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Abstract
An extension of the turning arcs algorithm is proposed for simulating a random field on the two-dimensional sphere with a

second-order dependency structure associated with a locally varying Schoenberg sequence. In particular, the correlation

range as well as the fractal index of the simulated random field, obtained as a weighted sum of Legendre waves with

random degrees, may vary from place to place on the spherical surface. The proposed algorithm is illustrated with

numerical examples, a by-product of which is a closed-form expression for two new correlation functions (exponential-

Bessel and hypergeometric models) on the sphere, together with their respective Schoenberg sequences. The applicability

of our findings is also described via the emulation of three-dimensional multifractal star-shaped random sets.

Keywords Anisotropic covariance function � Hausdorff dimension � Multifractal � Schoenberg sequence �
Turning Arcs

1 Introduction

Random fields on spheres are employed in the natural

sciences, in particular in astronomy, oceanography, geo-

physics, environmental and atmospheric sciences, to

quantify and emulate the uncertainty associated with phe-

nomena defined over planet Earth or over the celestial vault

(Marinucci and Peccati 2011; Anh et al. 2018; Porcu et al.

2018; Alegrı́a et al. 2019). Other applications include the

modeling of direction-dependent rock mass properties in

structural geology or geotechnics (Sánchez et al. 2019), as

well as the modeling of rigid star-shaped objects with

stochastically varying boundaries (Kent et al. 2000;

Hobolth 2003; Ziegel 2013; Hansen et al. 2015).

Alegrı́a et al. (2020) recently introduced the turning

arcs algorithm for simulating isotropic random fields on

spheres, being the analog of the turning bands method

developed to simulate stationary random fields in Eucli-

dean spaces (Matheron 1973; Mantoglou and Wilson 1982;

Emery et al. 2016). While congenial, the assumption of

isotropy is, however, often simplistic to represent natural

phenomena distributed on the Earth, which motivates the

search for nonstationary (anisotropic) random field models,

i.e., random fields whose finite-dimensional distributions

are not invariant under the group of rotations. One family

of such models are the axially symmetric random fields

(Jones 1963), which are stationary with respect to longitude

but not with respect to latitude and are used to model data

distributed over large portions of the Earth (Jun and Stein

2008; Porcu et al. 2019). The aim of this work is to show

that the turning arcs approach can be used as a building

block to construct a more general class of nonstationary

random fields on the sphere, by considering spectral rep-

resentations of covariance functions whose characteristics

vary on the surface of the sphere. In particular, it will be

shown that one can obtain random fields with locally

varying smoothness properties, which allows the genera-

tion of multifractal star-shaped random sets.

The outline of the paper is the following. In Sect. 2 we

review preliminary results about isotropic random fields on

spheres and their fractal indices and we describe the
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construction of star-shaped random sets. In Sect. 3 we

propose a general framework to construct random fields

with locally adaptive second-order dependency structures.

Additionally, we look at the connections between our

formulation and a kernel-based technique. In Sect. 4 we

introduce a simulation algorithm based on a weighted sum

of Legendre polynomial waves and we present numerical

examples to assess its performance. In addition, we illus-

trate the applicability of our findings in the emulation of

multifractal star-shaped random particles. Section 5 pre-

sents the conclusions of the paper and perspectives for

future work.

Throughout the remainder of the paper, the covariance

structure of the nonstationary random field targeted for

simulation and its spectral representation (Schoenberg

sequence) are assumed to be known beforehand. For

instance, the covariance model can be inferred from a set of

experimental data with an adaptation to the sphere of the

approach proposed by Fouedjio et al. (2016) in the Eucli-

dean space, which consists in (1) estimating locally iso-

tropic covariance functions by a kernel moment method at

a set of anchor locations distributed over the sphere (e.g., at

regularly spaced latitudes and longitudes), (2) estimating

the covariance parameters at each anchor location by least

squares optimization, given a parametric family of

covariance models, and (3) estimating the covariance

parameters at each target location on the sphere by kernel

regression from the parameters estimated at the anchor

locations.

