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a b s t r a c t 

This paper proposes a multi-objective approach to model a replacement policy problem 

applicable to equipment with a predetermined period of use (a planning horizon), which 

may undergo critical and non-critical failures. Corrective replacements and imperfect re- 

pairs are taken to restore the system to operation respectively when critical and non- 

critical failures occur. Generalized Renewal Process (GRP) is used to model imperfect re- 

pairs. The proposed model supports decisions on preventive replacement intervals and 

the number of spare parts purchased at the beginning of the planning horizon. A Multi- 

Objective Genetic Algorithm (MOGA) coupled with discrete event simulation (DES) is pro- 

posed to provide a set of solutions (Pareto-optimum set) committed to the different ob- 

jectives of a maintenance manager in the face of a replacement policy problem, that is, 

maintenance cost, rate of occurrence of failures, unavailability, and investment on spare 

parts. The proposed MOGA is validated by an application example against the results ob- 

tained via the exhaustive approach. Moreover, examples are presented to evaluate the be- 

havior of objective functions on Pareto set (trade-off analysis) and the impact of the repair 

effectiveness on the decision making. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Decisions on replacement policy are common places in the field of preventive maintenance planning. Although the main

purpose of decision models on replacement policy is to obtain optimal preventive replacement intervals, equipment may

fail before the time defined for that. In this context, two points are central: (i) the criteria used for determining the optimal

preventive replacement intervals, and (ii) the assumption on the effectiveness of repairs that are executed whenever failures

occur before the preventive replacement. Indeed, the supposition on how the systems are restored to operation after the

occurrence of failure significantly influences the applicability of the model in real cases. 

Many works such as have investigated optimal preventive replacement policies under the perspective of minimizing the

maintenance cost [1–5] , while others aimed at optimizing the system reliability [6–9] or availability [5,9–11] . However, the
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objectives of determining a replacement policy with the highest reliability or availability and the lowest related maintenance

costs are often conflicting. In fact, even though shorter replacement intervals may improve the system reliability, they may

also increase the associated costs and unavailability in the case of an inefficient maintenance crew. Therefore, finding the

solution that optimizes an individual objective may not result in adequate replacement policies. 

In this way, some authors like Yang et al [5] , Jiang & Ji [12] , Duan et al [13] , Ke & Yao [14] and Nosoohi & Hejazi [15] pro-

posed multi-objective models for finding the optimal age to perform preventive maintenance, and Sharma et al [16] carried

out a full review of the literature on maintenance optimization models, and then suggested considering simultaneously

maintenance cost and reliability measures to make decisions on maintenance planning. In these situations, a solution that

concurrently optimizes all objectives is very difficult to be obtained or does not even exist. Thus, in a multi-objective ap-

proach instead of having a unique solution as in single objective cases, one may obtain the Pareto set, which is composed

of non-dominated solutions [17] . 

Regarding the second point (assumption on the effectiveness of the repair actions), some alternatives may arise. For

instance, the perfect repair supposition results in an “as good as new” (AGAN) condition, while the minimal repair yields an

“as bad as old” (ABAO) situation. Perfect repair assumption is suitable when equipment is entirely replaced by a new one,

whereas when the repair only recovers the function with simple actions, as restarting or resetting, it can be considered as

minimal. AGAN and ABAO are usually treated by Renewal Processes (RP) and Non-Homogeneous Poisson Processes (NHPP)

[18] . 

Imperfect repairs, in turn, return a failed item to a state between AGAN and ABAO. Repairing or even replacing minor

parts or components, or performing general repairs (repack, weld, etc.), adjustment (align, reset, calibrate, etc.) and refit

(polish, clean, grind, paint, coat, lube, oil change, etc.) may correspond to imperfect repairs, which may be handled with

Generalized Renewal Process (GRP) [19–21] , which is a type of a virtual age approach. In GRP, the imperfect repair is mod-

eled through a parameter that evaluates the effectiveness of the repair action by measuring equipment rejuvenation after

performing maintenance; for further details on imperfect repairs’ methods (including GRP and others), see Pham & Wang

[22] . 

Generally, repair actions return equipment to an imperfect/general state that is “better than old” but “worse than new”.

Then, models that do not consider this possibility are not suitable enough to be applied in many real cases. Shahraki et al

[6] , Badía et al [23] , Love et al [24] , Him et al [25] and Aghezzaf et al [26] , for example, have investigated maintenance

policies under the assumption the system is subject to imperfect repairs if it fails before the preventive maintenance. 

However, the above-mentioned works either use a multi-objective approach to determine replacement policies, supposing

the system is subject to perfect and/or minimal repairs [12–15] , or use an imperfect repair hypothesis, but considering a

mono-objective approach to determine intervals for preventive maintenance [6,23–26] . 

Given that, this paper develops a multi-objective approach to model a problem that tackle simultaneous determination of

the preventive replacement intervals and the number of spare parts by assuming equipment may be subject to two possible

kinds of failures: (i) critical failures, which are repaired through corrective replacement (perfect repair), and (ii) non-critical

failures, which are recovered through imperfect repairs, which are here handled with GRP. We assume this structure because

some failures may greatly damage equipment, and then full replacement is required, while others only damage components,

demanding equipment to be imperfectly repaired. Four maintenance objectives are considered to compare different solu-

tions: maintenance costs, rate of occurrence of failures, unavailability and spare parts investment. 

The four objective functions developed in this paper become rather intricate, and then an analytical treatment may be

infeasible. Then, we adopt discrete event simulation (DES; [27] ) to imitate system behavior through the random generation

of discrete events to determine the values of the objective functions for a solution. Sharma et al [16] affirm there is an

emerging trend towards using simulation for maintenance optimization. Moreover, the combinatorial nature of the problem

may increase the complexity of the problem and render prohibitive the use of exhaustive procedures to evaluate all potential

solutions by employing DES due to increased time and computational effort required. Therefore, probabilistic optimization

heuristics such as Genetic Algorithms (GA; [28] ) are suitable alternatives, and then will be here adopted. Indeed, Konak et al

[29] , Abdullah & Ashutosh [30] , Lins & Droguett [31] and Azevedo et al [32] have already combined GA with DES in the

maintenance optimization context. 

