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Cancer is a significant medical issue, being one of the main causes of mortality

around the world. The therapies for this pathology depend on the stage in which

the cancer is found, but it is usually diagnosed at an advanced stage in which the

treatment is chemotherapy. Platinum drugs are among the most commonly used in

therapy, unfortunately, one of the main obstacles to this treatment is the development

of chemoresistance, which is the ability of cancer cells to evade the effects of drugs.

Although some molecular mechanisms involved in resistance to platinum drugs are

described, elucidation is still required of others. Secretion of inflammatory mediators such

as cytokines and chemokines, by tumor microenvironment components or tumor cells,

show direct influence on proliferation, metastasis and progression of cancer and are

related to chemoresistance and poor prognosis. In this review, the general mechanisms

associated with resistance to platinum drugs, inflammation on cancer development and

chemoresistance in various types of cancer will be approached with special emphasis

on the current history of CC chemokines subfamily-mediated chemoresistance.
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INTRODUCTION

Cancer is a major public health problem, one of the leading causes of death around the world (1).
Therapies depend on the stage in which the cancer is found, but usually, diagnosis is at an advanced
stage, in which treatment choice is chemotherapy. However, cancer cells develop chemoresistance
through a combination of cellular andmolecular mechanisms, and are consequently related to poor
prognosis and lower patient’s survival (2). Inflammation mediated by cytokines and chemokines
has been linked to cancer initiation, promotion, and chemoresistance (3), all associated with the
tumor microenvironment (TME) composed of stem cells, cancer cells, endothelial cells, immune
cells, as well as fibroblasts and the extracellular matrix (ECM) (4). As part of the TME, cancer-
associated fibroblasts (CAF) are involved in tumor progression, metastasis and drug resistance.
CAFs are activated fibroblasts triggering signals involved in growth, differentiation and therapy
evasion, and also secrete growth factors (epidermal growth factor, EGF) and IL-6 cytokine (4). Also,
cytokines and chemokines are secreted by the TME and cancer cells through paracrine/autocrine
mechanisms associated with chemoresistance (5). In the present review, the general mechanisms
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associated with inflammation in cancer development and
platinum drug chemoresistance, and in particular, the role of CC
chemokines subfamily in chemoresistance will be discussed.

CANCER AND PLATINUM DRUGS

Cancer is a major cause of mortality worldwide (1), with cancer
therapy depending on the tumor stage, which unfortunately, as
with most cancers is diagnosed in stages in which the tumor
is spread, with low survival rates (6). When chemotherapy is
needed in advanced cases of cancer, one of the most used drugs
is the platinum-based (6), although a major problem in cancer
treatment, in addition to late diagnosis, is chemoresistance.

Platinum drugs are widely used in the treatment of
different tumors, three of these compounds are approved by
the United States Food and Drug Administration: cisplatin,
carboplatin and oxaliplatin (7). Platinum drugs enter the cell
through diffusion or by plasmamembrane-mediated transporters
(CTR1), usually allowing copper influx (8), by binding to
methionine, histidine or cysteine CTR1 residues (9) to act as
enzyme cofactor (10). Once inside the cell, platinum drugs
bind to proteins, reduced Glutathione (GSH), and DNA N-
7 site of purines (11). Adduct blocks DNA transcription and
synthesis, and DNA repair mechanisms, triggering cell cycle
arrest and apoptosis (12). Carboplatin forms a greater amount
of intra-strand adducts compared to cisplatin, but the formation
rate is 10 times slower, related to a lower toxicity (13).
Compared to cisplatin, oxaliplatin induces potentiallymore lethal
functional lesions, with greater cytotoxicity in human tumor cell
lines, requiring less DNA lesions than cisplatin to inhibit cell
growth (13).

