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Interannual and Seasonal Variability of Snow Depth
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J. Ignacio López‐Moreno4 , and James McPhee1,2

1Department of Civil Engineering, Universidad de Chile, Santiago, Chile, 2Advanced Mining Technology Center,
Universidad de Chile, Santiago, Chile, 3Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO,
USA, 4Pyrenean Institute of Ecology, CSIC, Zaragoza, Spain, 5National Snow and Ice Data Center, University of Colorado,
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Abstract Understanding and characterizing the spatial distribution of snow are critical to represent the
energy balance and runoff production in mountain environments. In this study, we investigate the
interannual and seasonal variability in snow depth scaling behavior at the Izas experimental catchment of
the Spanish Pyrenees (2,000 to 2,300 m above sea level). We conduct variogram analyses of 24 snow depth
maps derived from terrestrial light detection and ranging scans, acquired during six consecutive snow
seasons (2011–2017) that span a range of hydroclimatic conditions. We complement our analyses with bare
ground topography data and wind speed and direction measurements. Our results show temporal
consistency in the spatial variability of snow depth, with short‐range fractal behavior and scale break lengths
that are similar to the optimal search distance (25 m) previously reported for the topographic position
index, a terrain‐based predictor of snow depth. Beyond the 25‐m scale break, there is little to no fractal
structure. We report a long‐range scale break of the order of 185–300 m for most dates—aligned with the
dominant wind direction—and patterns between anisotropies in scale break lengths of shallow snow cover
and directional terrain scaling behavior. The temporal consistency of snow depth scaling patterns suggests
that, in addition to guiding the spatial configuration of physically based models, fractal analysis could be
used to inform the design of independent variables for statistical models used to predict snow depth and its
variability.

1. Introduction

Mountainous regions are an essential source of freshwater around the world, with many playing a primary
role for downstream areas (Viviroli et al., 2007). In these environments, snow is a major component of the
hydrologic cycle since its presence/absence has large effects on the surface energy and water balances
(Andreadis et al., 2009). Moreover, the spatial variability of snow accumulation influences the magnitude,
timing and persistence of snow melt (Clark et al., 2011; Freudiger et al., 2017), and the timing of snow dis-
appearance. Hence, understanding and characterizing snow depth variability across a hierarchy of scale
lengths are crucial for the design of accurate measurement and modeling systems, especially considering
the need to quantify water resources under changing climatic conditions (e.g., Barnett et al., 2005;
Mankin et al., 2015; Viviroli et al., 2011).

Over recent decades, fractal analysis has arisen as a powerful technique to depict the spatial and temporal
variability of geophysical variables (e.g., Mark & Aronson, 1984; Skøien et al., 2003). Notably, water
resources science and engineering was among the first areas where the fractal concept was applied to solve
actual problems, with early applications in operational hydrology (e.g., Hurst, 1951; Mandelbrot &
Wallis, 1968). Mandelbrot (1977, 1982) coined the term “fractal” and used computer‐based images to illus-
trate the notion of “a structure that has infinite detail” (Deems et al., 2006) within a range of spatial scales.
More generally, a fractal can be understood as an object whose subsets preserve the geometric or statistical
characteristics of the whole under transformations of scales (Mandelbrot, 1982)—a property referred to as
scale invariance or self‐similarity. Additionally, the term has been typically reserved for highly irregular
objects with detailed structures that cannot simply be described with traditional Euclidean geometry (Sun
et al., 2006). The literature is quite rich in applications of fractal concepts to characterize patterns in hydrol-
ogy, including rainfall (Olsson et al., 1993), river network structures (Tarboton et al., 1988), floods (Alipour

©2020. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2020WR027343

Special Section:
Advances in remote sensing,
measurement, and simulation
of seasonal snow

Key Points:
• Consistent short‐range fractal

behavior and scale breaks in snow
depth were detected for six
consecutive seasons in a subalpine
catchment

• Scale break anisotropies in shallow
snowpacks during melt periods can
be explained by bare‐earth terrain
scaling patterns

• Variogram analysis can inform
statistical and dynamical model
decisions to best simulate snow
distribution

Supporting Information:
• Supporting Information S1

Correspondence to:
P. A. Mendoza,
pamendoz@uchile.cl

Citation:
Mendoza, P. A., Musselman, K. N.,
Revuelto, J., Deems, J. S., López‐
Moreno, J. I., & McPhee, J. (2020).
Interannual and seasonal variability of
snow depth scaling behavior in a
subalpine catchment. Water Resources
Research, 55, e2020WR027343. https://
doi.org/10.1029/2020WR027343

Received 17 FEB 2020
Accepted 16 MAY 2020
Accepted article online 22 MAY 2020

MENDOZA ET AL. 1 of 17

https://orcid.org/0000-0002-0263-9698
https://orcid.org/0000-0001-8394-491X
https://orcid.org/0000-0001-5483-0147
https://orcid.org/0000-0002-3265-8670
https://orcid.org/0000-0002-7270-9313
https://orcid.org/0000-0002-7547-0926
https://doi.org/10.1029/2020WR027343
https://doi.org/10.1029/2020WR027343
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.SNOWEX1
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.SNOWEX1
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.SNOWEX1
http://dx.doi.org/10.1029/2020WR027343
http://dx.doi.org/10.1029/2020WR027343
http://dx.doi.org/10.1029/2020WR027343
mailto:pamendoz@uchile.cl
https://doi.org/10.1029/2020WR027343
https://doi.org/10.1029/2020WR027343
http://publications.agu.org/journals/


et al., 2016), stream chemistry (Kirchner et al., 2000), soil moisture (Korres et al., 2015), and subsurface pro-
cesses (Molz et al., 2004).

