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Abstract
The search of topological states in non-Hermitian systems has gained a strongmomentumover the
last two years climbing to the level of an emergent research front. In this perspective we give an
overviewwith a focus on connecting this topic to others like Floquet systems. Furthermore, using a
simple scattering picturewe discuss an interpretation of concepts like theHamiltonian’s defectiveness,
i.e. the lack of a full basis of eigenstates, crucial inmany discussions of topological phases of non-
HermitianHamiltonians.

1. Introduction

More than one hundred years after EdwinHall discovered theHall effect, thefinding of the integer quantum
Hall effect [1] and its topological origin [2]was followed by a sequence of breakthroughs [3–5] that sprouted into
the discovery of topological insulators in two [6] and three dimensions [7]. Unlike conventional phases of
matter, the new topological phases [1–7] cannot be described by a local order parameter [8–10]. Now, the
frontiers in this field keep expanding at a rapid pace in evermore interesting directions, like the search for gapless
but topological phases such asWeyl semimetals [11, 12] and topological states in Floquet systems [13–15].

One of the latest research fronts in this area is the search for topological states of non-Hermitian lattices
[16–22]. The interest in non-HermitianHamiltonianswas originally focused in  -symmetricHamiltonians
[23] as a generalization of quantummechanics where theHermiticity constraint could be removedwhile
keeping a real spectra. Today, this has shifted to non-HermitianHamiltonians regarded as an effective
description of, for example, open quantum systems [24, 25], where the finite lifetime introduced by electron–
electron or electron–phonon interactions [26–28], or disorder [29], ismodeled through a non-Hermitian term,
or in the physics of lasing [30–34]. An additional source ofmomentum in this field comes from the study of
systemswhere the quantummechanical description is used aftermapping to a Schrödinger-like equation, as in
systemswith gain and loss (as found in optics and photonics [35–38]), surfaceMaxwell waves [39], and
topoelectrical circuits [40, 41].

Topological effects are intrinsic to features unique to non-HermitianHamiltonians such as the topological
structure of exceptional points, points in parameter space where the eigenvalues and eigenvectors coalesce (the
non-Hermitian counterpart ofHermitian degeneracies), and have been studied for a few decades [42–46]. The
focus of the present newwave of interest is, however, on a different aspect: given a non-Hermitian lattice, a
systemwhere amotif is periodically repeated in space, what is the phenomenology and howdowe classify the
topological nature of the resulting states?Here, by topological onemeans that there is underlying bulk-boundary
correspondence relating a bulk topological invariant to the existence (or absence) of states localized at a
boundary (between topologically different phases).

The search of topological states of non-Hermitian lattices has become one of themost exciting emergent
fronts at the crossroads of condensedmatter physics, optics and photonics, acoustics and quantumphysics.
Togetherwith Floquet systems, non-Hermitian lattices represent our first strong steps on the land of non-
equilibrium, dynamical, topological phases. The departure from theHermitian paradigmbringsmany
surprises, like the fact that because of the extreme sensitivity to boundary conditions, a pristine non-Hermitian
latticemay become devoid of extended states [47, 48], an effect termed the non-Hermitian skin effect [49, 50].
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On the other hand, there is an intense activity in the search for a consistent classification [51–55], the definition
of the topological invariants [56–58], and the search for a bulk-boundary correspondence [47, 48, 59, 60].

Here we provide an overview of this fascinating topic.We start by discussing how to define a gap for a
complex spectrum. Later on, we discuss the information encoded in the richer spectrumof non-Hermitian
systems and how tomake sense of the non-Hermitian terms. In section 5, we discuss non-Hermitian
degeneracies (exceptional points) and later on in section 6, by resorting to a scattering picture, we put forward an
interpretation of theHamiltonian defectiveness (the lack of a full basis of eigenvectors). In section 7we give a
flavor of themany paths proposed for building a bulk-boundary correspondence. Finally, in section 8, we
present the connections with Floquet systems.

