
applied  
sciences

Article

Multiresolution Speech Enhancement Based on
Proposed Circular Nested Microphone Array in
Combination with Sub-Band Affine
Projection Algorithm

Ali Dehghan Firoozabadi 1,* , Pablo Irarrazaval 2,3,4 , Pablo Adasme 5 ,
David Zabala-Blanco 6,* , Hugo Durney 1, Miguel Sanhueza 1, Pablo Palacios-Játiva 7 and
Cesar Azurdia-Meza 7

1 Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242,
Santiago 7800002, Chile; hdurney@utem.cl (H.D.); msanhueza@utem.cl (M.S.)

2 Electrical Engineering Department, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
pim@uc.cl

3 Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
4 Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile,

Santiago 7820436, Chile
5 Electrical Engineering Department, Universidad de Santiago de Chile, Av. Ecuador 3519,

Santiago 9170124, Chile; pablo.adasme@usach.cl
6 Department of Computing and Industries, Universidad Católica del Maule, Talca 3466706, Chile
7 Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile;

pablo.palacios@ug.uchile.cl (P.P.-J.); cazurdia@ing.uchile.cl (C.A.-M.)
* Correspondence: adehghanfirouzabadi@utem.cl (A.D.F.); dzabala@ucm.cl (D.Z.-B.);

Tel.: +56-2-2787-7117 (A.D.F.)

Received: 6 April 2020; Accepted: 4 June 2020; Published: 6 June 2020
����������
�������

Abstract: Speech enhancement is one of the most important fields in audio and speech signal
processing. The speech enhancement methods are divided into the single and multi-channel
algorithms. The multi-channel methods increase the speech enhancement performance by providing
more information with the use of more microphones. In addition, spatial aliasing is one of the
destructive factors in speech enhancement strategies. In this article, we first propose a uniform
circular nested microphone array (CNMA) for data recording. The microphone array increases the
accuracy of the speech processing methods by increasing the information. Moreover, the proposed
nested structure eliminates the spatial aliasing between microphone signals. The circular shape in
the proposed nested microphone array implements the speech enhancement algorithm with the
same probability for the speakers in all directions. In addition, the speech signal information is
different in frequency bands, where the sub-band processing is proposed by the use of the analysis
filter bank. The frequency resolution is increased in low frequency components by implementing
the proposed filter bank. Then, the affine projection algorithm (APA) is implemented as an adaptive
filter on sub-bands that were obtained by the proposed nested microphone array and analysis filter
bank. This algorithm adaptively enhances the noisy speech signal. Next, the synthesis filters are
implemented for reconstructing the enhanced speech signal. The proposed circular nested microphone
array in combination with the sub-band affine projection algorithm (CNMA-SBAPA) is compared with
the least mean square (LMS), recursive least square (RLS), traditional APA, distributed multichannel
Wiener filter (DB-MWF), and multichannel nonnegative matrix factorization-minimum variance
distortionless response (MNMF-MVDR) in terms of the segmental signal-to-noise ratio (SegSNR),
perceptual evaluation of speech quality (PESQ), mean opinion score (MOS), short-time objective
intelligibility (STOI), and speed of convergence on real and simulated data for white and colored
noises. In all scenarios, the proposed method has high accuracy at different levels and noise types by
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the lower distortion in comparison with other works and, furthermore, the speed of convergence is
higher than the compared researches.

Keywords: speech enhancement; adaptive filter; microphone array; sub-band processing; filter bank

1. Introduction

In the current century, the smartphones and other communication devices have been an important
part of human life, where it is impossible to have social communications without them [1,2]. One of
the principal parts in these smartphones is the signal processing platform. This part has an important
role in the telecommunication and audio signal processing. Denoising and dereverberation are
two main sections in the signal processing and enhancement platforms, which is the aim of this
article, to increase the performance of speech enhancement algorithms [3]. Increasing the number
of sensors improves the accuracy of denoising algorithms due to the spatial spectrum extension by
providing the proper information. The definition of accuracy in the enhancement algorithms is how
the enhanced signal is closer to the original signal with a high level of noise elimination and less
distortion. Therefore, the speech enhancement is the main part in such applications as: hearing aid
systems, mobile communication, speaker localization and tracking, speech recognition, voice activity
detection (VAD), speaker identification, etc. The denoising algorithms should be implemented in a
way to keep the speech intelligibility in an acceptable range and to remove a high level of noise and
reverberation. Then, the signal-to-noise ratio (SNR) cannot be the only specific factor for comparing the
speech enhancement methods. The qualitative criteria such as: perceptual evaluation of speech quality
(PESQ) [4], mean opinion score (MOS) [5], and short-time objective intelligibility (STOI) [6] are very
useful to show the performance of denoising methods in comparison with other previous works along
with quantitative criteria such as: overall SNR and segmental SNR (SegSNR) [7]. The performance of
the denoising algorithms is calculated by considering the qualitative and quantitative criteria at the
same time, which are the proper measurements for comparison with other previous works.

In recent years, many of the single and multi-channel methods have been proposed for
speech enhancement. The single-channel methods are still challenging strategies for the speech
enhancement due to the limited information. The traditional speech enhancement methods such as
the Wiener filter (WF) and distributed multichannel WF (DB-MWF) [8,9], spectral subtraction [10,11],
and statistical-model-based [12,13] have superior performances in stationary noisy environments but
the stability and accuracy of these methods are strongly decreased in non-stationary noisy conditions.
However, existing noise estimation methods such as minima-controlled recursive averaging [14,15] and
minimum statistics [11,16] follow the stationary noise energy. However, they do not have the ability
to follow the non-stationary noise energy. For example, the method proposed in [16] is presented
to estimate the power spectral density (PSD) of a non-stationary noise signal. This method can be
considered in combination with any speech enhancement algorithm, which requires the noise PSD
estimation. The presented method follows the spectral minima in each frequency band by minimizing
conditional mean square error (MSE) criteria in each time frame, which develops the optimal smoothing
parameter for recursive smoothing of the PSD of the noisy speech signal. Therefore, an unbiased
noise estimator is presented based on the optimally smoothed PSD estimation and the analysis of
the statistics of spectral minima. Therefore, the noise estimation accuracy in some methods [15,16]
is affected when the noise is non-stationary. A group of speech enhancement methods are proposed
based on a priori information of speech signals such as the auto-regressive hidden Markov model
(ARHMM) [17–19]. The noise and speech signals are modeled as an auto-regressive (AR) process
in these methods. In addition, the hidden Markov model (HMM) is implemented for modeling the
prior information of speech and noise features. For example, the methods in [18,19] are considered for
modeling the speech and noise spectrum shape. Therefore, the spectrum gain is calculated instead of
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the whole spectrum for the speech and noise signals. The noise-spectrum gain estimation is adapted
by the fast variations of the signal energy, which is known as non-stationary noise.

