Tabla de Contenido

	Introducción				
1.	Microscopía Fluorescente por Planos				
	1.1.	Propiedades y ventajas del LSFM	6		
	1.2.	Imágenes obtenidas por LSFM	10		
2.	Modelo 2D para LSFM				
	2.1.	Modelo directo	17		
		2.1.1. Etapa de iluminación: Ecuación de Fermi para un haz de fotones en 2D	17		
		2.1.2. Etapa de fluorescencia: Ecuación de transporte radiativo	21		
	2.2.	Problema inverso. Cámara colimada	22		
		2.2.1. Regularidad sobre datos físicos	23		
		2.2.2. Conjunto admisible Ω_{ad}	23		
		2.2.3. Inyectividad del operador de mediciones \mathcal{P}	24		
	2.3.	Simulaciones numéricas del problema directo	28		
3.	Estabilidad Lipschitz para el problema inverso en LSFM				
	3.1.	Ecuación de calor retrógrada en tiempo	41		
	3.2.	Estabilidad logarítmica condicional para recuperar la condición inicial en la			
		ecuación de calor en \mathbb{R}^n	45		
	3.3.	Estabilidad Lipschitz para recuperar la condición inicial en la ecuación de calor			
		en \mathbb{R}^n para condiciones iniciales a soporte compacto	59		
	3.4.	Estabilidad para problema inverso de LSFM	65		
4.	Mo	delo 3D para LSFM	71		
	4.1.	Fase de iluminación	72		
	4.2.	Fase de fluorescencia	73		
	4.3.	Comentarios sobre unicidad y estabilidad para el modelo 3D	74		
		4.3.1. Iluminación por láser	74		
		4.3.2. Iluminación por plano	75		
	4.4.	Simulaciones numéricas y tiempos de ejecución	76		
	4.5.	Limitaciones del modelo. Efectos de blurring y descalibración	84		
		4.5.1. Añadiendo blur al modelo	86		
		4.5.2. Añadiendo descalibración al modelo	87		
		4.5.3.~Simulación numérica para modelo LSFM 3D con cámara no colimada			
		y descalibración	88		

5.	Red	neuro	onal convolucional para LSFM 2D	94		
	5.1.	Arquit	ectura de la red: Convolución, ReLU y Max Pooling	96		
	5.2.	Result	ados	100		
		5.2.1.	Recuperar fuente cuando los parámetros físicos λ, ψ y <i>a</i> son constantes conocidas	102		
		5.2.2.	Recuperar fuente cuando los parámetros físicos ψ y <i>a</i> son constantes conocidas y la atenuación λ es constante pero desconocida $\ldots \ldots$	110		
		5.2.3.	Recuperar fuente cuando los parámetros físicos ψ y <i>a</i> son constantes conocidas y λ es variable y desconocida	113		
		5.2.4.	Recuperar fuente cuando los parámetros físicos λ, ψ y <i>a</i> son variables y desconocidas	116		
		5.2.5.	Comentarios sobre resultados obtenidos	119		
	Conclusión			121		
А.	Con	ión de alto rendimiento	123			
	lda-Leftraru y Google Colab	123				
	A.2.	GPU y TPU	125			
Bi	Bibliografía					