2.Defining a gap for a complex spectrum

UnlikeHermitianHamiltonians, non-Hermitian systems have eigenvalues with a real and an imaginary part
[61]. Thus, since complex numbers do not have an order relation, we cannot recur to the usual (Hermitian)
definition of a gap [50].

Tofix ideas let us consider a non-Hermitian latticewith Bloch-type eigenstates and eigenenergies ( )E kn ,
where  k is the quasimomentum and n is the band index. There aremany possible extensions of the gap
concept. [51] defines a band (say n) as separable if ¹( ) ( )E Ek kn m for all ¹m n and all k; isolated if

¹ ¢( ) ( )E Ek kn m for all ¹m n and all ¢k k, ; inseparablewhen for some quasimomentum the (complex) energy
becomes degenerate with that of another band.

Alternatively one can generalize the concept of a bandgap as the prohibition of touching a base energy [52], also
called the point gap. This base energy ismost typically set to zero but it can be complex in the general case. In the
Hermitian case we can continuously deform the spectrum in such away that each energy band ismapped to a
point along the (real) energy axis, all without touching a base energy set inside the gap (and therefore closing it).
In the non-Hermitian case, whenwe sweep over the Brillouin zone the bands describe loops in the complex
plane. If the base point lies inside the loop, the loop cannot be deformed onto a point without touching the base.

Thus, the prohibition of touching a base energy [52] is one physically reasonable generalization of the gap
concept. Having a spectrumwhich describes a loop in a two-dimensional space allows us to define a topological
invariant as thewinding number of that loop, without any reference to the eigenstates1. This winding number
appears inmany proposals for classifying non-Hermitian lattices including that byGong et al [52], and Shen et al
[51] (where it is dubbed vorticity). But the readermight have realized that this opens up the possibility of having a
non-trivial topological invariant even in a systemwith a single band! Indeed, a single loop (and hence a single
band) enclosing the base energy point gives a non-vanishingwinding number. This contrasts with theHermitian
case, where at least two bands are required to have a non-zero Chern number2. Here, having a different invariant
allows for the rules to change.

Finally, one can also define the line gap: if the energy bands do not cross a line in the complex energy plane,
the system is said to have a line gap [54, 60]. This concept accommodates the idea of a secluded region in the
complex energy plane between two bands. The point and line gap definitions are complementary in the sense
that onemight bemore relevant than the other in a particular situation. The existence of these two types of gaps
is also a consequence ofmoving from a one-dimensional energy line forHermitian systems to a plane for the
case with a complex spectrum: in theHermitian case, the secluded regions of energy can only be zero-
dimensional (e.g. a segment of the line as infigure 1(a)), while in the non-Hermitian one can either be zero-
dimensional (point gap, as infigure 1(b)) or one-dimensional (line gap, as infigure 1(c)).

3. The intriguing imaginary part

Up till nowwe have seen how taking the energy spectrum to the complex plane brings some surprises. Butwhat
does itmean to have an imaginary part of the eigenenergies andwhat information does it encode? The very first
point is that non-Hermitian systems can be regarded as non-equilibrium systems. From a dynamical viewpoint,
the statesmay even be unstable as the time-dependent Schrödinger equation is non-unitary. For long enough
times, only the state(s)with the largest imaginary part of the eigenenergy survives.

1
Note that this is in stark contrast with the topological invariants inHermitian systems, which depend only on the eigenstates and not the

eigenenergies.
2
Recall that the sumof the Berry curvature over all available bands is zero at each point in parameter space.
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Non-Hermiticity however, does not necessarily lead to a complex spectrum [23, 50]. If aHamiltonian has
 symmetry3 and that symmetry is preserved by the eigenstates then the corresponding eigenvalues are real
[23]. But even in that case, the vanishing imaginary part stems from a dynamical situationwhere gains and losses
are compensated.

