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Abstract
Conceptual properties norming studies (CPNs) ask participants to produce properties that describe concepts. From that data,
different metrics may be computed (e.g., semantic richness, similarity measures), which are then used in studying concepts and as
a source of carefully controlled stimuli for experimentation. Notwithstanding those metrics’ demonstrated usefulness, researchers
have customarily overlooked that they are only point estimates of the true unknown population values, and therefore, only rough
approximations. Thus, though research based on CPN data may produce reliable results, those results are likely to be general and
coarse-grained. In contrast, we suggest viewing CPNs as parameter estimation procedures, where researchers obtain only
estimates of the unknown population parameters. Thus, more specific and fine-grained analyses must consider those parameters’
variability. To this end, we introduce a probabilistic model from the field of ecology. Its related statistical expressions can be
applied to compute estimates of CPNs’ parameters and their corresponding variances. Furthermore, those expressions can be
used to guide the sampling process. The traditional practice in CPN studies is to use the same number of participants across
concepts, intuitively believing that practice will render the computed metrics comparable across concepts and CPNs. In contrast,
the current work shows why an equal number of participants per concept is generally not desirable. Using CPN data, we show
how to use the equations and discuss how theymay allowmore reasonable analyses and comparisons of parameter values among
different concepts in a CPN, and across different CPNs.
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Introduction

Researchers interested in studying concepts often characterize
them by their properties (e.g., Schyns, Goldstone, & Thibaut,

1998) and their respective frequency distributions (Ashby &
Alfonso-Reese, 1995; Griffiths, Sanborn, Canini, & Navarro,
2008; Rosch & Mervis, 1975). Properties may have continu-
ous values (e.g., “height”; Goldstone, 1994; Tversky &
Hutchinson, 1986), but a far more common practice is to treat
them as binary (i.e., they either belong to a concept or not, e.g.,
the property “has four legs" may be a property of dog but not
of spider). To study concepts, particularly those coded in lan-
guage (e.g., dog), researchers often use the Property Listing
Task (PLT). In the PLT, people are asked to produce semantic
content for a given concept (e.g., for dog, people may produce
“has four legs"). This content needs to be coded into properties
that group verbalizations which differ only superficially into a
single code (e.g., “has four legs” and “is a quadruped” might
be coded as “four legs”). In what follows, we will refer to
these coded properties simply as properties.

The PLT is widely used across psychology, both in basic
and applied research (e.g., Hough & Ferraris, 2010; Perri,
Zannino, Caltagirone, & Carlesimo, 2012; Walker &
Hennig, 2004; Wu & Barsalou, 2009). Rather than studying
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single concepts, researchers are often interested in groups of
concepts because they tend to organize themselves into se-
mantic clusters. In conceptual properties norming studies
(CPNs), PLT data are collected for a large set of concepts
across many participants (e.g., Devereux, Tyler, Geertzen, &
Randall, 2014; Kremer & Baroni, 2011; Lenci, Baroni,
Cazzolli, & Marotta, 2013; McRae, Cree, Seidenberg, &
Mcnorgan, 2005; Montefinese, Ambrosini, Fairfield, &
Mammarella, 2013; Vivas, Vivas, Comesaña, García Coni,
& Vorano, 2017). These norms can be represented as matrices
containing different concepts with their respective properties’
frequency distributions. Researchers use CPN data in at least
two different ways. First, CPNs provide information about the
underlying semantic structure of a representative individual
(e.g., showing that, on average, dog and cat are conceptually
more similar to each other than either is to cup), thus allowing
researchers to test theories about the nature of concepts and
conceptual content (e.g., Cree & McRae, 2003; Rosch &
Mervis, 1975; Vigliocco, Vinson, Lewis, & Garrett, 2004;
Wu & Barsalou, 2009). Second, CPNs may be used as a
source of normed stimuli and of control variables for experi-
ments (McRae, Cree, Westmacott, & De Sa, 1999; Bruffaerts,
De Deyne, Meersmans, Liuzzi, Storms, & Vandenberghe,
2019).

As is customary in the field, we acknowledge that concep-
tual properties obtained in CPNs are not equivalent to the
underlying organization of semantic memory. Rather, they
are generally thought to provide a window into semantic
memory, to which we do not have direct access (e.g.,
McRae, Cree, Seidenberg & Mcnorgan, 2005). CPN data are
verbal properties, while the underlying properties are in some
unknown format and some of them may even be not
verbalizable (e.g., faces may be difficult to describe by using
words, but they are nonetheless characterized by features that
can be used for recognition and categorization). However, a
fact that is often overlooked is that verbalizable semantic
properties are important in their own right because they are
the kind of data that we do have access to, and that these data
may be incomplete, not only because they may not accurately
reflect the underlying semantic structures, but because the
population of potential properties may not be appropriately
sampled, which will be the focus of the current work.

Their usefulness notwithstanding, a previously unacknowl-
edged feature of CPNs as a research strategy is that values
obtained from CPN data are routinely treated as population
parameters rather than as parameter estimates. Here, it is use-
ful to recall that, given that on any study we generally do not
have access to the entire population of interest, but only to a
representative sample, we are forced to estimate the true un-
known parameters of the entire population. Thus, when re-
searchers use a CPN to obtain normed stimuli, or when they
use values associated with concepts and properties for control
purposes, those raw values are at best unbiased point

estimations of the true population values, not the population
values themselves. As we will discuss in short, this poses a
problem that may surface in at least three different but related
guises: the issue of generalizing results based on data from
norms (CPNs and other similar norms), the issue of deciding
on sample sizes for CPNs, and the issue of replicability of
CPNs.

Reasons for overlooking that metrics obtained from CPN
data are in fact parameter estimates, may stem in part from not
taking into account the difference between a study's internal
and external validities. Recall that internal validity is achieved
when an experiment is correctly designed, so that its conclu-
sions logically follow from its methods (it is related to exper-
imental design). External validity, in contrast, has to do with
whether data are representative of the population (it relates to
sample representativeness). We speculate that researchers that
collect CPNs come from an experimentalist tradition where
internal consistency, and not representativeness, is the basic
criterion to decide about generalizability (though bear in mind
that CPNs are not experiments). However, we believe that the
most influential factor for not treating CPNs as parameter
estimation studies derives from a tradition that focuses almost
exclusively on CPNs as a means of measurement (i.e., mea-
suring similarity and other such cognitive constructs). To the
best of our knowledge, this tradition can be traced back to
Eleanor Rosch’s now classical studies (Rosch & Mervis,
1975). In fact, Rosch and Mervis computed similarity as the
number of shared properties weighted by their frequencies,
but weeded out of their data properties with frequency 1
(i.e., those reported by a single participant), precisely on
grounds that singletons did not contribute to the measurement
of the overall similarity structure (i.e., properties with frequen-
cy 1 were viewed as measurement error). From that point on,
the practice of weeding-out low-frequency properties from
CPNs (typically, frequencies lower than 5) on grounds of
reducing measurement error has been continued in most, if
not all, CPN studies, thus supporting our conclusion that
CPNs have been conceptualized as a measurement procedure
(e.g., Ashcraft, 1978; Coley, Hayes, Lawson, & Moloney,
2004; Cree & McRae, 2003; Devereux, Tyler, Geertzen, &
Randall, 2014; Garrard, Lambon Ralph, Hodges, & Patterson,
2001; Hampton, 1979; Kremer & Baroni, 2011; Lenci,
Baroni, Cazzolli, & Marotta, 2013; McRae, Cree,
Seidenberg, & Mcnorgan, 2005; Vinson & Vigliocco, 2008).

Note that if participants producing properties for a given
concept shared their conceptual content to a high degree, then
interpreting low-frequency properties as noise could be war-
ranted. However, there are two related reasons that suggest
this is not a good practice. First, there is evidence that there
is substantial variability in the PLT data between individuals,
and within the same individual across time (Barsalou, 1987;
Chaigneau, Canessa, Barra, & Lagos, 2018). When feature
overlap is researchers’ main goal, and property frequency
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distributions are pruned, part of this variability is lost (a
similar argument in favor of retaining the long tails of
property frequency distributions can be found in De Deyne,
Navarro, Perfors, Brysbaert, & Storms, 2019). Second, even if
shared properties are the focus (e.g., if one wants to determine
the strongest properties that characterize and differentiate a
specific concept from another one), disregarding a portion of
those properties that are not shared, will produce an overesti-
mation of the proportion of shared properties. Consider, e.g.,
not including low-frequency properties (whatever the chosen
cut-off point is) when attempting to measure semantic dis-
tances, which would misrepresent distances, making them
smaller than what the true value possibly is.