2 Background

2.1 Isotropic random fields on spheres

Consider the unit 2-sphere embedded in R3, denoted by

S2 ¼ fx 2 R3 : kxk ¼ 1g, with k � k representing the

Euclidean norm. Let fZðxÞ : x 2 S2g be a real-valued

second-order random field, with mean function

lðxÞ ¼ EfZðxÞg, x 2 S2, and covariance function

Cðx1; x2Þ ¼ covfZðx1Þ; Zðx2Þg, x1; x2 2 S2. The random

field is (weakly) stationary or (weakly) isotropic (Marin-

ucci and Peccati 2011) if it has a constant mean and if its

covariance function is of the form

Cðx1; x2Þ ¼ Kfdðx1; x2Þg; x1; x2 2 S2; ð1Þ

for some continuous function K : ½0; p� ! R, where

dðx1; x2Þ ¼ arccosfx>1 x2g 2 ½0; p� is the geodesic (or great-
circle) distance on S2. Thus, Cðx1; x2Þ is only a function of

the geodesic distance between locations. Following Guella

and Menegatto (2018), we call K the isotropic part of C.

A given function is an admissible covariance function if

and only if it is positive semidefinite, that is, for all k 2 N�,

and for all collection of locations x1; . . .; xk 2 S2 and

scalars a1; . . .; ak 2 R,

var
Xk

i¼1

aiZðxiÞ
( )

¼
Xk

i¼1

Xk

j¼1

aiajCðxi; xjÞ� 0: ð2Þ

A classical result provided by Schoenberg (1942) states

that C as in (1) is positive semidefinite if and only if its

isotropic part K can be written as

KðdÞ ¼
X1

n¼0

bnPnðcos dÞ; 0� d� p; ð3Þ

where the shortcut d is used to represent the geodesic

distance. Here, Pn is the Legendre polynomial of degree n

(Olver et al. 2010, table 18.3.1), and fbn : n 2 Ng is a

sequence of nonnegative coefficients such thatP1
n¼0 bn\1. As in Gneiting (2013), we refer to this

sequence as a Schoenberg sequence. Standard inversion

formulae yield

bn ¼
2nþ 1

2

Z p

0

Pnðcos nÞ sinðnÞKðnÞdn; n 2 N:

While Gneiting (2013) supplied an extensive catalog of

parametric families of covariance functions for isotropic

random fields on spheres, other authors including Guinness

and Fuentes (2016) and Alegria et al (2018) focused on

parametric models for the Schoenberg sequence, which

fully characterizes the isotropic covariance function.

2.2 Fractal index

The level of smoothness or roughness of the sample paths

of an isotropic random field depends on the asymptotic

behavior of the isotropic part K near zero. The fractal index

provides a quantitative measure of this aspect of the ran-

dom field. Recent literature about this topic can be found in

Hansen et al. (2015), Lang and Schwab (2015), Cheng and

Xiao (2016) and Guinness and Fuentes (2016).

Formally, a random field with covariance function as in

(1) has fractal index a[ 0 if

Kð0Þ � KðdÞ� c0 d
a; ð4Þ

as d & 0, for some constant c0 [ 0. Here, for two func-

tions f and g, f ðdÞ� gðdÞ as d & 0 if and only if

lim
d!0

f ðdÞ=gðdÞ ¼ 1:

The fractal index has been calculated for several parametric

classes of covariance functions. It is always true that

0\a� 2, where a ¼ 2 and a ! 0 represent the cases of
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extreme smoothness and extreme roughness of the sample

paths, respectively.

Abelian and Tauberian theorems (Bingham 1978; Mal-

yarenko 2004) connect the asymptotic behavior of K near

zero to that of its Schoenberg sequence near infinity.

Hence, the fractal index can be alternatively specified

through the decay of the Schoenberg sequence. A function

f : ð0;1Þ ! ð0;1Þ is said to be slowly varying at infinity

if, for every r[ 0,

lim
t!1

f ðrtÞ
f ðtÞ ¼ 1:

Then, Malyarenko (2004) shows that, for 0\a\2,

Kð0Þ � KðdÞ� 2�adaf ð1=dÞ; ð5Þ

as d & 0, if, and only if,

X1

k¼n

bk � f ðnÞn�a; ð6Þ

as n ! 1. While the implication (6))(5) is called an

Abelian theorem, the converse is called a Tauberian

theorem.

2.3 Star-shaped random sets

The accurate modeling of three-dimensional star-shaped

particles has attracted interest in many branches of

knowledge such as astronomy, material science and med-

icine (Stoyan and Stoyan 1994). The Hausdorff (or fractal)

dimension, a concept arising from the study of irregular

shapes, plays a fundamental role in the analysis of solid

particles because it serves as a valuable mathematical tool

to quantify the degree of smoothness or roughness of the

surface of the particle. Recent findings indicate that fractal

geometry is a convenient tool for describing the topogra-

phy of astronomical bodies in the solar system (Kucinskas

et al. 1992), the mechanisms of tumor growth and angio-

genesis (Sedivy and Mader 1997), as well as the mor-

phology of sand grains (Zhou et al. 2017).