In spite of the problems brought by non-Hermiticity, the imaginary part of the spectrumbrings
opportunities to clearly define things that prove difficult within standard quantummechanics such as, for
example, time scales. Being not a dynamical variable but rather a parameter, time does not have a corresponding
operator in quantummechanics, thereby complicating the determination of time scales such as the tunneling
time [62].Many authors (see [24, 25] and references therein) have pointed out that from anon-Hermitian
perspective, the imaginary part of the energies provide precisely those evasive time scales, almost for free.

4.Making sense of gains, losses and asymmetric couplings

The conventionalHermitian quantummechanics is so strongly built in our thinking that tomany of us itmight
seemdevoid of physicalmeaning to speak about non-HermitianHamiltonians. However, non-Hermitian
Hamiltonians arise as a natural effective description of different systems. This includes photonic [35, 36, 38] and
acoustic systemswhere gains and losses are naturally present, and also open quantum systems. In the latter case,
non-Hermiticity arises when tracing out over the infinite degrees of freedomofwhat we consider as the
environment acting on the sample of interest. Although defining the line that separates what belongs to the sample
andwhat remains in the environment is arbitrary, the response obtained, for example throughGreen function
techniques, is exact and independent of wherewe decided to draw this line.

The reader at this pointmight be puzzled about the fact that the effectiveHamiltonians typically
encountered in electronic systems contain only losses, because of the eventual leak into the environment, but no
gains.How tomake sense of gains when all the physical properties seem to bewell described by the retarded self-
energy corrections? The answer lies in the boundary conditions. The information concerning the boundary
conditions in a scattering problem, e.g. the particle is coming from the left or right, is absent in the effective
Hamiltonian containing the usual retarded self-energy corrections. This information has to be supplemented
somehow if wewant to compute the scattering state projected on the sample. One possible path is the
Lippmann–Schwinger equation, another is akin toflipping the sign of the imaginary part of the self-energy
correction to the signal where the source is; the latter provides a non-HermitianHamiltonianwith losses and
gains.

Inmostmodels studied in the context of topological states, gains and lossesmight be distributed over the
system, thus allowing for a lattice structure, or theymight have some symmetry with respect to an interface,
thereby forming a boundary between two regions [63–65].

Besides gains and losses, a non-HermitianHamiltonian can also have asymmetric couplings between states,
i.e. * á ñ ¹ á ñ∣ ∣ ∣ ∣i j j i . These sort of asymmetric or non-reciprocal hoppings appear inmanymodels

Figure 1. (a) Scheme representing the eigenenergies forming bands (thick segments) in a typical gappedHermitian system. The red
dotmarks the Fermi energy. In the non-Hermitian case, the gap can be defined as the prohibition of touching a base energy, also called
the point gap (b), or the prohibition of touching a line, also called the line gap (c).

3
 is said to be  -symmetric if the combined action of the parity  and time-reversal  operators leave it invar-

iant,    = ( ) ( )† .
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[56, 66, 67], and though they can bemore difficult to assimilate in condensedmatter systems (unless one thinks
of them as an effectivemodel or just amapping between amodel with gain and losses and another onewith non-
reciprocal hoppings) they are common in photonics.

5. Exceptional points and defectiveness

Having a non-HermitianHamiltonian  l= + ¢0 does not lead by itself to newphysics, for example, if the
non-Hermitian term¢ commutes with theHermitian0, the eigenstates do not change. One of the key
features unique to non-HermitianHamiltonians is defectiveness. This is, the eigenvectors of a non-Hermitian
matrix can have an incomplete set of eigenvectors. Take for example the simplest Jordan block, a 2×2matrix
with all elements equal to 1 except for the lower left elementwhich is set to zero. It has the eigenvalueλ=1with
degeneracy two but has a single eigenvector. Thismatrix is said to be defective, a situation that is truly unique to
non-HermitianHamiltonians.

