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Robust RL-Based Map-Less Local Planning: Using
2D Point Clouds as Observations

Francisco Leiva and Javier Ruiz-del-Solar

Abstract—In this letter, we propose a robust approach to train
map-less navigation policies that rely on variable size 2D point
clouds, using Deep Reinforcement Learning (Deep RL). The nav-
igation policies are trained in simulations using the DDPG algo-
rithm. Through experimental evaluations in simulated and real-
world environments, we showcase the benefits of our approach
when compared to more classical RL-based formulations: better
performance, the possibility to interchange sensors at deployment
time, and to easily augment the environment observability through
sensor preprocessing and/or sensor fusion. Videos showing trajec-
tories traversed by agents trained with the proposed approach can
be found in https://youtu.be/AzvRJyN6rwQ.

Index Terms—Reinforcement learning, reactive and sensor-
based planning, map-less local planning.

I. INTRODUCTION

AUTONOMOUS navigation is an essential skill for mobile
robotics: traversing collision-free paths towards a target

destination is an indispensable ability for a wide spectrum of
robotic applications. Classical formulations to address the navi-
gation problem often consist of different hand-engineered mod-
ules, each of them solving a particular sub-task of the navigation
problem (e.g. mapping, localization, and planning), and inter-
acting with the other modules. As a result, navigation systems
following this approach are often strongly parameter-dependent,
specially when deployed in previously unseen environments, or
across different robotic platforms.

In recent years, a growing interest on developing learning-
based solutions for navigation has arrived in tandem with the
progress that deep learning has made in video games [1], com-
puter vision, and robotics [2]. Possibly, learning-based solutions
for robotic navigation might cope with the lack of generalization
and sub-optimal performance that currently undermine classical,
modular systems. In this regard, reinforcement learning (RL) has
emerged as a natural framework for developing such solutions, as
it aims to learn behaviors directly from interactions between an
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agent and its environment, avoiding the need for expert demon-
strations that approaches such as imitation learning require, and
potentially learning complex skills that would be hard to acquire
otherwise.

Using RL, the navigation problem can be framed either in an
end-to-end fashion, or by decomposing it and solving some of
its sub-tasks. In this work, we focus on map-less RL-based local
planning. While several local planners trained using RL have
been proposed (e.g. [3]–[5]), some key design decisions, such as
the agent’s observations and its policy parameterization, have not
been extensively discussed. We aim to fill this gap by analyzing
the impact that these decisions have in the performance of
RL-based local planning policies, and upon the study of existing
formulations, to prove that great performance improvements
may be achieved by addressing them. In this regard, we propose
an extensible and robust approach for the design of observations
and the parameterization of RL-based local planning policies.
The proposed approach differs from existing solutions by using
variable size 2D point clouds as the agent’s observations, and by
parameterizing its policy accordingly, using an ad-hoc feature
extractor. We empirically show that this not only allows the
trained agents to achieve better performance than alternative
approaches, but also endows them with robustness to extreme
perturbations on their observations, the possibility to inter-
change sensors at deployment time, and to augment the environ-
ment’s obervability through sensor pre-processing and/or sensor
fusion.

We hypothesize that using variable size point clouds as ob-
servations eases learning meaningful representations to charac-
terize the environment. Furthermore, it decouples the sensor’s
characteristics (resolution and field of view) from its readings,
which may endow the agent with robustness to extreme pertur-
bations on its observations as it would learn sensor-invariant fea-
tures. Through simulated experiments, the proposed approach is
compared to common design trends for RL-based local planning
controllers that use range measurements as inputs. Furthermore,
we showcase the benefits of utilizing the proposed representation
for the observations in terms of robustness and extensibility in
the real-world.

The main contributions of this work are the following:
� A robust approach for the design of RL-based local plan-

ning controllers, using variable size 2D point clouds as
inputs, and an ad-hoc parameterization.