In the multi-objective approach, GA permits a separated treatment of the different objectives, thus not requiring trans-

formations of the multiple objectives into a unique function. Instead, a set of non-dominated solutions in competing for the

four objectives is given: the Pareto-optimal set [33] . The decision making is performed by analyzing the preferences of the

decision-maker when comparing the trade-offs among the solutions, for example defining whether, for a solution, the gain

on reliability justifies its costs. 

The main difference between the single objective GA and the multi-objective GA (MOGA) is the selection phase, where,

in the latter, the concept of dominance is directly incorporated. For further details on single and/or multi-objective GA, see

Deb [33] , Coello et al [34] , Eiben & Smith [28] and Konak et al [29] . Then, in this paper, a solution that couples MOGA

and DES is proposed to obtain the Pareto set for the problem. Specific genetic operators will be developed for the proposed

problem to avoid that MOGA evaluates unfeasible solutions. 

The remainder of this paper is organized as follows. A brief overview of the GRP concepts is given in Section 2 .

Section 3 provides a description and a formulation of the multi-objective replacement policy problem. Section 4 explains the

use of DES for calculating the values of the objective functions. The proposed model for generating Pareto-optimal solutions

via MOGA and DES is presented in Section 5 . Section 6 presents examples to validate the model and analyze the trade-
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offs among solutions in the Pareto set, including an evaluation of the effectiveness repair impact. Finally, some concluding

remarks are provided in Section 7 . 

2. Generalized Renewal Process 

GRP is a virtual age-based counting process proposed by Kijima & Sumita [19] and can be used to model systems subject

to imperfect repairs. To that end, GRP uses a rejuvenation parameter q that “changes” the actual age of the equipment after

a repair occurrence. This means that, although the equipment has been operational for certain calendar time, it seems like

it operates as it was younger (or older), which depends on the repair’ effectiveness. Let X n be the time between the ( n –1) th

and the n th failures, Y n be the real age ( Y n = 

∑ n 
k = 1 X k ), and V n be the virtual age after the n th failure. In this way, V n is

calculated as follows: 

V n = V n −1 + q X n = q 

n ∑ 

k =1 

X k = q Y n (1)

where V 0 = 0. Note Eq. (1) considers the effect of the repair only reduces the additional age X n (Kijima Type I). In general,

q ∈ [0, 1], even though other values are also possible. 

The Cumulative Distribution Function (CDF) of X n is conditioned to the ( n − 1)th system virtual age, as follows: 

F ( x n | v n −1 ) = P ( X n ≤ x n | V n −1 ≥ v n −1 ) = P ( Y n ≤ v n −1 + x n | V n −1 ≥ v n −1 ) = 

F ( x n + v n −1 ) − F ( v n −1 ) 

1 − F ( v n −1 ) 
(2)

where F (.) is the CDF of the Time To First Failure (TTFF). Yañez et al [35] presented a full solution, based on Monte Carlo

simulation, for the Maximum Likelihood Estimators (MLE) of the GRP parameters by assuming TTFF follows a Weibull dis-

tribution. Oliveira et al [36] proposed the goodness of fit test for Weibull-based GRP. 

3. Problem definition and formulation of the multi-objective problem 

3.1. Description of the problem and its assumptions 

Let us assume that equipment failures may be grouped into two categories: (i) failures that require equipment is correc-

tively replaced by a new one, which corresponds to a “critical failure”; (ii) “non-critical failures” that demand the equipment

is restored into operation through an imperfect corrective maintenance action that is not its full replacement. 

The replacement policy aims at determining a time interval t p , when a preventive replacement should be performed,

if the equipment does not fail critically within this interval. Otherwise (if a critical failure occurs before t p ), a corrective

replacement takes place. In this case, the equipment reaches the end of its stochastic lifetime at any time before it is

preventively replaced. Non-critical failures may also occur before replacement, and then an imperfect repair is performed.

The occurrence of non-critical failures does not comprise the end of equipment lifetime since it returns to operation by

repair action. 

Preventive or corrective replacements and the imperfect repairs are time-consuming, and work operations are halted

during these interventions. Cycle time is defined as the summation of equipment lifetime and time to replace it with the

new one. Fig. 1 illustrates these alternating processes (failure-repair) for both cycle types (preventive and corrective). We

consider the spare part may be provided either at the beginning of ( H 0 ) or during (at the time of need) the planning

horizon. We also assume the cost of purchasing spare parts is lower when they are provided at H 0 instead of at the time

when replacement is required. Yet, savings in downtime and maintenance costs are obtained if a spare part is already

available when the replacement is necessary. 

Given that, let s be the number of spare parts purchased at H 0 . Then, the first replacements will be performed with

spare parts available and, if more than s replacements are needed, they will have an additional cost. Thus, s influences both

the maintenance cost and the system downtime. The higher the quantity s , the more replacements will be performed with

spare parts available. However, the lower the quantity s , the more budget is available to be used in other investment plans.

Thus, the proposed model aims at determining simultaneously t p and s [15,36] . 

3.2. Multi-Objective problem formulation 

In this section, the objective and constraint functions are formulated for the problem previously described. We considered

as objectives to be optimized the maintenance costs, rate of occurrence of failures, system unavailability and investments

on spare parts. Fig. 2 defines the parameters and random variables adopted in the multi-objective model. 

3.2.1. The probability of having or not having spare parts available for replacement 

We consider the probability of having spare parts at the time of replacement depends on s purchased at H 0 . Then, the

probability of having spare parts available P s is given by 

P s = P ( N c ≤ s ) = 

s ∑ 

n c =0 

P ( N c = n c ) , 
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Fig. 1. Illustration of preventive (A) and corrective (B) cycles in the perspective of calendar time. 

Fig. 2. Notation for the multi-objective model. 

 

 

 

 

where N c is the number of replacements performed over H . Then, we define C p (mean cost of preventive replacement), C f 
(mean cost of corrective replacement), R p (mean time to perform preventive replacement) and R f (mean time to perform

corrective replacement) as follows: 

C p = C p1 P s + C p2 ( 1 − P s ) (3) 

C f = C f 1 P s + C f 2 ( 1 − P s ) (4) 

R p = R p1 P s + R p2 ( 1 − P s ) (5) 

R f = R f 1 P s + R f 2 ( 1 − P s ) (6) 

where index 1(2) indicates the value of the parameters as there are (no) spare parts available. This means the cost and time

parameters of replacements are influenced by s . 