Defectiveness typically emerges at the so-called exceptional points. Let us think of a generic situationwith a
Hamiltonian of the form  l= +0 1, whereλ is a parameter controlling the strength of the second term.
AssumingHermitian0 and1, the levels repel each other and avoid crossing whenλ changes [68], as long asλ
is real. Butwhenλ is allowed to adopt complex values, the levels can coalesce, i.e. they canmergewhile rendering
thematrix defective. This coalescence appears as a square root singularity of the eigenenergies as a function of
the parameterλ and is called an exceptional point [69] (for a recent review on these points in photonics see [46]).
The importance of these points was emphasized by Berry [70, 71]. Because of the complex shape of the energy
Riemann surfaces in the vicinity of an exceptional point (see figure 2), which also lead to a breakdown of the
adiabatic theorem, there aremany counter-intuitive properties such as a strong dependence on the parameterλ
close to those points, or the phenomenon dubbed chiral state conversion [72–74]4. This has fueled fascinating
experiments withmicrowaves [42–45, 74–76], optical waveguides [77], nuclearmagnetic resonance [78], and
also in optomechanical systems [79]. Exceptional points lead to intriguing phenomena such as unidirectional
invisibility [80], single-mode lasers [81, 82], or enhanced sensitivity in optics [83–85].Many of these phenomena
can be understood in terms of an environment-mediated interaction [25, 78, 86–89].

Exceptional pointsmay also acquire different flavors by becoming anisotropic [90], packing onto
exceptional surfaces as reported byOkugawa andYokoyama [91], exceptional lines driven by disorder [92], or
exceptional rings [93–95]. They can also be engineered [96] or used as ameans to interpret the physics of surface
states in three-dimensional systems [97].

For  symmetricHamiltonians, exceptional pointsmark the onset of a transition froma regionwith real
eigenvalues (and thus oscillatory solutions) to onewith complex (conjugate) eigenvalues (and thus unstable
growing or decaying solutions), all in spite of the evolution respecting always  symmetry (this corresponds to
a cut along γdiff infigures 2(a)–(b))

5.

6. Interpreting defectiveness

In spite of the pivotal role of defectiveness in phenomena unique to non-Hermitian systems, no interpretation is
usually given in the context of the search for topological states. Here, we use the simple scattering picture
mentioned in previous sections tomake sense of defectiveness. Themain idea is that a lattice with at least one
translationally invariant direction (in d−spatial dimensions) under a non-equilibriumor dynamic condition
where, for example, the particles are bound to come from the left (e.g. a boundary condition) can bemapped to a
non-Hermitian lattice in dimension d−1 spanning a portion of the originalHilbert space, this is represented in
figure 3. The effectiveHamiltonian for the reduced system is such as to provide the scattering states of the
ancestor or parentHermitian lattice projected onto the chosenHilbert space. This path has been explored earlier
in tight-binding lattices while trying tomake sense of non-HermitianHamiltonians in a series of studies by Jin
and Song [99, 100] and others [101].

We start bymentioning that this approach has an immediate weakness: there is no guarantee that a non-
HermitianHamiltonian can always be assimilated to the effective description of a scattering situation (typically
stemming from aHermitianHamiltonian in largerHilbert space plus a boundary condition, e.g. incidence

4
Note that there has been an intense recent discussion on the need (or lack of it) to encircle the exceptional point to obtain chiral state

conversion [72, 73] and also on the dependence on the initial point [74].We urge the reader to get updated on these issues by reading these
references.
5
Note that the transition from  preserved to  broken eigenstatesmay be shifted away from the exceptional points due to non-

linearities, as reported in [98].
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direction of the particles)6. That said, a key point to note is the realization that the effectiveHamiltonianwith
gains and losses also encodes information on the boundary condition (which is typically enforced separately!).
As such, defectiveness, the lack of a full set of linearly-independent eigenvectors, can be understood as the lack of
enough states which are compatible with the boundary condition.

