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Rogue waves in disordered 1D 
photonic lattices
Danilo Rivas1, Alexander Szameit2 & Rodrigo A. Vicencio1*

In this work, we study the phenomena of Rogue waves (RW) on one-dimensional (1D) photonic 
lattices presenting diagonal and non-diagonal disorder. Our results show the appearance of extreme 
events coming from the superposition of different, extended and localized, linear waves for weak 
disorder. We perform experiments on femtosecond laser written waveguide arrays having disorder in 
coupling constants, which is originated from a random waveguide distribution. Both, numerics and 
experiments, are in good agreement and show that RW are generically present in 1D lattices for weak 
disorder only, after a mandatory data filtering process.

Rogue waves (RWs) are old phenomena, probably emerging at the very beginning of the universe. However, 
they were first described as large amplitude water waves on open ocean, suddenly appearing and disappearing 
without any cause and, sometimes, producing serious damages on ships1,2. These waves are classified as extreme 
events (EE) in the sense of statistic due to their rare appearance but high amplitude, which is associated with long 
tails distributions. The origin of such extreme wave phenomena has been controversial, dividing the approaches 
between linear and nonlinear wave mixing processes3. For example, wave tanks could naturally induce nonlinear 
phenomena due to their confining, which is completely absent in open sea, where waves suffer the interaction 
with other waves. Interestingly, due to the changes in global weather, an important increment in occurrence and 
severity of RWs have been reported4, making even more important their study due to the emergent damage on 
populated areas.

Although initially RWs were applied to description of ocean phenomena, nowadays they are an important 
subject of complex systems research, going from oceanography, optics, and biology, to sociology, economy, etc.5. 
Particularly in optics, nonlinear Schrödinger-like models6–8 have associated the appearance of EEs with the exci-
tation of coherent structures, including modulational instability and self focusing and defocusing processes9–12. 
Recently, analogies between light and ocean phenomena have been reported13, including results supporting 
linear and nonlinear interpretations.

Discrete systems14,15 have been a bit outside of this discussion and only few numerical results have been 
reported to date16–18, which are focused mostly on nonlinear lattices presenting disorder. In particular, in Ref.18 
authors numerically found that weak disorder has an important effect on the appearance of Rogue Waves, results 
that could be associated with the concept of caustic effects coming from purely linear, large-amplitude events on 
an optical sea19. In discrete linear lattices, dynamics is governed by ballistic propagation, having a characteristic 
Discrete Diffraction (DD) pattern when exciting a single bulk site14. This implies that energy spreading across 
the lattice is mediated by the excitation of linear propagating waves, which explore the system with different 
velocities depending on their specific k-vector. On the other hand, disordered lattices have shown to produce 
Anderson-like localization20–22 due to a continuous destructive interference of these propagating waves on a 
disordered landscape. This produces large amplitude and highly localized profiles through the lattice. However, 
this is an inevitable property which, therefore, can not be considered as a rare or extreme event.

In this work, we focus on searching for RWs on discrete disordered photonic lattices. In particular, we study 
a one-dimensional system by performing numerical simulations considering diagonal (on-site) and off-diagonal 
(coupling) disorder. We found that weak disorder becomes an ideal regime for observing extreme events. There, 
wave transport and weak trapping effects are simultaneously possible, which naturally help to facilitate construc-
tive interference, with the possibility to excite large amplitude waves, as causticity suggests12,19. In addition, to 
our knowledge, we report on the first experiments on femtosecond written photonic lattices23 looking for this 
phenomena. We corroborate the numerical findings and validate the application of an intensity filter as an 
important step in the data analysis, in order to distinguish between purely extreme and spurious events.
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Model and numerical results
We study the propagation of light in one-dimensional photonic lattices, including on-site and coupling disorder. 
By using a coupled-mode approach, assuming the excitation of fundamental waveguide modes only, we obtain 
a set of normalized discrete linear Schrödinger equations14,15 written as