Platinum drugs are an effective way to treat cancer, however,
drug resistance may hinder therapy (14). Resistance to platinum
drugs could develop through several mechanisms: decreased
drug entry into the cell, increased expulsion (8, 11), increased
detoxification (15, 16), increased DNA repair pathways (12,
17), upregulation of anti-apoptotic proteins such as Bcl-2,
Bcl-XL, MCL-1(11), among others. Alternatively, epithelial
mesenchymal transition (EMT) accompanies the development
of drug resistance, with several molecules associated with
EMT, such as transcription factors (Snail, Twist) and miRNAs
(miRNA-200 family, miR-15, miR-186, etc.), being recognized
as important for drug resistance (18) with effect in diverse
signaling pathways associated with epithelial–mesenchymal
transition such as STAT3, Notch, SMAD (19). In addition,
DNA methylation of tumor suppressor genes and histone
modifications are important resistance mechanisms (20). Finally,
recent investigations associate epigenetic regulations as potential
resistance mechanisms (21), with cisplatin resistance regulated
by microRNAs and methylation/demethylation of genes such as
FANCF in ovarian cancer, and related to cytokines/chemokines
(axis CXCL12-CXCR4) (8) to be studied in detail later in the
review. Examples of reported tumors developing resistance to
cisplatin are ovarian cancer (22, 23) usually developed during
treatment (acquired resistance) (24), cervical (25, 26), lung (27,
28), and gastric cancer (29, 30); the last two can also develop

intrinsic resistance, occurring when the drug is ineffective from
the beginning of treatment (14, 31).

INFLAMMATION AND CANCER

Inflammation is a physiological response to cell damage by
injury or infection (32), with pathogens not only related to
chronic inflammation, but also immune system deregulation
or autoimmunity, such as inflammatory bowel diseases, which
increases colon cancer risk (33). Currently, about 20% of
malignant tumors are related to chronic inflammation, including
colon, gastric, liver, breast and lung cancer (34), with this
phenomenon first observed in 1863 by Rudolph Virchow
describing tumor leukocytes (35). Subsequently, the role of
inflammatory cells described “chemical mediators” in the
development of an inflammatory condition (36), currently
known as cytokines and chemokines. Cytokines are low
molecular weight polypeptide/glycoproteins synthesized by
immune cells, stromal cells (fibroblasts and endothelial cells) (37)
and tumor cells. Cytokines are responsible of proliferation, cell
survival, differentiation, immune cell activation, cell migration,
and death. Chemokines are a group of secreted proteins
within the cytokine family of early induction (20), being a
group of small proteins (8–12 kDa) stimulating lymphocyte
migration from blood to tissues (chemotaxis), inducing integrin
expression (38, 39). Cytokines and chemokines act in an
autocrine manner, being endogenously synthesized by cells,
and when they are secreted act on the same producing cell
through specific receptors. In paracrine regulation, chemokines
are produced and secreted by a cell acting in adjacent cells, sensed
through specific receptors (40). The most studied cytokines
in cancer are: tumor necrosis factor (TNF-α), involved in
angiogenesis and invasion; Interleukin-1 (IL-1), associated with
metastasis, and IL-8-associated proliferation and migration (41).
Therefore, inflammation is involved at various stages of tumor
development: in initiation favoring mutation development and
increasing reactive oxygen and nitrogen species causing DNA
damage (3). Meanwhile, immune cells infiltrating the tumor
produce cytokines, activating key transcription factors (NF-
κB, STAT3, and AP-1), and participate in tumor progression
and angiogenesis. In summation, the main signaling pathways
involved in the relationship of inflammation and cancer are
NF-κB, STAT3, PI3K/Akt, and MAPK (35).

CELLULAR COMPONENTS FROM THE
TUMOR MICROENVIRONMENT (TME)

In recent years, the concept of TME has been introduced,
consisting of various cells including cancer, mesenchymal,
endothelial, immune, together with ECM, and fibroblasts
contributing to tumor progression (4). Tumors are more
complex than just a set of malignant cancer cells, since
tumor cells efficiently recruit immune and vascular cells
through secretion of growth factors, chemokines and cytokines.
These recruited cells release growth-promoting signals and
intermediate metabolites, allowing tissue structure remodeling,
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and reciprocal communication between cancer cells and TME
eventually leads to increased proliferation and metastatic
capacity (42).