Figure 2. 2×2Hamiltonianwith complex on-site termsωdiff−i γdiff and−ωdiff+i γdiff and reciprocal hopping v exhibiting an
exceptional point. (a) and (b) show the evolution of the real and imaginary parts of the eigenvalues, denotedwithσ± as a function of
the difference in frequenciesωdiff and loss factors γdiff. (c–e) show cuts for different values of γdiff: for γdiff>0 (c) there is level
repulsion in the real part of the eigenvalues; for γdiff=0 (d) the real and imaginary parts coalesce, while for γdiff<0 the real parts
cross and the imaginary ones repel each other. From [46]. Reprintedwith permission fromAAAS.

Figure 3. (a) Scheme representing a hypotheticalHermitian latticewith translational invariance along the horizontal direction. The
red arrow represents the (boundary) condition of particles incoming from the left. (b)When projected on a strip the situation in (a)
can also be described by an effective non-HermitianHamiltonian (gains and losses stemming from the boundary condition are
represented in color).

6
Furthermore, inmany cases, evenwhen this parent or ancestorHermitianHamiltonian exists, the effective description usually involves an

energy-dependentHamiltonian (and so the link is restricted to a discrete set of energies (resonances)).
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As an example of the above arguments, let us think of a ribbonmade of a Chern insulatorwith particles
incident from the left (our boundary condition as typically used to compute transmission coefficients). Nowwe
decide that we are interested only in the projection of those scattering states compatible with the boundary
condition over a stripe perpendicular to the translationally invariant direction. In this case, the effective one-
dimensional systemwill sustain an edge state at a single edge and not both, thus reducing the number of linearly-
independent eigenvector(s).

Based on the scattering picture it is thus reasonable to expect that a non-Hermitian lattice in dimension d is
an effective description of anHermitian lattice in dimension d+1 plus boundary conditions, when such a
parent lattice exists. This dimensionality link is consistent with several findings in the literature including: the
observation in [52] that a simple one-dimensional chainwith asymmetric hoppings is the non-Hermitian proxy
of theChern insulator (as a topological phase not requiring a symmetry), and the anomalous localization
transitions in non-Hermitian systems found in lowdimensions [102]. In this sense, the non-Hermitian effective
description is verymuch like a shadow (in the sense of a projection) of the higher-dimensional Hermitian
ancestor, in a situation reminiscent of what happens in quasicrystals [103, 104].

6.1. A path to obtain aHermitian parent of a non-HermitianHamiltonian
At this point the readermightwonder how to proceed to obtain theHermitian parent of a given non-Hermitian
Hamiltonian.Herewewill sketch the procedure for a simple case following Jin and Song [99, 100]. Thefirst
point is to refine our starting question. Specifically, wewant to obtain aHermitian parent of a given non-
HermitianHamiltonian so that a subset of eigenstates of bothHamiltonians share the same projection of the
corresponding eigenstates over the commonpart of theHilbert space.

Inmany cases an answer to the previous question can be obtained by referring to a scattering picture.
Figure 4(a) represents a tight-binding network containing an absorbing on-site term (−iγ) at one site.Hsub is an
arbitrary networkwithHermitian terms.We know that such a non-Hermitian term can serve as an effective
description of the interactionwith the outerworld, see for example [105]where thisHamiltonian approachwas
put forward in the context of quantum transport in the presence of decoherence effects. Therefore one can seek a
Hermitian parent in the network offigure 4(b), which is the same network as the one in (a)with the non-
Hermitian term replaced by the semi-infinite lead acting as an outerworld.

To connect both systems one needs to impose that the solutions projected over the commonHilbert space
coincide. The solutions can be chosen as a superposition of planewaves with unknown amplitudes, as indicated
in thefigure. Replacing this ansatz into the Schrödinger equationwill lead to equations that need to be fulfilled so
that the requirement ismet. Jin and Song [99] showed that the conditions lead to an interesting connection:

Figure 4. (a) Scheme representing a tight-binding networkwith an on-site imaginary potential−iγ at one site and an arbitrary network
with anHermitianHamiltonian represented byHsub. (b) represents theHermitian parent of the system in (a) sharing the same
eigenstate within the common region. (c) shows the same system as (a) except that the sign of the imaginary termhas been changed. In
this case, the parentHermitianHamiltonian is the same as before, shown in (d), what changes is the boundary condition for incident
waves (red arrows). Figure reprintedwith permission from [99], © (2010)American Physical Society.
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real-energy eigenstates of PT-symmetric non-Hermitian tight-bindingHamiltonians have a counterpart (with
equal projection over the commonHilbert space): the resonant transmission states of theHermitian lattice7.