Masoud and Sina [20] proposed a novel method based on the normalized fractional of the
two-channel least mean square (LMS) algorithm for enhancing the speech signal. The presented
algorithm is known as fractional LMS, which is obtained by considering the fractional terms in the
calculation of filter coefficients of the standard LMS algorithm. The normalization is a proper strategy
to improve the performance of the LMS algorithm. Therefore, a normalization step is implemented on
the fractional LMS in order to promote the performance of the enhancement method. The proposed
two-channel method has a higher performance in terms of the MSE criteria in comparison with other
works. Pagula and Kishore [21] proposed a recursive least square (RLS)-based adaptive filter for the
application of speech enhancement. The segmentation step is considered for the microphone signals
to provide a better stationary of the speech signals. In the following, the adaptive filter coefficients
are calculated based on the modified version of the RLS method. The filter coefficients are calculated
in a way to have the least distortion in the enhanced speech signals. The presented method has a
high performance in the presence of white noise for a different range of SNRs. Qi et al. [22] proposed
a method for estimation of the short-time linear prediction parameters of the Wiener filter. In the
presented work, a speech signal spectrum modeling is proposed based on the prior information of
the speech linear prediction in order to model the noise as same as the speech signal. The difference
between the proposed method with other previous works is the use of multiplicative update rule
for better estimation of the coefficients. Tavakoli et al. [23] introduced a framework for the speech
enhancement based on an ad-hoc microphone array. A subarray is considered for coherence calculation
in the speech signal. A coherence measurement is proposed based on the speech quality in the entrance
of the array in order to select the subarrays in the local speech enhancements, when more than one
subarray is used. The proposed method is evaluated based on quantitative and qualitative criteria
such as: array gains, speech distortion ratio, PESQ, and STOI to show the superiority of the algorithm.
Shimada et al. [24] proposed an unsupervised speech enhancement method based on the non-negative
matrix factorization and sub-band beamforming for robust speech recognition against the noise. In the
recent years, the minimum variance distortionless response (MVDR) beamforming is widely used
to achieve the speech enhancement because this method properly works when there are steering
vectors for the speech signal and spatial covariance matrix for the noise. In the presented algorithm,
an unsupervised method decomposes each time-frequency bin to the sum of the noise and signal by
implementing the multi-channel non-negative matrix factorization (MNMF). The presented method
estimates the spatial covariance matrix (SCM) for the signal and noise by the use of spectral noise and
speech features. In this paper, the online MVDR beamforming is proposed via an adaptive update
for the MNMF parameters. Kavalekalam et al. [25] proposed a speech enhancement model-based
method to increase the speech perception for auditory earphones applications. In the proposed
method, a binaural speech enhancement framework is introduced, which is implemented by a speech
production approach. The proposed speech enhancement framework is based on a Kalman filter,
which is presented to use the speech production dynamic in the procedure of the speech enhancement.
The Kalman filter needs to have an estimation from the short time predictor (STP) of clean speech,
noise, and the pitch estimation of the clean speech. A binaural method for STP parameters estimation is
proposed in this paper with a directional pitch predictor based on the harmonic model and maximum
likelihood (ML) criteria for pitch features estimations. These parameters are calculated just based
on 2-microphones signals equivalent to human ears. Botinhao et al. [26] proposed a simultaneous
noise-reverberation enhancement method for text-to-speech (TTS) systems. The recorded voices in
noisy-reverberant environments affects the quality of the TTS systems. A simple way is to increase
the quality of the prerecorded speech signals for the TTS training system by speech enhancement
methods such as: noise suppression and dereverberation algorithms. Then, a recurrent neural network
is considered in this paper for the speech enhancement. The neural network is trained by parallel
data of clean speech and recorded speech with low quality. The low quality speech signal is obtained
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by the addition of environmental noise and convolution between the room impulse response and
the clean speech. The separated neural networks are trained by only-noise, only-reverberation, and
noisy-reverberant data. The quality of the training data with a low quality speech signal is highly
improved by the use of this neural network. Wang et al. [27] proposed a model-based method for
speech enhancement in modulation domain by the use of a Kalman filter. The proposed predictor
models the estimated amplitude spectral dynamically from the speech and noise to calculate the
minimum mean square error (MMSE) of the speech amplitude spectrum taking into account that the
noise and speech are additive in the complex plane. The stationary Gaussian model is proposed to
consider the dynamic noise amplitude as same as the dynamic speech amplitude, which is a mixture of
Gaussian models that the centers are located in a complex plane.

In our article, a multi-channel speech enhancement method is introduced based on the proposed
circular nested microphone array in combination with the sub-band affine projection algorithm
(CNMA-SBAPA). A nested microphone array increases the accuracy of the speech enhancement
methods by increasing the information. Nevertheless, spatial aliasing is one of the challenges when
microphone arrays are used. Firstly, a uniform circular nested microphone array (CNMA) is proposed
for eliminating the spatial aliasing. Additionally, the array dimensions are designed in a way to be
applicable in the real conditions. The speech components are variable in frequency bands. Therefore,
a sub-band processing method is considered for speech signals. This method provides the high
frequency resolution in low speech frequency components. Finally, the affine projection algorithm
(APA), as an adaptive method for the speech enhancement, is implemented on sub-band signals from
the circular nested microphone array (NMA). Since each APA block is implemented on a sub-band
with specific information, the accuracy and speed of convergence are increased in this condition. In the
last step, the synthesis filters are used to generate the enhanced speech signal. The proposed system
with sub-band APA is compared by the quantitative (segmental SNR), qualitative (PESQ, MOS, and
STOI) criteria, and speed of convergence with the least mean square (LMS), traditional APA, recursive
least square (RLS), distributed multichannel Wiener filter (DB-MWF), and multichannel nonnegative
matrix factorization-minimum variance distortionless response (MNMF-MVDR) algorithms on real
and simulated data under white and colored noisy conditions. The results show the superiority of the
proposed system in comparison with other previous works in all environmental conditions.

Section 2 shows the microphone signal model and the proposed uniform circular nested
microphone array. Section 3 includes the proposed sub-band algorithm with analysis and synthesis
filter banks in combination with the sub-band APA. The results on real and simulated data are discussed
in Section 4. Section 5 includes some conclusions.

2. The Microphone Model and Proposed Nested Microphone Array

In this section, the microphone signal model was presented to produce the simulated data.
In addition, the uniform CNMA was proposed for eliminating the spatial aliasing. Additionally,
the nested subarrays and microphone combinations are introduced in this section.

2.1. Microphone Signal Model

The microphone signal modeling is an important part in the implementation of speech processing
algorithms such as: speech enhancement, speaker tracking, speech recognition, etc. Two models are
usually considered in this processing: ideal and real models [28]. In the ideal model, which is known as
an open-space model, the received signal in a microphone place is a weakened and delayed version of
the transmitted signal from the source location. The ideal model for microphone signals is expressed as:

xm[n] =
1

rm
s[n− τm] + vm[n], (1)

where xm[n] is the received signal in the m-th microphone, s[n] is the speech source signal (transmitted
signal), rm is the distance between source and m-th microphone, τm is the time delay between source and
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m-th microphone, and vm[n] is the additive noise in m-th microphone place. This model cannot show the
real environments and close space conditions because the reverberation effect is discarded. Therefore,
the real model is introduced for microphone signal simulations to provide the real environmental
conditions for evaluating the speech enhancement algorithms. The real model simulates the microphone
signal similar to the environmental conditions. The expression for real model is shown as:

xm[n] = s[n] ∗ γm[rm, n] + vm[n], (2)

where the source signal is convolved to the room impulse response to model the real environments.
In this equation, γm[rm, n] is the impulse response between the source and m-th microphone,
which contains the attenuation factor and whole reverberation effect in the real conditions, and *
denotes to the convolution operator. The simulated signals are similar to real conditions by considering
this mathematical real model.

2.2. The Proposed Uniform Circular Nested Microphone Array

The microphone array increases the accuracy of the speech enhancement algorithms due to
increasing the information. However, the spatial aliasing based on the inter-microphone distances
destroys the recorded speech signals, and in the following, the performance of the speech enhancement
algorithms. Nested microphone array has the capability to eliminate the spatial aliasing [29]. In this
section, a uniform CNMA is proposed where by having a symmetrical shape, provides the same
probability for all speakers around the array, and the quality of the enhanced signals are not dependent
on the position of the speakers. Additionally, its small structure helps to be applicable in most of the
conditions in comparison with other big arrays. Figure 1 shows the block diagram of the proposed
speech enhancement algorithm, where the NMA part with its analysis filters and down-sampler blocks
are shown in the left side.
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Figure 1. The block diagram of the proposed circular nested microphone array in combination with the
sub-band affine projection algorithm (CNMA-SBAPA) for the speech enhancement.

The speech signal has a frequency range of [0–8000] Hz with a sampling frequency Fs = 16, 000 Hz.
The proposed CNMA is designed for the frequency range [50–7800] Hz, which covers the wideband
speech spectrum. The CNMA is structured by four subarrays. The first subarray is designed for
the range B1 = [3900–7800] Hz, of central frequency fc1 = 5850 Hz. The inter-microphone distance
(dlim) should be dlim < λ/2(λ is the wavelength of the highest frequency component in the related
sub-band) to avoid the spatial aliasing, this is dlim(1) < 2.2 cm for the first subarray. The second subarray
covers the frequency range B2 = [1950–3900] Hz with a central frequency of fc2 = 2925 Hz, therefore
dlim(2) = 2d1 < 4.4 cm. The third subarray is defined for the frequency range B3 = [975–1950] Hz
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with a central frequency of fc3 = 1462 Hz and dlim(3) = 4d1 < 8.8 cm. Finally, the forth subarray is
designed for the frequency range B4 = [50–975] Hz with a central frequency of fc4 = 512 Hz and the
inter-microphone distance is dlim(4) = 8d1 < 17.6 cm. For a more complexity system, a higher number
of microphones could be considered to design a larger nested microphone array. Table 1 shows the
summarized information to design the uniform CNMA.

Table 1. The information to design the proposed uniform CNMA.