Note this model also considers a just-in-time way for planning preventive replacements. In this situation, downtime

and maintenance costs would be the same for both cases with and without spare parts available. Then, we would assume

C p 1 = C p 2 and R p 1 = R p 2 . Next, we describe the objectives. 
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3.2.2. Objective 1: Maintenance Cost 

The maintenance cost rate is given by a ratio between the expected cost per cycle and the expected cycle length [12] .

We consider a replacement cycle may end in two different situations: 

(i) preventive replacement, where a critical failure does not occur before t p (i.e., t f ≥ t p ), and thus the replacement is

performed at t p . Let E [ M t p ] be the mean number of non-critical failures by t p , which are handled with imperfect

repairs. Then, the associated expected maintenance cost is given by C r ( E [ M t p ]) + C p , where C r ( n ) and C p are the mean

costs of performing n imperfect repairs and a preventive replacement respectively; 

(ii) corrective replacement: in this situation, a critical failure occurs before t p (i.e., t f < t p ). Then, the expected number

of non-critical failures is given by the conditional expectation E [ M t f 
| t f < t p ], and the expected maintenance cost is

C r ( E [ M t f 
| t f < t p ]) + C f , where C f is the mean cost of a corrective replacement. 

Similarly, we can define the expected times for the preventive and corrective replacement cycles. For the former, the

equipment lifetime always ends at t p , and R p denotes the meantime to perform the preventive replacement, and thus the

expected cycle length is t p + R p . For the latter, the end of the equipment lifetime is a random variable represented by

T f , and thus E [ T f | T f < t p ] is the mean lifetime and R f is the meantime to perform a corrective replacement. Therefore, the

expected length of a corrective cycle is E [ T f | T f < t p ] + R f . Eq. (7) shows the expected maintenance cost rate, F 1, which is

minimized in the multi-objective model. 

F 1 = 

[
C r 

(
E 
[
M t p 

])
+ C p 

]
× P 

(
T f ≥ t p 

)
+ 

[
C r 

(
E 
[
M t f | t f < t p 

])
+ C f 

]
× P 

(
T f < t p 

)
( t P + R P ) P 

(
T f ≥ t P 

)
+ 

(
E 
[
T f | T f < t p 

]
+ R f 

)
P ( T f < t P ) 

(7)

3.2.3. Objective 2: rate of occurrence of failures 

The failure occurrences have undesirable and unpredictable consequences on maintenance, safety issues, and production

operations [15] . Corrective activities in most cases constitute a major portion of unplanned maintenance expenditures such

as costs with production loss and delays, besides the possibility of accident occurrences. Then, the second objective is to

minimize the occurrence of corrective activities, and its consequence, as far as possible. 

Nosoohi & Hejazi [15] and Azevedo et al [32] used a function that prompts the expected number of failures in a cycle

to represent this objective. Thus, in [15] and [32] , this objective is obtained by reducing the time interval to preventive

replacements t p . Low values of t p diminish the probability of failure occurrences in a cycle, while the expected number of

cycles increases. Given that, an objective function that relates the number of failures in a cycle and the number of cycles

would be suitable. 

In this paper, a mean rate of failure occurrences is used, which is presented in Eq. (8) that is a ratio between the expected

number of failures per cycle (where the first and second parts correspond to the expected number of failures in preventive

and corrective replacement cycles respectively) and the expected cycle time (defined in the denominator of Eq. (7) ). Note

that, in corrective replacement cycles, the total number of failures is the number of non-critical failures plus one, which

corresponds to the critical failure. 

F 2 = 

E 
[
M t p 

]
P 
(
T f ≥ t p 

)
+ 

(
E 
[
M t f | t f < t p 

]
+ 1 

)
P 
(
T f < t p 

)
( t P + R P ) P 

(
T f ≥ t P 

)
+ 

(
E 
[
T f | T f < t p 

]
+ R f 

)
P ( T f < t P ) 

(8)

3.2.4. Objective 3: system unavailability 

We also consider system unavailability as an objective, which is shown in Eq. (9) . This function only considers the system

unavailability due to the maintenance actions; thus, the downtime in a cycle is due to times to repair non-critical failures

(imperfect repairs) and the time to replace. Then, Eq. (9) is a ratio between the expected downtime in a cycle (the first

and second parts correspond to expected downtime in preventive and corrective replacement cycles respectively) and the

expected cycle time. 

F 3 = 

(
E 
[
M t p 

]
R r + R P 

)
P 
(
T f ≥ t p 

)
+ 

(
E 
[
M t f | t f < t p 

]
R r + R f 

)
P 
(
T f < t p 

)
( t P + R P ) P 

(
T f ≥ t P 

)
+ 

(
E 
[
T f | T f < t p 

]
+ R f 

)
P ( T f < t P ) 

(9)

where R r is the meantime to perform the imperfect repair. 

3.2.5. Objective 4: Investment in spare parts 

The fourth objective is concerned about the number of spare parts to be purchased at H 0 . Although there is a budget

available for that, it is always interesting to minimize the total investment amount. If the whole budget available for the

purchase of spare parts is not spent, a portion of it may be used in other investments that may bring beneficial returns for

the organization. Moreover, inventory-holding costs can be minimized if fewer spare parts are acquired at H 0 . Thus, we can

argue that inventory-holding costs are indirectly considered in our model. 

Then, Eq. (10) aims at minimizing the amount spent on purchasing spare parts as a linear relationship between the

investment ( C s ) in buying a spare part unit at H 0 and s . In other words, this objective seeks to minimize s . 
F 4 = s C s (10) 
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3.2.6. The multi-objective model 

We consider three constraints in our model. First, the expected unavailability must not be higher than a predefined

threshold �. Next, the value spent on buying spare parts must be lower than the budget B . Finally, the third constraint

determines the minimum number of spare parts to be purchased at H 0 . Given a defined time interval to perform the pre-

ventive replacement ( t p ), the minimal number of replacements can be calculated as H /( t p + R P ). 