CANCER ASSOCIATED FIBROBLASTS
(CAF)

The fibroblasts present in the TME “activated” through TGF-
β (released from tumor cells) generate CAF, with particular
characteristics differentiating it from non-activated fibroblasts:
star shape, expression of alpha smooth muscle actin (α-
SMA) and fibroblast activation protein (FAP) markers (43). In
addition to secretory phenotype, CAFs reshape the ECM and
autocrine/dynamic activation in immune signaling functions,
allowing persistent stimulus for tumor development favoring
growth of tumor cells and metastasis (44). CAFs remodel
tumor vasculature through secretion of VEGF, FGF and IL-
6, and ECM, through secretion of matrix metalloproteinases
(MMPs) and ECM proteins. Furthermore, they modulate pro-
tumorigenic inflammation through secretion of IL-1, IL-6, TNF-
α, TGF-β, and CCL2, favoring tumor growth, angiogenesis,
invasion and metastasis (44, 45). In gastric cancer, CAFs also
influence carcinogenesis through IL-6 induction in metastasis
and invasion through factor overexpression increasing the
epithelial-mesenchymal transition (EMT), finally activating
the JAK2/STAT3 pathway (46). Additionally, the fibroblast
growth factor-9 (FGF-9) secreted by CAFs trigger EMT and
metastasis, together with CXCL12 and interleukin-11 inducing
migration and invasion (46). In the case of inflammation
associated with Helicobacter pylori infection, CAFs contribute to
neoplastic transformation through activating a positive feedback
mechanism of STX3-dependent COX-2, influencing STAT3
regulation via IL-6. Finally, induction of NF-κB increases cytidine
deaminase expression leading to multiple mutations in the host
genome such as those found in TP53 (47).

TUMOR-ASSOCIATED MACROPHAGES
(TAMs)

TAMs refer to macrophages infiltrating the tumor and are not a
homogenous cell population, but rather highly heterogenic cells
participating in carcinogenesis (48). Usually, two extreme states
of differentiation in macrophages are recognized: the classic
phenotype (M1), associated to antitumor and pro-inflammatory
activity [mediated by the secretion of cytokines IL-1β, TNF-α,
and IL-6 (49)] and the alternative phenotype (M2), with pro-
tumor and anti-inflammatory activity. M2 acts directly on the
tumor cells and indirectly on the TME (50) by producing growth
factors (Fibroblast Growth Factors, FGF; Vascular Endothelial
Growth Factor, VEGF, and IL-6), matrix degrading enzymes
and cytokines, thus inducing the neo-angiogenesis switch, tumor
progression (37), tissue invasion and repair (51–54).

In colorectal cancer (CRC), TAMs show a greater infiltration
in patients with better prognosis, or in those with less recurrence
or complications (55–58), and are associated with a higher
survival (59). Alternatively, M2-type macrophages are associated

with a worse prognosis, less survival and later stages of disease
(60, 61). TAMs with M2 profile produce enzymes and inhibitors
regulating digestion of the ECM, metastasis and angiogenesis
(62, 63) and additionally, control ECM composition directly
or through the activation of fibroblasts, thus promoting tumor
progression (64).

MESENCHYMAL STROMAL CELL (MSC)

MSC are adult multipotent stem cells located as pericytes in
organs and tissues differentiating into specialized cells. Actually,
MSC promote tumorigenic processes, such as angiogenesis,
malignant cell, metastasis and chemoresistance (65). TME can
be influenced by MSC through cytokine secretion and TGF-β
involved in the EMT of carcinoma cells, necessary in favoring
cancer progression (66). Alternatively, TNF-α-activated MSC
promotes metastasis in lung cancer, through CCL5 and CCR2
ligands. Moreover, CXCR2 ligands (CXCL1, 2, and 5) induced by
TNF-α-activated MSC recruit CXCR2+ neutrophils into tumor,
responsible for the pro-metastatic effect of MSC (67).

CYTOKINES AND CHEMORESISTANCE

Cytokines have direct influence on cancer progression (5),
secreted by both the TME and cancer cells, with TME cytokines
inducing chemoresistance through paracrine regulation on
tumor cells, promoting apoptosis inhibition, increased cell
proliferation or drug efflux (5). In breast cancer, IL-6 and IL-
8 are increased in resistant cells compared to parental cells
sensitive to tamoxifen (5). Additionally, cisplatin-treated CAF
increases IL-11 secretion, promoting drug resistance of lung
adenocarcinoma through IL-11R/STAT3 pathway activation and
subsequently upregulation of anti-apoptotic proteins (68). CAFs
also secrete IL-11 promoting chemoresistance in gastric cancer
through JAK/STAT3/Bcl-2 signaling pathway activation (69).
Alternatively, cytokine three signaling suppressor (SOCS3), a
negative cytokine regulator inhibiting the JAK/STAT pathway, is
decreased in cisplatin-resistant lung tumor cells (70). Autocrine
IL-6 or IL-8 secretion by ovarian cancer cells induces resistance
to paclitaxel and cisplatin, due to decreased proteolytic caspase 3
activation, increased Bcl-2 expression, and MAPK and PI3K/Akt
pathway activation (71, 72). In colon cancer, IL-17 and IL-6-
mediated chemoresistance regulates Akt and STAT3 signaling
pathways, respectively (73, 74). Lastly, in gastric cancer, CAFs
secrete IL-6 inducing resistance to 5-fluorouracil or cisplatin,
with inhibition of its receptor (IL-6R), suppressing drug
resistance (46).