In particular, the fractal concept has been exploited to understand and characterize the scaling behavior of
snow and other variables affecting its distribution. Initial efforts using manual measurements reported
self‐similar behavior in snow depth and snow water equivalent (SWE) before a “cutoff length” on the order
of tens of meters (e.g., Arnold & Rees, 2003; Kuchment & Gelfan, 2001; Shook & Gray, 1996). This cutoff
term—also referred to as scale break length, scale break distance, or simply scale break—is typically
assumed to infer a change in the physical processes driving the spatial structure of the snow. Because man-
ual snowmeasurements are time consuming and potentially risky, the emergence of light detection and ran-
ging (lidar) technology has become a milestone for snow measurement (e.g., Deems et al., 2013) and scaling
studies (e.g., Fassnacht & Deems, 2006; Lehning et al., 2011; Tedesche et al., 2017).

Although water resource scientists, engineers, and managers ultimately need SWE for hydrological predic-
tions inmountain environments (e.g., Mendoza et al., 2014; Perkins et al., 2009; Rosenberg et al., 2011), char-
acterizing the spatial variability of snow depth is still critical to properly quantify SWE variability since the
former is considerably larger than the spatial variability of snow density (López‐Moreno, Fassnacht, et al.,
2013). To this end, the joint use of lidar technology, meteorological observations, and fractal concepts has
paved the way to improve understanding of snow depth patterns. For example, Deems et al. (2006) and
Trujillo et al. (2007) used variograms and power spectra, respectively, to contrast fractal parameters in snow
depth, topography, and vegetation derived from lidar data. Using the same airborne laser scanning (ALS)
data sets acquired near the maximum snow accumulation date, both studies found two scaling ranges with
distinct fractal patterns in snow depth separated by consistent scale breaks, suggesting that these could
inform the choice of spatial scales in snow models. Unlike Trujillo et al. (2007), Deems et al. (2006) found
scale breaks in the sum of surface elevation and vegetation height, with values of the same order of magni-
tude as snow. Later, Trujillo et al. (2009) found substantial differences in the snow scaling behavior of two
areas with similar topography but different vegetation and wind influences (i.e., forest vs. tundra). Mott
et al. (2011) compared the scaling behavior of snow depth measurements with modeled high‐resolution
wind fields and snow depth changes, concluding that wind velocity distributions have similar anisotropies
to those of snow depth. Scipiõn et al. (2013) examined potential links between snow accumulation and snow-
fall through variogram analysis in the Swiss Alps, finding smoother spatial patterns of radar‐measured
snowfall compared to ALS snow depth measurements, pointing to the dominant role of wind redistribution.
He et al. (2019) used lidar data to analyze the geostatistical structure of 1 × 1‐km grids with differing topo-
graphies and land cover characteristics, finding correlation lengths smaller than 100 m in most sites and
increasing fractal dimensions with greater forest cover.

Despite the above progress, only a few studies have investigated the temporal “consistency” (Clemenzi
et al., 2018; Deems et al., 2008) or “persistence” (Helfricht et al., 2014; Schirmer & Lehning, 2011) in the spa-
tial structure of snow. Deems et al. (2008) analyzed snow depth maps obtained for two sites near two max-
imum accumulation dates, reporting very similar short‐ and long‐range fractal dimensions, similar
anisotropies, and comparable scale breaks across years. Schirmer and Lehning (2011) explored
intra‐annual variations in snow scaling behavior on three topographically distinct slopes within an alpine
domain without vegetation. They found different snow depth structures at these sites and consistent fractal
behavior at the end of two accumulation seasons. Helfricht et al. (2014) examined the fractal behavior of
snow depth at the time of maximum accumulation in a partially glacierized catchment (36 km2) using data
from five ALS surveys—conducted over five nonconsecutive years. They obtained scale breaks within the
range 18–22 m and short‐ (long‐) range fractal dimensions of 2.34–2.66 (2.91–2.93). More recently,
Clemenzi et al. (2018) investigated snow depth patterns on a glacier and seven subdomains at the end of
two snow accumulation seasons (2007 and 2011), finding scale breaks in the range 10–35 m, consistent with
fractal parameters across years, and identifying wind as a key control for directionality and anisotropy.
Although the above investigations have demonstrated temporal consistency in fractal parameters at various
sites over multiple time periods, no long‐term study has explored snow fractal patterns over a span of con-
secutive years.

In this paper, we investigate the temporal variability of snow depth scaling behavior in a subalpine, unfor-
ested catchment, using a rich data set consisting of 24 terrestrial laser scanner (TLS, lidar technology)
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surveys acquired over six consecutive snow seasons (Revuelto et al., 2017a). The database provides unique
opportunities to: (i) compare the fractal behavior of snow depth between maximum accumulation and melt
across snow seasons, (ii) assess the temporal consistency of snow structure through individual snow seasons,
and (iii) identify the main controls on fractal parameters.

2. Material and Methods
2.1. Study Domain

Our study site is the Izas experimental catchment (Figure 1a; 42°44′N, 0°25′W) in the Spanish Pyrenees.
The Pyrenees lie on the northwestern Iberian Peninsula—between the Atlantic and the Mediterranean
Sea—and can be classified as a temperate or midlatitude mountain range. The 55‐ha catchment has an
elevation range between 2,000 and 2,300 m above sea level. There are no trees in this domain, and the
basin is mostly subalpine grassland with rocky outcrops in the steeper areas (less than 15% of the study
area). The catchment is predominantly east facing, with some northern and southern aspects. The topo-
graphy includes flat, concave and convex areas. The mean slope of the catchment is 16° (López‐Moreno,
Pomeroy, et al., 2013).