In this context, s is integer and t p represents a time interval. However, as t p is used for maintenance planning, only in-

teger values are considered. Thus, our model considers integer-valued decision variables. Therefore, combining the objective

functions defined above with the constraints, the formulation of the multi-objective problem is as follows: 

min 

t p ,s 
F 1 

min 

t p ,s 
F 2 

min 

t p ,s 
F 3 

min 

t p ,s 
F 4 

s . t . : 
F 3 ≤ �

(11) 

F 4 ≤ B (12) 

s ≥
⌊ 

H 
t p + R P 

⌋ 

t p ∈ Z 

∗
+ 

s ∈ Z + 

(13) 

This model comprises a nontrivial multi-objective optimization problem and no single solution exists that simultaneously

optimizes each objective. For instance, a more preventive replacement policy (short replacement intervals) will decrease

the probability of failure occurrence in a cycle ( F 2), however, it should increase the maintenance cost ( F 1) and the system

unavailability ( F 3), since replacement actions are more costly and time-consuming than the repairs. Also, a greater amount of

spare parts acquire in the begging of the planning horizon, despite corresponding to a high investment ( F 4), should reduce

the maintenance cost ( F 1) and the system unavailability ( F 3), because it decreases the number of replacements without

spare part in stock which demands more cost and downtime. 

Note that functions F 1, F 2 and F 3 depend on s through the probability of having spare parts available for replacement,

according to Eqs. (3) –(6) . In this paper, we use GRP to model the times for non-critical failures. Moreover, other stochastic

processes are used to model the time to critical failure and maintenance times. Thus, some measures in the multi-objective

model result from the combination of these processes (e.g.: E [ M t p ] , E [ M t f 
| t f < t p ] and P ( T f < t p )), and thus are not ana-

lytically obtainable. To calculate those measures, we use a DES-based algorithm, which will be discussed in Section 4 . 

4. Discrete event simulation for evaluating functions of the multi-objective model 

We considered an alternate counting process [37] composed of a model related to the occurrences of failure and another

to the maintenance actions, both characterizing the system behavior over time, i.e., if it is either operational or under main-

tenance, as shown in Fig. 1 . The process related to the failure occurrences is formed by integrating two approaches: one

associated with the critical failures and another one to the non-critical failures. 

A GRP counting process will be adopted to model non-critical failures, which are treated by imperfect repairs, while crit-

ical failures are handled with perfect repairs, and then modeled through a Renewal Process. Thus, the failure-repair process

is a composition of these two stochastic models, for which analytical handling is intricate. Therefore, we here develop a

Discrete Event Simulation (DES) algorithm, which is described in this section. Table 1 shows the variables used in the DES

algorithm. 

The quantities P ( T f < t p ), P ( T f ≥ t p ), E [ M t p ] , E [ M t f 
| t f < t p ] , E [ T f | T f < t p ] and P s will be estimated via DES. To that

end, we consider that the maintenance times may not be neglected, and thus the total equipment age is different from the

operational equipment age. Given that, the first step in the DES methodology is the generation of the times to failures and

the respective times to repair. These times are sampled to assess the failure-repair process in each cycle and are compared

with the time interval for preventive replacement ( t p ) for the analysis of the events of interest. 

4.1. The assessment of the failure-repair process 

We consider a Weibull distribution for the operational times to critical failure y f . Then, Eq. (14) presents the CDF of y f ,

where α1 and β1 are the scale and shape parameters. We also consider a Weibull distribution for the non-critical Times

to First Failures (TTFF). Indeed, the times between non-critical failures x n are treated by imperfect repairs, and then GRP is

here used. Given that, Eq. (2) turns into Eq. (15) , which is the Weibull-GRP-CDF with parameters α , β and q (imperfect
2 2 
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Table 1 

Variables used in the DES algorithm. 

Variable Description 

OEA f Operational equipment age at the critical failure time 

OTB n ,( n = 1, 2, …) Operational time between ( n − 1)th and n th non-critical failures 

OEA n ,( n = 1, 2, …) Operational equipment age at the n th non-critical failure time ( OE A n = 

∑ n 
k = 1 OT B k ) 

TTIR Time to perform the imperfect repair 

TTCR 1 , TTCR 2 Time to perform corrective replacement with and without spare part available respectively 

TTPR 1 , TTPR 2 Time to perform preventive replacement with and without spare part available respectively 

TSA f Total equipment age at the critical failure time 

TEA n ,( n = 1, 2, …) Total equipment age at the n th non-critical failure time ( T E A n = OE A n + 

∑ n −1 
k = 1 T T I R k ) 

ELT Equipment lifetime (total equipment age at the replacement time) 

ECT Equipment cycle time (equipment lifetime + time to replace equipment) 

NNCF Number of non-critical failures in a cycle 

NPR ( i ) , NCR ( i ) Number of preventive and corrective replacements at i th iteration of the DES algorithm 

TNR ( i ) Total number of replacements at i th iteration ( TNR ( i ) = NPR ( i ) + NCR ( i ) ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

repair effectiveness). Yañez et al [35] present a procedure to obtain maximum likelihood estimates for α1 , β1 , α2 , β2 and

q . 

F 
(
y f 

)
= 1 − e 

−
(

y f 
α1 

)β1 

(14)

F ( x n | v n −1 ) = 1 − exp 

[(v n −1 

α2 

)β2 

−
(v n −1 + x n 

α2 

)β2 

]
, n = 1 , 2 , . . . (15)

Then, assuming that u is a random variable uniformly distributed between 0 and 1, the operational times for the critical

failures and the n th non-critical failures can be simulated by solving the CDFs in Eqs. (14) and (15) for y f and x n [38] : 

OE A f = α1 [ − ln ( 1 − u ) ] 
1 / β1 . (16)

OE A n = α2 

⎡ 

⎣ 

( 

q 

α2 

n −1 ∑ 

k =1 

x k 

) β2 

− ln ( 1 − u ) 

⎤ 

⎦ 

1 / β2 

− q 

n −1 ∑ 

k =1 

x k , n = 1 , 2 , . . . . (17)

We assume the maintenance times are modeled by Exponential distributions. Let Z be a random variable denoting the

time to perform one of the five maintenance types (imperfect repair, corrective replacement with (or without) spare part

available, preventive replacement with (or without) spare part available). Then, its CDF is given in Eq. (18) : 

F ( z ) = 1 − e −( z 
μz ) (18)

where μZ is the meantime of Z (i.e., μZ ε { R r ,R p 1 , R p 2 , R f 1 , R f 2 }). A valid estimative for μZ is the average of the times observed

in historic data (i.e. ˆ μZ = z̄ ). Then, the maintenance times can be simulated solving the CDF in Eq. (18) for z : 

z = μZ [ − ln ( 1 − u ) ] = z̄ [ − ln ( 1 − u ) ] . (19)

In the DES algorithm, z represents the variables TTIR, TTPR 1 , TTPR 2 , TTCR 1 , or TTCR 2 . 