If we consider the same systembut now invert the sign of the imaginary on-site potential (thus representing a
source rather than a sink) as shown infigure 4(c), one can show that the connectionwith theHermitian parent
Hamiltonian also occurs but this time at a different state: a resonant state (shown in figure 4(d))which is the
time-reversed solution of the one infigure 4(b). Therefore, we see that the full Hermitian parentHamiltonian
has two linearly-independent solutions related by time-reversal symmetry (TRS), but each of them corresponds
to a differentnon-Hermitian child and each of them is defective at that energy.We can see that the boundary
condition on theHermitian parent necessary to define the scattering states, affects the non-Hermitian child.

6.2. Extreme defectiveness fromhigher-order exceptional points and the non-Hermitian skin effect
Finally, we comment on an extreme case of defectiveness found in non-Hermitian lattices: a pristine (without
disorder)finite systemmay become devoid of extended states having all eigenstates localized close to a boundary
[47, 48]; the same systems typically show an extreme sensitivity of the spectrum to a change in the boundary
conditions (fromopen to periodic) [47]. This anomalous localizationwas attributed to the proximity (in
parameter space) to exceptional points with an order scalingwith the system size in [48], an effect whichwas
interpreted as an environment-mediated interaction effect. The same effect was confirmed analytically in [49]
for a non-Hermitian SSHmodel with asymmetric hoppings and dubbed the non-Hermitian skin effect. Recently,
Lee andThomale [66] presented a characterization of these peculiar boundarymodes and provided conditions
for their existence. The non-Hermitian skin effect presents a conceptual obstacle for building a bulk-boundary
correspondence as typically the topological invariants are based on the bulk eigenstates of the system,which in
these casesmay have a completely different character than the eigenstates of thefinite system, nomatter how
large [47].We note that, after submission of this article, different experiments have put forward realizations of
this anomalous localization in topoelectrical circuits [106, 107], quantumwalks [108]mechanical systems [109]
andmagnons [110].

7. Themany paths to a bulk-boundary correspondence

The term topological is used in connection to a given state tomean that there is an underlying bulk-boundary
correspondence. Establishing a bulk-boundary correspondence in themost usual sense requires:
(i) characterizing the bulk states through a topological invariant, typically an integral over the Brillouin zone of a
kernel that depends only on the bulk (Bloch-type) eigenstates; (ii) characterizing the edge or boundary states
when translational symmetry is lost in at least one space direction, and (iii) linking the topological invariant with
the boundarymodes. Since the pioneering TKNNpaper [2], this has been a crucial issuewhere progress is still
underway even inHermitianHamiltonians [111, 112]; the interested reader can findmore extensive accounts on
this topic in [8, 10, 113, 114]. Different paths are currently being intensively explored in the quest for a bulk-
boundary correspondence thatmay allow for classification of the topological phases of non-Hermitian lattices
[22, 115–118]. These forking paths arise because of themany possible options; the very first one is the use of the
Hamiltonian orGreen’s functions as a starting point. In any of the two cases, onemight use the initial non-
Hermitian single-particleHamiltonian or amodified one.More flavors are added by the different possible
definitions of a gap and the fact that symmetries are enriched by the lifting of theHermiticity constraint. In the
followingwemention only a few of the relatedworks.

Early attempts to complete this program include [51], where the vorticity, defined earlier in section 2, appears
as a topological invariant.We emphasize that this is at oddswithwhat happens inHermitian topological
systems, as the invariant is always computed from the eigenstates not the eigenvalues. Onemust also note that in
[51] one of the underlying assumptions is that the bandstructure is separable, thereby ruling out cases with non-
Hermitian degeneracies.