The mean annual precipitation in the catchment is 2,000 mm, of which snowfall accounts for approximately
50% (Anderton et al., 2004). The mean annual air temperature is 3°C, and the mean daily temperature is
<0°C for an average of 130 days each year. Snow covers much of the catchment area from November to
the end of May (López‐Moreno et al., 2017).

2.2. Data

We use one bare ground digital elevation model (DEM) and 24 snow depth distribution maps derived from
TLS surveys conducted during the period 2011–2017 (Table 1). These data sets are fully described in
Revuelto, López‐Moreno, Azorin‐Molina, Zabalza et al., 2014; Revuelto 2017a) and only briefly reviewed
here. The maps were obtained by processing point cloud data sets of snow and snow‐free surface heights
acquired with a long‐range TLS device (RIEGL LPM‐321; Figure 1b) from two scanning positions
(Figure 1c) selected to minimize shading effects. To ensure a consistent comparison of scans made on differ-
ent survey days, 12 reflective targets (Figure 1b) were placed as coordinate reference points. The point clouds
were postprocessed to obtain 1‐m horizontal resolution elevation grids with and without snow, which were
used to derive snow depth distribution maps with a mean absolute snow depth error of 0.07 m (Revuelto,
López‐Moreno, Azorin‐Molina, Zabalz et al., 2014). The resulting snow depth maps are diverse in terms
of domain statistics (e.g., mean, maximum value, and coefficient of variation) and snow‐covered area
(see Table 1 for details).

Based on the high interannual variability of snow depth (see supporting information, Figure S1), we group
our snow seasons between high (2012/2013, 2013/2014, and 2015/2016) and low (2011/2012, 2014/2015, and
2016/2017) snow depth magnitude and also group scans by accumulation and melt for subsequent analyses
on scaling behavior.

We complement our analyses with wind speed and direction data collected by an anemometer (Young alpine
model) located at a meteorological station (see location in Figure 1c), 8 m above the ground. The Pyrenees
are typically affected by strong westerly to northerly winds (López‐Moreno, Pomeroy, et al., 2013;
Revuelto, López‐Moreno, Azorin‐Molina, & Vicente‐Serrano, 2014; Revuelto et al., 2017a), with the excep-
tion of southerly winds during the snowmelt period. We illustrate this in Figure 2, where wind roses are dis-
played for all snow seasons for times when (i) wind speeds exceeded 4 m s−1, following Li and
Pomeroy (1997)—who reported that threshold for blowing snow occurrence in dry snow—and (ii) air tem-
perature was below 0°C when snow transport by wind is most likely to occur (Trujillo et al., 2007). Similar
frequency distributions are obtained when including all air temperatures or setting the wind speed threshold
at 5 m s−1 (Clemenzi et al., 2018; Deems et al., 2008; not shown here).

2.3. Variogram Analysis

The variogram is a function to examine the degree of spatial dependency in a random field. The variogram
can be particularly useful to quantify spatial patterns in fractional Brownian surfaces—i.e., those that exhibit
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fractal, self‐similar, or scale‐free behavior (Mark & Aronson, 1984). Further, it can be used as a diagnostics
tool for objects whose scaling behavior is unknown (Sun et al., 2006).

Given a distance h, the semivariance can be computed as

bγ hð Þ ¼ 1
2 N hð Þj j ∑

i; jð Þ ∈ N hð Þ
zj−zi
� �2

; (1)

where zi and zj are snow depth values for points separated by a lag distance h and N(h) is the number of
data points at a given distance h (Oliver & Webster, 2007). If snow depth shows self‐similar (i.e., fractal)
behavior within a range of h, it should be possible to fit a power law with the form (Deems et al., 2006)

γ hð Þ ¼ αhβ: (2)

The exponent β can be subsequently used to compute the fractal dimension, using the formula proposed
by Mark and Aronson (1984):

D ¼ 3 −
β
2
: (3)

The fractal dimension D is typically interpreted as “a measure of an object's ability to ‘fill’ the space in
which it resides” (Sun et al., 2006)—that is, as the object of interest becomes more irregular, it fills more
space and a larger fractal dimension is expected. Although fractal dimensions are consistent with the spa-
tial dimensions of Euclidean geometry, they can also take noninteger values. Hence, curves are character-
ized by fractal dimensions between 1 and 2, while surfaces have associated D values between 2 and 3. For

Figure 1. (a) Location of the Izas experimental catchment. (b) RIEGL LPM‐321 TLS mounted on the tripod during an acquisition campaign; the upper‐right part
shows one of the 12 fixed reflective targets fixed on the terrain. (c) Relative location of the scanning points and meteorological stations.
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Table 1
Domain‐averaged mean (mean SD) and maximum (max SD) snow depth values, coefficient of variation (CV), snow‐covered area (SCA), and omnidirectional fractal
parameters (DS, L1, and L2) for the observed TLS snow depth distributions. For the short‐range fractal dimension, 95% confidence intervals are displayed
in parenthesis

Short range

Snow season Date Mean SD (m) Max SD (m) CV SCA % R2 DS L1 (m) L2 (m)

2011/2012 22 Feb 0.48 6.46 1.34 67.2 0.99 2.39 (2.37–2.41) 18.0 365.2
2 Apr 0.20 4.14 2.12 33.5 0.99 2.51 (2.49–2.53) 17.9 304.3
17 Apr 0.54 5.45 1.10 94.1 0.99 2.46 (2.44–2.48) 17.4 301.2
2 May 0.93 8.64 0.73 98.8 0.99 2.43 (2.41–2.45) 17.7 305.6
14 May 0.23 4.76 2.18 30.9 0.99 2.45 (2.43–2.47) 18.1 285.8