Formally, a particle is represented as a closed and

bounded set Y 	 R3, being star-shaped with respect to an

interior point o, i.e., for each x 2 Y , the whole line segment

joining o and x is contained in Y. The set Y can be com-

pletely characterized in terms of its radial function, defined

as ZðxÞ ¼ maxfr� 0 : oþ rx 2 Yg, for x 2 S2. Accord-

ingly, Y can be represented as

Y ¼
[

x2S2

foþ rx : 0� r� ZðxÞg:

Adopting the framework presented by Hansen et al. (2015),

the radial function ZðxÞ is modeled as a Gaussian random

field on S2. Since ZðxÞ may take negative values, ZðxÞ

could be replaced with ZcðxÞ ¼ maxfc; ZðxÞg for some

c[ 0, or with another transform that ensures positiveness.

Throughout, the interior point o is assumed to be the origin.

The Hausdorff dimension (Adler 1981) allows quanti-

fying the regularity of the surface of Y. A formal definition

in terms of ball coverings (Hansen et al. 2015) is given

now. For �[ 0, an �-cover of Y is a countable collection

fBi : i ¼ 1; 2; . . .g of balls Bi 	 R3 of diameter jBij less
than or equal to � that covers Y. Let

HgðYÞ ¼ lim
�!0

inf
X1

i¼1

jBijg :
(

fBi : i ¼ 1; 2; . . .g is an �-cover of Yg;

where the infimum is taken over all the �-covers of Y, be

the g-dimensional Hausdorff measure of Y. The Hausdorff

dimension of Y is the unique nonnegative number g0 such

that HgðYÞ ¼ 1 if g\g0 and HgðYÞ ¼ 0 if g[ g0.
In the special case when ZðxÞ is isotropic, Hansen et al.

(2015) showed that g0 ¼ 3� a=2 almost surely, where a is

the fractal index of ZðxÞ defined in (4), which implies that

2� g0\3. For sets with conventional smooth shapes, the

Hausdorff dimension matches the ordinary topological

dimension g0 ¼ 2. In contrast, as the Hausdorff dimension

increases, the set becomes more and more irregular.

3 Nonstationary random fields on spheres

3.1 Spatially adaptive Schoenberg sequences

The aim of this section is to propose a general framework

for the construction of nonstationary random field models

on spheres. The following proposition provides a simple

and general approach to escape from isotropy, based on

spatially adaptive Schoenberg sequences.

Proposition 1 Let fbnðx1; x2Þ : n 2 Ng be a sequence of

positive semidefinite functions on S2 
 S2, such thatP1
n¼0 bnðx; xÞ\1, for every x 2 S2. Thus,

Cðx1; x2Þ ¼
X1

n¼0

bnðx1; x2ÞPnðx>1 x2Þ; x1; x2 2 S2; ð7Þ

is a positive semidefinite function.

The proof of Proposition 1 is deferred to Appendix A.

We call the sequence of functions fbnðx1; x2Þ : n 2 Ng an

adaptive Schoenberg sequence. Equation (7) is a conve-

nient construction because when both x1 and x2 are near

some fixed location x0 2 S2, and bn is a sufficiently

smooth function, for each n 2 N, one has
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Cðx1; x2Þ �
X1

n¼0

bnðx0; x0ÞPnðx>1 x2Þ; x1; x2 2 S2:

Consequently, covariance functions with locally isotropic

behaviors are possible, making this class of models ver-

satile and attractive. In particular, the correlation range and

the fractal index of the random field can vary on the

spherical surface. A similar construction principle, based

on a Fourier series representation, has been adopted by

Porcu et al. (2019) to model global temperatures. For

simplicity, from now on we pay attention to constructions

of the form

Cðx1; x2Þ ¼
X1

n¼0

bnðx1Þbnðx2Þf g1=2


 Pnðx>1 x2Þ; x1; x2 2 S2;

ð8Þ

with bn being a nonnegative function on S2. This choice is

a special case of (7), and is sufficiently general to achieve

models with flexible local ranges and fractal properties.

