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Abstract
We correct Proposition 3.1 of Ref. Haddon et al. (J Optim Theory Appl 183:642,
2019).
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1 Introduction

In Ref. [1], Proposition 3.1 deals with the convergence of the discounted reward (16),
the associated value function (17) and optimal trajectories, as the discount factor goes
to 0. The proof of the Γ -convergence of the discounted reward is incorrect since, in
general, this reward is not monotone with respect to the discount factor δ.
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2 The Correction

Proposition 3.1 can be revised as follows.

Proposition 2.1 For all ξ ∈ D and for all δ > 0, the suprema are attained,

Vδ(ξ) = max
ζ(·) Jδ(ζ(·)).

If the Γ −limit of Jδ(·) exists as δ goes to 0,

J0(ζ(·)) := Γ − lim
δ→0

Jδ(ζ(·)),

then the maxima converge, pointwise in ξ , to the maximum of the limit,

V0(ξ) := lim
δ→0

Vδ(ξ) = max
ζ(·) J0(ζ(·)). (1)

Furthermore, if ζδ(·) is an optimal trajectory, i.e. if Vδ(ξ) = Jδ(ζδ(·)), and if ζδ(·)
converges to ζ0(·) in S(ξ), then ζ0(·) is an optimal trajectory for (1) and

V0(ξ) = J0(ζ0(·)) = lim
δ→0

Jδ(ζδ(·)).

Proof To show that the suprema are attained, we show that the set of all forward
trajectories of (3) of [1], with initial condition ξ , is compact for the topology on
W 1,1

(
0,∞;R2, e−bt dt

)
given in Definition 3.1 of [1].

For each ξ ∈ D we set

Fξ (ζ ) := F
(
PL(ξ)(ζ )

)
,

where PL(ξ) is the projection on the convex set L(ξ). Then, Fξ has linear growth, so
that we can define

c = sup
ζ∈Dom(Fξ )

||Fξ (ζ )||
||ζ || + 1

,

where ||Fξ (ζ )|| := supη∈Fξ (ζ ) ||η||. Note that F is upper semi-continuous and has
compact non-empty convex images (such a map is known as a Marchaud map [2]).
With this, the set S(ξ) is the set of absolutely continuous solutions of the differential
inclusion

ζ̇ (t) ∈ Fξ (ζ(t)), ζ(0) = ξ.

We can therefore use [2, Theorem 3.5.2] to establish that S(ξ) is compact for the
topology of W 1,1

(
0,∞;R2, e−bt dt

)
for b > c, thereby proving the existence of

optimal trajectories in S(ξ).
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In addition, this allows us to show that the maxima converge to the maximum of the
limit. Indeed, when the rewards Γ −converge, it is sufficient to show that there exists
a countably compact set on which the suprema are attained for all δ [3, Theorem 7.4].
The set S(ξ) is clearly independent of δ and countably compact, since it is compact.
Finally, the convergence of optimal trajectories can be shown with [3, Corollary 7.20].

��

3 Conclusions

The originally published proof of Proposition 3.1 of [1] was incorrect and we have
revised here the result to obtain an accurate statement. However, we have not found
reasonable assumptions that ensure the existence of the Γ -limit of Jδ(·), when δ goes
to 0, although it seems to be satisfied in our examples.We thus posit theΓ -convergence
as a conjecture, that will be investigated in future research.
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