2012/2013 17 Feb 3.03 11.28 0.61 98.8 1.00 2.26 (2.25–2.27) 20.6 ‐

3 Apr 3.25 12.03 0.56 100.0 1.00 2.25 (2.24–2.26) 20.1 ‐

25 Apr 2.47 10.69 0.69 96.3 1.00 2.25 (2.24–2.26) 20.0 ‐

6 Jun 1.96 10.02 0.86 86.4 0.99 2.39 (2.37–2.42) 24.3 ‐

12 Jun 1.63 9.42 0.96 77.1 1.00 2.24 (2.23–2.25) 19.1 ‐

20 Jun 1.11 8.38 1.19 67.0 1.00 2.28 (2.27–2.29) 18.7 ‐

2013/2014 3 Feb 2.20 10.03 0.60 96.0 1.00 2.3 (2.29–2.32) 19.1 ‐

22 Feb 2.58 11.15 0.58 98.6 1.00 2.29 (2.28–2.3) 20.0 ‐

9 Apr 2.58 11.18 0.65 89.0 1.00 2.26 (2.25–2.27) 20.1 ‐

5 May 1.67 9.71 0.87 75.2 1.00 2.27 (2.26–2.29) 19.7 ‐

2014/2015 6 Nov 0.19 11.77 0.96 85.0 1.00 2.85 (2.84–2.85) 12.2 ‐

26 Jan 0.66 4.88 0.96 89.3 0.99 2.45 (2.43–2.46) 18.1 394.5
6 Mar 2.02 11.55 0.76 94.0 1.00 2.28 (2.27–2.3) 19.8 ‐

12 May 0.38 7.76 1.85 56.0 1.00 2.39 (2.37–2.4) 20.3 385.3
2015/2016 4 Feb 0.98 8.65 0.74 91.1 0.99 2.49 (2.47–2.5) 18.0 228.9

25 Apr 2.25 9.28 0.52 97.0 1.00 2.32 (2.31–2.33) 18.4 ‐

26 May 0.80 8.48 1.36 74.8 0.99 2.8 (2.79–2.81) 37.8 282.3
2016/2017 20 Jan 1.20 6.34 0.63 93.0 1.00 2.43 (2.42–2.45) 18.6 306.0

8 May 0.56 6.94 1.38 57.2 0.99 2.38 (2.36–2.4) 19.0 299.0
Maximum accumulation scans
Last melt season scans

Figure 2. Wind direction frequency distributions for the period November–June and all snow seasons, considering only
wind speeds >4 m s−1 and air temperature below 0°C.
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the specific case of snowpack, the fractal dimension D can be used to describe the level of irregularity
(Schirmer & Lehning, 2011), with D ~ 2 indicating a nearly planar Euclidean surface and values close
to 3 reflecting more complex or “rougher” behavior.

In this study, we define 46 bins to compute omnidirectional variograms, which include all point pairs regard-
less of their direction; and directional variograms, which include only point pairs within a specified direc-
tion. We use a maximum distance of 750 m—approximately the diameter of the largest circle that can be
fit inside the study domain (following Deems et al., 2006, 2008)—and 16 angular classes of 22.5° for direc-
tional variograms. To assess the possibility of different scaling regimes in snow depth patterns, and test
whether fractal behavior exists in those distance ranges, we perform the following checks:

1. Conduct a change point analysis on variograms in the log‐log space to find clusters of points sharing a
similar trend. We use the E‐divisive nonparametric technique (Matteson & James, 2014), which com-
bines bisection and a divergence measure for multivariate distributions. The change point detection is
performed using the “ecp” package (James & Matteson, 2014), implemented in the statistical software
“R” (http://www.r‐s/).

2. Fit linear least squares regression models for variogram points from each group in log‐log space (i.e.,
power laws in raw space) and set intercept estimates as candidate scale break points.

3. Verify whether the changes in the slopes of log‐log linear models are larger than 20% and that 95% con-
fidence limits of the regression slopes do not overlap. If these conditions are satisfied, we conduct a visual
inspection of variograms to confirm that the scale break exists and, hence, that there is more than one
scaling region.

4. Check whether the linear models adjusted in step (2) show R2 greater than 0.9. If this is the case, scaling
behavior is described as fractal (Deems et al., 2006, 2008) and the associated fractal dimension is com-
puted with Equation 3.

The above analyses were first conducted for omnidirectional and second for directional variograms to detect
and characterize potential anisotropies in snow depth scaling patterns. It should be noted that this approach
recognizes that a surface could be fractal within some range of lag distances and show no spatial correlation
in others, a behavior that has been reported in the past for snow depth (e.g., Shook & Gray, 1996).

We illustrate the variogram analysis approach in Figure S2, which also compares the quality of fit of the
log‐log linear model used to assess whether scale breaks and fractals exist, with three alternative geostatis-
tical models—exponential, Gaussian, and spherical—adjusted for the entire range of points. The results
show that the multisegment log‐log linear models provide lower root mean squared errors (RMSE), lower
biases, and higher correlations against observations since the alternative models fail to capture the scaling
behavior beyond the second scale break distance. Although further model intercomparisons were conducted
for the various scaling ranges identified here (not shown), the remainder analyses and discussions are lim-
ited to linear law types in log‐log space since our end goal is to assess whether fractal behavior exists and also
if such structure persists in time.

2.4. Potential Controls on Fractal Parameters

We explore possible factors explaining the snow depth scaling behavior and detected anisotropies, as well as
the temporal variability in snow depth fractal parameters. First, we compute omnidirectional and directional
variograms for the bare‐earth topography to compare fractal characteristics and potential similarities with
snow depth.