Band Bandwidth Analysis Filter Bank fc dlim

1 B1 = [3900–7800] Hz

B1,1 = [6825–7800] Hz
B1,2=[5850–6825] Hz

B1,3 = [4875–5850] Hz
B1,4 = [3900–4875] Hz

5850 Hz <2.2 cm

2 B2 = [1950–3900] Hz B2,1 = [2925–3900] Hz
B2,2 = [1950–2925] Hz 2925 Hz <4.4 cm

3 B3 = [975–1950] Hz B3,1 = [1425–1950] Hz
B3,2 = [975–1425] Hz 1462 Hz <8.8 cm

4 B4 = [50–975] Hz B4,1 = [512–975] Hz
B4,2 = [50–512] Hz 512 Hz <17.6 cm

The microphone array was structured to have the closest microphone distances as dsim(1) = 2.2 cm
(for the simulated data) based on the designed CNMA. Therefore, the first subarray included the
microphone pairs {1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,7}, {7,8}, and {8,1}. The microphone pairs {1,3}, {3,5},
{5,7}, {7,1}, {2,4}, {4,6}, {6,8}, and {8,1} were selected for the second subarray with an inter-microphone
distance of dsim(2) = 4.2 cm. The third subarray has the inter-microphone distance of dsim(3) = 5.6 cm.
Then, the microphone pairs {1,4}, {2,5}, {3,6}, {4,7}, {5,8}, {6,1}, {7,2}, and {8,3} wereconsidered for this
subarray. For the last subarray, the inter-microphone distance is dsim(4) = 6 cm and the microphone
pairs {1,5}, {2,6}, {3,7}, and {4,8} were selected for the implementation. Given our actual microphone
array, the minimum inter-microphone distance that we could have was 2.7 cm (for the real data).
For this reason, we did two evaluations, one for simulated data with dsim(1) = 2.2 cm, as dictated by the
theory, and one for real data with dreal(1) = 2.7 cm, to match our hardware. All subarrays are shown in
Figure 2, which shows the designed CNMA with its small shape.
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Figure 2. The proposed uniform CNMA and allocated microphones for each subarray.

Each subarray needs an analysis filter bank to avoid the spatial aliasing and imaging. Figure 1
(left and right sides) shows the analysis and synthesis filter banks along with the up-sampler and
down-sampler blocks. The multirate sampling by the use of up-samplers and down-samplers is
implemented to provide the frequency bands. As shown in Figure 3a, the analysis filter bank Hi(z) and
down-sampler Di are realized as a multi-level tree structure. Each stage of the tree requires a high-pass
filter (HPF) HPi(z), a low-pass filter (LPF) LPi(z), and a down-sampler Di (for the analysis filter bank)
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or up-sampler Di (for the synthesis filter bank). The relation between the analysis filter bank Hi(z), the
LPFs, and HPFs in the tree structure is expressed as:

H1(z) = HP1(z)
H2(z) = LP1(z)HP2(z2)

H3(z) = LP1(z)LP2(z2)HP3(z4)

H4(z) = LP1(z)LP2(z2)LP3(z4).

(3)
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Figure 3. The tree structure for (a) analysis and (b) synthesis filters in CNMA.

The synthesis filters Gi(z) are the mirror image of analysis filters Hi(z), which are implemented
by the tree structure as seen in Figure 3b.

In each level of the tree, a 52-tap finite impulse response (FIR) LPF and HPF are implemented by
the Remez method. The parallel filters have a stop-band attenuation of 50 dB and a transition band
0.0575. Figure 4 shows the frequency response for the analysis filter banks.
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3. The Proposed Multiresolution Sub-band-APA for the Speech Enhancement

Speech is a wideband and non-stationary signal, where each frequency band has different
information. This feature for the speech signal provides the conditions to evaluate the speech spectrum
components by considering different frequency resolution. For example, speech information is
condensed at the lower part of the spectrum. Therefore, the accuracy of the speech enhancement
algorithm is increased by a focus to low frequency components. In this article, a specific sub-band
processing along with a filter bank was proposed for paying more attention to lower frequencies by
the use of filters with narrower bandwidths. Table 2 shows the information to design and implement
this analysis filter bank. There is still not any certain rule for selecting the number of frequency bands.
Of course, by having narrower band filters in low frequencies, we have more frequency resolution, but
the concern is the computational complexity. In other hands, adding each more filter means entering
more microphone pairs and more calculations. Based on the experiments, this number of frequency
bands prepares enough performance and acceptable level of complexity.

Table 2. The required information to design the analysis filter bank for sub-band processing in the
proposed CNMA-SBAPA algorithm.

Filters Bandwidth (Hz) fmin (Hz) fmax (Hz) Filter Length (Samples)

F1[n] 462 50 512 93
F2[n] 462 512 975 115
F3[n] 450 975 1425 102
F4[n] 525 1425 1950 124
F5[n] 975 1950 2925 109
F6[n] 975 2925 3900 118
F7[n] 975 3900 4875 131
F8[n] 975 4875 5850 140
F9[n] 975 5850 6825 146
F10[n] 975 6825 7800 151

As seen, the filter bandwidth is smaller in low frequencies in comparison with high frequencies.
This property increases the frequency resolution for low frequencies. The most important benefit
in sub-band processing is the noise estimation from the silent part of the speech signal in each
sub-band. Since in the proposed denoising method, the noise estimation is required as an input for
the enhancement algorithm. Therefore, the more accurate and stationary noise estimation is obtained
by sub-band processing of the speech signal, which increases the denoising algorithm performance.
If xm[n] is considered as an input signal for the m-th microphone, the analysis filter output for the
CNMA is expressed as:

xm,i[n] = xm[n] ∗ hi[n] where {m = 1, . . . , 8 and i = 1, . . . , 4}, (4)

where xm,i[n] is the analysis filter output and hi[n] is the impulse response for this filter. Therefore, the
spatial aliasing is eliminated from each microphone pairs of CNMA by the use of analysis filters, which
are designed specifically for each subarray. In the following, the microphone signals are entered to the
proposed analysis filter bank for the sub-band processing. As shown in Table 2, each microphone signal
is divided into 10 sub-bands. These numbers of sub-bands were selected based on our experiments
in order to provide a proper efficiency and with low computational complexity, by preparing a high
frequency resolution in low frequencies. Therefore, the output of the proposed analysis filter bank is
expressed as:

ym,i, j[n] = xm,i[n] ∗ F j[n] where
{
j = 1, . . . , 10 , i = 1, . . . , 4 , m = 1, . . . , 8

}
, (5)
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where F j[n] is the impulse response for each sub-band filter in the analysis filter bank and ym,i, j[n]
is the output of the analysis filter bank for the j-th sub-bands and m-th microphone. The signals
ym,i, j[n] are the sub-band microphone signals for the proposed sub-band-APA algorithm. In the
following, the sub-band-APA (SBAPA) algorithm along with the circular nested microphone array
(CNMA-SBAPA) is proposed for the speech enhancement. Adaptive filters as an important tool in
digital signal processing have been utilized for many years in such application as: speech signal
enhancement, system identification, localization and tracking, etc. In adaptive filters, the coefficients
change periodically to be adapted based on the time varying features of the noise, and this property
increases the performance of the denoising system in comparison with normal methods. In addition,
these filters are non-linear and homogeneous since their features are dependent on the input signal.
The adaptive filters have the following advantages: low delay and better tracking in non-stationary
conditions [30]. These advantages are very important in dereverberation, denoising, time delay
estimation, channel equalization, and speaker tracking applications. In these applications, low delay
and robustness against of non-stationary noisy and reverberant conditions are important parameters
to improve the performance of the proposed systems. The existence of the reference signal, which is
hidden in the filter coefficient estimations, defines the system performance. Figure 5 shows the general
structure of the adaptive filter in denoising applications.
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We change the notation for input signal in adaptive filter (ym,i, j[n]) to y[n] for simplifying the
mathematical expressions. An adaptive filter is expressed as follows [31]:

z[n] = wL[n] ∗ y[n], (6)

where n is the time index, z[n] is the adaptive filter output, and wL[n] is the adaptive filter coefficients
with length L. The update algorithm in Figure 5 is considered as a principal part for an adaptive filter,
which is the APA in this article. The main idea for an adaptive filter is to minimize the error signal e[n]
to make the output of the filter as similar as the desired signal.

The input signal y[n] for the adaptive filter is considered as the summation of the noise (v[n]) and
desired signal (d[n]), which is described as:

y[n] = d[n] + v[n]. (7)

The adaptive filter has a FIR structure, namely the filter is designed based on the limited number
of coefficients in the time domain. For a filter with order of L, the filter coefficients are defined as:

wL[n] = [w[0], w[1], . . . , w[L− 1]]. (8)
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The error signal or cost function is defined as the difference between estimated and desired
signal, namely:

e[n] = d[n] − z[n]. (9)

As shown in Equation (6), the output of the adaptive filter z[n] is defined as the convolution
between the filter coefficients wL[n] and the input signal y[n], where y[n] is considered as the input of
the adaptive filter, namely:

y[n] = [y[n], y[n− 1], . . . , y[n− L]]. (10)

In addition, the adaptive filter coefficients change during the time, which is written as:

wL[n] = wL[n− 1] + ∆wL[n], (11)

where ∆wL[n] is defined as the correction factor for the filter coefficients. The adaptive filter produces
the correction factor based on the input and error signal. In Figure 5, several algorithms can be
considered for updating the filter coefficients. The APA is one of the fastest and most efficient methods
for this purpose. The AP algorithms were introduced to improve the speed of convergence in the
gradient-based algorithms, especially when the input signal has a non-stationary spectrum. It is because
the speed of convergence is decreased in the case of non-stationary and constraint spectrums [30].