Yet another reason for paying attention to low-frequency
properties is theoretical, rather than statistical. Note that
weeding out low-frequency properties is equivalent to having
a statistical definition of what a valid conceptual property is. A
seldom noted fact is that the field does not have a formal
definition of what a property is. For example, regarding ab-
stract concepts (e.g., democracy), properties listed by partici-
pants are generally other concepts (e.g., “voting,” “presi-
dent”), and the field’s current practices imply considering
those concepts as properties. What we propose in the current
work is that we do not need to continue using a statistical
definition of semantic properties (i.e., only those above a cer-
tain frequency threshold are true properties). In fact, it may be
misleading to do so.

As already anticipated, disregarding the parameter estima-
tion perspective on CPNs poses a threefold problem. A first
angle on this problem is the question of how to generalize
results based on data from CPNs. Because metrics calculated
from raw CPN data are only point estimations and not the
population parameters themselves, it is questionable to what
extent conclusions from studies using those estimates gener-
alize. Take for example a reaction time (RT) study by
Pexman, Hargreaves, Siakaluk, Bodnerand and Pope (2008).
In that study, the authors obtained different measures of a
construct called semantic richness (SR) for a given word, all
collected in different norming studies, and regressed them on
RT data from lexical and semantic decision tasks (respective-
ly, LDT and SDT). For each word, these measures included
the number of words co-occurring in similar lexical contexts
(i.e., number of semantic neighbors), the distribution of a
word’s occurrences across content areas (i.e., contextual dis-
persion), and the total number of unique properties listed for
that word in a CPN (SR, hereinafter denoted by Sobs). From
their results, the authors draw the general conclusion that be-
cause the three measures predict unique variance in LDT and
SDT, and because the measures themselves are only modestly
inter-correlated, they appear to tap on different constructs.
However, because the best scenario is that the estimations
obtained from the norming studies are equally likely to be
under or overestimations of the true population values,

Pexman et al. ’s study’s generalizability depends critically
on the (unknown) quality of the SR estimators. Note that
many other studies may be subject to the same considerations,
given that other variables whose computation depends on hav-
ing a good description of the property frequency distribution
might suffer the same problem (e.g., property generality, cue
validity, property specificity, semantic neighborhood density).

Aside from generating uncertainty about how to interpret
results based on variables obtained from CPNs, as discussed
above, there are two other related and important problems.
Prior to data collection, researchers have to decide about sam-
ple size (i.e., how many participants will list properties for
each concept). Though sample sizes vary, perusing the litera-
ture suggests that researchers have implicitly agreed that
somewhere between 20 and 30 participants listing properties
for a given concept is a reasonable number (e.g., Cree &
McRae, 2003; Devereux, Tyler, Geertzen, & Randall, 2014;
Lenci, Baroni, Cazzolli, & Marotta, 2013; McRae, Cree,
Seidenberg, & Mcnorgan, 2005; Montefinese, Ambrosini,
Fairfield, & Mammarella, 2013). However, note that, other
than tradition, no explicit rationale is given for this decision.
Furthermore, and perhaps due to these same considerations
about measurement precision, some researchers assume that
larger studies are ipso facto more precise (e.g., De Deyne
et al., 2019), disregarding that larger studies are more likely
to introduce error due to many different problems that affect
census-type studies, e.g., changes in concept meaning in the
population due to the possibly long period necessary for a
census-type study (see, e.g., De Deyne et al., 2019 study,
which took several years to complete); and errors in process-
ing the huge amount of raw data collected, which needs to be
curated and coded. Contrary to deciding this issue by consen-
sus, by practical considerations, or merely by intuition, in our
view sample size should be explicitly justified, as is routine in
parameter estimation studies.

The third and final problem is the following. Surprisingly,
there is currently no clear and agreed upon way to compare
CPNs. Imagine two different CPNs collecting data for the
same set of concepts from two different samples. When could
we say that they are replications of each other? When can we
meaningfully make comparisons across studies? One current
way to make the comparison would be to test if there are
statistically significant differences between studies’ results.
To the extent that one finds non-significant differences, one
could say that the CPNs are comparable (this is in part the
approach taken in Kremer & Baroni, 2011). However, this
procedure problematically assumes that researchers are
aiming at finding null results. Another procedure that could
be used to judge whether CPNs are replications would be to
compute a similarity measure between concepts in two sepa-
rate CPNs and then to test if those similarities are correlated
across CPNs (e.g., virus and bacteria should be about as sim-
ilar to each other in CPN 1 as they are in CPN 2). However,
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because even small correlations can be significant given a
sufficiently large sample (in this case, number of concepts in
the datasets), a significant correlation is insufficient, and a
somewhat arbitrary cut-off point has to be established to an-
swer the question of whether the norms are similar enough to
be considered replications. This is reminiscent of defining
arbitrary cut-off values for reliability computations in
psychometrics.

A further complication when comparing norms is that
many decisions in norm collecting and data processing could
affect obtained data, creating spurious differences that do not
stem from population differences (we will return to this point
later in the current work). To illustrate differences in data
processing, consider procedures discussed in Buchanan, De
Deyne, and Montefinese (in press), where instead of coding a
whole phrase to obtain a conceptual property (as we describe
in the current work), sentences are parsed such that each noun
becomes a separate property in the norms, i.e., the bag-of-
words approach. The reader may note that data processing
also introduces questions about CPNs replicability; a problem
that has been almost completely overlooked in the CPN liter-
ature, with few notable exceptions (Bolognesi, Pilgram, & van
den Heerik, 2017).

As discussed above, sample size estimation and compara-
bility problems stem from researchers treating data from
CPNs as the population rather than as mere samples, some-
thing that seems related to the tradition of viewing these stud-
ies as procedures for measuring similarity and related con-
structs, but overlooking that researchers are in fact estimating
population parameters. This analysis provides the goal for the
current work. To be able to better handle issues of data inter-
pretation, sample size and inter-studies comparability, cogni-
tive researchers interested in CPN data would benefit from
statistical methods that would allow them to treat CPNs as
parameter estimation studies. Our current aim is to provide
researchers that collect or use CPN data with appropriate sta-
tistical methods and guidelines to interpret them. To this end,
we freely draw from work on the problem of species richness
estimation in ecology (Chao & Chiu, 2016), which offers an
extremely close parallel to problems found in CPN studies. In
the rest of this paper, we discuss some estimators that can be
imported into CPNs from the field of ecology, illustrate their
usage by means of a locally obtained CPN, and discuss how
researchers who collect and use CPN data may benefit from
these methods.

Estimators

The estimators discussed here are more fully reviewed in
Chao and Chiu (2016) in the context of problems of species
richness estimation in ecology. However, as these same au-
thors discuss, the problem is more general than that, and the

estimators are widely applicable in many different disciplines.
In our particular case, the formulae we use in the current work
allow using semantic richness (SR; Pexman, Hargreaves,
Edwards, Henry, & Goodyear, 2007; Pexman, Hargreaves,
Siakaluk et al., 2008; Recchia & Jones, 2012) defined as the
total count of unique properties associated with a given con-

cept in a given CPN (Sobs), to calculate an estimate (bS ) of the
corresponding population parameter (S). Because Sobs has
been shown to predict processing speed in timed tasks that
require cognitive effort (e.g., LDT, SDT), Sobs values comput-
ed fromCPNs are of interest in cognitive research (Hargreaves
& Pexman, 2014; Kounios, Green, Payne, Fleck, Grondin, &
McRae, 2009). Even more importantly, the total number of
properties obtained for a given concept will affect any other
measure derived from CPN matrices because it is associated
with the shape of the corresponding property frequency dis-
tribution. From here on, we will closely follow the notation
used in Chao and Chiu (2016), so that the interested reader
may easily examine that work.