We conduct a two‐sample t test on the short‐range fractal dimensions and scale break lengths obtained from
omnidirectional and directional (perpendicular and parallel to prevailing winds) variograms. The samples
are generated from splitting fractal parameter values by (i) accumulation (13) vs. melt (11) lidar scans and
(ii) type of season (11 low‐snow vs. 13 high‐snow seasons). If the p values are larger than the level of
significance (α = 0.05), we accept the null hypothesis that the means of the two samples are the same, but
do not consider the probability of making a Type II error. Further, we perform a correlation analysis between
omnidirectional and directional fractal parameters against basin‐wide snow descriptors (mean snow depth,
coefficient of variation, and snow‐covered area) for the domain. We report Spearman rank correlation
coefficients and associated p values to assess whether these are statistically significant at the 95%
confidence level.
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3. Results
3.1. Interannual Variability

We first compare scaling patterns among lidar scan dates that captured
maximum accumulation and melt periods from six snow seasons. We
select from each snow season (i) the map with the largest spatial average
snow depth and (ii) the last measurement date from the melt season.
Figure 3 displays omnidirectional variograms from (a) accumulation
and (b) melt season snow depth data sets. All accumulation season vario-
grams (Figure 3a) show clear scale breaks within the range 17.7–20.1 m
(see Table 1 for details), with fractal behavior up to those breaks.
Similar scale breaks (Mott et al., 2011) and—more importantly—inter-
annual consistency have been previously reported in studies of ice‐free
domains (Deems et al., 2008; Helfricht et al., 2014; Schirmer &
Lehning, 2011) and glacierized sites (Clemenzi et al., 2018). Our results
differ in that there is no evidence of fractal behavior beyond those scale
breaks, after which a nearly flat shape arises up to ~300 m. A second
omnidirectional scale break is only detected for a single scan on 20
January 2017 since the other data sets do not show a statistically signifi-
cant difference in semivariance slopes beyond the first break.
Short‐range fractal dimensions span a range of 2.3–2.4, which is close to
values reported in other unvegetated domains (e.g., Helfricht et al., 2014;
Schirmer & Lehning, 2011).

Figure 3b compares omnidirectional variograms for the last melt scan
from each season. These data sets also show strong spatial correlation
up to a short‐range scale break, with fractal parameter values of the same
order of magnitude as those found for maximum accumulation—that is,
DS ~ 2.2–2.5 and L1 ~ 18–20.3 m (Table 1)—with the exception of the scan
conducted on 26 May 2016, for which DS ~ 2.8 and L1 ~ 37.8 m, respec-
tively. Four out of six snow depth distributions also exhibit a secondary
scale break length spanning 282–385 m.

We also examine possible anisotropies in snow depth scaling behavior by
computing fractal parameters from directional variograms—specifically
the short‐range fractal dimension DS, the primary scale break (L1), and
the secondary scale break (L2) (Figure 4). During maximum snow accu-

mulation days (Figure 4a), no evident anisotropies are found for DS. Nevertheless, the largest L1 values
are mostly aligned along the W‐E direction, while SW‐NE (i.e., perpendicular to prevailing winds) anisotro-
pies are observed for L2. Moreover, no clear distinction in the shape of anisotropies is found between high‐
vs. low‐snow seasons.

The lack of anisotropies in DS is also observed for the end‐of‐snowmelt scans (Figure 4b). Nevertheless, the
largest L1 values are perpendicular to dominant winds (NW‐SE). Both the magnitude and anisotropies in DS

and L1 were consistent in low‐snow seasons. When analyzing secondary scale breaks, we find that the largest
values of L2 align with the N‐S direction, except 26 May 2016 and 8 May 2017 for which SW‐NE anisotropies
are observed.

3.2. Seasonal Variability

Table 1 summarizes fractal dimensions and scale break lengths from omnidirectional variograms computed
for all lidar data sets (Figure 5), showing small intra‐annual variations in DS and short‐range scale break
lengths (L1) except in snow seasons 2014/2015 and 2016/2017, which are biased by relatively shallow snow-
pack measured on 6 November 2014 (accumulation) and 26 May 2016 (melt). If one excludes those data sets,
we obtain DS and L1 values spanning 2.3–2.5 and 17–24 m, respectively. Omnidirectional secondary scale
breaks lengths are only detected on 11 days, and their values range between 200–400 m.

Figure 3. Omnidirectional variograms for snow depth from (a) maximum
snow accumulation and (b) last melt season scans in snow seasons 2011/
2012 to 2016/2017. Vertical lines represent scale break lengths, and
diagonal lines represent log‐log linear models with R2 > 0.9.
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Further, the comparison of omnidirectional variograms (Figure 5) from the same snow season reveals little
variation in curve shapes and well‐defined scale break lengths, except for the scans obtained on 6 November
2014 and 26 May 2016. For data sets acquired during snow seasons 2011/2012 and 2012/2013, scale break
lengths span 17–18 and 19–24m, respectively, which are similar to the optimal search distance of 25m found
by Revuelto, López‐Moreno, Azorin‐Molina, & Vicente‐Serrano, et al. (2014) for the topographic position
index (TPI), a predictor of snow depth that is related to the shape and length scale of terrain undulations sus-
ceptible to snow scour and wind deposition. Moreover, the existence of more than one distance range with
snow depth fractal behavior is only detected for two scans across the domain (Figures 5d and 5e), unlike past
studies reporting two different scaling patterns near maximum accumulation (e.g., Clemenzi et al., 2018;
Deems et al., 2006; Schirmer & Lehning, 2011). Such behavior has been described as “multifractal” by some
authors (Deems et al., 2006; Schirmer & Lehning, 2011), although—broadly speaking—the concept is typi-
cally considered to involve a continuous spectrum of fractal dimensions (Mandelbrot, 1988).