� An analysis on the impact of observations and parame-
terization design for RL-based local planning controllers,
when relying on range measurements.
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� An analysis on the benefits of decoupling the range sensors’
characteristics from their readings when training RL-based
local planning policies, and how this can be harnessed to
improve the policy’s performance in the real-world.

II. RELATED WORK

Learning-based map-less navigation has grown in popularity
in the recent years. Several works have presented deployable,
target-driven navigation policies, which are typically trained to
behave as local planners [3], [5]–[7]. The training procedure of
such planners can be framed as a supervised learning problem,
where the mapping between observations and actions is learned
from labeled examples generated by an expert demonstrator
[8], [9].

RL-based local planners, on the other hand, learn directly
from interactions between the agent and its environment. Due
to the large number of interactions required to obtain proficient
policies, these local planners are usually trained in simulations,
and then deployed in the real world. Although several works on
learning visual navigation policies exist (e.g. [6], [10], [11]), the
mismatch between high dimensional observations coming from
real and simulated sensory information, makes the deployment
of these policies challenging.

More pragmatic approaches tend to rely on range sensory data,
as the reality gap between simulated and real range measure-
ments (e.g. coming from a LiDAR) is practically non-existent.
In [3], [4] and [12], successful implementations of RL-based
local planners using sparse range measurements as observations
are presented. The low dimensional vectors employed in these
cases are used as inputs to simple parameterizations for the
policies, which consist of multilayer perceptrons. Although
these works demonstrate the effectiveness of this approach, such
observations are not suitable for fine-grained control in complex
environments.

In [7], [5], [13] and [14], higher dimensional observations
are constructed by stacking sensor readings to tackle the partial
observability of the environment. While [7] uses fully connected
layers to process these inputs, in [5], [13] and [14], convolutional
layers are used. A similar approach is proposed in [15], however,
a recurrent multi-modal architecture that has Long Short-Term
Memory (LSTM) [16] layers is employed.

In [17], we explored the idea of using aggregated point
clouds as part of the inputs for a multi-modal neural network
parameterizing a collision avoidance policy trained using RL.
In that case, however, most of the required information to avoid
collisions was obtained from depth maps. In [18], formulating
the observations of swarming agents as variable sized sets for
RL-based policies is proposed.

Although the body of work on RL-based local planners
that rely on fixed-size range information is closely related to
our work, we aim to showcase the benefits of replacing such
representations, to non-fixed size, unordered, point cloud-like
representations. In this regard, our approach relates to [17]
and [18], however, aims to validate the benefits of using this
representation to train RL-based local-planning policies.

III. PROPOSED APPROACH

A. Problem Formulation

The agent-environment interaction is modeled as a Par-
tially Observable Markov Decision Process (POMDP) de-
scribed by a set of states S , a set of actions A, a scalar
reward function R(s, a), a stochastic state transition func-
tion T (s, a, s′) = p(s′|s, a), a stochastic observation function
O(s,′ a, o) = p(o|s,′ a), a set of observations Ω, and a discount
factor γ ∈ [0, 1]. At each time step t the agent observes ot,
executes an action at according to a policy π(at|ot), receives
a scalar reward rt, and transitions to a new state st+1. The
RL objective is to learn a policy that maximizes the expected
discounted reward: J(π) = Eat∼π(at|ot)[

∑T
t=1 γ

t−1rt].
In this work, we use continuous control commands for a

differential velocity controller, as continuous actions allow
fine-grained control over the agent. The agent’s actions are
defined as a = (vx, vθ), where vx ∈ [0, vmax

x ] corresponds to
the agent’s linear velocity (being vmax

x its maximum value), and
vθ ∈ [vmin

θ , vmax
θ ] to the agent’s angular velocity (being vmin

θ and
vmax
θ the minimum and maximum values of vθ).