Filter update equation is one of the most important features in the AP algorithms, which uses N
vectors of the input data to update the filter coefficients instead of using one vector of the input data,
i.e., the normalized least mean square (NLMS). Therefore, more information was considered in the
time for accurately updating the filter coefficients. Thus, the AP algorithm is known as an improved
and extended version of the NLMS method or it can be expressed mathematically as a constraints
minimization problem, which is expressed as follows.

The variation for L filter coefficients during the two consecutive times is given by:

∆wL[n] = wL[n] −wL[n− 1]. (12)

We minimized Equation (13) under N constraints, which are shown in Equation (14) to extend the
adaptive filter algorithm.

‖∆wL[n]‖
2 = ∆wT

L
[n]∆wL[n], (13)

where N constraints are defined as follows:

wT
L
[n]y[n− k] = d[n− k] f or k = 0, . . . , N − 1, (14)

where y[n− k] is the vector of N last sample from the input signal and d[n] is the desired signal, see
Figure 5. The proposed solution formulates the update algorithm for AP, which is expressed as:

wL[n]= wL[n− 1] + AT[n]
(
A[n]AT[n]

)−1
eN[n], (15)

where:
A[n] = (yL[n], yL[n− 1], yL[n− 2], . . . , yL[n−N + 1])T, (16)

and eN[n] is a vector of size N × 1, which is written as:

eN[n] = dN[n] −A[n]wL[n− 1]. (17)

The vector dN[n] is the desired signal with size N × 1, namely:

dN[n] = (d[n], d[n− 1], . . . , d[n−N + 1])T. (18)
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The general format for AP algorithm is obtained by rewriting Equation (15) as:

wL[n]= wL[n− 1− α(N − 1)] + µAT
τ [n]

(
Aτ[n]AT

τ [n] + δI
)−1

eNτ[n]. (19)

If eNτ[n] is considered as eNτ[n] = dNτ[n] −AτwL[n− 1− α(N − 1)], then:

Aτ[n] = (yL[n], yL[n− τ], . . . , yL[n− (N − 1)τ])T, (20)

and the signal dNτ[n] is expressed as:

dT
Nτ
[n] = (d[n], d[n− τ], . . . , d[n− (N − 1)τ]). (21)

As shown in Equation (19), the N required vectors to update the adaptive filter are not necessarily
to be the last data vectors. Therefore, several versions of AP algorithms are defined based on the
way to select the input data and parameters in Equation (19). There are some developed algorithms
based on these parameters selections such as: the NLMS along with the orthogonal correction factor
(OCF-NLMS) [32], the partial rank affine projection algorithm (PRAPA) [33], and the standard APA [34]
whose parameters are α = 0, δ = 0, τ = 1. If δ parameter differs to 0, the APA algorithm is extended to
APA with regularization (R-APA) [35], where the update equation for the filter coefficients is a specific
case of the Levenberg Marquardt regularized APA (LMR-APA) algorithm [36].

The introduced AP algorithm contains one input signal. Since pairs of microphones are used
in the proposed CNMA, the AP algorithm is generalized to a two-microphone version [37]. Firstly,
the generalization of a two-microphone structure is defined, where each microphone contains the
mixing speech and noise signal, which is expressed as (see Figure 6a):

qm[n] =
2∑

i=1

L−1∑
r=1

pim[r]si[n− r] , m = 1, 2, (22)

where si[n] represents the source signals, qm[n] is the microphone signals, L is the impulse response
length, and pim[r] are the impulse responses between the microphone and sources. These impulse
responses are considered as linear time-invariant (LTI) systems. Two source signals si[n] are selected
as the speech signal s[n] and noise signal b[n]. It is assumed that the speech and noise signals are
independent, which means E

{
s[n]b[n−m]

}
= 0, ∀m, where E denotes to expected value. Then, the noise

and speech signals are uncorrelated. Based on the general structure, which is shown in Figure 6a,
the microphone signals q1[n] and q2[n] are expressed as follows:

q1[n] = s[n] ∗ p11 + b[n] ∗ p21, (23)

q2[n] = s[n] ∗ p12 + b[n] ∗ p22. (24)
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In addition, p11 and p22 represent the impulse responses for direct path, and p12 and p21 are
cross-coupling for the channels between the sources and microphones. The presented model is
simplified by considering p11 = p22 = δ[n], which is shown in Figure 6b as:

q1[n] = s[n] + b[n] ∗ p21, (25)

q2[n] = s[n] ∗ p12 + b[n]. (26)

Therefore, the microphone signals are generated based on the impulse responses between the
source and microphones, noise, and speech signals. The structure in Figure 6c was proposed to retrieve
the source signal from the received noisy signals q1[n] and q2[n]. The proposed structure provides the
conditions to retrieve the original signal by the use of adaptive filters p11 and p22. The signals u1[n]
and u2[n] for the two-microphone structure are defined as follows:

u1[n] = q1[n] − q2[n] ∗w21[n], (27)

u2[n] = q2[n] − q1[n] ∗w12[n], (28)

where in Equations (27) and (28), w12[n] and w21[n] are the adaptive filters for eliminating the noise
of microphone signal q1[n] and the speech of microphone signal q2[n], respectively. Signals u1[n] and
u2[n] are rewritten by replacing Equations (25) and (26) to Equations (27) and (28) as:

u1[n] = s[n] ∗ [δ[n] − p12 ∗ p21] + b[n] ∗ [p21 −w21[n]], (29)

u2[n] = b[n] ∗ [δ[n] − p21 ∗ p12] + s[n] ∗ [p12 −w12[n]]. (30)

Two adaptive filters w12[n] and w21[n] are required to retrieve the original speech signal from
the noisy signals u1[n] and u2[n]. There is just a unique structure for adaptive filters w12[n] and
w21[n] as w12[n] = p12 and w21[n] = p21 to retrieve the enhanced speech of noisy signals u1[n] and
u2[n]. This structure requires a VAD for preparing the noise estimation from the silent part of the
recorded signals.

The AP algorithm is generalized to a two-microphone structure based on the obtained Equation (19)
for updating the filter coefficients. The AP algorithm is the generalized version of the two-microphone
NLMS [38], which is shown in Figure 6c for adaptive speech enhancement algorithm. Therefore, the
adaptive filter coefficients w12[n] and w21[n] for two-microphone APA are expressed as:

w12[n] = w12[n− 1] +
µ12

q1[n]q1[n]
T + δI

q1[n]u2[n], (31)

w21[n] = w21[n− 1] +
µ21

q2[n]q2[n]
T + δI

q2[n]u1[n], (32)

where q1[n] and q2[n] are defined as q1[n] = [q1[n], q1[n− 1], . . . , q1[n−N + 1]] and q2[n] =

[q2[n], q2[n− 1], . . . , q2[n−N + 1]]. The matrices of the two-microphone signals q1[n] and q2[n] have
dimensions L×N, where L is the adaptive filter length and N is the projection order. The two parameters
µ12 and µ21 are the step sizes, which control the convergence of adaptive filters w12[n] and w21[n].
These parameters should be selected in the range [0,2] to assure the convergence of AP algorithm. If N
is selected as 1, the AP algorithm is converted to the NLMS method.

The proposed sub-band APA not only increased the accuracy of the speech enhancement algorithm,
but also the speed of convergence was improved (Table 6 in the results section) in the implementations
because the noise was estimated separately for each sub-band and it was stationary on narrow
bandwidths. Then, the SBAPA was implemented on generated sub-bands by the analysis filters in
Figure 3. As shown in Figure 1, a symmetrical synthesis filter bank and synthesis filters related to
the nested microphone array were implemented for the reconstruction the final enhanced signal.
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The synthesis filters as similar as the analysis filters were implemented based on the tree structure in
Figure 3b. Finally, all sub-band signals were summed to generate the final enhanced signal. In the next
section, the performance of the proposed CNMA-SBAPA was compared with other previous works.