Figure 6 displays—for each snow season—radar plots with fractal dimensions and scale breaks computed
from directional variograms. In general, directional variations in DS are almost negligible, departing from
previous studies such as Deems et al. (2006) and Schirmer and Lehning (2011), who found the largest DS

values perpendicular to dominant winds, and Clemenzi et al. (2018), who reported larger DS values aligned
with prevailing winds. This result could stem from the difficulty of characterizing a basin‐representative
wind field using observations from a single station, pointing also to additional process interactions at this
site. Figure 6 also shows some important variations in scale break anisotropies from the accumulation period
(green lines) to the melt season (red lines)—for example, L1 during 2014/2015 and 2015/2016 and L2 in all
seasons.

Figure 7 illustrates the temporal development of fractal parameters from omnidirectional and directional
(22.5° and 112.5°) variograms across all scan dates. We plot these two directions to examine possible connec-
tions with prevailing winds and compare our results with previous studies. Although dominant wind

Figure 4. Snow depth fractal parameters by azimuth, obtained for (a) maximum snow accumulation lidar scans and (b) last melt season scans.
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directions at the Izas experimental catchment span 270°–315°, we choose the direction associated with the
largest frequency obtained in Figure 2 (112.5°, equivalent to 292.5°). Overall, smaller short‐range fractal
dimensions are obtained for the seasons with the largest snow accumulations (i.e., 2012/2013 and
2013/2014; Figure 7a). Moreover, directional DS values are larger than omnidirectional DS in most cases,
and fractal behavior beyond the primary scale break (i.e., filled or thin open symbols) is rarely detected.
Figure 7b shows that—except for the scan acquired on 26 May 2016—directional L1 values are larger than
omnidirectional L1, and there are not consistently larger L1 values along 22.5° compared to those derived
from 112.5°, as found by Schirmer and Lehning (2011). However, we find larger L1 values at the end of
the 2014/2015 and 2015/2016 winters and changes in the shape of scale break anisotropies throughout
these seasons.

Interestingly, Figure 7c reveals a temporally consistent secondary scale break L2 of the order of hundreds of
meters, aligned with prevailing winds. Further, L2 values perpendicular to dominant winds are, in most
cases, larger than those from 112.5° variograms. To our knowledge, no studies have reported the existence
of this long‐range scale break and, even more, its interannual and intra‐annual consistencies. The practical
implications of this finding are discussed in section 4.

Figure 5. Omnidirectional variograms for all snow depth maps grouped by snow season. Vertical lines represent scale break lengths, and diagonal lines represent
log‐log linear models with R2 > 0.9.
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Figure 6. Snow depth fractal parameters by azimuth, grouped per snow season.
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3.3. Controls on Snow Depth Scaling Patterns

In this section, we analyze possible explanations for the scaling behavior of snow depth. Figure 8 displays
omnidirectional and directional variograms for snow‐free topography, together with fractal dimensions by
azimuth. The results in Figure 8a demonstrate that terrain has a fractal distribution up to a scale break of
216 m and slightly less in the case of directional variograms (Figure 8b). Such breaks—although smaller
—have the same order of magnitude than the secondary, long‐range scale breaks found for snow depth dis-
tributions (e.g., Figure 7). Moreover, the directional distribution of D for snow‐free topography (Figure 8c) is
similar to the directionality of snow depth scale breaks (L1) for the last melt season scans (Figure 4b), sug-
gesting that the anisotropic behavior of shallow snow cover is caused by terrain influences. A direct compar-
ison between scale break anisotropies for snow depth and snow‐free topography cannot be made since scale
breaks for the latter variable are only detected for a few directions (Figure 8b).

Figure 9 displays boxplots with short‐range fractal dimensions and scale break lengths—derived from omni-
directional and directional (22.5° and 112.5°) variograms—stratified by type of scan (accumulation vs. melt;
Figures 9a and 9c) and type of snow season (high‐snow vs. low‐snow seasons; Figures 9b and 9d). These
results illustrate that the amount of snow accumulation appears to have the largest impact on the snow
depth scaling patterns. With the exception of L1 perpendicular to prevailing winds (22.5°), the snowpack
development period (accumulation vs. melt) does not appear to explain variations in fractal parameters,

Figure 7. Temporal evolution of snow depth fractal parameters through different snow seasons (white and shaded areas), derived from omnidirectional (black),
22.5° (gold) and 112.5° (purple) snow depth variograms: (a) short‐range fractal dimension, (b) primary (short‐range) scale break, and (c) secondary
(long‐range) scale break. Open thick and filled symbols are used to distinguish between short‐ and long‐range fractal dimensions, respectively, and open thin
symbols represent medium‐range fractal dimensions.
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whereas the type of season (low vs. high snow) provides significant
differences (i.e., low p values) in most cases. Specifically, short‐range
fractal dimensions—either directional or omnidirectional—are always
larger during low‐snow seasons, reflecting larger spatial variability in
snow depth, and larger scale breaks are detected during high‐snow
seasons.