Actually, the proposed model is capable of emulating

kernel-based covariance functions, which are widely used

in the spatial analysis literature (Nott and Dunsmuir 2002;

Heaton et al. 2014). Indeed, in a kernel-based approach,

the random field ZðxÞ on S2 is written as a spatially

weighted combination of isotropic random fields. This

strategy allows modeling dissimilar local dependency

structures in different spatial zones. Let D1; . . .;DJ be a

collection of subregions that cover S2, and let kjðdðx; xjÞÞ
be a positive geodesic kernel function centered at the

centroid xj of Dj, for all j ¼ 1; . . .; J (see (Schreiner 1997)).

Consider the random field

ZðxÞ ¼
XJ

j¼1

kjðdðx; xjÞÞZjðxÞ; x 2 S2;

where Z1ðxÞ; . . .; ZJðxÞ is a collection of independent iso-

tropic random fields on S2. Suppose that the covariance

function of ZjðxÞ has isotropic part Kj. Thus, ZðxÞ has the
following covariance function

Cðx1; x2Þ ¼
XJ

j¼1

kjðdðx1; xjÞÞkjðdðx2; xjÞÞ


 Kjfdðx1; x2Þg; x1; x2 2 S2:

ð9Þ

Since Kj admits a representation of the form

KjðdÞ ¼
P1

n¼0 pn;jPnðcos dÞ, for each j ¼ 1; . . .; J, where

fpn;j : n 2 Ng is the associated jth Schoenberg sequence,

the covariance function (9) can be written as

Cðx1; x2Þ ¼
XJ

j¼1

X1

n¼0

kjðdðx1; xjÞÞkjðdðx2; xjÞÞ


 pn;jPnðx>1 x2Þ; x1; x2 2 S2:

ð10Þ

We observe that (10) can be obtained as the sum of J

covariance functions of the form (8), where the jth adaptive

Schoenberg sequence in (8) is constructed from

bn;jðxÞ ¼ k2j ðdðx; xjÞÞpn;j.
In the following subsections, we provide a few examples

of isotropic correlation functions, i.e., covariance functions

that only depend on the geodesic distance and have a unit

variance at each point of the sphere

(Cðx; xÞ ¼
Pþ1

n¼0 bn ¼ 1 for any x 2 S2), and their gener-

alization to nonstationary (anisotropic) correlation func-

tions constructed on the basis of adaptive Schoenberg

sequences.

3.2 Example 1: Legendre–Matérn model

The isotropic Legendre–Matérn correlation function

(Guinness and Fuentes 2016) is characterized by the

Schoenberg sequence

bn ¼ Sða; m; 0Þ�1 ða2 þ n2Þ�m�1=2; n 2 N; ð11Þ

where a[ 0, m[ 0 and Sða; m; pÞ ¼
Pþ1

k¼p ða2 þ k2Þ�m�1=2
.

While a regulates the practical range (the distance at which

the correlation function reaches a given threshold) of the

random field, m controls the smoothness of the sample

paths. Indeed, since Sða; m; nÞ� n�2mð2mÞ�1
as n ! 1, we

conclude from Malyarenko’s characterization that, for

0\m\1, the associated random field has fractal index

a ¼ 2m. For m[ 1 the random field is differentiable in a

mean square sense, in which case the fractal index is a ¼ 2,

and we refer the reader to Guinness and Fuentes (2016) for

details. The previous results can be extended to the limit

case m ¼ 1, which also yields a fractal index equal to 2

(Bingham 1978).

A natural extension of the Legendre–Matérn model (11)

is obtained from the adaptive Schoenberg representation

(8), by considering

bnðxÞ ¼ SðaðxÞ; mðxÞ; 0Þ�1


 ðaðxÞ2 þ n2Þ�mðxÞ�1=2; n 2 N; x 2 S2;
ð12Þ

where m and a are positive functions controlling the locally

varying fractal index and practical range of the sample

paths, respectively. In what follows, we call (12) the

adaptive Legendre–Matérn model.
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3.3 Example 2: multiquadric model

The isotropic multiquadric correlation function and its

associated Schoenberg sequence are (Gneiting 2013;

Moller et al. 2018; Peron et al. 2018)