Another proposal for a classificationwas presented in [52] for the case of the point gaps introduced in
section 2. The resulting classification is analogouswith theHermitian periodic table of topological invariants
[119] in the AltlandZirnbauer symmetry classes [120]. This wasmore recently complementedwith a study of
cases comprising line gaps [54]. The general strategy is based on reducing the original problem to aHermitian
onewhere the classification is known.One of the routes allowing for such a reduction is considering the doubled
Hamiltonian [52, 60]:

7
Further work by the same authors generalized this result to a situationwhere the PT-symmetry requirement is relaxed [100].
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



=

⎛
⎝⎜

⎞
⎠⎟†

0
0

,doubled

which by construction isHermitian. From the scattering perspective used earlier to interpret defectiveness, one
can also interpret the benefit of doubling theHamiltonian: in this the informationwhich ismissing in the non-
HermitianHamiltonian is restored, thus avoiding the difficulties introduced by defectiveness and the loss of
linearly-independent eigenvectors.

Inmost of theseworks the symmetries of the effectiveHamiltonian play a crucial role. As comparedwith
usualHermitian systems, the symmetries are alsomuch enriched in the non-Hermitian case [116]. Indeed,
symmetries such as particle hole symmetry fork into two since complex conjugation and transposition become
distinct [54], while others get unified, as antiunitary symmetries which are distinct in theHermitian case and
now can bemapped onto each other [121]. There are also new symmetries which appear for the non-Hermitian
case, such as pseudo-Hermiticity [122], while others such as non-Hermitian chiral symmetry [123, 124]may
remain hidden [125].

In cases where the definition of the topological invariants is attempted directly from the non-Hermitian
Hamiltonian, the presence of exceptional pointsmay bring issues such as the non-Hermitian skin effect
mentioned in the previous section. Such anomalous localization jeopardizes a direct path connecting a bulk
topological invariant to the boundarymodes; the sensitivity to the boundary conditions is extreme in this case
and the bulk spectrumdiffers from that of the finite system and, furthermore, the character of the eigenstates
might be disparate (onemight have extended states while the othermay showonly localized states). This
motivated other authors to choose non-Bloch invariants [56, 126], i.e. invariants based on afinite system rather
than bulk states, or invariants defined in real space [127]. A similar approach, without reference to Bloch states
but rather a systemwith open boundaries, was presented byKunst and collaborators [59].

Another path is the use ofGreen’s functions as put forward by Zirnstein et al [128]. This ismotivated by the
fact that as one special and useful case of a response function, Green’s functions describe observables and could
therefore be used as an alternative to theHamiltonian as the starting point for a topological characterization
[129, 130]. This has been particularly useful for interacting systems [131]. In the case of non-Hermitian systems,
[128] focuses on the one-dimensional casewhere they find that although theremight be no correspondence
between topological invariants obtainedwith periodic boundary conditions and the boundary eigenstates with
open boundary conditions, thewinding number signals a topological phase transition in the bulkwhere there is
a spatial growth of theGreen function.

Borgnia and collaborators [60] combined local Green’s functionswith the doubledHamiltonian
construction to bring together skin effects and bridge the gap for a bulk-boundary correspondence. On a
different path, butwith the same unifying aim, Kunst and collaborators [132] put forward a transfermatrix
approach. [115] focused on lattices in one dimensionwith losses added as on-site terms identifying awinding
number. Finally, the authors in [133] proposed a path based on singular value decomposition aimed at restoring
the correspondence between open and periodic boundary conditions (the readermay also enjoy the discussion
on the connectionwith the doubledHamiltonian approach in that reference).

8. Connectionwith Floquet systems

In this sectionwe examine a few connections with the physics of so-called Floquet systems. During the last few
years there has been an intense activity in the area of driven systems, exploringways of harnessing light or time-
dependent potentials to substantially alter the states of amaterial in useful ways. A prominent example is
inducing chiral edge states in an otherwise normalmaterial by shining a laser on it [13, 14, 134].