Here, un describes the electric field amplitude at the n-th site of a lattice having N waveguides, and z corresponds 
to the propagation coordinate or dynamical variable. Function βn defines the distribution of on-site disorder 
across the lattice. Experimentally speaking, this term is related to different propagation constants which can 
be implemented by fabricating waveguides with different refractive index contrasts and/or different waveguide 
geometries23, as sketched in Fig. 1a. βn = β0 defines a system formed by identical waveguides only. Term Vn,m 
defines the coupling interaction between nearest-neighbor n and m waveguides. This coefficient depends on 
waveguide parameters but, more precisely, it decays exponentially with distance23. So, experimentally speaking 
non-diagonal disorder is implemented by randomly choosing the distance between waveguides on a given lattice 
which is, in fact, the experimental case we will consider in this work [see Fig. 1b].

We are interesting on studying the effect of isolated disorder, diagonal or non-diagonal, in order to identify 
the appearance of Rogue waves in each case. First of all, we start by studying the dynamics of a lattice with on-
site disorder only. In this case, we define βn = β0 +�β with �β ∈ {−Wβ ,Wβ} , and Wβ ∈ {0, 2} the strength of 
disorder. Without loss of generality, we set β0 = 0 , which does not affect the physics of the problem, but a shift 
in propagation constants. In this case, we set function Vn,m = V0 , with all waveguides separated by the same 
distance, as described in Fig. 1a. Considering this, model (1) becomes

(1)−i
∂un

∂z
= βnun +

∑

m �=n

Vn,mum.

Figure 1.   (a, b) diagram for lattices presenting diagonal and non-diagonal disorder, respectively. Intensity 
output profile at z = zmax for wβ(wV ) : (c) 0 (0) , (d) 0.3 (0.15) and (e) 1 (1) . (f) Averaged output participation 
ratio R versus Wβ(WV ) for 100 realizations (gray lines correspond to an exponential fit). Black (red) color is for 
diagonal (non-diagonal) disorder. N = 101 sites, V0 = 1 , and zmax = 21.
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In general, as we use V0 = 1 in numerics, the disorder strength is always implicitly normalized to V0 . First of all, 
we study the global dynamics of model (2) by initializing the system with a single-site excitation: un(0) = δn,nc , 
with nc the lattice center. Figure 1c–e show (black connected dots) typical profiles at different disorder levels. 
For zero disorder, we observe a discrete diffraction pattern that disseminate the energy across the lattice with 
two typical main propagating lobes. While increasing the disorder strength, the output profile is composed 
of a discrete diffraction profile plus randomly localized peaks, depending on the particular disorder distribu-
tion. This naturally increases the efficiency for energy spreading due to a better densification of the excited 
area. When disorder strength is high enough, the energy gets trapped due to Anderson localization, which 
is originated by destructive interference of incoming and outcoming waves20. We use the participation ratio 
R, defined as R = (

∑
n |un|

2)2/(N
∑

n |un|
4) , as an energy distribution indicator. This quantity measures the 

number of relevant excited peaks on a given spatial profile: a single peak on a lattice gives R = 1/N , while a lat-
tice equally excited gives R = 1 (profiles with R � 0.4 are considered as delocalized24). As it was already shown, 
theoretically24 and experimentally25, for diagonal disorder, the distribution of energy increases for an increasing 
level of disorder, achieves a maximum and, then, decreases for stronger disorder. In Fig. 1f we present our results 
after averaging the participation ratio at the output position z = zmax versus the disorder strength Wβ (black 
dots). We also include an exponential fit to separate regimes of energy spreading and Anderson-like localization 
(where we expect an exponential decaying tendency). As we will describe below, the region where R � 0.5 for 
Wβ � 0.3 corresponds to a favorable dynamical regime for observing wave interaction and, as a consequence, 
an increasing EE count.