The agent’s observations are defined by opcl, oodom, and
otarget. The first term, opcl, denotes a non-fixed size 2D point
cloud representation of range measurements. The second term,
oodom = (v̂x, v̂θ), corresponds to odometry-based estimations
of the agent’s linear and angular speeds. Finally, otarget =
(ρtarget, θtarget) corresponds to the local target destination in polar
coordinates.

For the reward signal, we consider the function defined by
Eq. (1), where ρttarget denotes the euclidean distance between the
agent and the target destination at time t, whereas ρthresh is a
predefined threshold distance used to decide whether the agent
has reached the target or not.

rt =

⎧⎨
⎩

rtnavigation if ρttarget ≥ ρthresh

rtsuccess if ρttarget < ρthresh

rtcollision if the agent collides .
(1)

The term rtnavigation is designed to guide the agent to the tar-
get while penalizing undesirable behaviors. It is defined as
rtnavigation = rttarget + rtfov + rtvθ

+ rtdanger. The term rttarget encour-
ages the agent to move towards the target (Eq. (2)).

rttarget =
v̂tx
vmax
x

cos(θttarget) + 5 · 1{ρt
target:ρ

t
target<ρt−1

target}(ρ
t
target)− 6

(2)
The term rtfov provides a penalization signal to the agent when
θttarget exceeds 120◦, that is, when the target lies outside the
projection of a 240◦ FoV with respect to the agent’s local frame
(Eq. (3)). By adding this term to the reward function, we assume
that targets queried to the agent do not require complex long-term
planning capabilities to be reached.

rtfov = (3 cos(θttarget)− 5) · 1{θt
target:|θt

target|>120◦}(θ
t
target) (3)

The term rtvθ
penalizes large angular velocities and acceler-

ations. It is defined as rtvθ
= −2 Kt

vθ
· 1{Kt

vθ
:Kt

vθ
>0.5}(Kt

vθ
),
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where Kt
vθ

is given by Eq. (4).

Kt
vθ

=
1

2vmax
θ

max{2|v̂tθ|, |v̂tθ − v̂t−1
θ |} (4)

The term rtdanger provides a strong penalization signal when-
ever the agent gets too close to an obstacle, thus, discouraging
hazardous maneuvers. The value of rtdanger depends on ltmin, the
minimum range measurement observed by the agent (Eq. (5)).
Finally, rtsuccess is set to 100, while rtcollision to −200.

rtdanger = (60max{ltmin − 0.35, 0} − 5) · 1{ltmin:l
t
min<0.4}(l

t
min)

(5)
To encourage the agent to reach the target as fast as possible,
all the terms that define rtnavigation have a maximum value of
zero. Whenever undesirable behaviors are detected, these terms
provide strong penalization signals. The constants defining each
of these terms have been adjusted so these penalizations have
comparable minimum values: −5 for rttarget, −6.5 for rtfov, −1
for rtvθ

, and −2 for rtdanger.

B. Non-Fixed Size Point Cloud Observations

We use 2D range sensors as the agent’s primary source of
information on the environment state. The measurements pro-
vided by these sensors contain geometric information regard-
ing the agent’s surroundings, which is essential for effective
collision avoidance. Vectors containing range measurements
have been extensively used as observations in learning-based
approaches for robotic navigation (e.g. [3], [8], [12]). Using
these observations, however, imposes some sensible constraints
when following traditional approaches for feature extraction
using neural networks: the observations must maintain a fixed
dimension, and as a consequence, out-of-range measurements
should be encoded.

As range measurements vectors do not explicitly provide a re-
lationship between ranges and their corresponding angles (with
respect to the sensor’s origin), a constant geometric distribution
of these measurements becomes critical to maintain consistency
across observations. This is true even for sub-sampling strategies
applied over range readings as a pre-processing stage, such as
those proposed in [8] and [12], as they assume a relatively stable
sensor’s FoV, and always produce fixed size outputs. Moreover,
there is a direct relationship between the observations’ dimen-
sion and its resolution, which generates a trade-off between the
environment’s observability, and the complexity of learning a
useful representation from the observation.