To introduce the different values necessary to compute
the estimator, as well as the assumptions being made, we
resort to an idealized PLT study. Imagine a researcher
who wants to estimate the number of conceptual proper-
ties (S) associated with a given concept and hence per-
forms a single PLT (perhaps within a broader CPN
study). To that end, her participants (T = number of
participants producing properties for a given concept) list
responses that are tokens of one and only one of the Sobs
coded properties that correspond to the concept. After
collecting her data, the researcher can arrange it in a
property by participant incidence matrix with Sobs rows
and T columns, where each matrix-cell (Wij) contains a 1
if participant j produced property i (0 otherwise).
Assuming that the i-th property has a constant incidence
probability (πi), i.e., that the probability that property i is
produced by a participant is the same for all participants,
each element wij in the incidence matrix is a realization
of a Bernoulli random variable with success probability
πi (i.e., P(Wij = 1) = πi and P(Wij = 0) = 1 – πi). Thus,
the probability distribution for the incidence matrix can
be expressed as:

P Wij ¼ wij
� � ¼ ∏Sobs

i¼1 ∏
T
j¼1π

wij
i 1−πið Þ1−wij ¼ ∏Sobs

i¼1 π
yi
i 1−πið ÞT−yi ð1Þ

, where yi is the number of tokens of the i-th property that are
observed in the sample (i.e., the property frequency in the

marginal column of the Sobs x T matrix, yi ¼ ∑T
j¼1Wij ).

Generally, CPNs report yi frequencies for each of the Sobs
properties obtained for each of the concepts in the study (but
remember that CPNs typically weed out low-frequency data).
Themarginal distribution for the incidence-based frequency Yi
= yi for the i-th property follows a binomial distribution:
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P Y i ¼ yið Þ ¼ T
yi

� �
πyi
i 1−πið ÞT−yi ð2Þ

Note that this model not only assumes that πi is
constant for each property, but also that properties are
independent (i.e., that a property’s detectability is inde-
pendent from other properties being or not detected).
Furthermore, it assumes that the number of properties
associated with a given concept in the population is
finite. Some of these assumptions can be relaxed, but
at the expense of making the application of the model
more complicated. We will consider these issues in
greater depth in the “The necessary simplifications” sub-
section. Note also that Eqs. (1) and (2) are a non-
parametric model, which means that it does not need
to assume a known probability distribution for the
πi’s, making it even more general (Chao & Chiu, 2016).

Now, as we have argued above, our researcher is not
interested in her particular sample of participants in itself,
but rather on being able to estimate S and on having
criteria to determine an appropriate sample size for her
study. For the estimators we discuss in the current work,
the only information needed from the incidence matrix are
the number of properties reported by a single individual
(Q1) and the number of properties reported by only two
individuals (Q2) (respectively, the number of singletons
and the number of doubletons). More generally, single-
tons and doubletons are two of the incidence-based fre-
quency counts (Q0, Q1, Q2, …, QT), where Qk corre-
sponds to the number of properties that are reported by
exactly k participants, k = 0, 1,…,T. The unobserved Q0

frequency count represents the number of properties not
reported by any of the T participants.

The intuition behind being able to make the necessary es-
timation is simple. If a sample contains many singletons, then
it is likely that there are still properties in the population that
are not covered in the sample (assuming a finite number of
properties in the population). However, once the sample starts
to produce repetitions (only doubletons, tripletons, etc., i.e.,
participants have at least one common property among them),
this signals that coverage is almost complete. Then, the valuebS estimates the true value for semantic richness by estimating

Q0 (i.e., bS = Sobs + cQ0 ). Though we do not provide further
mathematical details for the estimators below, the interested
reader is referred to Chao and Chiu (2016) and references
therein, where the full derivation of the expressions is present-
ed. However, note that if the model stated in Eqs. (1) and (2)
and its related simplifications are good approximations to re-
ality (i.e., the model is valid), then all the following formulae
are also valid, which were derived using the standard method
of moments estimation and asymptotic approach (Chao &
Chiu, 2016 and references therein).

Thus,

bS ¼
Sobs þ A

Q2
1

2Q2
if Q2 > 0

Sobs þ A
Q1 Q1−1ð Þ

2
if Q2 ¼ 0

8>><>>: ð3Þ

, where A ¼ T−1ð Þ
T

And where the estimator’s variance can be approximated
by Eq. (4).

d
var

�bS� ¼
Q2

A
2

Q1

Q2

� �2

þ A2 Q1

Q2

� �3

þ A
4

2 Q1

Q2

� �4
" #

if Q2 > 0

A
Q1 Q1−1ð Þ

2
þ A2 Q1 2Q1−1ð Þ2

4
−A2 Q4

1

4bS if Q2 ¼ 0

8>>>><>>>>:
ð4Þ

From this variance, we can calculate the standard error of bS
(i.e., s.e. bS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar ðbSÞq
) and the confidence interval for S can

be computed by Eq. (5)

95%CI for S ¼ Sobs þ
bS−Sobs
D

; Sobs þ bS−Sobs� �
D

" #
ð5Þ

, where

D ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ

d
var

�bS�
bS−Sobs� �2

0B@
1CA

vuuuut
2664

3775 ð6Þ

Note that using Eq. (5) assumes that ln bS−Sobs� �
is approx-

imately normally distributed, i.e., bS−Sobs� �
follows an ap-

proximate log-normal distribution. Also see that bS−Sobs� �
corresponds to the rightmost summand in Eq. (3).

Estimating a desirable sample size requires estimating
how well the current sample covers the true number of
properties associated with the given concept in the pop-
ulation, where coverage is defined in general terms as
the fraction of the total number of properties in the
population that are captured in the total sample of T
participants. More formally, coverage is defined as the
fraction of the total incidence probabilities of the report-
ed properties that are in the reference sample (Chao &
Chiu, 2016). Coverage can be estimated by Eq. (7):
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bC Tð Þ ¼ 1−
Q1

U
Q1 T−1ð Þ

Q1 T−1ð Þ þ 2Q2

	 

ð7Þ

, where U ¼ ∑T
k¼1kQk ¼ ∑Sobs

i¼1 Y i (i.e., total number of prop-
erties listed by all participants for a concept).

Furthermore, the same logic used in deriving Eq. (7) allows
estimating the coverage expected from increasing sample size
in t* participants.

bC T þ t*
� � ¼ 1−

Q1

U
Q1 T−1ð Þ

Q1 T−1ð Þ þ 2Q2

	 
 t*þ1ð Þ
0≤ t*≤2T

ð8Þ

From Eq. (8), we can solve for t* and estimate the number
of additional participants needed to obtain a certain target

coverage (bCtarget ):

t* ¼ ceiling
ln

U
Q1

1−bCtarget

h i� �
ln

T−1ð ÞQ1

T−1ð ÞQ1 þ 2Q2

� � −1

2664
3775 0 < t*≤2T ð9Þ

, where the ceiling function returns the closest integer that is
larger than or equal to the corresponding argument of that
function.

The expected value for bS resulting from the same t* incre-
ment of participants can be estimated by Eq. (10).

bS T þ t*
� � ¼ Sobs þcQ0 1− 1−

Q1

T cQ0 þ Q1

 !t*
24 35 0 < t*≤2T

ð10Þ

, wherecQ0 ¼ bS−Sobs and, as already noted, corresponds to the
rightmost summand in Eq. (3).

For those familiarized with qualitative research, note that
coverage equations offer a formalization of the idea of theo-
retical saturation (Glasser & Strauss, 1967). In the next sec-
tion, we illustrate the use of the presented formulae to estimate
SR using PLT data obtained from a local CPN.

CPN data

To apply the presented formulae, we need the number of sin-
gletons (Q1) and doubletons (Q2) produced by participants for
each concept. Unfortunately, and as already discussed, those
values are routinely dismissed from CPN data, and thus not
reported. We made efforts to find CPN data reporting single-
tons and doubletons by contacting authors of reported CPNs.

However, no author could furnish us with the necessary data
to compute those values within reasonable effort (i.e., without
us having to recode all the raw output for every participant and
concept). Therefore, we used our own norms, in which we
collected data for abstract concepts for a previous study and
where we processed all listed properties regardless of their
frequencies.