A second study corresponds to consider a lattice presenting off-diagonal disorder only, which is implemented 
by taking random distances between waveguides [see sketch in Fig. 1b] and keeping the propagation constants 
fixed for all of them (without loosing generality, we simply set β0 = 0 ). In this case, we write the disorder as 
Vn,m = Vm,n = V0(1+�V) with �V ∈ {−WV ,WV } , and WV ∈ {0, 1} . Here, the disorder strength can not be 
larger than 1 in order to avoid negative coupling constants, which are absent in model (1), that considers the 
excitation of fundamental modes only26–28. Therefore, the model for off-diagonal disorder simply reads as

where equations for amplitudes un±1 consider the coupling condition Vn,n±1 = Vn±1,n , which is necessary in 
order to correctly define a realistic disordered lattice and to fullfill the Power and Hamiltonian conservation 
of model (1). Figure 1c–e show some examples at different disorder levels. The main differences are that com-
parable on-site regimes occur at different strength of disorder, as expected considering that the off-diagonal 
case somehow reduces the effective propagation area, when coupling becomes too small on a given direction. 
A weak coupling reduces the chances for light to propagate through that direction and, therefore, the effect of 
non-diagonal disorder on dynamics is stronger (more aggressive). The tendency of averaged output participation 
ratio versus disorder strength [red dots in Fig. 1f] is different compared to the diagonal case for weak disorder. 
However, as the exponential fit shows, the region where R � 0.45 and away from an exponential decaying ten-
dency occurs for WV � 0.1 . Again, this region corresponds to a favorable regime for wave interaction, where we 
expect to count a larger amount of EEs.

Rogue wave analysis
Formally speaking, a Rogue Wave has been defined, in the oceanographical context, as an extreme wave appear-
ing suddenly and having an amplitude larger than the rest of a given amplitude ensemble. This gives a very low 
probability for the excitation of such an extremely large wave, been therefore a rather rare event. Accordingly, it 
becomes necessary to give a technical definition in order to study this phenomena on different contexts. In this 
way, we require to compute a given quantity that could be compared for different system parameters in order to 
clearly define if the large amplitude events found in the dynamics are extreme or not. Along this work, we will 
define that an intensity In ≡ |un|

2 corresponds to an extreme event if In > 2Is , where Is corresponds to a threshold 
intensity. Is is defined as the average value of the highest intensity tertile of the corresponding probability density 
function (PDF) distribution12. Therefore, for a given realization, we analyze all sites intensities In and obtain a 
PDF distribution where we define the intensity Is and count the number of EEs over the entire intensity ensemble.

As the intensity distribution and, therefore, the number of EEs change at different propagation distances, we 
develop a full dynamical characterization: For a given realization of disorder, we numerically integrate model (1) 
in the interval z ∈ {0, zmax} . Then, for every step in z, we analyze the corresponding spatial profile |un(z)|2 and 
count the lattice intensities to create a PDF distribution, where we identify the percentage of EEs. Figure 2a shows 
an example of a PDF distribution for diagonal disorder and for a given distance z. We observe a heavy-tailed 
intensity distribution, what is an indicator of the existence of EE29. For every step in z, we obtain the percentage 
of EEs versus propagation distance, as shown in Fig. 2b. Here, we observe an increasing number of EEs versus 
distance, which is associated with light spreading across the lattice and reflections occurring for z � 10 . As a 
reflected wave superposes to slower propagating fronts, this causes a spurious increment of local intensities In , 
what adds extra counts to the overall statistic. Afterwards, light spreading is more homogeneous and the number 
of EEs reduces up to a rather constant value ( ∼ 0.38 in the example), observing some kind of thermalization or 
saturation phenomena. This means that the spatial pattern, although still fluctuating, behaves similarly for an 
increasing value of z. We, therefore, observe an EE saturation after some propagation distance, what strongly 
depends on the degree of disorder.

(2)−i
∂un

∂z
= �βun + V0(un+1 + un−1).