Taking the above into account, we propose using range mea-
surements as non-fixed size 2D point clouds. Let us consider a
range measurement vector withn elements, ovect = [ρ1, . . ., ρn],
where ρi corresponds to the i-th range measurement, and θi
to its corresponding angle. The ranges are such that ρi ∈
(ρmin, ρmax) ∪ {ρ, ρ}, where ρmin and ρmax are the minimum
and maximum values for the measurements, whilst ρ and ρ
are codifications for measurements which are above ρmax or
below ρmin, that is, codifications for out-of-range measure-
ments. Therefore, the proposed representation corresponds to
opcl = {(ρj cos(θj), ρj sin(θj))}k≤n

j=1 , where k is the number of

in-range measurements. If k equals zero, opcl is arbitrarily set to
the singleton {(ρmax, 0)}.

The proposed representation has advantages compared to the
classic fixed-size range measurements vector. It explicitly incor-
porates θi as part of the observation, which allows the learning
of features that are independent of the readings’ geometric
distribution. Furthermore, these features are also independent
of the sensor’s resolution: the number of points conforming the
observation is variable, as no explicit codification for out-of-
range measurements is employed.

C. Algorithm and Policy Parameterization

For training, we use the Deep Deterministic Policy Gradient
(DDPG) [19] algorithm, so two independent neural networks
are used to parameterize the policy (actor) and the action-value
function (critic). We chose this algorithm as it has been specially
designed for continuous control, while being sample efficient
due to its off-policy nature. Considering the agent’s observations
have varying dimensions because of opcl, the actor and critic
networks cannot use fully connected nor convolutional layers to
take opcl as input. Instead, the feature extractor proposed in the
PointNet architecture [20] is employed. The feature extraction
process performed over opcl can be described as a two-stages
process. In the first stage, each point is normalized and in-
dependently fed to the same multilayer perceptron (MLP) to
produce a set of fixed-size intermediate representations. In the
second stage, these representations are aggregated by applying a
max-pooling operation over them, producing a single fixed-size
representation.

The other components of the agent’s observations, oodom and
otarget, are normalized and fed to fully connected layers. This
provides balance across the dimensions of the intermediate
representations associated to the observations’ components, so
their influence on the agent’s behavior becomes more even. This
design decision follows [21] and [22], where the disadvantage
of directly combining observations and intermediate representa-
tions is discussed. For the critic, the action inferred by the actor
is concatenated to both oodom and otarget, before feeding them to
their respective feature extractors.

The representations obtained by these different modules are
then concatenated and fed to a sequence of layers to get the net-
works’ final outputs. This sequence is conformed by a fully con-
nected layer, an LSTM layer, and then another fully connected
layer. For the actor, the resulting representation is then fed to
two independent fully connected layers, which separately output
values for normalized linear and angular velocities (because of
their sigmoid and tanh activation functions, respectively). For
the critic, the aforementioned representation is fed to a single
fully connected layer with a linear output activation to output
the predicted state-action value.

We choose to include LSTM layers in our model as a means to
integrate temporal information contained in the agent’s observa-
tions. To learn meaningful hidden states, we follow the approach
utilized in [6] and validated in [23], that is, instead of just
performing uniform sampling, we sample traces of experiences
from the replay buffer, and skip updates for the first elements of
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Fig. 1. Simulated worlds used to train the local planning policies, both are 8 m
long by 8 m wide. The red polygon at the center of each world is consistent with
the Pioneer 3DX footprint. The shaded blue regions represent the area covered
by the laser range finder mounted on the robot.

the sampled sequences. A diagram of the proposed architecture
is depicted in Fig. 2(c), including the specific number of units
utilized for each layer. Notice that two variants are displayed:
one that has an LSTM layer, named PCL-LSTM, and one that
does not, named PCL.