4. Results and Discussion

The experiments in order to evaluate the performance of the proposed method were implemented
on the real and simulated data. The TIMIT dataset was considered for the simulated data, where the
data collection MDAB0 by four continuous sentences SX139, SX229, SX319, and SX409 were selected as
a male speaker in the simulations [39]. This dataset includes short sentences for testing and training
the algorithms. The tones and frequency components are two different parameters in the speech signal.
There are pitch and speech spectrum components for the speakers. It is important to work with male
or female signals for the algorithms, which works with the pitch parameter. Since this parameter
changes highly based on the gender. Since we consider the speech spectrum, then the issue to use
the male or female speakers does not change the results. Therefore, 12.5 s male-speech signal is used
for implementations and experiments. A voice activity detector is implemented to detect the silence
part of the speech signal [40], and the noise spectrum is estimated of these parts for the proposed
SBAPA. Figure 7 shows the simulated room with the location of speakers and microphone array.
The inter-microphone distances dsim = 2.2 cm for the simulated data was selected based on the designed
array. A speaker and a steered noise source were considered in the simulations. The room dimensions,
speaker, and noise source locations were selected as 475,592,420cm, 374,146,110cm, and 362,412,120cm,
respectively. These dimensions and locations were considered the same as the real room recording
conditions. In addition, the proposed algorithm was implemented on real data to evaluate the real
effect of the noise and reverberation on the performance. For this purpose, the real speech signal was
recorded in the speech processing laboratory at Fondazione Bruno Kessler (FBK), Trento, Italy. Figure 8
shows a view of the recording room at FBK. Two electronic speakers were used instead of the human
and noise source in the process of data recording. In addition, Figure 8 shows the position of the circular
NMA in the center of the room. We were able to consider the minimum inter-microphone distance in
the real conditions with our setup (see Figure 8) as dreal = 2.7 cm because of the microphone dimension,
electronic board, and the microphone shield. Additionally, each microphone had a cross section, where
in the real conditions it was about 0.7 cm. It means it is hard to measure the exact distance between
two microphones and it has some errors. Since all cross sections in a microphone are areas for a sound
recording, then, based on all limitations, we were forced to have this inter-microphone distance for
real data implementation even with a few millimeters difference with the mathematical calculations.
Therefore, the differences in the results of our proposed method for the real and simulated data were
for this an issue. In the real condition, there are always some inaccuracy factors for the measurements.
We found the center of the room and the microphones were located on the table based on the primary
measurements. All microphones were connected to the sound recording system, which uses parallel
acquisition for all microphone channels. All channel acquisitions were synchronized and there was
not any delay between recorded signals in different microphones or channels. The phase error based
on the recording condition was very low and was even close to zero based on the audio recording
system. In the real room, the table did not make any direct reflection. All the reflected waves from the
table will cross to the walls and ceiling firstly, and since all of them were covered with curtains and
sound absorption panels, the indirect reflections to the microphones were very few. Both speakers
were connected to the two computers for playing the speech and noise with a sampling frequency
of Fs = 16, 000 Hz. The microphone, sound, and noise sources were selected in the simulations with
exactly the same real conditions for the results to be comparable in these two conditions. Figure 9
shows the time-domain and spectrum of the male speech signal.
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Figure 9. The time-domain and spectrum for the male speech signal.

The reverberation effect was considered in the experiments to provide the simulation conditions
similar to the real scenarios. The image model was implemented in the simulations to produce
the reverberation effect similar to the real conditions [41]. The image model produced the room
impulse response between the source and microphone by considering the speaker position, microphone
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location, sampling frequency, room dimension, room reflection coefficients, impulse response length,
and reverberation time. The received signal to the microphone was simulated by the convolution
between the generated impulse response by the image method and the source signal. The impulse
response was generated for the noise and speech sources because both receive the same effect of the
room reverberation. In addition, noise was additive with the speech signal in the microphone positions.
The room reverberation time was selected as RT60 = 350 ms, which was considered for a room with a
low level of reverberation to be the same as the real conditions. To generate the noisy signal, five types
of noise were considered for the simulated and real data such as white noise, babble noise, train noise,
car noise, and restaurant noise. Figure 10 shows the time-domain and spectrum for these noisy signals
according to a SNR = 0 dB. The noise signal duration was 12.5 s, the same as the speech signal.
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The Hamming window with a length of 30 ms was selected for signal blocking to keep the
stationarity of the signal in the short time. The projection order was considered as N = 4 to keep the
computational complexity in an acceptable range in addition to a proper accuracy of the algorithm.
Additionally, the step sizes were chosen as µ12 = 1 and µ21 = 1 to provide the fast convergence for the
proposed SBAPA in the real-time implementations. The evaluations in this article were implemented
by the use of MATLAB software version 2019b on a PC with processor Inter Core i7-7700k, 4.20 GHz,
and with 32GB RAM to be able to implement the proposed algorithm in the real-time conditions.

The proposed SBAPA in combination with a proposed circular nested microphone array
(CNMA-SBAPA) was compared with the LMS [20], traditional APA [31], RLS [21], DB-MWF [9],
and MNMF-MVDR [24] algorithms. These methods were compared because all of them are based on
the adaptive filters and multi-channel beamforming as a main category for comparison. There are
many methods for comparison with the proposed algorithm but the comparison should be based on
the common theme in implementations. Therefore, the adaptive filter-based algorithms were selected
for this comparison. The qualitative and quantitative criteria were considered to show the superiority
of the proposed method in comparison with other previous works. For this purpose, the SegSNR [7],
PESQ [4], MOS [5], and STOI [6] criteria were selected for the comparison. The SegSNR is a quantitative
criterion, which shows the improvement in the enhanced signal due to the percentage of the noise
power elimination from the noisy signal, namely:

SegSNR(dB) =
1
R

R∑
i=o

10 log10


Q−1∑
j=0

∣∣∣S j[n]
∣∣∣2

Q−1∑
j=0

∣∣∣S j[n] −Z j[n]
∣∣∣2 VADi

 (33)

where S[n] and Z[n] are the clean and enhanced speech signals, respectively. The variable Q is the
mean averaging value of the SNR for the output signal. The variable R is the number of only-speech
frames and VAD is a speech detector, which is 1 for only-speech frames and 0 for only-noise frames.
Therefore, the SegSNR is appropriate to show the speech enhancement performance. Many of the
speech enhancement algorithms eliminate some part of the speech signals in addition to the noise
frames, which decreases the speech perception for the enhanced signals. Then, three well-known
qualitative criteria are considered in the evaluations. The first one is the PESQ, which is defined based
on the standard ITU-T P.862 for qualitative evaluations of speech signals in mobile stations [4,42].
In fact, the PESQ criteria is used in the numerical representation of qualitative evaluations for enhanced
speech signals. The defined range for this criteria is [−0.5 4.5], where −0.5 and 4.5 show the lowest and
highest quality of the enhanced speech, respectively. Additionally, the results were compared with
the MOS score criteria. These are qualitative criteria in telecommunication systems that represent the
clarity, perception, and intelligibility of the enhanced signal. The MOS criteria are defined based on the
standard ITU-T P.800 [5,43] in telecommunication systems. The evaluation results based on the MOS
criteria was implemented by the use of some volunteers, by listening to the enhanced signal, where 1
and 5 are the lowest and highest scores in this criteria, respectively. Table 3 shows the defined scores
for the MOS criteria in the evaluations.

Table 3. The numerical scores for the mean opinion score (MOS) criteria in the evaluation process.

Rating Quality (Standard ITU-T P.800) Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying
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Finally, the last qualitative criteria for evaluations is the STOI. This criteria predicts the intelligibility
of humans based on a series of cases. The speech intelligibility measurement is based on the existence of
a series of pre-assumptions, but if the noisy signal is processed based on the time-frequency weighting,
the final results are not trustable. The STOI is an objective intelligibility measurement, which represents
the highest convolution value by the intelligibility of both noisy and weighted time-frequency noisy
signals. In addition, the lowest and highest scores for the STOI criteria are 0 and 1, which represent the
best and the worst enhancement performance, respectively.

Firstly, the proposed method was evaluated on the white noise and then, the other colored
noise were considered in the experiments. The proposed CNMA-SBAPA was evaluated on real and
simulated data in comparison with the LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR
algorithms. Figure 11 shows the time-domain and spectrum for the noisy and enhanced signals in the
presence of white noise for SNR = 0 dB. As seen in these figures, the proposed CNMA-SBAPA method
decreased more level of the noise with less distortion in comparison with other works. However,
the numerical values are necessary for comparison. In the following, the experiments were evaluated
with quantitative and qualitative criteria.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 30 

measurement, which represents the highest convolution value by the intelligibility of both noisy and 
weighted time-frequency noisy signals. In addition, the lowest and highest scores for the STOI criteria 
are 0 and 1, which represent the best and the worst enhancement performance, respectively. 

Firstly, the proposed method was evaluated on the white noise and then, the other colored noise 
were considered in the experiments. The proposed CNMA-SBAPA was evaluated on real and 
simulated data in comparison with the LMS, traditional APA, RLS,DB-MWF, and MNMF-MVDR 
algorithms. Figure 11 shows the time-domain and spectrum for the noisy and enhanced signals in the 
presence of white noise for SNR=0dB. As seen in these figures, the proposed CNMA-SBAPA method 
decreased more level of the noise with less distortion in comparison with other works. However, the 
numerical values are necessary for comparison. In the following, the experiments were evaluated 
with quantitative and qualitative criteria. 

(a) 

 
(b) 

Figure 11. Cont.



Appl. Sci. 2020, 10, 3955 19 of 29
Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 30 

 
(c) 

 
(d) 

 
(e) 

Figure 11. Cont.