(3)−i
∂un

∂z
= Vn,n+1un+1 + Vn,n−1un−1
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Taking this information into account, we define an EE dynamically averaged value ( EE ), obtained by averag-
ing the number of EEs in the interval z ∈ {85, 95} for a given realization and given disorder, and then averaging 
again over 100 disorder realizations. In the chosen z-interval, dynamics has already relaxed, without the strong 
effect of first reflections at surfaces. So, we can correctly characterize the appearance of large amplitude events for 
a given degree of disorder. We collect the information of EE versus disorder strength in Fig. 3a, b, for diagonal 
and non-diagonal disorder, respectively. Blue curves show the averaged data as described above, which consider 
all lattice amplitudes, without any filter, when counting intensity peaks to form the corresponding PDF distri-
bution. We observe a rather strange behavior in both blue curves. First, EE decreases to a minimum around 
{Wβ ,WV } ∼ {0.15, 0.05} , from zero to weak disorder, and then EE increases to a maximum located close to 
{Wβ ,WV } ∼ {0.6, 0.3} . Afterwards, in both cases, the number of EE decays slowly. We observe that the typical 
discrete diffraction pattern, having two characteristic main lobes [as shown in Fig. 1c], increases the statistic 
of large amplitude events. Without filtering, all intensity are counted and the intensities at lobes (that include 
several sites) are been considered as EEs. Of course, this is out of the definition of a low statistic large amplitude 
and rare event, which is necessary to define a RW. In other words, every time we would propagate light on a 
homogenous lattice we would observe a RW. Clearly, a RW is a rare event, therefore the described observation 
(discrete diffraction) can not be categorized as such. This also affects the dynamics at weak disorder, because in 
that regime propagation is a mixture between discrete diffraction and trapping at disordered regions, as shown 
in Fig. 1d. On the other side, we know that for larger disorder we will end up with Anderson localization20 [see 
Fig. 1e]. Obviously, this regime can not be counted as a RW, because, as Anderson taught us, this observation 
will always occur for a disordered system; therefore, it would not be a rare event at all. For a large disorder 
strength, profiles are completely localized with R → 1/N , having a single excited site. Therefore, if not filter is 
included in data, the number of EE must go to the limit of 1/N, with only one site having a large amplitude. By 
filtering the data, this peak will be exactly Is and, therefore, no RWs will be defined, as it should be. Clearly at 
this regime, the overall statistic increases when counting all amplitude sites and the localized profile generates 
spurious large amplitude events.

As our work is focused on identifying the effect of disorder on the appearance of RWs on 1D lattices, we 
implement a filtering process. We first notice that low amplitude peaks increase the amount of data and, there-
fore, decrease the threshold value 2Is . So, we decide to simply avoid counting low amplitude data by applying an 

Figure 2.   (a) Semi-log PDF distribution for a single realization of diagonal disorder ( Wβ = 0.1 ), and for a given 
propagation distance z = 95 . Red and blue vertical lines indicate Is and 2Is , respectively. (b) Percentage of EEs 
versus propagation distance z for same realization described in (a).

Figure 3.   Averaged extreme events EE versus disorder strength for (a) diagonal and (b) non-diagonal disorder. 
Different colors corresponds to different applied filters, as indicated in figure.
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intensity filter, which is defined as a given percentage of the largest peak ( Imax ) at a given realization. To wit, X% 
means that we will only count sites with intensities larger than X · Imax/100 . The result of applying this filtering 
process is presented in Fig. 3, using different colors depending on the indicated filter value. First of all, for both 
cases, we notice that the inclusion of a data filter produces a similar tendency. We observe how the number of 
averaged EE decreases for an ordered system, what indicates a correct effect of our suggested filtering process. The 
previously described minimum decreases and is shifted to a smaller value of disorder for an increasing applied 
filter. In both cases, we observe that a filter of around 20% completely eliminates the EE count at zero disorder. 
So, with this level of filtering we are indeed avoiding to count a non rare effect as discrete diffraction. In addition, 
our filter is also eliminating Anderson localization as a RW, reducing to zero the averaged EE for larger disorder 
(in this regime, a lower filter of ∼ 15% is, in fact, enough). Our filter is indeed shifting the threshold intensity 
Is allowing to classify only very rare large amplitude events as RWs. Nicely, considering the dynamics at weak 
disorder, we have been able to limit the EE region as a result of the propagation of linear extended waves plus 
weak random localization on distorted regions across the lattice. That means that, on a 1D disordered photonic 
lattice, we would observe an extreme event only when a good balance between transport and weak localization 
effects is achieved and large events become statistically possible. As we observe in Fig. 3, the maximum number 
of EE , after filtering 20% of peaks, is quite low, with a value lower than 1% of total counted peaks.