Since the prevalent theory for time-periodic systems is the Floquet theory [135, 136], laser-induced states are
referred to in the literature as Floquet edge states [13, 137, 138] or,more generally, Floquet–Bloch states [139] to
mean states not necessarily of topological origin. Along this new avenue for topological states, studies have
focused on diversematerials and systems including normal insulators, [14], graphene [140–143], other two-
dimensionalmaterials [144–146], Rashbawires [147], ultracoldmatter [148], and topological insulators [139,
149–151]. Issues such as thermalization [152] or even the spontaneous generation ofmagnetism [153] in laser-
illuminated systems are some of the latest fronts explored in this area.

Like non-Hermitian systems, Floquet systems can also be classified as non-equilibrium systems. Indeed, the
states can even be unstable and typically one needs active sources or sinks. However, besides this first fact there
aremanymore subtle connecting points. A problemof this type involving a time-dependent term is usually
solved in Floquet space, which is the direct product between the usualHilbert space and the space of time-
periodic functionswith the period of theHamiltonian; the latter adds a replica indexwhich can be assimilated to
different ‘photon’ channels [154].Many observables require projecting over a single replica (like the time-
averaged density of states or in a transport calculationwhere one needs to assume a reference incident channel
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for scattering), and thus the associated properties correspond to those of the effectiveHamiltonian for that
portion of Floquet space. This effectiveHamiltonianmight also be non-Hermitian, but evenwhen it is not, the
mere partition of the space leads to effects similar to those observed in non-Hermitian lattices. For example,
because of the dissimilar weight on different replicas, there could be Floquet edge states that do not contribute to
the transport response and remain silent [155]; the coexistence of edge states with a continuumof states
belonging to other replicasmay introduce a lifetime to those states (see [156–158]), so the spectrum can be
considered as effectively complex!

Based on these similarities,many tools used for Floquet systems find away to non-HermitianHamiltonians.
This is the case for the doubledHamiltonian approachmentioned earlier for non-Hermitian systemswhich has
been used earlier for Floquet symmetry-protected topological phases [159].

To close this sectionwe note that there are a few studies that examine the interplay between non-Hermiticity
and driving inmodels with gains and losses [160–163], or others with non-reciprocal interactions [164].

9. Final remarks

Besides providing an overview of the literature in this rapidly growing field, herewe have discussed a few
interpretative issues related to concepts like defectiveness, the lack of a full basis of eigenstates for a given non-
Hermitian operator. The chosen viewpoint corresponds to the scattering theorywhich provides a starting point
to guide our search. Themain idea is to think of a non-HermitianHamiltonian as an effective description for a
parentHermitianmodel (on a restrictedHilbert space) plus a boundary condition. The effective system ismuch
like the shadow (in the sense of a projection) of the higher-dimensional parent.Within this picture, defectiveness
can be seen as the existence of eigenstates of the parentHamiltonianwhich are incompatible with the boundary
condition.

The quest for new phenomena now showsmany promising possibilities, like the counterpart of higher-order
topological states explored by Edvardsson and others [165–167], or the use of non-Hermiticity tomodel the
finite lifetime introduced by electron–electron or electron–phonon interactions [26] and the search for gapless
topological phases in the non-Hermitian arena [168–171].

From the experimental side, there have beenmanymore experiments aimed at exceptional points in small
systems (see discussion in section 5) than in lattices, as discussed here. One noteworthy exception is the
experimental observation of bulk Fermi arcs originating from radiative losses in photonic crystal slabs [172]. The
tipping point is expected to comewhen the loop closes by feeding new experiments, confirming or refuting
existing theory. These are likely to come first in photonics and acoustics or perhaps something that our dear
reader has just unveiled. In any case, as thewriter said, ‘may your trails be crooked, winding, lonesome, dangerous,
leading to themost amazing view’.8
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