CC CHEMOKINES SUBFAMILY AND
CHEMORESISTANCE

Chemokines coordinate leukocyte recruitment to tissues in
physiological and pathological conditions, also mediating cell
differentiation, proliferation and survival (75). Chemokines are
a large subfamily of cytokines subdivided into 4 main classes
(depending on location of the first two cysteine residues,
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C, in the protein sequence), such as: CC (first 2 adjacent
cysteines), CXC (cysteines separated by another amino acid),
C (cysteine in the amino terminal region), and CX3C (with
three intermediate residues separating the cysteine). There is
redundancy in this superfamily, with several ligands binding
to the same receptors and vice versa (76). Chemokines act
through G-protein coupled receptors, having 7 transmembrane
regions, interacting with proteoglycan glycosamino-glycans,
with a nomenclature associated with the binding-chemokine
type: receptors for CC (CCR), CXC (CXCR), C (XCR1),
and for CX3C (CX3CR1) (77). Chemokine binding triggers
phosphorylation of serine/threonine residues in the receptor,
this activation involves GTP binding to the Ga subunit
of the Gb dissociation complex and initiating signaling
pathways (PI3K, MAPK, and Rho) involved in proliferation,
motility, and expression of MMPs and cytokines. Chemokine
receptors also activate independent G protein pathways such
as JAK/STAT regulating migration and gene transcription
(78). The relationship of chemokines with tumor development
can be indirect or direct. Indirect action acknowledges that
tumors secrete chemokines attracting leukocytes producing
growth factors, as CCL2 secretion increases M2-type TAM in
breast cancer (79). Additionally, the tumor stroma may deliver
inflammatory chemokines affecting tumor development, stroma-
derived CXCL12 binds CXCR4 receptor possibly promoting
tumor progression by stimulating angiogenesis (80). Direct
chemokine action has been related to functional receptor
expression by the tumor cells, with receptors associated with
increased proliferation and survival. For example, CXCR4
receptor is expressed in tumors such as ovary, glioma, melanoma
and renal, CXCR6 in prostate cancer, CXCR2 in melanoma
and CCR6 in colorectal and pancreatic cancer (75). Moreover,
CCL2 induces a pro-tumorigenic mechanism based on autocrine
secretion and activation of CCR2, thus inhibiting apoptosis
(80). CXC chemokine receptors have prognostic value in gastric
cancer, with CXCR2 (81) and CXCR4 (82) related to poor
prognosis, while CXCR3 has good prognosis (83). Regarding CC
chemokines, CCL7 and CCL21 overexpression is associated with
poor prognosis (84), CCR7 and CCR5 receptors associate with
invasion and metastasis in gastric cancer, and lastly CCR7 is
associated with EMT (85).

CC subfamily chemokines have been implicated in
chemoresistance (Table 1). CCL5 activates STAT3 through an
autocrine loop inhibiting caspase-9/PARP and modulates Bcl-2
(5). Autocrine regulation evades drug response, where tumor-
derived cytokines activate signaling pathways involved in survival
and proliferation, counteracting the effects of chemotherapy.
In lung cancer, CCL2 is linked to Docetaxel resistance through
PI3K/Akt pathway activation, inhibiting caspase 3-dependent
apoptosis (101); this review is focused in platinum drugs, but
chemokines also affect other cancer drugs such as Docetaxel (101)
or Tamoxifen (102). Additionally in gastric cancer, CCL2 initiates
chemoresistance to platinum drugs through PI3K/Akt/mTOR
signaling pathway activation by inhibiting pro-apoptotic
autophagy and increasing SQSTM1 (receptor member for
autophagy) expression (86). In ovarian cancer, cisplatin induces
CAF-derived CCL5 secretion, promoting drug resistance,

