FORUM

A Note on "Optimal and Sub-Optimal Feedback Controls for Biogas Production"

Antoine Haddon^{1,2} · Héctor Ramírez¹ · Alain Rapaport²

Received: 26 May 2020 / Accepted: 18 July 2020 / Published online: 7 August 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

We correct Proposition 3.1 of Ref. Haddon et al. (J Optim Theory Appl 183:642, 2019).

Keywords Optimal control \cdot Chemostat model \cdot Singular Arc \cdot Sub-optimality \cdot Infinite horizon

Mathematics Subject Classification 49K15 · 49N35 · 49N90 · 93B52

1 Introduction

In Ref. [1], Proposition 3.1 deals with the convergence of the discounted reward (16), the associated value function (17) and optimal trajectories, as the discount factor goes to 0. The proof of the Γ -convergence of the discounted reward is incorrect since, in general, this reward is not monotone with respect to the discount factor δ .

Communicated by Benoit Chachuat.

Antoine Haddon ahaddon@dim.uchile.cl

> Héctor Ramírez hramirez@dim.uchile.cl

> Alain Rapaport alain.rapaport@inrae.fr

- ¹ Mathematical Engineering Department and Center for Mathematical Modelling (CNRS UMI 2807), Universidad de Chile, Beauchef 851, Santiago, Chile
- ² MISTEA, Université Montpellier, INRAE, Montpellier SupAgro, 2 pl. Viala, 34060 Montpellier, France

2 The Correction

Proposition 3.1 can be revised as follows.

Proposition 2.1 For all $\xi \in D$ and for all $\delta > 0$, the suprema are attained,

$$V_{\delta}(\xi) = \max_{\zeta(\cdot)} J_{\delta}(\zeta(\cdot)).$$

If the Γ -limit of $J_{\delta}(\cdot)$ exists as δ goes to 0,

$$J_0(\zeta(\cdot)) := \Gamma - \lim_{\delta \to 0} J_\delta(\zeta(\cdot)),$$

then the maxima converge, pointwise in ξ , to the maximum of the limit,

$$V_0(\xi) := \lim_{\delta \to 0} V_\delta(\xi) = \max_{\zeta(\cdot)} J_0(\zeta(\cdot)).$$
(1)

Furthermore, if $\zeta_{\delta}(\cdot)$ is an optimal trajectory, i.e. if $V_{\delta}(\xi) = J_{\delta}(\zeta_{\delta}(\cdot))$, and if $\zeta_{\delta}(\cdot)$ converges to $\zeta_{0}(\cdot)$ in $S(\xi)$, then $\zeta_{0}(\cdot)$ is an optimal trajectory for (1) and

$$V_0(\xi) = J_0(\zeta_0(\cdot)) = \lim_{\delta \to 0} J_\delta(\zeta_\delta(\cdot)).$$

Proof To show that the suprema are attained, we show that the set of all forward trajectories of (3) of [1], with initial condition ξ , is compact for the topology on $W^{1,1}(0,\infty; \mathbb{R}^2, e^{-bt}dt)$ given in Definition 3.1 of [1].

For each $\xi \in \mathcal{D}$ we set

$$F_{\xi}(\zeta) := F(P_{\mathcal{L}(\xi)}(\zeta)),$$

where $P_{\mathcal{L}(\xi)}$ is the projection on the convex set $\mathcal{L}(\xi)$. Then, F_{ξ} has linear growth, so that we can define

$$c = \sup_{\zeta \in \text{Dom}(F_{\xi})} \frac{||F_{\xi}(\zeta)||}{||\zeta|| + 1},$$

where $||F_{\xi}(\zeta)|| := \sup_{\eta \in F_{\xi}(\zeta)} ||\eta||$. Note that *F* is upper semi-continuous and has compact non-empty convex images (such a map is known as a Marchaud map [2]). With this, the set $S(\xi)$ is the set of absolutely continuous solutions of the differential inclusion

$$\zeta(t) \in F_{\xi}(\zeta(t)), \qquad \zeta(0) = \xi.$$

We can therefore use [2, Theorem 3.5.2] to establish that $S(\xi)$ is compact for the topology of $W^{1,1}(0,\infty; \mathbb{R}^2, e^{-bt}dt)$ for b > c, thereby proving the existence of optimal trajectories in $S(\xi)$.

In addition, this allows us to show that the maxima converge to the maximum of the limit. Indeed, when the rewards Γ -converge, it is sufficient to show that there exists a countably compact set on which the suprema are attained for all δ [3, Theorem 7.4]. The set $S(\xi)$ is clearly independent of δ and countably compact, since it is compact. Finally, the convergence of optimal trajectories can be shown with [3, Corollary 7.20].

3 Conclusions

The originally published proof of Proposition 3.1 of [1] was incorrect and we have revised here the result to obtain an accurate statement. However, we have not found reasonable assumptions that ensure the existence of the Γ -limit of $J_{\delta}(\cdot)$, when δ goes to 0, although it seems to be satisfied in our examples. We thus posit the Γ -convergence as a conjecture, that will be investigated in future research.

Acknowledgements The authors would like to thank Frédéric Bonnans for pointing out a problem with the originally published proof. The first and second authors were supported by FONDECYT grant 1160567 and 1160204, and by Basal Program CMM-AFB 170001 from CONICYT-Chile. The first author was supported by a doctoral fellowship CONICYT-PFCHA/Doctorado Nacional/2017-21170249. The third author was supported by the LabEx NUMEV incorporated into the I-Site MUSE.

References

- Haddon, A., Ramirez, H., Rapaport, A.: Optimal and sub-optimal feedback controls for biogas production. J. Optim. Theory Appl. 183, 642 (2019)
- 2. Aubin, J.P.: Viability theory. Springer, Berlin (2009)
- 3. Dal Maso, G.: An Introduction to Γ -Convergence, vol. 8. Springer, Berlin (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.