In our norms, for each concept, participants were required
to write down words or short phrases that would allow some-
one else to correctly guess the concept, following the proce-
dure described in Recchia & Jones, 2012. Each participant (N
= 100, all Chilean Spanish speakers), was asked to produce
properties for ten randomly chosen concepts taken from a total
list of 27 abstract concepts. Note that using this procedure
allowed us to obtain a different number of participants for
each concept, something that we make use of in the analyses
that will be presented next. For each of the 27 concepts, we
obtained properties from 36.6 participants on average (min =
22, max = 52), resulting in a total of 5457 token responses.

These token responses were coded as follows. During a
first coding phase, a trained coder classified the 5457 re-
sponses as valid or invalid. Valid responses provided concep-
tual content (e.g., producing “money” for the concept
happiness). Invalid responses were cue repetitions (e.g., pro-
ducing “deciding what to put on my nightstand” as a response
for the concept decision), property repetitions, and
metacognitive (e.g., “this is hard”) or off-task comments.
During a second coding phase, the coder grouped the 4941
remaining valid responses into 729 response types. To esti-
mate the reliability of the coding process, a second coder re-
ceived the 729 codes, and proceeded to independently recode
the 4941 valid responses. Following Hallgren’s (2012) recom-
mendation, we computed Cohen’s kappa (Cohen, 1960) as a
reliability estimate. The advantage of using kappa instead of
simply using the percentage of agreement, as is often done
(Bolognesi, Pilgram, & van den Heerik, 2017), is that kappa
corrects for chance. Coding produced a kappa of .76, which is
considered a substantial agreement (Landis & Koch, 1977),
suggesting that our subsequent analyses were not unduly af-
fected by unreliability concerns.

As with any carefully collected CPN data, different metrics
can be computed from our data. To show that our CPN is not
different in that sense, we computed a pairwise 27 x 27 sym-
metric distance matrix and submitted it to a clustering algo-
rithm. The chosen distance measure required obtaining the
number of shared properties between all pairs of concepts,
and using it to compute a Jaccard distance for each pair
(Jaccard, 1901), defined as 1 minus the ratio between
intersecting properties over the union of properties. (Note that
Jaccard similarity is a special case of Tversky’s 1977 set-
theoretic contrast similarity measure, when similarity is sym-
metric. Also note that we could have used any other distance
measure, but that is irrelevant for the present study.) Then,
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those distances were submitted to a Weighted Pair Group
Method with Arithmetic Mean Hierarchical Clustering algo-
rithm (Sokal & Michener, 1958). Figure 1 shows that the
clustering algorithm was able to retrieve a similarity structure
contained in our data, which is in itself interesting above and
beyond the focus of the current work. For example, inspecting
Fig. 1 shows that success and happiness are found close by in
the semantic space, as so are compassion and gratitude,
which, together with hope, all group together at a higher level
to form a cluster of positive emotions (other clusters are sim-
ilarly sensible).

Though it is not the focus of our current work, Fig. 1 sug-
gests that we could successfully use our CPN’s data to guide
experiments, which is precisely one of the uses of CPNs. Two
examples should suffice to illustrate. If we were to conduct a
lexical decision task with priming, we could reasonably pre-
dict that truthwould be a better prime for honesty than excuse,
given that the former is much more similar to honesty than the
latter. If we were to look for content differences in properties
being produced, we could group concepts by valence using
our clustering solution (i.e., negative emotionality, positive
emotionality, neutral emotionality) and look for differences
between those groups. In that sense, our CPN is very compa-
rable to most other published CPNs, both in its results and in
its potential utility. Additionally, note that using a CPN for
abstract concepts (as we do here), is irrelevant for the purpose
of the present work, given that Eqs. (1) to (10) apply regard-
less of the type of concept used (i.e., concrete or abstract
concepts).

Using the estimators

To obtain the estimators discussed in the corresponding sec-
tion, we computed the number of singletons (Q1) and

doubletons (Q2) from the CPN data, as well as Sobs (the num-
ber of unique properties) and the total number of properties
produced (U ), for each of the 27 concepts included in our
CPN. Then, using the number of participants who listed prop-
erties for each concept (T) and Eqs. (3) to (7), we calculated
the estimated value for the total number of properties that

describe a concept (bS ), the standard error of that figure, the
corresponding 95% confidence interval for S and the estimat-

ed coverage (bCÞ reached by the number of participants who
listed properties for each concept. Table 1 presents all of these
figures.

As can be observed in Table 1, estimated sample coverages

(bC Tð Þ ) for the 27 concepts are only modest, ranging from 54%
to 78%, suggesting that there is substantial information that is
not being captured in our data. Differences in coverage are
important because it is questionable whether comparing con-
cepts with different coverages (e.g., comparing semantic rich-
ness values, i.e., Sobs) makes sense when the observed values
are only rough estimations of the true values. Importantly, note
that the different coverages are not only a function of different
sample sizes (T), but most importantly of the properties’ fre-
quency distribution. In fact, a visual inspection of Table 1
shows that the values of Q1 and Q2 vary noticeably among
concepts, indicating shorter and longer tails of the correspond-
ing property frequency distributions, where concepts with
shorter tails (i.e., largerQ2 values and smallerQ1 values) exhibit
higher coverages than concepts with longer tails (i.e., smaller
Q2 values and largerQ1 values). Thus, solely increasing Twith-
in reasonable bounds does not guarantee good coverage.

This same information can be easily appreciated in Fig. 2,

which shows the point estimates of semantic richness (i.e., bS )

and corresponding 95% CI. Note that given that bS−Sobs fol-
lows a log-normal distribution with long asymmetric tails, the

CIs are not symmetric around the point estimate bS.

Fig. 1 Weighted linkage dendrogram for 27 abstract concepts
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More formally returning to the effect that T and property
frequency distribution have on coverage, we can replace U in

Eq. (7) by∑T
k¼1kQk ¼ Q1 þ 2 Q2 þ 3 Q3 þ⋯ and by doing

the multiplication with the term in square brackets, obtain:

bC Tð Þ ¼ 1−
Q2

1 T−1ð Þ
T−1ð Þ Q2

1 þ 2Q1Q2 þ 3Q1Q3 þ⋯
� �þ 2Q1Q2 þ 4 Q2

2 þ 6 Q2Q3 þ…

ð11Þ

Expression (11) more explicitly shows the interplay be-
tween sample size (T), the frequency distribution of sampled
properties (the Qk variables) and the interaction among the Qk

variables. From Eq. (11), note that an increase in Q2, Q3, …,
QT (i.e., an increase in all Qk with k ≥ 2), increases coverage,
whereas the relation between Q1 and coverage is more nu-
anced. That relation depends on T and on the interactions

between Q1 and the rest of the Qk ≥ 2. Suppose that the fre-
quency distribution of the sampled properties contains only
singletons, i.e., Qk ≥ 2 = 0. From Eq. (11), that implies that
coverage will be zero regardless of sample size (T). We will
return to these issues again in the “The necessary simplifica-
tions” subsection.

