approach recommended by ACI 318 (14) was used for the
analysis. Using this information, d’ is calculated, which corresponds to
the distance from the most extreme fiber in compression to the centroid
of the bars in tension in the rotated position. The contribution made by
the concrete for the simple ACI 318 (14) equation is of the type

=V f b dc c w
' , and as pointed out by Woodward and Jirsa, the term b dw

can be replaced by the shaded area limited by d’ (Fig. 4b), and thus
determine the area of concrete that contributes to shear in the case of
diagonal loading. For this example, the contribution of the shear re-
inforcement, considering that the stirrups work in the loading direction
of the element (Fig. 4c), is given by = ° + °V A f d s(2cos30 sin30 ) '/s b y ,
where Ab corresponds to the cross-sectional area of one of the stirrup
legs.

Fig. 5 shows the results for square columns based on the mechanical
approach and the ACI 318 (14) simple shear strength equation. The
distribution of points closely resembles Fig. 2 (also normalized by the
simple expression of ACI 318-14), including the distribution by axial
load level. It is observed that the relation =V V/ 1.92exp n is slightly lower
than in the case of Fig. 2, where a value of 1.94 is obtained, with similar
scatter.

It should be noted that this methodology requires several calcula-
tions, since both the concrete and steel components must be estimated
for each loading angle. On the other hand, the results also indicate that
the strength estimates from this approach are very similar to the esti-
mation in two orthogonal directions that account for biaxial design.

Fig. 1. Normalized shear strength versus direction of loading for – (a) square and (b) rectangular columns.

Fig. 2. Normalized shear strength versus direction of loading for square col-
umns using ACI 318 (14) simple expressions.
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2.4. Interaction diagrams based on principal direction predictions by ACI
318 (2019) code

ACI 318 (2019) [8] proposed a simplification of the shear equations
and condensed them into new expressions, with better correlation when
compared with test results [13], which at the same time implies less
conservatism. The new expressions differentiate between elements that
comply or not with the minimum shear reinforcement requirement. In
under-reinforced cases in shear, a coefficient that includes size effect is
incorporated. The experimental database considers only columns that
comply with the minimum shear reinforcement requirement, such that
only the consistent set of expression is used here to determine the shear
strength of concrete V( )c , defined in Eq. (4) as,

=
+

+

( )
( )

V Either of
f b d

f b d

0.17

0.66 ( )
(SI units)c

c
N
A w

w c
N
A w

'
6

1/3 '
6

u
g

u
g (4)

where V f b d0 0.42c c w
' , and N

A6
u
g

0.05 fc
'.

This new formulation is evaluated only for square columns. The
formulation results in a more precise estimation of shear strength
(Fig. 6) than the simple ACI 318 (14) expression, and similar to the
sophisticated expressions with an overall average of =V V/exp n 1.56. Test
results indicate that the circular interaction diagram can conservatively
predict the shear capacity of columns under biaxial loading in most
cases. Few cases fall within the unconservative zone when the biaxial
design with the circular interaction curve is not considered (normalized
strength below 1 in each direction), which are the specimens loaded

between 30° and 60°. Thus, if no interaction diagram is used, that is,
only uniaxial strength consideration is used for design, the strength
might be underestimated by as much as 41% (45° loading with required
capacity as Vbi = 1/cos(45°)Vuni = √2Vuni) if we consider a square

Fig. 3. Normalized shear strength versus direction of loading using ACI 318 (14) simple and sophisticated expressions for - (a) square and (b) rectangular columns.

Fig. 4. (a) Specimen CDS30 [4] (dimensions in cm), (b) rotated column in 30° for biaxial loading, and (c) stirrups and ties contribution for biaxial loading.

Fig. 5. Normalized mechanical shear strength versus direction of loading for
square columns using ACI 318 (14) simple expressions.
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(symmetric) column. The improved accuracy of the current approach of
shear strength estimation in ACI 318 (19) implies that taking into ac-
count biaxial loading in design is now a more relevant consideration.