Appl. Sci. 2020, 10, 3955 20 of 29
Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 30 

 
(f) 

 
(g) 

Figure 11. The time-domain and spectrum representation for (a) white noisy signal and enhanced 
signal by the (b) least mean square (LMS), (c) APA, (d) recursive least square (RLS), (e)distributed 
multichannel Wiener filter (DB-MWF), (f) multichannel nonnegative matrix factorization-minimum 
variance distortionless response (MNMF-MVDR), and (g) proposed CNMA-SBAPA for SNR=0dB. 

In the following, the proposed method was compared by numerical criteria with other previous 
works. Figure 12 shows the SegSNR results in SNRs [−10,−5,0,5,10, and 15]dB for the proposed 
CNMA-SBAPA in comparison with the LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR 
for real and simulated data in the presence of white noise. As seen, the proposed method had a 
superior performance in different ranges of SNRs in comparison with the rest of the works, namely 
a better noise elimination was reached via the proposed algorithm. For example, the proposed 
method enhanced the noisy speech signal with SNR=-10dB to SegSNR=1.35dB in comparison with 
SegSNR= −4.58dB in LMS, SegSNR= −3.21dB in APA, SegSNR= −1.57dB in RLS, SegSNR= −1.68dB in 
DB-MWF, and SegSNR= −0.94dB in MNMF-MVDR. Nevertheless, the quantitative criteria are not 
enough to properly evaluate a method, and both quantitative and qualitative criteria should be 
considered in the evaluations. 

Figure 11. The time-domain and spectrum representation for (a) white noisy signal and enhanced
signal by the (b) least mean square (LMS), (c) APA, (d) recursive least square (RLS), (e)distributed
multichannel Wiener filter (DB-MWF), (f) multichannel nonnegative matrix factorization-minimum
variance distortionless response (MNMF-MVDR), and (g) proposed CNMA-SBAPA for SNR = 0 dB.

In the following, the proposed method was compared by numerical criteria with other previous
works. Figure 12 shows the SegSNR results in SNRs [−10, −5, 0, 5, 10, and 15] dB for the proposed
CNMA-SBAPA in comparison with the LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR for
real and simulated data in the presence of white noise. As seen, the proposed method had a superior
performance in different ranges of SNRs in comparison with the rest of the works, namely a better noise
elimination was reached via the proposed algorithm. For example, the proposed method enhanced the
noisy speech signal with SNR = −10 dB to SegSNR = 1.35 dB in comparison with SegSNR = −4.58 dB
in LMS, SegSNR = −3.21 dB in APA, SegSNR = −1.57 dB in RLS, SegSNR = −1.68 dB in DB-MWF,
and SegSNR = −0.94 dB in MNMF-MVDR. Nevertheless, the quantitative criteria are not enough to
properly evaluate a method, and both quantitative and qualitative criteria should be considered in
the evaluations.
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Figure 12. The segmental signal-to-noise ratio (SegSNR) comparison between the proposed
CNMA-SBAPA, LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR methods on (a) simulated
and (b) real data for white noise.

In addition, the proposed method was compared with previous works by qualitative criteria
such as the PESQ, MOS, and STOI. We used 20 volunteers, where they listened first to the clean
signal by the headset to have an idea of an excellent signal with a rating of 5 in the MOS scale and
a noisy signal (before enhancement), which is the worst option in the MOS scale with a rating of 1.
Then, the enhanced signal in a different range of SNRs were played for them, and they were asked to
select a rate between 1 and 5 based on the Table 3. Figure 13 shows the PESQ, STOI, and averaged
MOS criteria for the enhanced signal by the proposed method in comparison with previous works
on real and simulated data for different ranges of SNRs in the presence of white noise. As seen, the
proposed method had the best performance in comparison with previous works. For example, the
PESQ score was 3.41 in the proposed method in comparison to 1.82 in LMS, 2.51 in APA, 2.73 in RLS,
2.93 in DB-MWF, and 3.1 in MNMF-MVDR, for SNR = 15 dB for simulated data. In addition, the
STOI criteria was 0.89 in the proposed method in comparison to 0.73 in LMS, 0.77 in APA, 0.81 in RLS,
0.83 in DB-MWF, and 0.85 in MNMF-MVDR, for SNR = 15 dB. The other criteria for comparison was
the average MOS rate, which was 3.5 in the proposed method in comparison to 2.5 in LMS, 2.7 in
APA, 2.9 in RLS, 3.0 in DB-MWF, and 3.0 in MNMF-MVDR, for SNR = 15 dB. Therefore, the proposed
method was superior for enhancing the noisy signals by considering both quantitative (Figure 12)
and qualitative (Figure 13) criteria in comparison to previous works in the presence of white noise.
In addition, the proposed method was implemented on colored noises to show the reliability of the
results. For this purpose, the proposed method was evaluated on babble, train, car, and restaurant
noises for the real and simulated data and for SNR ranges [−10, −5, 0, 5, 10, and 15] dB. Tables 4 and 5
show the results on the simulated and real data, respectively. As seen from the numbers in these tables,
the proposed method had better results in most cases in comparison with traditional methods, which
present the reliability of the proposed method in colored noisy conditions. Some of the methods had
slightly better results in specific cases, for example in SNR = 15 dB, which cannot be generalized to all
cases. In addition, the SegSNR values are shown in these tables to present better comparison with
qualitative criteria.

Finally, Table 6 presents the speed of convergence for the proposed method in comparison with
other previous works for all white and colored noises in seconds (the required time for convergence
based on the configuration of the used PC) on the real data. As shown, the proposed method has
a higher speed of convergence in comparison with other algorithms. The main reason for this high
speed of convergence is the sub-band processing, because this multiresolution processing provides
stationary noise in each frequency band, which is an important factor in the speed of convergence.
When the noise is closer to stationary conditions, the speed of convergence is increased in adaptive
filter-based algorithms. As clearly shown in this table, the speed of convergence in white noisy
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conditions was higher than the colored noisy scenarios. Therefore, the proposed CNMA-SBAPA
method had superiority for the speech enhancement in comparison with LMS, traditional APA, RLS,
DB-MWF, and MNMF-MVDR algorithms based on the quantitative SegSNR and qualitative PESQ,
MOS, and STOI criteria, as well as the speed of convergence.
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Table 4. The comparison between PESQ, MOS, STOI, and SegSNR for the proposed CNMA-SBAPA in comparison with the LMS, traditional APA, RLS, DB-MWF, and
MNMF-MVDR methods on the simulated data for colored noises such as: train, babble, car, and restaurant noises in different range of SNRs (the bold numbers are the
best results).

SNR (dB) Methods
Babble Noise Train Noise Car Noise Restaurant Noise

SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS

LMS −5.23 0.34 0.44 1.10 −5.74 0.29 0.41 1.05 −6.25 0.25 0.36 1.05 −6.87 0.18 0.37 1.00
−10 APA −4.63 0.63 0.51 1.15 −5.15 0.56 0.47 1.10 −5.96 0.48 0.43 1.05 −6.08 0.52 0.39 1.10

RLS −2.91 0.86 0.58 1.45 −3.29 0.81 0.51 1.35 −3.98 0.74 0.48 1.30 −4.61 0.65 0.44 1.30
DB-MWF −2.48 0.92 0.57 1.55 −3.08 0.89 0.53 1.45 −3.46 0.78 0.50 1.45 −4.77 0.79 0.47 1.40

MNMF-MVDR −2.23 1.04 0.60 1.60 −2.83 0.96 0.56 1.50 −3.29 0.85 0.53 1.55 −4.29 0.84 0.48 1.45
CNMA-SBAPA −1.71 1.19 0.65 1.85 −2.09 1.16 0.63 1.70 −2.69 1.03 0.59 1.65 −3.14 0.99 0.56 1.60

LMS −2.66 0.48 0.53 1.50 −3.02 0.44 0.51 1.40 −3.59 0.39 0.46 1.35 −3.78 0.41 0.47 1.35
−5 APA −1.89 0.76 0.59 1.55 −2.13 0.68 0.56 1.45 −2.41 0.61 0.51 1.40 −3.26 0.65 0.54 1.4

RLS 0.57 0.91 0.65 1.75 −0.08 0.82 0.62 1.70 −1.14 0.79 0.58 1.60 −1.97 0.72 0.60 1.55
DB-MWF 1.18 0.98 0.67 1.90 0.81 0.94 0.62 1.80 −0.35 0.87 0.60 1.65 −0.29 0.93 0.59 1.70

MNMF-MVDR 1.97 1.13 0.68 1.95 1.36 1.06 0.65 1.95 0.87 1.03 0.61 1.75 0.96 0.98 0.61 1.70
CNMA-SBAPA 3.63 1.43 0.73 2.30 3.06 1.36 0.70 2.20 2.73 1.32 0.68 2.15 2.26 1.20 0.64 2.10

LMS 3.58 0.75 0.61 1.65 3.13 0.66 0.56 1.55 2.69 0.59 0.52 1.5 2.24 0.54 0.49 1.55
0 APA 4.07 1.14 0.63 1.8 3.75 1.05 0.61 1.70 3.21 0.99 0.57 1.65 3.56 0.93 0.55 1.65