4.2. Calculating the functions of the multi-objective model 

The variables OEA f , OEA n , TTIR, TTPR 1 , TTPR 2 , TTCR 1 , and TTCR 2 are simulated by using the times to occurrence of failures

and the times to maintenance actions, and they are used in the generation of random discrete events (the occurrences of

failures and maintenances) during the simulation time. The goal is to generate a ‘‘typical” scenario for a planning horizon to

allow the evaluation of some features that are of interest for calculating the functions of the multi-objective model, which

is done for one possible solution ( t p ,s ) and it is performed in the following way: 

I. Cycle simulation : the steps for simulating a cycle (summarized in Fig. 3 ) are: 

I.1. The operational time to critical failure ( OEA f ) is generated as in Eq. (16) ; 

II.2. The operational times between non-critical failures ( OTB n ), as well as their imperfect repair times ( TTIR ) are

generated from Eqs. (17) and (19) until either ( i ) the operational age ( OE A n = 

∑ n 
k = 1 OT B k ) of the equipment

exceeds the time to critical failure ( OEA n > OEA f ) or ( ii ) the total equipment age is higher the interval defined

to preventive replacement ( OEA n + �TTIR > t p ), whichever occurs first; 

III.3. The number of non-critical failures ( NNCF ) and the equipment lifetime ( ELT ) are computed, and the number

of each cycle type ( NPR ( i ) and NCR ( i ) ) is updated: if the previous step ends on condition “( i )”, ELT = t p and

NPR ( i ) = NPR ( i ) + 1. Otherwise, ELT = OEA f + �TTIR and NCR ( i ) = NCR ( i ) + 1; 
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Fig. 3. Cycle simulation steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.4. The time to perform replacement is generated from Eq. (19) . If condition “( i )” occurs, then the time to perform

preventive replacement ( TTPR 1 , if TNR ( i ) ≤ s , or TTPR 2 , otherwise) is generated. If condition “( ii )” happens, the

time to perform corrective replacement ( TTCR 1 , if TNR ( i ) ≤ s , or TTCR 2 , otherwise) is generated; 

V.5. The cycle time is calculated as the sum of equipment lifetime and time to replace it, i.e., ECT = { ELT + TTPR 1 ,

ELT + TTPR 2 , ELT + TTCR 1 , ELT + TTCR 2 }. 

II. Planning Horizon simulation : The cycle simulation (step I) is repeatedly performed until the sum of the times of simu-

lated cycles exceeds the planning horizon time ( �ECT > H ). In this way, a planning horizon is simulated. When this

step is executed, one iteration of the DES algorithm is completed. The number of simulated replacements/cycles in

that iteration is, then, given by TNR ( i ) = NPR ( i ) + NPR ( i ) . 

III. Estimation of the quantities P ( T f < t p ) , P ( T f ≥ t p ) , E [ M t p ] , E [ M t f 
| t f < t p ] , E [ T f | T f < t p ] and P s : One iteration of the

DES algorithm provides a possible scenario for the planning horizon. Some measures are evaluated for this scenario

as the number of preventive and corrective cycles ( NPR ( i ) and NCR ( i ) ) and the number of non-critical failures per cycle

( NNCF ). Simulating many planning horizons, several scenarios are evaluated and, if this number is large enough, the

expected frequency of the measures of interest can be estimated. After NI iterations, the quantities of interest are

estimated as: 

I.1. The probability of critical failure occurs before t p is equal to the average of the proportion of corrective replace-

ments in each iteration ( Eq. (20) ); 

II.2. The probability of critical failure does not occur before t p is equal to the average of the proportion of preventive

replacements in each iteration ( Eq. (21) ); 

III.3. The expected number of non-critical failures in preventive cycles is equal to the average of the mean number

of non-critical failures, in preventive cycles, in each iteration ( Eq. (22) ); 

IV.4. The expected number of non-critical failures in corrective cycles is equal to the average of the mean number of

non-critical failures, in corrective cycles, in each iteration ( Eq. (23) ); 

V.5. The expected equipment lifetime in corrective cycles (the expected time of the critical failure) is equal to the

average of the meantime to critical failures, in corrective cycles, in each iteration ( Eq. (24) ); 

VI.6. The probability of having spare parts available at the replacement time is equal to the average of the proportion

of the number of replacements is higher than s ( Eq. (25) ). 

ˆ P 
(
T f < t p 

)
= 

NI ∑ 

i =1 

(
NC R 

( i ) 

T N R 

( i ) 

)
/NI (20) 
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Table 2 

Multi-objective GA parameters. 

MOGA parameter Description 

L Size of population �

p cr Crossover probability 

p mt Mutation probability 

N gen Number of generations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ P 
(
T f ≥ t p 

)
= 1 − ˆ P ( t c < t p ) = 

NI ∑ 

i =1 

(
NP R 

( i ) 

T N R 

( i ) 

)
/NI (21)

ˆ E 
[
M t p 

]
= 

NI ∑ 

i =1 

⎛ 

⎜ ⎜ ⎝ 

∑ T N R (i ) 

k =1 

{
NNC F k , if cycle ′′ k ′′ is preventive 

0 , if cycle ′′ k ′′ is corrective 

NP R 

(i ) 

⎞ 

⎟ ⎟ ⎠ 

/NI (22)

ˆ E 
[
M t f | t f < t p 

]
= 

NI ∑ 

i =1 

⎛ 

⎜ ⎜ ⎝ 

∑ T N R ( i ) 

k =1 

{
NNC F k , if cycle ′′ k ′′ is corrective 

0 , if cycle ′′ k ′′ is preventive 

NC R 

( i ) 

⎞ 

⎟ ⎟ ⎠ 

/NI (23)

ˆ E 
[
T f | T f < t p 

]
= 

NI ∑ 

i =1 

⎛ 

⎜ ⎜ ⎝ 

∑ T N R ( i ) 

k =1 

{
T E A k , if cycle ′′ k ′′ is corrective 

0 , if cycle ′′ k ′′ is preventive 

NC R 

( i ) 

⎞ 

⎟ ⎟ ⎠ 

/NI (24)

ˆ P s = 

NI ∑ 

i =1 

⎛ 

⎜ ⎜ ⎝ 

{(
T N R 

( i ) − s 
)
, if 

(
T N R 

( i ) − s 
)

> 0 

0 , otherwise 

T N R 

( i ) 

⎞ 

⎟ ⎟ ⎠ 

/NI (25)

Then, by estimating the quantities P ( T f < t p ), P ( T f ≥ t p ), E [ M t p ] , E [ M t f 
| t f < t p ] , E [ T f | T f < t p ] and P s (from Eqs. (20) –

(25) ), the values of the objective functions are calculated Eqs. (7) –( (10) ). 