The above results encourage us to explore simple metrics that can be used
to infer the scaling pattern of snow depth over a specific domain. Figure 10
examines possible dependencies between fractal parameters and
basin‐wide snow descriptors, including domain averaged snow depth
(mean SD), coefficient of variation (CV), and snow‐covered area (SCA).
Specifically, we analyze omnidirectional and directional short‐range frac-
tal dimension (DS) and scale break length (L1), finding the strongest rela-
tionships for fractal parameters perpendicular to dominant winds.
Significant, negative Spearman rank correlations are obtained between
DS and domain‐averaged snow depth, with the strongest relationships
along 112.5° (ρ = −0.84). The results indicate that the spatial pattern of
snow depth becomes smoother as more snow accumulates in the catch-
ment. Conversely, we obtain positive correlations between DS and CV,
with ρ ~ 0.46–0.54. Such a result may be intuitive since the fractal dimen-
sion is interpreted here as a measure of surface irregularity, and higher CV
values correspond to greater variation in snow depth over short distances.

Mean SD also provides predictive power on L1 (ρ ~ 0.62–0.76), indicating
that the scale range over which accumulation process relationships are
consistent is greater under high‐snow conditions. In general, weaker rela-
tionships are obtained between the fractal parameters examined here and
SCA (right panels in Figure 10), which is likely due to the fact that SCA is
relatively insensitive to total mean snow depth over much of the range of
conditions studied. Finally, we found no significant correlations between
the magnitude of anisotropies—quantified as difference between maxi-
mum and minimum directional fractal parameters from each lidar scan
—and basin‐averaged snow depth descriptors (Figure S3).

4. Discussion

The temporal extension of lidar‐derived data sets used here allows a stron-
ger demonstration of temporal consistency in snow depth scaling patterns
—especially near maximum accumulation—in comparison to previous
studies (Clemenzi et al., 2018; Deems et al., 2008; Helfricht et al., 2014;
Schirmer & Lehning, 2011). All snow depth maps reveal a very strong spa-
tial correlation (with R2 ≥ 0.99) up to a scale break on the order of tens of
meters, followed by differing spatial structures. A novel aspect of this

study is the second scale break aligned with prevailing winds (292.5°)—which can be followed by
fractal behavior.

In addition to contributing to a fundamental understanding of snow depth patterns, which could be com-
bined with advances in snow density measurement and modeling to estimate SWE, the temporal stability
in scaling behavior across snow seasons has practical implications for guidance on modeling decisions.
For example, the results from fractal analysis can be used to address the challenge of informing snow model
scale decisions and whether processes like snow redistribution should be explicitly represented
(Blöschl, 1999; Clark et al., 2011). Past studies agree that detailed attention is needed on the interplay
between meteorological variables (i.e., local wind speed and direction) and scale breaks in snow depth,
snow‐free topography, and vegetation (e.g., Clemenzi et al., 2018; Deems et al., 2006). Trujillo et al. (2007)
recommended that model scales shorter than the scale break in snow depth are needed to explicitly

Figure 8. (a) Omnidirectional and (b) directional variograms for bare‐earth
topography, where vertical lines represent scale break lengths, and diagonal
lines represent log–log linear models with R2 > 0.9. (c) Short‐range fractal
dimension by azimuth.
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simulate interactions with local winds, surface concavities, trees, and rocks. To that end, we suggest that
model resolutions below 15 m should be adopted for the Izas experimental catchment based on the scale
break lengths obtained—either from omnidirectional and directional variograms. Nevertheless, the results
may still be sensitive to wind field calculations (e.g., Mott & Lehning, 2010; Musselman et al., 2015) or the
type of spatial discretization (e.g., Clark et al., 2011; Marsh et al., 2018). Along these lines, the lack of
spatial correlation between the first and the secondary scale break lengths suggests that snow processes in
this domain could be represented with a single unit, that is, a grouped response unit (GRU) or a
hydrologic response units (HRU) whose characteristic scale lies within those limits (i.e., 40–150 m). The
effects of these and other geospatial decisions on snow model simulations at the hillslope or catchment
scales will be examined in future investigations.

Variogram analysis may also help to design predictor variables in statistical models for snow depth.
Revuelto, López‐Moreno, Azorin‐Molina, & Vicente‐Serrano et al. (2014) incorporated wind effects to model
the spatial distribution of snow depth at the Izas experimental catchment through the maximum upwind
slope parameter (Sx; Winstral & Marks, 2002). They used lidar data sets from a low‐snow season (2011/
2012) and a high‐snow season (2012/2013), finding that the inclusion of Sx in regression models at a
200‐m search distance and 315° (NW) or 270° (W) directions contributed to better predictions of snow depth.
The search distance and directions are similar to the secondary scale break lengths (185–300 m) detected
here along 112.5° (Figure 7)—that is, parallel to dominant wind directions (Figure 2). Moreover, the similar-
ity between the short‐range omnidirectional scale break lengths (Figure 7) and the optimal search distance
(25 m) found by Revuelto, López‐Moreno, Azorin‐Molina, & Vicente‐Serrano et al. (2014) for the TPI para-
meter supports the potential of TPI as a temporally consistent predictor for snow depth. More generally,
these results suggest that the choice of TPI and Sx search distances should be informed by omnidirectional
and directional variogram analyses, respectively, rather than by a trial and error process.

Figure 9. Comparison of snow depth fractal parameter values obtained from: (a, c) accumulation (n = 13) vs. melt season (n = 11) lidar scans; and
(b, d) high‐snow (n = 11) vs. low‐snow (n = 13) seasons. The reported p values result from applying t tests to contrast fractal parameter samples from
omnidirectional (black), 22.5° (gold), and 112.5° (purple) variograms.