RLS 4.12 1.53 0.71 2.05 3.98 1.47 0.66 1.95 3.67 1.41 0.64 1.9 3.92 1.36 0.62 1.85
DB-MWF 4.83 1.61 0.72 2.25 4.39 1.59 0.68 2.00 3.98 1.58 0.66 1.95 4.11 1.49 0.65 1.95

MNMF-MVDR 5.07 1.72 0.75 2.35 4.56 1.67 0.7 2.25 4.31 1.69 0.69 2.15 4.39 1.61 0.65 2.10
CNMA-SBAPA 5.40 2.04 0.78 2.85 5.13 1.98 0.75 2.70 4.95 1.91 0.73 2.65 4.78 1.84 0.75 2.55

LMS 8.59 1.22 0.67 1.75 8.46 1.14 0.64 1.70 8.25 1.09 0.60 1.7 8.17 1.01 0.57 1.65
5 APA 8.96 1.63 0.69 2.20 8.74 1.57 0.66 2.15 8.39 1.5 0.63 2.05 8.22 1.46 0.64 2.00

RLS 9.28 2.21 0.76 2.40 9.08 2.12 0.73 2.35 8.80 2.07 0.71 2.35 8.64 1.95 0.67 2.30
DB-MWF 9.56 2.32 0.75 2.60 9.32 2.08 0.71 2.60 9.12 2.19 0.70 2.40 8.82 2.07 0.66 2.45

MNMF-MVDR 10.12 2.44 0.78 2.75 9.66 2.34 0.75 2.70 9.54 2.31 0.72 2.60 9.25 2.24 0.68 2.50
CNMA-SBAPA 10.63 2.59 0.82 3.25 10.34 2.53 0.80 3.10 10.21 2.48 0.78 2.95 10.03 2.49 0.73 2.90

LMS 12.52 1.53 0.69 2.1 12.37 1.47 0.68 2.05 12.11 1.39 0.65 2.00 11.95 1.41 0.63 1.95
10 APA 12.86 2.2 0.73 2.55 12.62 2.13 0.70 2.45 12.43 2.07 0.65 2.40 12.27 2.08 0.66 2.45

RLS 13.47 2.45 0.78 2.70 13.28 2.39 0.75 2.6 12.86 2.33 0.71 2.55 12.54 2.38 0.70 2.50
DB-MWF 13.21 2.53 0.78 2.80 13.31 2.48 0.77 2.75 12.75 2.25 0.73 2.65 12.56 2.49 0.72 2.55

MNMF-MVDR 13.52 2.67 0.79 2.95 13.43 2.61 0.78 2.85 12.98 2.46 0.76 2.70 12.71 2.65 0.75 2.65
CNMA-SBAPA 14.02 3.08 0.83 3.20 13.59 2.96 0.82 3.10 13.28 2.87 0.79 3.05 13.09 2.92 0.79 2.95

LMS 15.12 1.76 0.72 2.45 15.09 1.69 0.72 2.35 15.13 1.64 0.69 2.30 15.4 1.68 0.7 2.25
APA 15.55 2.44 0.76 2.65 15.48 2.37 0.75 2.55 15.35 2.28 0.76 2.50 15.32 2.25 0.74 2.45

15 RLS 15.74 2.61 0.81 2.85 15.56 2.58 0.79 2.75 15.35 2.51 0.80 2.65 15.48 2.40 0.79 2.65
DB-MWF 15.52 2.99 0.83 3.00 15.38 2.83 0.76 2.90 15.24 2.72 0.79 2.75 15.52 2.71 0.80 2.80

MNMF-MVDR 15.63 3.03 0.84 3.10 15.42 2.96 0.78 3.05 15.42 2.93 0.81 2.90 15.45 2.80 0.83 2.85
CNMA-SBAPA 15.71 3.31 0.89 3.35 15.52 3.22 0.84 3.30 15.69 3.24 0.80 3.25 15.44 3.19 0.82 3.20
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Table 5. The comparison between PESQ, MOS, STOI, and SegSNR for the proposed CNMA-SBAPA in comparison with the LMS, traditional APA, RLS, DB-MWF, and
MNMF-MVDR methods on the real data for colored noises such as: train, babble, car, and restaurant noises in different range of SNRs (the bold numbers are the
best results).

SNR (dB) Methods
Babble Noise Train Noise Car Noise Restaurant Noise

SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS SegSNR PESQ STOI MOS

LMS −5.56 0.32 0.41 1.00 −5.82 0.25 0.39 1.00 −6.46 0.18 0.36 1.00 −6.92 0.14 0.35 1.00
−10 APA −4.82 0.61 0.47 1.10 −5.42 0.55 0.46 1.15 −5.83 0.51 0.42 1.10 −6.21 0.48 0.39 1.05

RLS −3.04 0.82 0.52 1.35 −3.87 0.74 0.51 1.30 −4.52 0.71 0.49 1.20 −4.86 0.64 0.45 1.15
DB-MWF −2.98 0.86 0.55 1.40 −3.43 0.76 0.53 1.35 −4.13 0.75 0.50 1.30 −4.51 0.67 0.45 1.25

MNMF-MVDR −2.54 0.93 0.57 1.50 −3.01 0.83 0.52 1.45 −3.81 0.80 0.51 1.35 −4.09 0.75 0.47 1.30
CNMA-SBAPA −2.21 1.08 0.58 1.65 −2.67 1.01 0.56 1.50 −3.14 0.96 0.53 1.45 −3.46 0.92 0.53 1.40

LMS −2.83 0.46 0.50 1.45 −3.2 0.44 0.48 1.40 −3.54 0.41 0.47 1.30 −3.92 0.38 0.43 1.25
−5 APA −2.04 0.72 0.55 1.50 −2.57 0.68 0.53 1.45 −3.09 0.64 0.52 1.45 −3.47 0.61 0.49 1.35

RLS 0.14 0.88 0.62 1.60 −0.52 0.82 0.61 1.55 −1.45 0.74 0.58 1.50 −1.88 0.69 0.54 1.50
DB-MWF 0.93 0.91 0.64 1.75 0.12 0.85 0.64 1.65 −0.78 0.79 0.60 1.60 −1.57 0.73 0.56 1.65

MNMF-MVDR 1.53 1.02 0.67 1.90 0.84 0.97 0.65 1.70 0.21 0.93 0.59 1.75 −0.84 0.88 0.59 1.75
CNMA-SBAPA 3.29 1.29 0.70 2.10 2.76 1.21 0.67 2.05 2.25 1.16 0.64 1.95 1.76 1.11 0.61 1.90

LMS 3.25 0.72 0.57 1.5 2.84 0.65 0.52 1.45 2.43 0.59 0.51 1.35 2.07 0.53 0.46 1.30
0 APA 3.99 1.05 0.62 1.75 3.71 1.01 0.57 1.65 3.67 0.94 0.52 1.6 3.44 0.89 0.51 1.50

RLS 4.15 1.49 0.69 1.95 4.03 1.44 0.65 1.85 3.95 1.38 0.62 1.8 3.79 1.33 0.59 1.70
DB-MWF 4.32 1.54 0.7 2.05 4.26 1.51 0.67 1.95 4.04 1.44 0.64 1.9 3.93 1.40 0.60 1.75

MNMF-MVDR 4.51 1.69 0.72 2.20 4.49 1.58 0.67 2.05 4.29 1.56 0.65 2.00 4.17 1.58 0.63 1.95
CNMA-SBAPA 5.03 1.95 0.74 2.55 4.86 1.87 0.71 2.50 4.71 1.76 0.70 2.45 4.58 1.72 0.67 2.45

LMS 8.41 1.18 0.66 1.6 8.22 1.09 0.62 1.55 8.14 1.02 0.59 1.50 8.01 0.96 0.56 1.50
5 APA 8.73 1.58 0.65 2.05 8.52 1.52 0.63 2.00 8.39 1.48 0.60 1.95 8.25 1.41 0.61 1.90

RLS 9.04 2.15 0.74 2.25 8.96 2.04 0.71 2.2 8.71 1.96 0.70 2.15 8.52 1.89 0.66 2.05
DB-MWF 9.32 2.23 0.73 2.5 9.38 2.05 0.7 2.4 8.83 2.06 0.70 2.25 8.86 1.92 0.65 2.10

MNMF-MVDR 9.58 2.34 0.76 2.65 9.62 2.26 0.72 2.55 9.22 2.19 0.71 2.40 9.32 2.08 0.66 2.35
CNMA-SBAPA 10.27 2.48 0.78 3.00 10.08 2.41 0.75 2.90 9.95 2.36 0.72 2.85 9.76 2.32 0.69 2.75