Experiments for off‑diagonal disordered lattices
We perform experiments on 8 photonic lattices which were fabricated in fused silica, by femtosecond laser writ-
ing technique23, to characterize the dynamics on disordered 1D systems25,30,31. Each lattice possesses 81 sites, a 
nominal waveguide separation of 16 µ m, and a propagation distance of 10 cm. Disorder is included by randomly 
varying the distance between waveguides from the set {16− δ, 16+ δ} , with δ ∈ {0, 1, 2, 3, 4, 5, 6, 7}µ m. There-
fore, δ is related to the disorder strength WV , and a larger value implies a larger waveguide separation, meaning a 
weaker coupling interaction, which decays exponentially with distance23. Figure 4a1, a2 show microscope images 
for homogenous ( δ = 0 ) and disordered ( δ = 5 ) lattices, respectively, after white light illumination.

The experiment consists on illuminating a single waveguide of a given array, by focusing a 633 nm HeNe laser 
beam, after power controlling, polarizing, and aligning the beam (see Fig. 4b). Polarization is set to a horizontal 
one in order to have a larger effective coupling and, therefore, a larger spreading area31. This aspect is crucial to 
observe RWs on photonic lattices, because the interaction between different propagating and localized waves is 
the main mechanism for an abrupt increment of a given site intensity. As our numerical filtered results suggest, 
this can be observed for weak disorder, where these mixed regimes can be found. To excite a single site on a 
given lattice, we use a short focal lens of f = 25.4 mm and shift the input position transversally using micro-
mechanical stages. When injecting light on a single waveguide we are indeed exciting all linear modes which 
have an amplitude different to zero at that site. Therefore, we expect to excite localized as well as propagating 
linear waves. We image the output profile on a CCD camera, by using a 10× microscope objective (MO). For zero 
disorder, we observe discrete diffraction as shown in Fig. 4c1. Then, if we slowly increase the disorder strength, 
for example to δ = 1 (see Fig. 4c2), we still observe a good diffraction pattern but having some localized peaks. 
This is a good experimental example where we expect to observe an EEs enhancement. Then, by further increas-
ing the disorder strength to δ = 3 and larger, we observe an already quite localized profile, as shown in Fig. 4c3 
and c4. Figures 4c1–c4 correspond to specific examples at different δ-values. However, in order to accumulate 
statistic and experimentally determine the appearance of RWs in 1D photonic lattices, we need to measure sev-
eral images at every photonic lattice. Experimentally speaking, disorder has been historically studied by using 
a single disordered lattice, but exciting different bulk sites25,30,31. This is a valid and more efficient approach to 
study disorder effects because different lattice positions imply different excited modes and, at the end, a differ-
ent observed dynamics. In our case, we excited 20 different bulk sites in each of our 8 lattices. With that, we 
obtained 20 realizations for each degree of disorder and compute the percentage of EEs in a similar way than 
for numerical data. We collect the information in Fig. 5a. In the experimental case, we only obtain information 
at the output facet of the lattice at z = 10 cm. Therefore, we average over 20 output images for every degree of 
disorder and define EEexp.