5. A method to get Pareto-optimal solutions for the multi-objective replacement policy problem 

As the DES algorithm is adopted for estimating the functions of the multi-objective model, the use of exhaustive methods

to obtain the Pareto-optimal set is prohibitive due to computational time and cost. In this way, we propose a Multi-Objective

Genetic Algorithm (MOGA), which is described in this section. 

An individual generated in MOGA corresponds to a pair ( t p ,s ). To obtain a Pareto-optimal set, the dominance relationship

is evaluated based on each individual’s fitness, which is a four-dimension vector F = [ F 1 , F 2 , F 3 , F 4 ] . As the DES algorithm

is used to calculate the objective functions, the coupling MOGA-DES takes place every time MOGA needs to obtain the fitness

of an individual. Fig. 4 details the MOGA + DES algorithm model we here propose. 

5.1. Multi-objective Genetic Algorithm 

This paper uses an integer-coded MOGA, and then the phenotype of an individual is a bi-dimensional vector with each

entry corresponding to the decision variables t p and s . Moreover, our MOGA neither uses elaborated fitness metrics nor

transforms multiple objectives into a unique function. Hence, each individual has an associated fitness vector with size

equal to the number of the considered objectives. 

Let L be the fixed size of population �, �[ j ] be the j th individual (that represents a solution) of �, and �aux be the

auxiliary population that stores non-dominated individuals and is updated at each iteration. Table 2 defines the parameters

used in the proposed MOGA, shown in Fig. 5 as pseudocode. Section 5.1.2 describes in detail the genetic operators proposed.
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Fig. 4. Proposed MOGA + DES algorithm. 

 

 

 

 

 

 

 

 

5.1.1. Individual Representation 

Integer representation of individuals is used. As an illustration, suppose a planning horizon of 1,0 0 0 days, t p represents

the day at equipment replacement occurs (if the critical failure occurs after t p ); thus, t p ∈ [1; 1, 0 0 0]. Furthermore, given

the maximum budget constraint ( Eq. (13) ), it is possible to determine an acceptable range for s as follow: s ∈ [0; B / C S ].

Fig. 6 depicts an example of the phenotype of an individual as well as a scenario of the planning horizon. The times above

the timeline are the instants when the system is stopped (due to a failure occurrence or a preventive replacement), and the

times below the timeline corresponds to the instants when the system returns to operation (when the maintenance ends). 

Four full cycles (replacements) are observed in Fig. 6 . The first and the third ones correspond to preventive cycles, i.e.,

equipment reaches the total age t p = 300 before the occurrence of a critical failure, while the second and the fourth cycles

are corrective because a critical failure occurs before the total age t p . Yet, as s = 3, the fourth replacement is performed

without spare part available. 
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Fig. 5. Proposed MOGA pseudocode. 

Fig. 6. Example of an integer-coded individual and a possible scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2. Steps of MOGA 

Generation of the initial population. The initial population is generated by randomly sampling integer values for t p and s .

Each pair ( t p ,s ) corresponds to the phenotype of an individual �[ j ] ( j = 1, …, L ). Fig. 7 shows the pseudocode for the

initial population generation. The procedure was designed so that only feasible individuals are generated, i.e., t p is randomly

generated in a way that Eqs. (8) and (9) are satisfied. If ( t p ,s ) meets the constraint in Eq. (7) , then it is introduced into

population �. This step is performed only once, and the population � will be transformed by the application of the genetic

operators of selection, crossover, and mutation. 

Selection and �aux update. In this step, the relation of dominance among the individuals is assessed according to their

fitness values. This step works as follows: 

(i) The dominance relation is assessed between pairs of individuals within the population �. The dominated ones are

removed from �, and then the remaining are eligible to enter �aux ; 

(ii) �aux is updated according to the following rules: (a) if a candidate is dominated by an individual in �aux , it is dis-

carded; (b) otherwise, it is added to �aux , and if it also dominates individuals in �aux , all dominated solutions are

deleted from �aux . 

In the first iteration (generation 0), there are no individuals in �aux ; then, �aux update (stage (ii)) is done by adding all

candidates (selected in stage (i)) in �aux . After (i), the size of � is reduced. To maintain the population with L individuals,

solutions are randomly selected from �aux (after step (ii)) and inserted into �. 

Crossover. After Selection and �aux update, Crossover is performed to evaluate other solutions in good regions (since only

non-dominated individuals survive in �, after the Selection). The Crossover step was developed in a way that only feasible
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Fig. 7. Pseudocode for the proposed procedure to generate the initial population. 

Fig. 8. Pseudocode for the proposed Crossover procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

individuals are generated. First, it is decided which individuals in � takes part in the crossover. For every �[ j ], a random

number in [0, 1] is generated, and if this number is lower than the crossover probability p cr , the individual participates

in the crossover (a copy of this individual is inserted into the set Cross ). Then, a pair of individuals is randomly chosen

(the parents) and 2 individuals are generated as copies of them, but having the contents exchanged for one position of the

phenotype (randomly defined). These 2 other individuals are the children if they are feasible. Fig. 8 shows the pseudocode

for the crossover procedure. 

To maintain the population with L individuals, the Replacement step takes place after Crossover. The adopted strategy

is ‘‘children replace parents”, i.e. the parents are discarded, and the children take their places in �. Note that the children

generated in the crossover step may be an identical copy of the parents. 

Mutation. To expand the search region of the algorithm, the Mutation step is performed Fig. 9 shows the pseudocode for

this procedure). Its objective is “to mutate” some individuals in �. A number between 0 and 1 is randomly generated for

each individual �[ j ]. If this number is lower than the predefined mutation probability p mt , the content of one position

randomly selected is substituted by a value randomly generated into the intervals that satisfy Eqs. (8) and ( (9) . The fitness

is calculated for the “mutated” individual and, if the constraint (7) is met, it is inserted into �, in place of �[ j ]. 