IV. EXPERIMENTS

A. Experimental Setup

Training was conducted using the Stage simulator [24] and the
ROS [25] framework. The validation of the proposed approach
is performed both in simulations using Gazebo [26], and in the
real-world. The platform employed to perform the real-world
validation corresponds to a differential drive Pioneer 3DX robot.
Consequently, the agents utilized in simulations are designed to
resemble the Pioneer 3DX. This robot is equipped with a Hokuyo
URG-04LX-UG01 laser range finder, which has a max range
of 5.6 m, an angular resolution of ∼0.352◦, and a 240◦ FoV.
Furthermore, we added an Asus Xtion RGB-D camera aligned
with the x-axis of the laser range finder (looking forward), in
order to improve the robot’s observability in the real world.

For implementing DDPG and training the policies, Tensor-
Flow is utilized. All the processing required (for both training
and validation) is conducted on a laptop equipped with a Intel
Core i7 7700 HQ CPU, and a Nvidia GeForce GTX 1060 GPU.
For the real-world experiments, all processing is performed
on-board, on a Raspberry Pi 3 Model B.

B. Training in Simulations

Training was conducted in the Stage worlds proposed in [5]
(see Fig. 1). We refer to these worlds as SW1 (Fig. 1(a)) and
SW2 (Fig. 1(b)). To showcase the effectiveness of the proposed
method, we compare it to different policy parameterizations.
These parameterizations are based on common trends that have
been already explored for RL-based local planning utilizing
range measurements. Fig. 2 depicts all the actor-critic param-
eterizations that were studied.

The first parameterization, SPARSE (Fig. 2(a)), is a variant
of the model proposed in [3], where the observations are con-
structed by concatenating and normalizing a 10-dimensional
range measurements vector (osparse), the local target position
(otarget), and the agent’s estimated velocity (oodom).

The second and third parameterizations, DENSE and
DENSE-STK (see Fig. 2(b)), utilize dense range measurements

vectors as part of their observations (odense). These vectors are
128-dimensional, constructed by uniformly decimating the 683
readings provided by the robot’s sensor. As for the SPARSE pa-
rameterization, oodom and otarget are also part of the agent’s obser-
vations. The only difference between DENSE and DENSE-STK,
is that three temporally stacked laser range measurements are fed
to the actor and the critic networks in DENSE-STK, instead of
just one as in the case of the DENSE parameterization. Because
of the imbalance between the dimensions of odense, and oodom and
otarget, each of these components are normalized and fed to the
neural networks in a multimodal fashion. Furthermore, odense is
fed to 1D convolutional layers (instead of fully connected layers)
to address its high dimensionality, in a similar way to what is
proposed in [13]–[15], and [5].

The PCL and PCL-LSTM parameterizations (Fig. 2(c)), are
designed as described in Section III-C to handle 2D point
clouds as inputs. Finally, the V2R1 and ASL2 parameterizations
(Fig. 2(d)–(e)) are baseline models which were proposed in [3]
and [4], respectively. The V2R model is similar to SPARSE, but
uses ReLU activation functions, and has 512 hidden units per
fully connected layer. The ASL model takes 36 normalized range
measurements as inputs, sampled by applying min-pooling over
the sensor’s readings [4].

The SPARSE, DENSE, DENSE-STK, PCL and PCL-LSTM
models were trained in both of the Stage worlds depicted in Fig. 1
(SW1 and SW2). The baseline models, V2R [3] and ASL [4], and
PCL-LSTM were trained in “SW2r.” This new environment is
almost equal to SW2, but the reward function used was changed
to match those used in [3] and [4], namely, the reward defined
Eq. (1) was modified so that rtsuccess = 10, rtcollision = −0.4, and
rtnavigation = −C(ρttarget − ρt−1