10.1029/2020WR027343Water Resources Research

MENDOZA ET AL. 13 of 17



An interesting result is the catchment‐scale temporal consistency of omnidirectional scale break lengths for
snow depth (Figure 7c). With the exception of snow distributions on 6 November 2014 and 26 May 2016—
shallow outlier scan dates—omnidirectional values are near 20 m, which are remarkably similar to scale
breaks reported in other sites worldwide. Helfricht et al. (2014) obtained scale breaks on the order of 20 m
over ice‐free terrain in a glacierized area in Austria. Clemenzi et al. (2018) found scale breaks of 20–22 m
for snow depth on a glacier in Switzerland. Nevertheless, it should be noted that the magnitude of these
breaks varies with specific site characteristics (e.g., presence and type of vegetation, bare ground, or ice topo-
graphy) and their interaction with meteorological variables (Trujillo et al., 2007). For example, Schirmer and
Lehning (2011) analyzed the snow depth distribution at an alpine (nonvegetated) site in Switzerland, finding
different scale breaks in wind‐protected (6 m) vs. wind‐exposed (20 m) slopes and large variations in scale
break lengths during the same snow season. Further work is needed to document and understand the phy-
sical mechanisms that determine the existence and magnitude of scale breaks across diverse global moun-
tain environments.

The results presented in Figure 10 suggest that fractal analysis could be used to create initial conditions for
snowmodel simulations with a statistical approach (e.g., a hierarchical Bayesianmodel) based on (i) a model
to predict basin‐wide snow depth statistics from climate forecasts and (ii) a model to predict fractal para-
meters using snow depth statistics. Given the nonlinear relationships found here, one could explore general-
ized linear models (McCullagh & Nelder, 1989), local regression methods (Loader, 1999), or machine
learning techniques (e.g., Broxton et al., 2019; Snauffer et al., 2018). Ultimately, predicted fractal parameters
could be used to generate an ensemble of random snow cover fields (e.g., Shook & Gray, 1997) to represent
uncertainty in initial hydrologic conditions for snowmelt simulations.

It should be noted that our results are derived for a single catchment and—although consistent with many
previous studies—are impacted by specific climatic and physiographic characteristics. Other limitations
include the use of only one weather station since the wind measurements used here are not necessarily
representative for the entire domain and the smaller number of lidar data sets available for the last few snow
seasons. Finally, the variogram analysis used to estimate fractal parameters may introduce uncertainties

Figure 10. Scatter plots with omnidirectional and directional (22.5° azimuth—perpendicular to dominant wind direction—and 112.5° azimuth—aligned with
dominant wind direction) snow depth fractal parameters vs. snow depth descriptive statistics for the entire domain. The strength of the relationship is
quantified by Spearman rank correlation coefficients and p values.
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arising from possible overestimations (underestimations) of small (large) fractal dimensions (Wen &
Sinding‐Larsen, 1997). Although spatial and temporal fractal patterns are ubiquitous in nature—in particu-
lar, hydroclimatic variables—certain ambiguities around their formal detection and characterization exist,
especially in limited‐data geophysical applications (e.g., Cox & Wang, 1993; Fleming, 2014; Khaliq
et al., 2009; Sun et al., 2006). Therefore, the development of theoretical methods and practical algorithms
for robust detection of fractal behavior is a pertinent topic for future investigations.

5. Conclusions

We have examined temporal variations in snow depth scaling patterns using 24 TLS measurements of snow
depth in relation to terrain topography and meteorological observations in a subalpine catchment. Fractal
parameters were obtained from omnidirectional and directional variograms computed for 1‐m resolution
TLS snow depth maps acquired during six snow seasons (2011–2017). Our results corroborate previous find-
ings on the short‐range fractal behavior of snow depth up to a scale break of the order of tens of meters and
the interannual consistency of these scaling characteristics, as reported in other regions worldwide
(Clemenzi et al., 2018; Deems et al., 2008; Helfricht et al., 2014; Schirmer & Lehning, 2011). However, for
most dates, there is no evidence of fractal structure beyond this break, as documented in previous studies
at other sites (e.g., Clemenzi et al., 2018; Deems et al., 2006; Schirmer & Lehning, 2011). A striking result
is a persistent long‐range scale break of the order of 185–300 m, which is aligned with the dominant wind
direction. Other conclusions are as follows:

1. Omnidirectional scale break lengths in snow depth show similar magnitude to the optimal search dis-
tance found by Revuelto, López‐Moreno, Azorin‐Molina, & Vicente‐Serrano (2014) for the TPI—a topo-
graphic predictor for snow depth at the Izas experimental catchment.

2. Long‐range (secondary) scale breaks in snow depth aligned with prevailing winds are of the same order
of magnitude as the optimal search distance (200 m) found by Revuelto, López‐Moreno, Azorin‐Molina,
& Vicente‐Serrano (2014) for the upwind slope parameter Sx.

3. No clear links are found between directional variations in snow depth fractal dimension (DS) and prevail-
ing winds, reasserting that such relationship will depend on the particular landscape characteristics (e.g.,
vegetation, terrain exposure, and glacier topography) and their interaction with wind fields (Clemenzi
et al., 2018).

4. Scale break anisotropies (L1) in shallow snow cover during snowmelt periods can be explained by
bare‐earth terrain scaling patterns.

5. Based on the fractal analysis results, model scales ~15 m are recommended for this catchment to best
represent interactions of snow with local topographic features and wind in distributed models.
Additionally, snow processes between the first and secondary scale breaks (approximately 40–150 m)
could be represented by a single HRU or GRU whose characteristic scale lies within those limits.

The results presented here suggest that variogram analysis is likely to provide useful information for design-
ing explanatory variables (predictors) that can be used in statistical models that predict snow depth.
Moreover, scale breaks in snow depth may be helpful to inform the spatial configuration of physically based
snow models. Ongoing efforts are oriented to assess the effects of related decisions—in particular, the deli-
neation of HRUs—on the accuracy of a distributed blowing snow model under historical and future climate
conditions.
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