Returning to Table 1, Eqs. (9) and (10) can be used to
estimate the additional sampling effort necessary to achieve

a certain desired coverage and the corresponding bS. Equation
(9) can be used to estimate the number of extra participants for
each concept (t*), which would produce a similar coverage for
each concept. For example, if we want to reach a coverage for
each concept similar to the highest one already attained (78%
for gratitude), Table 1 shows the corresponding additional
number of participants for each concept (t*) that we need.
Note that t* goes from as small as 2 (for profit) to as high as
88 (for guilt). Equation (10) allows estimating the expected

Table 1 Results from applying Eqs. (3) to (7) to CPN data for calculating bS, std. error of bS, 95% CI for S, and calculated bC ; and Eqs. (9) and (10) for

calculating t* and bS T þ t*ð Þ

Concept Q1 Q2 T Sobs U bS s.e. bS 95% CI for S bC Tð Þ t* bS (T + t*)

Ability 45 7 27 64 124 203.3 68.1 120.2 409.1 64% 42 117.8

Agreement 56 15 46 89 198 191.3 39.3 138.4 300.7 72% 21 110.6

Anxiety 72 16 42 108 214 266.1 55.8 188.8 417.4 67% 39 161.2

Compassion 49 8 31 71 152 216.2 67.1 132.3 414.9 68% 35 120.0

Danger 74 17 51 106 256 263.9 54.5 187.8 410.8 71% 29 141.7

Decision 53 9 24 70 117 219.6 65.7 135.6 410.9 55% 49 145.6

Definition 45 7 30 64 139 203.8 68.3 120.4 410.4 68% 36 107.6

Despair 62 15 40 96 189 220.9 46.6 157.6 349.5 68% 32 135.7

Excuse 52 8 29 68 116 231.2 74.4 137.6 450.6 56% 65‡ 150.1‡

Gratitude 45 11 51 76 201 166.2 39.4 115.8 280.7 78% 0 76.0

Guilt 67 8 35 87 164 359.5 118.3 207.7 702.3 59% 88‡ 210.3‡

Happiness 65 11 37 92 210 278.9 74.2 180.2 487.7 69% 36 144.2

Honesty 49 12 37 74 179 171.3 40.7 118.3 288.0 73% 16 91.9

Hope 64 16 40 96 195 220.8 45.5 158.4 345.5 68% 31 135.6

Obligation 45 10 32 64 150 162.1 43.8 106.6 290.1 70% 21 88.3

Obsession 51 11 28 74 121 188.0 48.1 125.6 326.1 59% 41 127.5

Opportunity 56 8 31 73 129 262.7 85.2 154.9 512.4 57% 71‡ 165.0‡

Plan 69 18 52 109 241 238.7 45.2 175.8 360.7 72% 25 137.1

Profit 34 14 33 62 145 102.0 18.5 78.9 156.9 77% 2 64.0

Reason 70 13 37 97 188 280.4 68.5 187.3 469.3 63% 51 170.6

Safety 99 18 48 136 275 402.6 84.2 281.7 623.8 64% 63 237.3

Skill 53 11 43 81 205 205.7 52.1 137.8 354.7 74% 16 98.1

Success 55 8 30 77 156 259.8 82.4 155.7 501.6 65% 47 144.3

Suggestion 41 8 22 57 109 157.3 48.4 97.9 302.7 63% 29 97.4

Thought 79 13 46 112 235 346.8 85.3 229.8 580.0 67% 58 190.7

Threat 57 8 39 80 175 277.9 88.5 165.6 537.1 68% 53 141.9

Truth 53 11 26 70 114 192.8 51.3 125.9 339.5 54% 45 133.3

‡ = t* exceeds 2T, thus actual value of t* should be 2T: Excuse t* = 58C(T + t*) = 76.5% S(T + t*) = 144.6, Guilt t* = 70C(T + t*) = 75.1% S(T + t*) =
192.6, Opportunity t* = 62 C(T + t*) = 76.1% S(T + t*) = 157.3
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semantic richness derived from adding t* participants to the
sample for each concept (last column in Table 1).

Given that the expressions applied in computing all the
previously presented values might be at first somewhat diffi-
cult to understand and correctly use, we recommend to the
interested reader recreating all the figures shown in Table 1
by introducing the values of Q1 , Q2 , T , Sobs and U into the
corresponding equations (3) to (10). Note that we used a

rounded value of 78% for bC for gratitude (a more precise
value is 0.77829). However, given the ceiling function, using
Eq. (9) will produce a t* for gratitude equal to 1 (in contrast to
a value equal to 0 in Table 1). Nevertheless, we believe that
approximations in Table 1 contribute to making it more read-
ily understandable. Also note that when Eq. (9) gives a t*
above 2T, then the actual t* that must be used is 2T, and that
is the value to be inputted into Eqs. (8) and (10) to calculatebC T þ t*ð Þ and bS T þ t*ð Þ, see footnote to Table 1.

Possible solutions to the threefold problem

In this section, we will integrate all the information presented in
preceding sections, providing potential solutions to the three
problems identified in the introductory section. To facilitate
the discussion, we will focus first on when should CPNs be
considered comparable and the problem of their replicability;
secondly, we will focus on defining a heuristic method to de-
termine sample size in CPN studies; and lastly, wewill examine
consequences for experimenters who use CPN data to select
carefully controlled stimuli in terms of the reliability and gen-
eralizability of their results. On closing, we will discuss the
necessary simplifications of the model in Eqs. (1) and (2).

The overall idea underlying our discussion is that, general-
ly, researchers that collect CPN data are interested on the
properties themselves (i.e., their identity) and their corre-
sponding frequencies, more than on any single metric.

Because any measure currently computed from CPNs is de-
rived from the properties’ frequency distribution (e.g., differ-
ent measures of semantic richness, different measures of sim-
ilarity, property dominance, cue validity, property distinctive-
ness), appropriately characterizing those distributions should
be a main goal of researchers.

Making concepts and CPNs comparable

As discussed in the Introduction section, there is currently no
good way to compare results from CPNs. Trying to show that
two CPNs are not different by betting on null results poses
obvious problems. Here, we want to argue that comparisons
across concepts and across CPNs can be meaningfully per-
formed when coverages are sufficiently similar, and not nec-
essarily when sample sizes are standardized (i.e., set to equal
values across concepts), because concepts with the same cov-
erage make sure that the not yet sampled properties constitute
the same proportion of the total properties in the population
(for the same argument made in ecology, see Chao & Jost,
2012 and Rasmussen & Starr, 1979). Adopting the decision
rule of collecting data until a certain conventional estimated

coverage (bC Tð Þ ) is achieved would allow for a better inter-
pretation of differences between concepts within the same
CPN, and also between CPNs.

We offer two examples of how comparisons across con-
cepts could benefit from standardizing coverage instead of
sample size. In the case of semantic richness research, as our
analyses show and Table 1 illustrates, Sobs is influenced by
sample size (i.e., increasing the number of participants, in-
creases the probability of additional properties being pro-
duced). However, sample size operates in conjunction with
the distribution of properties in the population. Thus, when
sample sizes are standardized across concepts (i.e., all con-
cepts sampled with the same number of participants), as is
routinely done in CPNs, Sobs becomes only a rough estimator

Fig. 2 Point estimates for semantic richness (bS ) and corresponding 95% CI for each of the 27 concepts in CPN
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of the true semantic richness (SR). This limits the precision
with which we may compare different concepts along that
same dimension. Take for example the data corresponding
to happiness and honesty (T = 37), and to definition and
success (T = 30) of our own CPN. Given that those two pairs
of concepts have equal sample size, then based on Sobs one
could state that happiness’s SR is larger than that of honesty
(92 > 74), and that definition’s SR is smaller than that of
success (64 < 77). However, Fig. 2 shows that the SR CIs
for those pairs of concepts overlap, which suggests that those
differences in SR are not statistically significant (for an α =
0.05). Of course, this does not invalidate the use of Sobs as a
semantic richness (SR) measure, but it highlights it being only
an approximate measure. Regarding this last point about CIs,
and to avoid confusion, note that variables such as SR and
other similar measures are all random variables (e.g., given
that there is not a single unique semantic structure in people’s
minds). Thus, collecting unbiased property frequency distri-
butions and being able to compute CIs, as discussed in the
current work, would allow estimating how precise the afore-
mentioned approximations are, depending on CI width.

Something similar occurs with other metrics that can be
computed from CPNs. Take for example a study by
Wiemer-Hastings and Xu (2005), where concepts were com-
pared in terms of the types of content of properties produced in
a PLT (i.e., entity properties, relational properties, experiential
content). According to the authors, their results showed that
abstract concepts involved more experiential content, less en-
tity properties and more relational properties than concrete
concepts. Obviously, their conclusions depend on conceptual
properties being sufficiently sampled (an unknown in their
research). This becomes even more important with more
fine-grained content types (e.g., dividing experiential content
into emotional and cognitive; dividing relational properties
into physical and social). Thus, we believe that sample size
standardization sets limits to estimation precision for metrics
that are computed from property frequency distributions.