Stopping criterion. With an exception for the Generation of the Initial Population, the steps are repeated for N gen times,

where each iteration is a MOGA generation. After this, the Selection and �aux update step is performed for the last time

and the algorithm provides the nondominated feasible individuals from �aux . 
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Fig. 9. Pseudocode for the proposed procedure to Mutation. 

Fig. 10. Point-to-point distance for a bi-dimensional Pareto front. 

Table 3 

Parameters for the multi-objective problem. 

Parameter Value Parameter Value 

C p 1 $ 20,000 R r 26h 

C p 2 $ 45,000 R p 1 134.4 h 

C c 1 $ 40,000 R p 2 158.4 h 

C c 2 $ 65,000 R c 1 141.1 h 

B $ 150,000 R c 1 165.1 h 

� 0.1 

 

 

 

 

 

 

 

 

 

6. Application Examples 

6.1. Model validation 

6.1.1. Point-to-point distance: a metric for comparing real and simulated Pareto fronts 

The MOGA procedure is applied as an alternative to the exhaustive method. Therefore, comparing the performance of the

MOGA in obtaining simulated Pareto fronts against the exact one is useful to validate the proposed model. Such comparison

requires the use of metrics that may, even heuristically, represent the convergence of the simulated Pareto front towards the

exact one. 

In this context, the point-to-point distance metric [17] is here considered. For each point in the obtained front, we

compute the minimum Euclidean distance from it to one of the points in the real front. From one simulated front, the mean

of all minimum distances ( d , see Fig. 10 ) is calculated, representing the entire front ( ̄d k , k = 1, …, nsFronts ). Then, the

metric d̄ k summarizes the convergence of the obtained front in one single number, and the following weighted mean may

be calculated: 

D = 

∑ 

k d̄ k × n s k ∑ 

k n s k 
, k = 1 , . . . , nsF ronts (26)

where ns k is the number of obtained nondominated solutions in the k th simulated front. 

The four objectives to be minimized vary over different scales, and then we normalized all of them within the interval

[0, 1]. The normalization factors are the minimum and maximum exact values of each objective function. 
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Table 4 

MOGA + DES parameters for the application example. 

Parameter Value 

L 200 

N gen 200 

p cr 0.95 

p mt 0.1 

NI 1200 

Table 5 

Summary of results for validation example. 

Number of solutions Number of obtained exact Pareto solutions d̄ k 

Min. 144 96 0.0262 

Max. 172 146 0.0280 

Mean 168.8 129.5 0.0269 

Std. Dev. 13.55 15.83 0.0004 

Fig. 11. Exact and simulated (with minimum exact Pareto solutions) Pareto fronts for the validation example. 

 

 

 

 

 

 

 

6.1.2. An example comparing real and simulated Pareto fronts 

To validate the proposed MOGA, an example is devised to allow for the comparison between the exact Pareto-optimal set

and the results obtained via MOGA. To that end, suppose α1 = 3, 072, β1 = 1.62, α2 = 1, 828, β2 = 2.02 and q = 0.7.

A planning horizon of 43,800 hours ( H = 5 years) was considered and the mean cost of performing n imperfect repairs is

given by C r ( n ) = 3, 0 0 0 × n 1.2 ; the other parameters of the problem are seen in Table 3 . 

This example has 832,200 possible combinations ( t p ,s ) and was solved by using an exhaustive method to obtain the

exact Pareto set; 670,353 out of 832,200 are feasible, and the dominance relationship was evaluated among all of them.

A set of 198 nondominated solutions outlines the exact Pareto front. Then, 30 trials of the MOGA + DES were executed;

Table 4 shows the parameters used to feed the MOGA + DES model. Table 5 presents some descriptive statistics regarding
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Fig. 12. Exact and simulated (with maximum exact solutions) Pareto fronts for the validation example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of solutions, the number of exact Pareto solutions and the point-to-point distance metrics obtained in each of

the 30 simulated Pareto fronts. The weighted metric ( Eq. 22 ) was D = 0.0272. 

In the point-to-point procedure, it could occur some loss of information since the solution is the entire front and not only

one single point. Thus, we specifically examined the simulated Pareto fronts with the maximum and minimum numbers of

exact Pareto solutions, for which the mean point-to-point distances were d̄ k = 0.0280, and d̄ k = 0.0262 respectively. The

maximum values of point-to-point distance (max[ d ]) for both fronts were 0.0800 and 0.0807 respectively for the simulated

Pareto fronts with the maximum and the minimum number of exact Pareto solutions (the minimum values of point-to-

point distance were 0, corresponding to the exact Pareto solutions obtained). Then, for those solutions corresponding to the

maximum point-to-point distance, we analyzed the four coordinate distances on a real scale, which were 0.222 (for F 1),

0.0 0 011 (for F 2), 0.0 0 064 (for F 3) and 0 (for F 4). From the front with minimum exact Pareto solutions, these values were

0.610 (for F 1), 0.0 0 0 074 (for F 2), 0.0 015 (for F 3) and 0 (for F 4). We can notice that for both situations these distances do not

represent significant differences, which means solutions from simulated fronts show close agreement with the real Pareto

set. 

Figs. 11 and 12 depict a comparison between the real and simulated Pareto fronts (the ones with the maximum and

the minimum number of exact solutions) over tri-dimensional graphs. It can be noticed that the points in simulated Pareto

front are either on or very close to the points in the exact one. Then, the MOGA + DES model is able to find solutions

comparable to the exhaustive method. 

Yet, comparing the computational effort, the application of the exhaustive method lasts about 505 computer hours, while

the proposed model required, on average, about 6.4 hours (~1.3% of the computational effort by brute force). Some tests were

performed with other MOGA + DES parameters. The values shown in Table 4 correspond to the best trade-off between the

method performance (in simulating the Pareto front) and the computational effort (time). As the problem addressed in

this paper is a tactical planning decision, which must be done only once at the beginning of the planning horizon, the
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Fig. 13. Results for application example considering minimal repairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computational time result is feasible and suitable for the method justification. The experiments were executed in a PC with

Windowsu© operating system, 2.0 GHz processor and 4 GB of RAM. 