target), with C = 2. The parameters
defining this new, simpler reward were primarily taken from [4],
however, minor changes (such as the C factor) were introduced
to account for differences in the agent’s dynamics we use.
Training was conducted in an episodic fashion. At each episode,
the agent starts in the world’s origin, and tries to reach a valid
target destination which randomly changes at the beginning of
each episode. During training, no noise is added to the agent’s
observations, and a ground-truth localization system provides
the agent with the local coordinates of the target. An episode
ends successfully if the agent reaches the target, or prematurely
if it collides with the walls of the environment, or a fixed
number of agent-environment interaction steps pass. All the
training hyper-parameters can be found in Table I. The remaining
parameters for DDPG were taken from [19]. The exploration
noise is modulated by a factor that decays linearly from 1.0
to 0.05 in 5·104 training steps. When training the PCL-LSTM
model, we sample traces of length 16 from the replay buffer, and
skip updates for their first 4 elements. For all the other models,
experiences are sampled uniformly.

C. Validation in Simulations

Training was conducted for 105 steps for all models. Every
5·103 steps, 50 evaluation episodes were performed (exploration

1Named after “virtual to real.”
2Named after the id given to the model in the source code provided in [4]
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Fig. 2. Depiction of the studied actor-critic architectures. Inputs corresponding to actions are denoted by “a,” and the state-action value estimate is denoted by “Q”.
Layers follow a “Type (Parameters) Activation Function” notation, or just “Type” for non-parametric functions. “Fc” stands for “Fully connected,” and its parameter
corresponds to the number of hidden units utilized for that layer (this also applies to the LSTM layer’s parameter). “Conv 1D” stands for “1D Convolution,” and its
parameters represent the kernel dimension, stride, and number of kernels utilized. “MLP” stands for multilayer perceptron, and “LReLU” stands for Leaky ReLU.

TABLE I
TRAINING HYPER-PARAMETERS

noise is turned off). For each trial, and omitting the evaluation
process, training took about 3 to 4 hours for the SPARSE,
DENSE and baseline models, and 5 to 6 hours for the DENSE-
STK, PCL and PCL-LSTM models. Fig. 3 shows the average
and standard deviation for the success rate, the average number
of steps, and the average un-discounted reward obtained per
episode, across five independent trials per model. Fig. 3(a) and
3(b) show the performance evaluation of the SPARSE, DENSE,
DENSE-STK, PCL and PCL-LSTM models in SW1 and SW2,
respectively. Fig. 3(c) shows the performance evaluation of
the baselines V2R [3] and ASL [4], and our proposed model,
PCL-LSTM, in SW2r.

From the obtained results, it is observed that almost all models
consistently learn proficient local-planing policies in their re-
spective worlds. The performance differences between models
trained in SW1 are quite subtle compared to those observed for
models trained in SW2, where PCL and PCL-LSTM display
superiority in terms of success rate. The peak in the average
number of steps per episode displayed by some models at early
stages of training can be explained because, in those cases,
the agents quickly adopt a collision avoidance behavior, being

TABLE II
AVERAGE EVALUATION PERFORMANCE OF THE TRAINED AGENTS IN GW1,

ACROSS FIVE TRIALS

able to survive during whole episodes, but unable to reach the
navigation targets.

To evaluate the generalization capabilities of the trained mod-
els when deployed in unseen environments, as well as their
response to slightly different dynamics, we constructed two
worlds in the Gazebo simulator, GW1 and GW2 (Fig. 4).

All the trained agents were first evaluated in GW1 (Fig. 4(a)),
where they must reach valid target destinations starting from the
world’s origin, for 500 episodes. At each episode the target is
randomly changed, and the agent receives it in local coordinates
using a ground-truth localization system. Episodes are consid-
ered successful if the agent reaches the target, and unsuccessful
if it collides, or more than 500 agent-environment interactions
pass. The results for this experiment, averaged across all the
trained instances, are shown in Table II, where the subscript on
each model’s name refers to the world it was trained in, SR
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Fig. 3. Evolution of success rate, average number of steps per episode, and obtained reward during the training process of the studied policy parameterizations.
(a) and (b) show the evolution curves for the models trained in SW1 and SW2, respectively. (c) shows the evolution curves for PCL-LSTM and the baseline models
trained in SW2r.