Another advantage of adopting the decision rule of
conducting CPNs until a certain conventional estimated cov-

erage (bC Tð Þ ) is achieved, is that it would allow to meaning-
fully compare CPNs. To sensibly compare CPNs’ results, one
should ensure that those comparisons are not unduly affected
by differences in the corresponding CPN studies’ representa-
tiveness (i.e., sampling procedures, number of participants,
etc.). Having collected and analyzed CPN data ourselves, we
believe that researchers may be all too aware that even slight
variations in procedures may lead to significant differences,
making those differences difficult to interpret. For example,
data collection procedures, cultural differences, and other sim-
ilar variables could affect the number of properties partici-
pants can produce, something that would have an effect on
property distributions, introducing perhaps spurious

differences in CPN data. In contrast, if sampling by standard-

izing bC Tð Þ, researchers could ensure that concepts are sam-
pled with the same degree of completeness, alleviating the
aforementioned concerns by making comparisons possible re-
gardless of sampling effort.

A heuristic for standardizing by coverage and
determining sample size

Recall that, traditionally, sample sizes in CPN studies have
been determined arbitrarily. Furthermore, the same number
of participants is typically used for all concepts in a single
CPN. Having used a different number of participants in our
own CPN allowed us to explore the effect that sample size has
on results. Though increasing sample size increases coverage,
its effect is limited by the property frequency distribution of
each particular concept. To illustrate by means of Table 1,
consider the case of happiness and honesty. Both share the
same sample size (T = 37), but note that the increase in sample
size (t*) necessary to achieve a 78% coverage is different for
each (respectively, 36 and 16). The difference is explained
precisely by differences in their property frequency distribu-
tions.Happiness has 65 singletons, versus the 49 singletons of
honesty, meaning that, though T has the same value for both,
the completeness of property sampling differs between them,
presumably due to the shape of the property distribution in the
population. From the preceding discussion, we can conclude
that 37 participants allowed a better sampling of honesty than
of happiness. Thus, as already discussed, sample size in CPNs
does not necessarily have to be the same across all concepts.
In fact, the same sample size for all concepts will probably
lead to unfair comparisons.

How then should researchers decide on appropriate sample
sizes? We propose here that Eqs. (3) through (10) provide
researchers an informed means of deciding which concepts
she might select to apply the additional effort to match their
coverages (a more in depth discussion of coverage
standardization can be found in Chao & Just, 2012, and
Rasmussen & Starr, 1979). In a nutshell, we propose that
researchers use a two-stage sampling procedure. In the first
stage, researchers should conduct a PLT for each concept with
a small number of participants (judging from the literature, ten
or perhaps 15 participants per concept could suffice). With
those data, it would be possible to use Eq. (7) to estimate the
current estimated coverage, and Eq. (9) to estimate the t*
additional participants necessary for achieving a desired cov-

erage bCtarget. For example, if with our own CPN we wanted to
reach a coverage for each concept similar to the highest cov-
erage already attained (78% for gratitude), Table 1 shows the
corresponding additional number of participants for each con-
cept (t*) that we need. Note that t* goes from as small as 2 (for
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profit) to as high as 88 (for guilt). Thus, the researcher now has
an informed means of deciding if she might apply the addi-
tional effort to match the coverages for all concepts, or just for
some of them; perhaps the ones that are theoretically more
interesting.

Note that a more general strategy would be to use true
incremental sampling (i.e., increasing sample size one partic-
ipant at a time). Beginning with a small sample of participants,
maybe 10 or 15, sample size could be increased by one par-
ticipant at a time until the desired coverage was reached.
Though we believe this would be an attractive strategy, given
that it would tend to optimize sampling effort, we also believe
that meeting the necessary conditions would be difficult.
Increasing sample size one participant at a time, assumes we
could compute coverage dynamically and in real time, and to
decide when to stop collecting accordingly. Because in typical
CPN studies, whole phrases need to be coded into property
types prior to any analysis, dynamic coverage computations
would be costly (i.e., incremental sampling would entail solv-
ing the problem of how to perform whole phrase incremental
coding). A different coding procedure, such as the bag-of-
words approach, which is amenable to automating
(Buchanan, De Deyne, & Montefinese, in press), could allow
true incremental sampling, but discussing this alternative is
well beyond the scope of the current work.

In the above analysis, one should also take into account
that, given the values of the variables involved in the estima-
tion of the coverage for concepts, the expected additional cov-
erage attained from the extra number of participants varies
among concepts. To illustrate this point, Fig. 3 shows how
estimated coverage changes when increasing the number of
participants for three different concepts.

In Fig. 3, note that increasing participants for profit pays off
much more than for compassion and thought (no pun
intended). Figure 3 shows that an increase of 50 participants
increases coverage for profit in about 16.5%, whereas for
compassion that increase is only 13.3% and for thought it is
only 10.2%. Additionally, note that trying to reach a 100%
coverage entails using a prohibitively large number of partic-
ipants, especially for compassion and thought.

In addition to aiming for similar coverages, a researcher would

also want to have reliable semantic richness (SR) estimates (bS ).
For example, in ourCPN, note in Fig. 2 that for sample sizes used,
S shows large CIs, suggesting that with the current sample sizes
there are no significant differences between most concepts’ se-
mantic richness. In contrast, a good example of what a researcher
should desire is given by the comparison of concepts plan and
profit, which show small CIs (and in this case, also non-
overlapping) and similar coverages (72% and 77%, respectively).
Thus, the ideal case would be to jointly assess how many more
participants per concept are needed to attain a certain coverage (t*,
per Eq. (9)), and also the CI width of the corresponding semantic

richness estimator bS T þ t*ð Þ. However, if one peruses expres-
sions (3) to (10), one can see that no equation exists to estimate

the variance of bS T þ t*ð Þ, and hence one cannot easily compute
the corresponding CI. Consequently, there is no sure and easy
manner to handle this, forcing the researcher to use his/her better
judgment. Two elements that are available for that judgment are
the current width of the S estimate’s CI and the value of the

estimated SR when adding t* participants, i.e., bS T þ t*ð Þ.
First, if for a given concept, the current coverage is high

(not too far removed from the desired coverage), and the cur-
rent CI for S is conveniently narrow, then the researcher can be
reasonably confident that increasing sample size would pay
off as expected (i.e., that the result of the additional sampling

effort would be an adequate coverage with a reliable bS esti-
mate). In our CPN, the concept profit serves as an example,
i.e., it currently exhibits a 77% coverage and has a relatively
narrow CI for S (78.9 to 156.9). Here we must clarify that a
conveniently narrowCI is one that does not overlap with other
concepts’ CI for the parameters of interest, in our case specif-

ically for bS CIs. As already mentioned, that assumes that
researchers want to attain statistically significant differences
among concepts’ estimates of the parameters of interest.

Second, assuming that a researcher wants to find statistically
significant differences, he/she can compare the estimated new

coverages bS T þ t*ð Þ between the concepts that he/she wants to
contrast in terms of SR, and approximately see whether those SR

estimators are sufficiently different. If in fact the values for bS
T þ t*ð Þ are different enough, then the additional sampling effort
might be useful. Of course, given that one does not have an
estimate of the corresponding CIs, a judgment call is needed.
For example, in our CPN, if the researcher is interested in com-
paring the SR of profit, thought and reason, he/she might judge
that the comparison between profit and thought, and between
profit and reason might be informative, given that the corre-

sponding bS T þ t*ð Þ are 64.0, 190.7, and 170.6, respectively.
On the other hand, the comparison between thought and reason
might prove to be useless.

Fig. 3 Estimated coverage vs. extra number of participants for three
different concepts
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Consequences for users of CPNs

In previous work (Chaigneau, Canessa, Barra, & Lagos,
2018), we have argued that weeding out low-frequency prop-
erties reduces data variability. Because much information in
CPNs is carried by variability, rather than cleaning noise from
data, weeding out may in actuality be throwing away relevant
information. In the same vein, the current work highlights that
low-frequency properties are important because they contain
information about the likelihood of yet-to-be-sampled proper-
ties. As we have shown above, adopting the otherwise reason-
able criterion of standardizing sample sizes, results in impre-
cise estimations of semantic richness, as measured by Sobs.
Thus, results based directly on those measures are bound to
be rough estimations that are likely to reveal only broad pat-
terns or strong effects in the data. Importantly, note that we are
not holding that prior research with CPNs is wrong or is not
useful. Our own CPN attests to their usefulness. Rather, we
are holding that because those results are by necessity only
rough approximations, they reveal perhaps stable, but never-
theless only broad patterns, and that their generalizability is
limited to the particular CPN under consideration.
Furthermore, because other measures that can be computed
from CPN data (e.g., similarity measures, other semantic rich-
ness estimates) will be affected in similar ways by sampling
size, sampling quality, and by the particular details of property
frequency distributions, results from studies that use those
metrics computed from the current CPNs are also limited in
generality.