6.2. Trade-off analysis and the repair effectiveness assessment 

In the previous example, we considered q = 0.7, which corresponds to imperfect repairs to treat non-critical failures. To

analyze the impacts caused by different types of corrective maintenance actions (minimal, imperfect and perfect repairs) in

the replacement policy, the same example was solved for q = 0.0, 0.5 and 1.0. In this manner, the results in this section

show the effect of varying the repair effectiveness in obtaining the Pareto front. This sensitivity analysis is useful because it

allows evaluating the difference in system performance, measured by the four objectives, as the maintenance effectiveness

varies, enabling the assessment of how much it is worth investing in improving the performance of the maintenance team. 

Figs. 13-15 show the normalized fitness value for the obtained Pareto sets, and some selected solutions, for the assump-

tion of minimal, imperfect and perfect repairs respectively. For purposes of tradeoff analysis, the solutions A, B, and C have

the same value for t p , while solutions X, Y and Z have the same s . Thus, by analyzing the fitness values of solutions A, B,

and C, it can be seen that when more spare parts purchased at the beginning of the planning horizon, the mean mainte-

nance cost rate ( F 1) and the mean unavailability ( F 3) get better. No change is significant on the mean failure rate ( F 2) and,

naturally, the amount spent on purchasing these spare parts ( F 4) is higher for solution C. On the other hand, from solutions

X, Y and Z, it is stated that the best performances for the objectives 1 and 3 are obtained for the longest preventive replace-

ment intervals, though the mean failure rate ( F 2) increases, which illustrates the compromise among the objectives. These

conflicting behaviors were expected, as discussed in Section 3.2.6 . 

Note that all the Pareto solutions are optimal in a multi-objective perspective and the benefit brought for them is the

trade-off between cost-savings ( F 1 and F 4) and reliability growths ( F 2 and F 3). The manager could, then, choose a solution

in this set which corresponds to the best trade-off relation for him. For example, in Fig. 14 , solution C corresponds to an

additional investment of $24,0 0 0 in spare parts, from solution Z (25.43% more), and provides a maintenance cost savings of

only 0.68 $/h with no significant difference in performance in reliability (failure rate) and unavailability. A decision-maker

could define whether it is worth investing $24,0 0 0 to obtain a small reduction in maintenance costs and, then, discard any

of these solutions. 

In another example, the only advantage of solution Y over solution B is a small reduction in the expected number of

failures in a cycle (only 0.21 cycle −1 ). In all remaining objectives, solution B is better than solution Y, including a difference

of 24,0 0 0 in investment in spare parts. Some decision-makers could discard, thus, the solution Y . These are some examples

of analyzes that can be performed to aid the decision-maker in choosing a solution within the obtained Pareto set. 
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Fig. 14. Results for application example considering imperfect repairs. 

Fig. 15. Results for application example considering perfect repairs. 
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Table 6 

Results considering different types of repair. 

Repair type Number of non-dominated solutions Average fitness vector 

F 1 F 2 F 3 F 4 

Minimal 1550 0.443 0.950 0.474 0.649 

Imperfect 94 0.405 0.477 0.378 0.636 

Perfect 55 0.396 0.028 0.191 0.620 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 shows the number of nondominated solutions in each situation and the average normalized fitness vector (i.e. the

mean values, between the non-dominated solutions, of the F 1, F 2, F 3 and F 4 functions). It is noted that all positions of the

average fitness vector from the perfect repair situation are lower than the other two. Yet, similar behavior is observed as we

compare the average fitness vector from imperfect repair with the average fitness vector of the minimal repair. Therefore,

solutions for the perfect repair assumption, in most cases, dominate the solutions obtained as we consider imperfect repairs,

which, in general, dominate minimal repair solutions. This behavior is expected since the item subjected to imperfect repairs

has an intermediate performance between devices that undergo either minimal or perfect repairs. 

7. Conclusions 

This paper presented a novel multi-objective method for a simultaneous decision about the interval for preventive re-

placements and the number of spare parts to be purchased at the beginning of a planning horizon for equipment subject

to imperfect repairs. The proposed approach applies to equipment that undergoes failures with different levels of severity.

For instance, failures repaired either through a full replacement or via imperfect repairs. Thus, we solved a multi-objective

problem, where imperfect repairs were modeled according to a GRP model. 

Four objectives were considered: maintenance cost, rate of occurrence of failures, unavailability and the investment for

buying spare parts at H 0 . Yet, we evaluated the effects of s on the probability of having spare parts available when the

replacement is required; this probability affects the objective functions. 

The analytical handling of the objective functions is not possible, and then a DES algorithm was developed for this

purpose, which avoids the use of exhaustive methods to obtain the Pareto front. Moreover, a MOGA was coupled with DES

for obtaining the solutions. As it was demonstrated through the validation case, the proposed MOGA + DES model could

provide solutions on or very near the exact Pareto fronts with a lower computational cost. A point-to-point distance metric

and a graphic view analysis were used to evaluate the agreement between exact and simulated fronts. We also solved the

example considering three different assumptions regarding repair effectiveness. As expected, the solutions related to perfect

repairs dominated the ones associated with either imperfect or minimal repairs. 

The proposed model is applicable to plan the maintenance policy of critical equipment, module or component, with

a predetermined period of use (for example, equipment used in oil fields), which may undergo critical and non-critical

failures. The model does not consider the dependency between these types of failure and maintenance actions (replacement

and repair). Historical data must be available for estimating failures and maintenance time distributions and there is no

possibility to update the replacement policy from the equipment’s operating data (new failure data and monitoring sensors

data). 

Therefore, in future research, a competing risk approach [39] can be used to model the dependence relation between the

probabilities of occurrence of the critical and non-critical failures, for instance, by inserting a rejuvenation parameter q nc ,

which models the impact of the repair action performed to recover the equipment from non-critical failure on the time to

the critical failure. Also, note that the proposed GRP based approach solely relies on censored and failure times. However,

one can extend the approach to make use of the wealth of data that might be available from industrial IoT, i.e., massive

and multi-sensors monitoring systems (also known as Big Machinery Data [40] ). Indeed, given that this source of data is

available, then one can think of extending the proposed approach by replacing the GRP by a Deep Learning based model

[40–42] for the system’s fault diagnosis and prognosis based on the fusion of both process sensors (e.g., pressure, tem-

perature, flow sensors) as well as maintenance-related sensors such as vibration and acoustic emission under uncertainty

[39,43,44] . In this context, the use of DES would no longer be required and the MOGA method would then be integrated

with the Deep Learning model for obtaining a replacement policy of equipment under imperfect repairs. 
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