Fig. 4. Simulated worlds used to validate the performance of the trained
models. (a) GW1 is 10 m long by 10 m wide, whilst (b) GW2 is 20 m long
by 20 m wide.

stands for “Success Rate,” TR for “Time-out rate,” and CR for
“Crash Rate.”

The results show that PCL and PCL-LSTM are the best
performing models across those trained in SW1 and SW2.
Furthermore, the SR displayed by these models on GW1 is
almost the same regardless of the world they were trained in.
It is observed that including LSTM layers to the architecture
that we propose is beneficial, as PCL-LSTM displays an overall
better performance than PCL, showing a lower CR. It is also
observed that PCL-LSTM outperforms the studied baselines by
a large margin. Moreover, PCL-LSTM models display almost
the same performance in terms of SR, regardless of the world and
reward function that was utilized to train them. The results also
show that the DENSE and DENSE-STK models show a lower
performance compared to the SPARSE model. This can be due

to the SPARSE model having lower dimensional observations,
thus, making the training process easier. The foregoing demon-
strates the importance of designing adequate observations and
policy parameterizations for RL-based local planning, as they
noticeable influence the agent’s performance.

While there are some differences in performance when com-
paring those model instances trained in SW1 and SW2 (e.g.
PCLSW1 vs PCLSW2), the DENSE-STK models trained in SW1
vastly outperform the DENSE-STK models trained in SW2. We
hypothesize that stacking observations makes this model prone
to over-fitting: the same distribution of stacked observations
experienced in a complex world is unlikely to be experienced
again in an unseen environment.

We conducted a second validation experiment, this time on
GW2 (Fig. 4(b)), where long-term planning is required to reach
the targets. For this experiment, the AMCL localization system,3

and the A� global planner4 are used. Only the best performing
models from the previous experiment, the PCL-LSTM models
trained in SW2, were subjected to this evaluation. In this exper-
iment, the agents are guided towards the navigation goal by a
sequence of way points obtained by sampling the global plan
generated by A�. The same performance metrics (SR, TR, and
CR) are measured for 500 episodes, and averaged across five

3[Online]. Available: http://wiki.ros.org/amcl
4[Online]. Available: http://wiki.ros.org/action/fullsearch/global_planner
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TABLE III
COMPARISON BETWEEN PCL-LSTM INTEGRATED WITH LOCALIZATION AND

GLOBAL PLANNING, AND Move_Base IN GW2

TABLE IV
EVALUATION RESULTS FOR DIFFERENT PERTURBATIONS APPLIED TO THE

OBSERVATIONS OF THE PCL-LSTM AGENTS IN GW1

trials. The PCL-LSTM agents are compared to move_base.5

Two variants of GW2 are considered: a static variant, GW2st,
where the only obstacles for the agent are the environment’s
walls, and a randomized variant, GW2rnd, where different ob-
jects are randomly placed in the world, changing their position
at the beginning of each episode (Fig. 4(b)). The results obtained
for evaluation are displayed in Table III.

The results for this experiment showcase the reactive nature
of the proposed approach, as it vastly outperforms move_base
when deployed in GW2rnd, where not mapped obstacles are
present. For the experiments conducted in GW2st, our approach
also outperforms move_base, as the latter often gets stuck in
narrow passages.

Finally, the response of PCL-LSTM to perturbations on its
observations was evaluated in GW1. We studied changes in
performance when (i) decreasing the agent’s FoV, (ii) restricting
the maximum number of points conforming the observed point
cloud (|opcl|max), and (iii) limiting the agent’s FoV, but perform-
ing an aggregation (AGGR) through time of the resulting point
clouds using odometry information, and filtering points outside
a radius defined by the agent’s sensor max. range (5.6 m). This
sensory integration was achieved as in the construction of the
“local maps” described in [17]. The results for this experiment
are shown in Table IV.