A critical reader may object that collecting data from very
large samples should appease our concerns (e.g., De Deyne
et al., 2019). There are several things to note regarding this
objection. First, though De Deyne et al.’s study reports 100
participants per each of their over 12,000 cue words (i.e., they
standardize sample size), achieving that sample size required
more than 80,000 participants over a 7-year period. That re-
flects an enormous effort of data collection and data handling,
which would be even greater for a CPN study. Note that De
Deyne et al. collected association data, which is less cumber-
some to handle than CPN data. In that study, participants were
asked to produce three associates (single words, not
sentences) per cue. In contrast, in CPN studies, participants
will typically list well over the three-property limit, and those
properties are typically sentences, not single words, all of
which makes very large samples less feasible for CPNs be-
cause of the necessary additional complications of data
cleaning and coding. Furthermore, and precisely because of
the enormous effort necessary for collecting data such as those
of De Deyne et al., we cannot help but wonder whether stan-
dardizing coverage might not have been a more practical strat-
egy. It is likely that such large studies spanningmany years are
more likely to introduce error due to many different factors
that characterize census-type and longitudinal studies, and

standardizing coverage could have been used to reduce sam-
pling effort, as previously discussed.

The necessary simplifications

As with any model, Eqs. (1) and (2), which are the basis for
deriving the rest of the expressions, make some simplifica-
tions. Here we discuss those simplifications and argue that
they are reasonable for modeling PLT and CPN data. We note
that many of our arguments are similar to the ones used and
deemed acceptable in justifying the application of the model
in ecology (Chao & Chiu, 2016 and references therein).

A first assumption is that the detection probability for each
property i (πi) is independent from the rest. Though this is a
generally accepted simplification (e.g., computing property
frequencies and using cosine similarity immediately assumes
independence, e.g., McRae, Cree, Seidenberg & Mcnorgan,
2005), it is probably not completely true at the level of each
individual participant (i.e., properties might be correlated,
such that evoking a given property affects the probability of
evoking the following one). In what follows, we discuss in
some detail why independence is a reasonable assumption for
CPNs. In particular, we discuss why inter-feature correlation
might not be problematic.

In experimental studies, inter-feature correlations have for
quite some time been thought to be of theoretical interest
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976).
Many studies have found that people can become sensitive
to inter-feature correlations, in particular when they are re-
quired to predict the value of unknown features based on the
values of other known features (e.g., Anderson & Finchman,
1996). We believe similar results have been replicated many
times since then.

If inter-feature correlations were prevalent in CPN data,
then the independence assumption could be questioned. In
CPNs, there are at least two different ways to conceptualize
inter-feature correlations. First, it may be that two properties
(A and B) are more probable conditional on a given concept
(C) and less probable given a different concept (it is possible
that A and B, e.g., “barks” and “wags its tail”, are more likely
to occur together conditional on the category dog). In other
words, two properties A and B are correlated if p(A^B|C) >
p(A^B|¬C). This is undoubtedly true in concepts (e.g., no
other concept other than dog will produce “barks” and “wags
its tail”). Note, however, that this type of correlation is not
problematic for our assumption because our calculations as-
sume independence of properties within concepts, and not
between concepts.

The other way to conceptualize inter-feature correlations is
the idea of “chaining”. In chaining, the probability of feature B
changes as a function of whether feature A was produced prior
to it or not (p(B|A) > p(B|¬A)). This could be problematic
because, if properties come in packages, then counting the
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number of properties by the number of coded properties
would overestimate Sobs. However, evidence suggests that
chaining in CPNsmight not be as problematic as experimental
studies would suggest. De Deyne, Navarro, Perfors,
Brysbaert, and Storms (2019) looked for evidence of chaining
in C-A-B triplets (i.e., cueing concept C, property A, property
B), finding strong evidence of chaining in 1% of the triplets,
and moderate evidence in only 19% of the cases. These results
led the authors to conclude that only a modest amount of
response chaining (i.e., dependence) existed in their data. In
other words, the amount of correlation or chaining for a given
A-B pair of properties in a typical CPN may be a random
variable exhibiting only a modest correlation (i.e., a positive
correlation in some individuals, but a negative one in others,
such that those correlations tend to cancel each other out
across individuals). Another alternative worth considering,
which also speaks in favor of the independence assumption,
is that it is possible that people, though actually producing
response chains, produce different chains of responses (e.g.,
someone lists “turbine” right after “wing” when listing prop-
erties for airplane, whereas someone else lists “propeller”
right after “wing”). Because CPNs accumulate data across
many individuals, this would turn properties independent
across individuals.

To close our discussion on independence, even if chaining
existed and was highly prevalent in CPNs, please note that the
independence assumption could be relaxed if dependencies
were possible to be estimated. In such a case, one would have
to resort to numerical methods (e.g., bootstrapping), which are
already used in ecological research and may be readily applied
to CPN data (Chao & Chiu, 2016; Chao, Gotelli, Hsieh,
Sander, Ma, Colwell & Ellison, 2014). We refrain from
discussing this topic further, and defer it to future work.

A second related simplification is that there are no
participant-specific effects. In the case of the PLT, this means
that each participant is equally representative of the population
in generating properties, i.e., that there are no systematic and
important differences among participants related to the listing
process. As already discussed above, that is a reasonable as-
sumption, and in fact one that is routinely done in CPN stud-
ies, if using a random selection of participants. Note, just as
occurs for the independence assumption, that there are models
which can quite simply accommodate those participant-
specific effects (Chao & Chiu, 2016), but the problem lies in
determining and quantifying those effects.

A third simplification is that the model assumes that a con-
cept is described by a finite number of properties. We believe
this is a reasonable assumption, not because we assume that
the underlying unverbalized semantic properties are finite, but
because property production is confined to a very specific
moment in time (i.e., the time span in which the PLT is carried
out). Even if the different factors that limit property produc-
tion (e.g., cognitive load, interference) were somehow

suspended, the total number of properties accessible to partic-
ipants for report at any given moment is likely to be finite,
though perhaps very large. If, on the contrary, property lists
were collected during a long period of time, then many factors
could make the total list of properties increase indefinitely in
length (e.g., cultural change, conceptual drift), which would
be undesirable if the goal were to obtain information about the
structure of semantic memory.

A fourth and final simplification is assuming that each
listed token can be coded into one and only one property type.
In incidence matrices, any given response is a token of only
one property type, depending on decisions made during cod-
ing. However, just as exemplars can belong to multiple cate-
gories (e.g., a cat is a feline and also a pet), tokens of concep-
tual properties could be classified in multiple property types
(e.g., the token “achieving a goal” could be coded as “goal” as
well as “achievement”). Choosing a single code for each token
property is related to the coding process and its reliability. The
current and accepted practice to deal with that problem is to
have more than one coder, who independently code the token
responses, and then assess inter-coder agreement. Although
researchers know that that form of dealing with the coding
process is not ideal, at present it is the best we have. Hence,
this fourth simplification is not a new one and also applies to
all CPN studies, which means that applying it here does not
unduly invalidate our model.

A case study: Revisiting our CPN

As suggested by an anonymous reviewer, and to illustrate the
relevance of coverage for designing experiments and
obtaining valid results, aside from its relevance for estimating
Sobs , in the present case study, we use our own CPN data to
search for evidence of a relation between a concept’s mean list
length (i.e., the mean number of properties produced by par-
ticipants for a given concept) and its associated properties’
mean dominance (i.e., the mean frequency of those properties
that are produced in response to the cueing concept). In gen-
eral, CPN data should show that, as concepts’mean list length
increases, concepts’ mean property dominance decreases. As
will become clear next, there is evidence suggesting that we
should replicate this relation in our norms. But, more impor-
tantly, if coverage were irrelevant for practical purposes, then
we should find that it does not affect the probability of
confirming the hypothesized relation (or that its effect can be
easily explained away).