LMS 12.43 1.48 0.67 2.05 12.26 1.45 0.66 1.95 12.09 1.40 0.64 1.90 11.87 1.37 0.65 1.95
10 APA 12.91 2.15 0.70 2.40 12.62 2.11 0.69 2.35 12.47 2.07 0.67 2.35 12.31 2.01 0.66 2.25

RLS 13.28 2.41 0.75 2.55 13.01 2.39 0.74 2.50 12.76 2.36 0.72 2.40 12.62 2.31 0.73 2.35
DB-MWF 13.36 2.48 0.76 2.75 13.22 2.49 0.73 2.60 12.89 2.47 0.71 2.50 12.75 2.38 0.74 2.45

MNMF-MVDR 13.51 2.56 0.76 2.90 13.34 2.55 0.75 2.75 12.96 2.51 0.74 2.65 12.83 2.48 0.72 2.70
CNMA-SBAPA 13.88 2.92 0.81 3.05 13.51 2.88 0.79 3.00 13.19 2.82 0.77 2.95 12.99 2.79 0.75 3.00

LMS 15.08 1.74 0.70 2.40 15.1 1.69 0.67 2.30 15.04 1.65 0.67 2.15 15.25 1.60 0.66 2.10
APA 15.41 2.38 0.73 2.55 15.38 2.35 0.72 2.50 15.86 2.28 0.70 2.40 15.45 2.21 0.7 2.45

15 RLS 15.24 2.56 0.84 2.70 15.29 2.51 0.77 2.70 15.92 2.44 0.75 2.60 15.76 2.37 0.74 2.55
DB-MWF 15.39 2.81 0.85 2.85 15.36 2.62 0.77 2.80 15.81 2.50 0.78 2.75 15.78 2.46 0.77 2.65

MNMF-MVDR 15.48 2.94 0.82 3.00 15.42 2.74 0.79 2.90 15.80 2.68 0.80 2.85 15.73 2.59 0.74 2.70
CNMA-SBAPA 15.35 3.22 0.83 3.20 15.49 3.15 0.82 3.25 15.83 3.13 0.77 3.15 15.61 3.09 0.73 3.10
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Table 6. The speed of convergence, in seconds, for the proposed CNMA-SBAPA in comparison with
the LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR methods for white and colored noises on
real data in different range of SNRs (the bold numbers are the best results).

SNR(dB) Methods

Speed of Convergence (Seconds)

White Noise Babble
Noise Train Noise Car Noise Restaurant

Noise

LMS 0.541 0.582 0.61 0.654 0.668
−10 APA 0.516 0.551 0.592 0.611 0.627

RLS 0.422 0.468 0.496 0.539 0.546
DB-MWF 0.586 0.612 0.652 0.673 0.695

MNMF-MVDR 0.51 0.539 0.57 0.592 0.637
CNMA-SBAPA 0.356 0.367 0.393 0.419 0.427

LMS 0.537 0.556 0.579 0.601 0.634
−5 APA 0.497 0.527 0.541 0.56 0.572

RLS 0.403 0.429 0.447 0.482 0.506
DB-MWF 0.545 0.593 0.615 0.636 0.658

MNMF-MVDR 0.494 0.509 0.527 0.553 0.587
CNMA-SBAPA 0.337 0.356 0.379 0.391 0.411

LMS 0.516 0.538 0.562 0.568 0.595
0 APA 0.473 0.482 0.502 0.536 0.539

RLS 0.396 0.409 0.427 0.435 0.452
DB-MWF 0.531 0.563 0.579 0.602 0.621

MNMF-MVDR 0.485 0.498 0.516 0.531 0.546
CNMA-SBAPA 0.318 0.329 0.35 0.358 0.362

LMS 0.492 0.505 0.517 0.525 0.529
5 APA 0.464 0.479 0.492 0.467 0.503

RLS 0.388 0.395 0.401 0.412 0.418
DB-MWF 0.507 0.512 0.544 0.565 0.586

MNMF-MVDR 0.459 0.466 0.487 0.503 0.525
CNMA-SBAPA 0.327 0.336 0.347 0.359 0.365

LMS 0.488 0.498 0.509 0.521 0.538
10 APA 0.451 0.467 0.483 0.499 0.507

RLS 0.369 0.381 0.389 0.395 0.411
DB-MWF 0.478 0.496 0.513 0.543 0.559

MNMF-MVDR 0.437 0.458 0.479 0.491 0.516
CNMA-SBAPA 0.305 0.328 0.339 0.352 0.368

LMS 0.472 0.485 0.493 0.498 0.506
APA 0.463 0.474 0.478 0.485 0.49

15 RLS 0.372 0.376 0.385 0.396 0.408
DB-MWF 0.443 0.455 0.462 0.481 0.494

MNMF-MVDR 0.41 0.427 0.448 0.463 0.48
CNMA-SBAPA 0.299 0.319 0.325 0.349 0.374

5. Conclusions

Speech enhancement is an important application in the signal processing for smart meeting rooms.
The aim of speech enhancement is denoising, dereverberation, or denoising–dereverberation at the
same time. The speech enhancement is implemented as a pre-processing step to produce the proper
signal in such an application as speaker localization, tracking, speech recognition, text-to-speech,
estimation the number of speakers, etc. The speech enhancement algorithms are divided into the single
and multi-channels methods. The single-channel algorithms are challenging in the speech enhancement
processes because of the lack of suitable information in the denoising procedure. In contrast, the
multi-channel algorithms increase the enhancement accuracy due to having more information but the
computational complexity is increased. In this article, a multi-channel speech enhancement method was
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proposed based on the microphone array. The microphone array increased the accuracy in the enhanced
algorithms based on the increasing of information, but the spatial aliasing decreased the efficiency
because of inter-microphone distances. In this article, a uniform circular nested microphone array was
proposed for the speech enhancement algorithms. This nested array was designed in a way that the
microphones were located at specific distances to eliminate the spatial aliasing, in combination with
analysis filters to provide the proper information for the speech enhancement algorithms. In addition,
the speech information is different in various frequency bands. Therefore, the specific sub-band
processing was proposed to have especial attention to the speech spectrum components. The frequency
bands were designed to have the maximum resolution in low frequency components. In the following,
the APA was implemented on all frequency bands, which was obtained by the sub-band processing and
circular nested microphone array. The projection factor (N=4) was considered for the CNMA-SBAPA
in order to keep the computational complexity in an acceptable range along with the superior accuracy.
Finally, the synthesis filter bank was implemented on the sub-band signals and the enhanced signal
was generated by the summation through all sub-bands. The proposed algorithm was compared with
the LMS, traditional APA, RLS, DB-MWF, and MNMF-MVDR methods on the real and simulated
data for white and colored noises under the SNRs range [−10,−5,0,5,10, and 15]dB. In all conditions
the proposed method had a superior accuracy in comparison with previous works. In addition, the
proposed method was compared based on the speed of convergence with previous works, which it
was much faster among all the other algorithms. Since the proposed enhancement algorithm was
implemented on stationary signals, where its benefit was increasing the speed of convergence in
adaptive filters.

One of the future works is reducing the size of the array and decreasing the number of microphones
(without having a high effect on the quality) to be applicable for smartphone applications. Even the
type of the microphones is important. In this article, we used a high quality microphone, which
provides the signals with proper amplitude from the environment. The use of normal microphones in
smartphones is another challenge, which could be an area for future work. Another area for future
work is to find the best numbers of sub-bands to provide the maximum performance and lowest
computational complexity, where the numbers of sub-bands will not be fixed and it should be adaptive
based on the speech components.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Affine projection
APA Affine projection algorithm
AR Auto-regressive
ARHMM Auto-regressive hidden Markov model
CNMA Circular nested microphone array

CNMA-SBAPA
Circular nested microphone array in combination with sub-band affine projection
algorithm
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DB-MWF Distributed multichannel Wiener filter
DNN Deep neural network
FBK Fondazione Bruno Kessler
FIR Finite impulse response
HMM Hidden Markov model
HPF High-pass filter
IFD Instantaneous frequency deviation
LMR-APA Levenberg Marquardt regularized-Affine projection algorithm
LMS Least mean square
LPF Low-pass filter
ML Maximum likelihood
MSE Mean square error
MMSE Minimum mean square error
MNMF Multi-channel non-negative matrix factorization

MNMF-MVDR
Multichannel nonnegative matrix factorization-minimum variance distortionless
response

MOS Mean opinion score
MVDR Minimum variance distortionless response
NLMS Normalized least mean square
NMA Nested microphone array
OCF-NLMS Orthogonal correction factor-Normalized least mean square
PESQ Perceptual evaluation of speech quality
PRAPA Partial rank affine projection algorithm
RLS Recursive least square
SBAPA Sub-band affine projection algorithm
SCM Spatial covariance matrix
SegSNR Segmental signal-to-noise ratio
SNR Signal-to-noise ratio
STOI Short-time objective intelligibility
STP Short time predictor
TTS Text-to-speech
VAD Voice activity detector
WF Wiener filter
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