Regarding safety design, the level of error by not taking into account
biaxial design is addressed based on the current design approach in ACI
318 (19). For biaxial loading directions between 0 and 27°, the error or
correction required in uniaxial design to avoid unsafe design goes from
1 to 1.12 (Vbi = 1/cos(27°)Vuni) for a square (symmetric) column. For
loading angles between 27° and 45°, the correction in uniaxial design
goes from 1.12 to 1.41 (Vbi = 1/cos(45°)Vuni). To avoid the angle
calculation, alternatively, a strength limit check could be added that
indicates if the use of an interaction diagram is required. If 0.5V

V
u,x
n,x

and 0.5V
V
u,y
n,y

(Vu x, and Vu y, are the projections along two ortho-
gonal x and y axes of Vu – factored shear force -, respectively, and Vn x,
and Vn x, are the shear strength forces, V ,n along the x and y axes, re-
spectively), the column is in a loading condition similar to a shear force
applied with an angle between 27° and 63° (reduction strength factor,
ϕ = 1 in Fig. 6 since actual material properties are used). To keep it
simple and avoid step functions, a linear interpolation between the
strength limits can be introduced. Thus, the linear interaction diagram
defined in ACI 318 (19) is,

+
V
V

V
V

1.5u x

n x

u y

n y

,

,

,

, (5)

If this new ACI 318 (19) approach is applied along with the new
shear strength estimation, a trilinear curve is defined for design (red
solid line), which is shown in Fig. 6. Such solution, besides of its sim-
plicity, also maintains unaltered the traditional approach of unidirec-
tional shear design for loading cases under an angle of 27° or larger
than 63° ( < 0.5V

V
u,x
n,x

or <0.5)V
V
u,y
n,y

, such that it presents its largest in-
accuracy at the strength limit (or angle limit), that is, requiring an extra
12% shear capacity to be safe, which is considered that can be absorbed
by strength reduction factors or material over-strength. The application
of the code approach, for biaxial shear strength estimation, leaves 3
cases (due to symmetry 5 points are below the trilinear curve) below
the trilinear interaction curve that fall right over the circular interaction
curve (out of those 3 cases, 2 of them also fall below the circular in-
teraction curve), which means that the strength is underestimated by
about 5% (the case above the circular interaction curve) or 20% (for the

cases below the circular interaction curve). For all other cases, the
trilinear approach predicts conservative estimates of strength. If the
traditional uniaxial shear strength approach is used, besides of the 3
cases that fall below the trilinear curve, other 4 cases are also un-
conservative with the largest error of about 50% (in the case of 45°
loading, it corresponds to the distance from the strength value and the
corner at Vbi(x)/Vuni(x) = Vbi(y)/Vuni(y) = 1). Thus, the ACI 318 (19)
approach with the trilinear interaction curve recovers the simplicity of
uniaxial shear design when one direction for shear is predominant, and
when the biaxial design is required similar conservatism is observed
compared to the elliptical interaction curve.

3. Conclusions

This paper summarizes the analysis of experimental data that shows
that interaction (circular or elliptical) diagram can correctly predict the
response of columns under biaxial shear loading, as well as the im-
plications of providing a one-way (uniaxial) shear strength estimation
with the expressions of ACI 318 (14). Besides, the new shear design
equations are validated under biaxial loading for both cases: con-
sidering one-way or uniaxial shear design and biaxial shear design by
means of a trilinear interaction curve incorporated in ACI 318 (19).

The expressions of ACI 318 (14) present different levels of con-
servatism, indicating that when the simple expression is used the level
of conservatism is generally sufficient to avoid the consideration of
biaxial loading. However, the use of more refined or accurate expres-
sions, as it is with ACI 318 (19), makes the consideration of biaxial
shear for design a need. The new expression for shear strength estimate
in ACI 318 (19), which shows an improved accuracy, requires the
consideration for biaxial loading to ensure conservatism. The trilinear
interaction diagram approach included in ACI 318 (19) for biaxial shear
loading provides a reliable method for design.
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