Figure 4.   (a1, a2) Output microscope images for broad white light illumination of an ordered and a disordered 
waveguide array, respectively. (b) Simplified experimental setup: ND is a neutral density filter, �/2 a half-wave 
plate, P a linear polarizer, M a mirror, L a lens, PL a photonic lattice, MO a microscope objective, and CCD a 
digital camera. (c1–c4) Output intensity images for single-site laser excitation at δ : 0, 1, 3 and 6, respectively.
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In general, we observe a rather similar tendency on the experimental EE count, when comparing with numeri-
cal data from Fig. 3b. However, for weak disorder we do not observe discrete diffraction as an EE, what is different 
compared to numerical findings. When collecting experimental data, the exposition time from the CCD camera 
is set such that main peaks are not saturated in a scale from 0 to 256, which is a typical scale for digital images 
[notice that Fig. 4c1–c4 are saturated for presentation purposes]. Therefore, we are always experimentally apply-
ing some kind of filtering to the obtained images. This means that low intensity peaks will simply not appear in 
our counting process because they are in the order of the image background. However, even more important is the 
propagation distance in experiments. Our simulations in Fig. 3 were obtained for larger propagation distances, 
because we wanted to describe a more asymptotic regime for 1D disordered lattices, in order to get a more gen-
eral evidence of EEs in this kind of lattice systems. We also ran numerical simulations for shorter propagation 
distances as shown in Fig. 5b, in order to compare directly with experiments (we set V0 = 1.2 cm−1 , where we 
find good agreement). There, we corroborate that EEs are not appearing at zero disorder. This is quite reasonable 
because at shorter distances, light spreading occupies a reduced area and the spatial profile is more homogenous 
and flatter. This naturally implies no counting for EEs at zero disorder because a flatter pattern gives a value for 
2Is around the value of the pattern and, therefore, no EE is counted.

When applying filtering on experimental data (see Fig. 5a), we observe a stronger effect than in numerics (see 
Fig. 5b), probably because the overall amount of excited peaks is smaller and statistic lower. So, a data filter has 
a stronger effect on experiments. Nevertheless, we nicely observe how the highly localized patterns obtained for 
a large degree of disorder are eliminated as RWs when filtering both, experimental and numerical, data. For a 
filter of the order of 5% we already eliminate Anderson localization as an EEs and observe the appearance of an 
EEs peak similar to the one found in Fig. 3. Naturally, when increasing the amount of filtering this peak decreases 
as the amount of statistical data decreases as well. This is quite evident looking the last experimental used filter 
of 12% , where the standard deviation shows that samples could sometimes show and sometimes do not show 
large amplitude and rare events.

Conclusions
In conclusion, we have studied the existence of RWs in 1D photonic lattices having on-site or coupling disorder. 
In general, we numerically determine the existence of a well defined peak for extreme events at weak disorder. 
This peak occurs in a region where propagating waves are interfering with weakly localized patterns and, there-
fore, linearly superposing and generating regions of constructive and destructive interference. This resembles 
the results found in linear optical systems19, where caustic-like effects are the responsible for large amplitude 
and rare events. We performed a first experiment on 1D disordered photonic lattices and found a similar ten-
dency for averaged data, with the corresponding EE peak at weak disorder. We found a good phenomenological 
agreement between numerics and experiments and, therefore, validate the appearance of EEs on purely linear 
disordered systems. One of the main contributions of our work is the definition of a data filter to avoid counting 
spurious data as a RW. We showed that this filter correctly eliminates always observed phenomena of discrete 
diffraction and Anderson localization from the general count. We believe that our results could stimulate further 
experimental investigation of extreme phenomena in photonic lattices, considering different geometries and 
dimensions, as well as different nonlinearities.

Methods
Sample fabrication.  The photonic lattice used in our experiment was fabricated using the femtosecond 
laser writing technique23. By focusing a laser beam on a fused silica plate, we are able to locally modify the refrac-
tive index. Then, we translate the sample at fixed velocity and create a complete waveguide inside the glass plate. 
Depending on the transversal pattern of the specific lattice, we repeat this procedure on several positions and 
fabricate a full photonic system.

Figure 5.   (a) Experimentally and (b) numerically averaged percentage of EEexp versus parameter δ . In (a) bars 
indicate the standard deviation for all data. Numerics in (b) were performed for N = 81 sites, V0 = 1.2 cm−1 , 
and zmax = 10 cm. Different colors indicate different data filters as described in figure.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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