Supporting literature

Many variables may affect a property’s dominance.
Depending on the task at hand, e.g., property generality (i.e.,
the percentage of concepts in a CPN for which a certain
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property is produced) or property distinctiveness (i.e., 100 –
property generality) may dictate which properties become rel-
evant and dominate participants’ cognitive processing
(Devereux, Taylor, Randall, Geertzen, & Tyler, 2016;
Duarte, Marquié, Marquié, Terrier, & Ousset, 2009;
Flanagan, Copland, Chenery, Byrne, & Angwin, 2013;
Grondin, Lupker, & McRae, 2009; Siew, in press).
Whatever the reason for a property’s dominance, the literature
suggests that those properties that are more accessible or dom-
inant (i.e., those that are found frequently in participants’ lists)
are also those that tend to be produced first (i.e., those that are
likely to become available sooner) (Montefinese, Ambrosini,
Fairfield, & Mammarella, 2013; Ruts, De Deyne, Ameel,
Vanpaemel, Verbeemen, & Storms, 2004). This relation di-
rectly implies that the longer a list is, the lower will be the
list’s mean dominance. In fact, we have found this relation in
four different CPNs across four different countries and three
different languages (Canessa & Chaigneau, in press;
Chaigneau, Canessa, Barra, & Lagos, 2018). Furthermore,
we found that the specific functional form of the relation is

hyperbolic (i.e., d ¼ b0 þ b1
s , where d = dominance, s = mean

list length, b0 and b1 = coefficients to be estimated from the
data).

Empirical analysis supporting the effects of coverage
on results

Recall that our goal in this section is to show that coverage is
relevant for being able to detect relations between variables
based on CPN data, and that though evidently any study or
experiment provides estimations of those relations, what is at
stake here is the quality of those estimations in terms of the true
population parameters. Recall also that our CPN data include
concepts showing different coverages, due to the interaction
between sample size and the characteristics of each concept’s
property frequency distribution. This feature of our CPN study
allowed us to mimic two separate studies, one with lower cov-
erage data (as may happen if sample size is standardized with-
out regards to property frequency distribution), and one with
higher coverage data.

To mimic the two aforementioned studies, we divided our

CPN’s 27 concepts by their calculated coverage bC, thus produc-
ing a lower coverage (less than or equal to 67%) and a higher
coverage (more than or equal to 68%) group of concepts (see
Table 1). The respective mean coverages for each group are
61.0% and 71.1%, which are significantly different (t(25) =
6.602, p < .001). Producing two groups with a similar number
of concepts in each (13 concepts for the low coverage group, and
14 concepts for the higher coverage group), allowed us avoiding
arbitrary decisions regarding how to select concepts for each
group (e.g., we did not resort only to concepts with extremely
high or extremely low coverage values).

Assume now that each group represents a different study
with the goal of testing the inverse relation between mean
dominance and mean list length across concepts. To this
end, for each group of concepts, values needed for the hyper-
bolic equation were computed (i.e., d and s), and the b0 and b1
coefficients were estimated by using ordinary least squares
(OLS). Results are presented in Fig. 4.

As Fig. 4a shows, doing the study with the lower coverage
concepts produced a curve that runs counter to prior evidence.
Although the regression equation exhibits the hyperbolic
form, it suggests that average dominance increases with aver-
age list length (d = 12.141–35.186 / s, R2 = 0.503, F(1,11) =
11.124, p = .007). Note that this study would have concluded
that concepts for which people list a large number of proper-
ties are also concepts with overall high dominance properties,
something that cannot be reconciled with prior literature
(Montefinese, Ambrosini, Fairfield, & Mammarella, 2013;
Ruts, De Deyne, Ameel, Vanpaemel, Verbeemen, & Storms,
2004; Canessa & Chaigneau, in press; Chaigneau, Canessa,
Barra, & Lagos, 2018). In stark contrast, Fig. 4b shows that
doing the same study with the higher coverage concepts pro-
duced a curve that replicates previous findings in the literature.
The OLS procedure yields a significant hyperbolic regression
that inversely relates d and s (d = – 1.326 + 39.679 / s, R2 =
0.286, F(1,12) = 4.798, p = .049). This result is evidently
consistent with prior literature.

Results from our case study suggest several conclusions.
First, coveragematters, and not taking it into account may lead
to erroneous and misleading results. Note that although the
difference in coverage between both groups is rather small
(10.1%), it still has an important impact on results. Second,
though it is possible that some of the problems of low cover-
age could be solved by simple brute force (i.e., adding partic-
ipants or adding concepts), using the strategy of sampling to
standardize coverage is probably a better way to achieve a
reasonable trade-off between sampling effort and estimation
accuracy. Finally, because, as we have shown, the relation of
sample size and coverage is contingent on the distributional
characteristics of conceptual properties (i.e., Q1, Q2, Q3, … ,
QT), increasing the number of participants and standardizing
sample size may still introduce distortions on many estimated
values, such that comparisons between concepts and across
CPNs become problematic. This is yet another argument
against a brute force approach for solving the problems that
our case study makes evident.

Conclusions

At present, CPN studies and corresponding PLTs can de-
liver data from which one can calculate only rough estima-
tors of the true unknown population parameters of interest.
Also, given that there are no means of assessing the
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reliability of the estimated parameters (i.e., their variabili-
ty), it is a common practice to treat those point estimates as
true population values. Given these state of affairs in CPN
studies, only broad results can be obtained from analyzing
those parameters, as well as when assessing the relation
among them and to other variables obtained in experi-
ments. Associated to those issues is the problem of deter-
mining sample size for a PLT (i.e., the number of partici-
pants who will list properties for each concept). The tradi-
tional consensus is to use between 20 and 30 participants
for each concept and standardize that number across con-
cepts, intuitively believing that using the same number of
participants for each concept will render the estimated pa-
rameters comparable across concepts. Also, the general
belief is that the more participants a PLT has, ipso facto,
the better the parameter estimates will be. Contrarily, in the
current work, we suggest viewing the PLT as a parameter
estimation procedure, where we obtain only estimates of
the true unknown population parameters. Thus, more
meaningful and fine-grained analyses of those parameters
must consider the variability of their estimators. To that
end, we introduce a model from the field of ecology, which
can be applied to calculate some of the parameters of a PLT
and their corresponding variances. Additionally, the ex-
pressions derived from that model can be used to guide
the sampling process, and particularly to estimate a sensi-
ble number of participants for each concept and to assess
whether that number is feasible. We argue that the number
of participants must not necessarily be the same for each
concept, but that it should be determined so that concepts’
coverages are approximately the same. That may allow
more reasonable comparisons of parameter values among
different concepts within a CPN, and between different
CPNs. As an illustration of the practical relevance of con-
cepts’ property coverage, we used CPN data collected in
our laboratory to mimic a lower- and a higher-coverage
study’s ability to replicate an empirical association obtain-
ed in prior research.

One limitation of the current work is that the present-
ed formulae, although easily applicable because of their
closed mathematical form, do not allow calculating esti-
mators and their standard errors for all the potential pa-
rameters derived from CPN data. Thus, at present, the
application of the expressions is limited to a few param-
eters. Nevertheless, we firmly believe that this work is a
first important step in the right direction. It not only
allows estimating some important parameters and sensi-
bly establishing sample sizes, but in a broader sense, it
exposes the need of advancing in treating CPN studies as
parameter estimation research. Hence, we think that de-
voting research to expanding the application of the pre-
sented ideas is worth the effort. In doing so, and as a
means of dealing with the difficulties in advancing the
mathematical model, we think that bootstrapping
methods can be used to calculate estimates and their
standard errors for other interesting parameters. In fact,
as research in ecology shows (Chao & Chiu, 2016; Chao,
Gotelli, Hsieh, Sander, Ma, Colwell, & Ellison, 2014),
bootstrapping methods allow calculating point estimators
and their standard errors based on collected data without
having to mathematically specify the underlying models.
We believe that similar procedures may fruitfully be ap-
plied to PLT and CPN data. Our current work, which
imports methods and models from ecology into CPN
research, attests to that fact.
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