It is observed that the performance of PCL-LSTM decreases
when restricting the agent’s FoV. As training was conducted
using a 240◦ FoV simulated LiDAR, this result is expected. This
limitation, however, can be partially addressed by performing
sensory integration, as indicated by the performance improve-
ment observed when aggregating observations. In addition, the

5[Online]. Available: http://wiki.ros.org/move_base

results show that the model only experiences a slight perfor-
mance detriment when the sensor’s resolution is decreased. The
results support our hypotheses regarding the system’s flexibility
from a practical view point. As the trained agents allows variable
sized inputs, the use of cheap, low resolution sensors at deploy-
ment time is possible. It also permits using different techniques,
such as point cloud registration and sensor fusion, to artificially
augment the agent’s perception.

D. Validation in the Real-World

To validate the applicability of our approach in the real-world,
we evaluated the performance of PCL-LSTM when being in-
tegrated in a full navigation stack, and deployed in two envi-
ronments: a small room resembling an indoor space, and a long
corridor. We relied on AMCL for localization, and A� for global
planning. In this experiment, the agent is guided towards the
navigation goal by way points sampled from the plan generated
by A�.

We augmented the robot’s perception by using an RGB-D
camera to project range readings (from depth maps) into a two-
dimensional space, as in [15]. These readings are then coupled
with those provided by the laser range finder mounted on the
robot. This allows the robot to detect objects inside the camera’s
FoV which may not be fully observed by 2D perception, such
as chairs and tables.

Furthermore, the navigation system was deployed on-board:
the processing required to localize, generate global plans, sam-
ple way points, pre-process sensor readings, and perform pol-
icy inferences was performed by a Raspberry Pi 3 Model B,
mounted on the Pioneer 3DX. The PCL-LSTM model was able
to run in real-time, with an average maximum inference time of
about 75 ms (measured by feeding point clouds conformed by
128 points to the controller).

During the real-world evaluation, different valid target loca-
tions were queried to the robot sequentially in the two considered
environments. Examples of the trajectories that were performed
by the agent are shown in Fig. 5(a)–(b) (indoor-like room)
and Fig. 5(c) (large corridor). During the corridor experiments,
sometimes humans acted as dynamic obstacles. The execution
of some of the trajectories displayed in Fig. 5 can be seen in
https://youtu.be/AzvRJyN6rwQ.

To get a quantitative measure of the agent’s real-world per-
formance, we conducted three experiments to evaluate its be-
havior on challenging tasks: obstacle avoidance through aug-
mented perception (chair avoidance), fine-grained control (pass-
ing through doors), and short-time planning (passing blocked
paths). We performed 30 trials per task, and recorded the metrics
used for simulated validation (SR, TR, and CR). As we aimed
to validate the local planner performance, we did not rely on
A� (as in the previous experiment). The obtained results are
summarized in Table V.

These results show that the trained agent is able to perform
well in real-world environments, under the presence of noisy
sensor measurements, localization errors, dynamic obstacles,
and actuation delays. Furthermore, the system is able to (i)
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Fig. 5. Examples of the performed trajectories by the PCL-LSTM model in
(a)–(b) an indoor-like environment, and (c) a large real-world corridor.

TABLE V
RESULTS OBTAINED IN ISOLATED REAL-WORLD EXPERIMENTS

artificially attain 3D perception by using a simple sensor pre-
processing procedure, and (ii) run in a processing constrained
platform in real-time.

V. CONCLUSION

In this work, a robust approach for training RL-based lo-
cal planners was introduced. Our approach allows the use of
non-fixed size point clouds as the agent’s observations, instead
of the more commonly used fixed size range measurement
vectors. This endows the trained local planner with flexibility
with regards to its observations: the sensor resolution can be
changed, and sensor pre-processing can be used to artificially
augment the agent’s observability on the fly. Although we only
explored the idea of using 2D point clouds, richer information
can be harnessed by using sets of higher dimensional points. We
left this as future work.
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