mediated by PI3K and STAT3 signaling pathway regulation,
inhibiting apoptosis and promoting proliferation (92). Also,
stroma-derived CCL2/CCL5 induces IL-6 release from the tumor
cell generating carboplatin resistance through PYK2 pathway
activation (positioned upstream of the JAK1/STAT3 pathway), a
critical mediator of survival pathway activation (91). Likewise,
CCL20 is associated with doxorubicin resistance through
MDR1 membrane transporter expression regulation (103).
Finally, CCR9 receptor is associated with cisplatin resistance
in ovarian (100) and breast cancer (99) through the PI3K
pathway activation.

TME AND CC CHEMOKINE MECHANISM
TO INDUCE CHEMORESISTANCE

Chemokines of the CC subfamily responsible for
chemoresistance have different origins according to TME
and tumor heterogeneity. In fact, chemokines are secreted in a
paracrine manner from the TME mainly by macrophages, CAFs,
or MSC (5) (Figure 1).

Monocytes/macrophages are recruited to the tumor area by
cancer cell derived-CCL2 (104). Once connected the tumor,
TAMs respond to external signals involving innate and adaptive
immune processes (105). TAMs polarized to M2 in lung
cancer through CCL22 (98), produce an immune suppressive
effect, decreasing antitumor activity, spreading tumor cells and
chemoresistance (106).

We previously demonstrated that CCL4 tumor levels have
a positive correlation with the M2 marker (CD163) (107)
associated with a poor clinical outcome of colorectal cancer
and lower cumulative survival than patients with low CD163
expression (58).

In the case of CAFs, stimulation with cisplatin increases
CCL5 secretion contributing to chemoresistance in ovarian
cancer (92). CAF constitute a heterogeneous cell population,
express a wide range of molecular markers (α-SMA, FAP),
not necessarily exclusive to fibroblasts (108, 109), and may
be related to cells undergoing EMT (110). The complexity of
CAFs has been underestimated, with subsets tending to promote
carcinogenesis (determined by type and location of tumor), have
different markers from those generally used, and separating them
according to origin: vCAF of perivascular cells, mCAF of resident
fibroblasts and dCAF of tumor cells performing EMT (108).

Another TME component is MSC which protect ovarian
cancer cells from carboplatin-induced apoptosis through
inhibition of caspase activation, however, secrete high levels
of IL-6 and IL-8 contributing to chemoresistance in breast
cancer (105). MSC pre-treated with cisplatin increased CCL5
expression and phosphorylation of tyrosine kinases (PLC,
WNK1, c-Jun, STAT3), possibly playing roles in tumor cell
changes, as witnessed in breast cancer cells (111).

Due to the TME as a paracrine secretor of CC type chemokines
in response to platinum drugs, chemokine production by
tumor cells is studied. In this particular case, because of
tumor heterogeneity and CAF origins, possibly resistant cells
originating in the tumor secrete CC chemokines and induce

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 901

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Reyes et al. CC Chemokine and Chemoresistance

TABLE 1 | Summary of chemokines of the CC sub-family in chemo resistance to platinum drugs.

CC

chemokine

Tumor Pathway Model Mechanism References

CCL2 Gastric PI3K Resistant and sensitive

co-culture

Decreases pro-apototic autophagy and

increases SQSTM1

(86)

CCL2 Ovarian – In vitro and in vivo EMT characteristic (87)

CCL2 Lung P38 Resistant v/s sensitive P53 mediated apoptosis regulation (88)

CCL2 Lung NF-kB In vivo tumor LUBAC activation (89)

CCL2/CCL4 Leukemia NF-kB Stromal mesenchymal cells ARC (apoptosis repressor with caspase

recruitment domain) /IL1β/ Mesenchymal

(90)

CCL2/CCL5 Ovarian PYK2 Ascites (mesenchymal) and

sensitive

Increase survival (91)

CCL5 Ovarian STAT3-PI3K CAF Decrease apoptosis and increase

anti-apoptotic protein (bcl2)

(92)

CCL11 Ovarian STAT3 y MAPK Normal epithelium/tumor cell Apoptosis control (93)

CCL14/CCL15 Liver PKC Primary culture of human

hepatocyte and human

hepatoma cell line Alexander

The nuclear receptor (FXR) is involved in

the regulation of CCL14 and CCL15. Loss

of pro-apoptotic balance/survival.

(94)

CCL18 Lung GPR30 Cell line A549 Regulation by epithelial-mesenchymal

transition

(95)

CCL21 Ovarian – Bioinformatic analysis – (96)

CCL21 Lung ERK Cell lines A549 and H460 Overexpression of anti-apoptotic bcl-2

protein and decrease in pro-apoptotic

proteins such as bax and caspase-3

(97)

CCL22 Lung Src/CD155/

MIF

Co-culture Macrophages with

cell line

M2 polarization of TAM through MIF

secretion

(98)

CCL25 Breast PI3K Two breast cancer cell lines Activates cell survival signals and inhibits

apoptosis

(99)

CCL25 Ovarian PI3K Cell lines OVCAR-3 y SKOV-3 Increased survival by phosphorylating and

inactivating pro-apoptotic factors, such as

FKHR and GSK-3β

(100)

FIGURE 1 | Model of chemoresistance induction to platinum drugs, mediated by CC subfamily chemokines in cancer.

chemoresistance in adjacent tumor cells (102). Resistant cells
found in the heterogeneous population of cancer cells (due
to aberrant DNA repair mechanisms and cell death pathway

deregulation) have stem cell properties, forming tumors in
distant organs contributing to pathology reappearance after a
successful therapy (112). Cancer stem-like cells have received
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increasing attention, their existence observed in various tumor
types, renewing themselves and differentiating into other cells.
Also, cancer stem-like cells influence macrophage polarization
(113), in addition to EMT, hindering development of better
therapies to reduce cancer relapse (114). Tumor cells release
autocrine chemokines aiding cisplatin chemoresistance by
inactivating pro-apoptotic autophagy, as demonstrated by CCL2
in gastric cancer cell lines (86). This suggests that CCL2 not
only maintain chemoresistance in drug-resistant tumoral cells
but also confer drug resistance to drug-sensitive cancer cells (86)
(Figure 1).

CC CHEMOKINE AS THERAPEUTIC
TARGET

A current cancer treatment is the immunotherapy, and its
principle based in the mechanism of T-cell–mediated immunity
is a complicated succession of occasions, with continuous
exchange among stimulatory and inhibitory signals, when T cells
are active, dynamic dealt to explicit destinations by following a
chemokine gradient and advancing cytotoxicity and tumor cell
killing (115).

The main targets in cancer immunotherapy are the immune
checkpoint receptor called programmed cell death protein 1
(PD-1) and cytotoxic T-lymphocyte Antigen 4 (CTLA-4) (116)
two negative regulators of T-cell function. Inhibition of these
targets resulting in increased activation of the immune system
anti-tumor, has led to immunotherapies applied to treatment
of melanoma, non–small cell lung cancer, and other cancers
(117). Chemokines help with T cell trafficking, but some CC
chemokine with pro-tumorigenic and drug-resistant function
limit immunotherapy treatment.

Due to the above, the chemokines and chemokine
receptors are a potential target to therapy and could
reverses chemoresistance or synergizing with monotherapy

of immune-treatment (116). Direct CC chemokine antibodies
targeting is an option but the main target are CC chemokine
receptor such as CCR1, CCR2, CCR4, CCR5, and CCR7 by
monoclonal antibodies inhibitors or antagonism molecules (118)
for example, Maraviroc is a CCR5 receptor antagonism that
decrease metastasis in breast (119) and gastric cancer (120) and
provoke remission in pancreatic and liver cancer by apoptosis
induction (20). Receptor inhibition could influence in cancer
pathway signaling (121) and interfere with autocrine chemokine
synthesis (5, 91).

CONCLUSION

TME cellular components (CAF, TAM, MSC) influence the
secretion of CC subfamily chemokines in a paracrine manner
inducing tumor progression, metastasis and platinum drug
chemoresistance. Additionally, drug-resistant cancer cells can
also secrete chemokines to the adjacent environment. Therefore,
tumor cellular heterogeneity, cancer-resistant cells (cancer stem-
like cells or cells in EMT), and particularly the TME components,
are capable of producing and secreting CC chemokines inducing
a resistant phenotype in adjacent cancer-sensitive cell.
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