Cðx1; x2Þ ¼
1� a

ð1þ a2 � 2a x>1 x2Þ
1
2

; x1; x2 2 S2; ð13Þ

and

bn ¼ ð1� aÞ an; n 2 N; ð14Þ

with a 2 ð0; 1Þ. According to criterion (4), the fractal index

of this model is a ¼ 2, which means that the sample paths

are very smooth. As a increases, the practical range

decreases, implying spatial variations at a shorter scale. As

for the previous example, an adaptive model is defined by

considering spatially-varying coefficients:

bnðxÞ ¼ ð1� aðxÞÞ aðxÞn; n 2 N: ð15Þ

The corresponding nonstationary correlation function (8)

has the following closed-form expression:

Cðx1; x2Þ ¼
ð1� aðx1ÞÞ ð1� aðx2ÞÞ

1þ aðx1Þ aðx2Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx1Þ aðx2Þ

p
x>1 x2

 !1
2

:

ð16Þ

3.4 Example 3: exponential-Bessel model

The isotropic exponential-Bessel correlation function is

given by:

Cðx1; x2Þ ¼ exp a ðx>1 x2 � 1Þ
� �


 J0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx>1 x2Þ

2
q� �

;
ð17Þ

where a[ 0 and J0 is the zeroth order Bessel function of

the first kind (Olver et al. 2010, formula 10.2.2). Such a

correlation function has a fractal index equal to 2, as per

criterion (4), hence it is associated with smooth sample

paths; the practical range and scale of variations are con-

trolled by parameter a (the larger a, the smaller the prac-

tical range). The isotropic part of Cðx1; x2Þ, as defined in 1,

takes negative values on some subset of ð0; pÞ if a is

greater than 1.7005, is nonmonotonic (i.e., it has a hole

effect) if a is greater than 2.7094, and presents damped

oscillations if a is greater than 4.9608. An explicit

expression of the Schoenberg sequence can be deduced

from formula 18.12.12 of Olver et al. (2010):

bn ¼ expð�aÞ a
n

n!
; n 2 N; ð18Þ

which is positive and summable, ensuring the positive

semidefiniteness of Cðx1; x2Þ. The extension to a nonsta-

tionary model is straightforward, by considering the

sequence

bnðxÞ ¼ expð�aðxÞÞ aðxÞ
n

n!
; n 2 N; ð19Þ

with a a positive function. This leads to a correlation

function of the form

Cðx1; x2Þ ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx1Þaðx2Þ

p
x>1 x2 �

aðx1Þ þ aðx2Þ
2

� �


 J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx1Þaðx2Þð1� ðx>1 x2Þ

2Þ
q� �

:

ð20Þ

3.5 Example 4: hypergeometric model

The isotropic hypergeometric correlation function is

Cðx1; x2Þ ¼
1� a

1� a x>1 x2

� �m

2F1


 m
2
;
mþ 1

2
; 1; a2

ðx>1 x2Þ
2 � 1

ð1� a x>1 x2Þ
2

 !
;

ð21Þ

where a 2 ð0; 1Þ, m[ 0 and where 2F1 is the Gauss

hypergeometric function (Olver et al. 2010, formula

15.2.1). This correlation function is associated with the

following Schoenberg sequence (Brafman 1951):

bn ¼ ð1� aÞm ðmÞn
an

n!
; n 2 N; ð22Þ

where ðmÞn stands for the Pochhammer symbol (Olver et al.

2010, formula 5.2.5). Stirling’s formula (Olver et al. 2010,

formula 5.11.3) shows that the generic term bn behaves like

an nm�1 as n tends to infinity, hence the positive series fbn :
n 2 Ng converges and the correlation function (21) is well-

defined. As for the previous two examples, the application

of criterion (4) provides a fractal index a ¼ 2, with a

constant c0 that increases with a and m. Accordingly, larger
parameters a and m are associated with shorter scales of

variations and a smaller practical range.

An adaptive hypergeometric model is obtained by let-

ting a and m vary with x. If m ¼ 1 (independent of x), one

has 2F1
1
2
; 1; 1; z

� �
¼ ð1� zÞ�1=2

(Olver et al. 2010, for-

mula 15.4.6) and the model boils down to the multiquadric

model (15). Another particular case with a simple closed-

form expression is obtained when m ¼ 2:

Cðx1; x2Þ ¼
ð1� aðx1ÞÞ

m
2 ð1� aðx2ÞÞ

m
2 ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx1Þ aðx2Þ

p
x>1 x2Þ

1þ aðx1Þ aðx2Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx1Þ aðx2Þ

p
x>1 x2

� �3
2

:

ð23Þ
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4 Simulation of adaptive models

4.1 Proposed algorithm

The following proposition provides an algorithm to simu-

late basic nonstationary random fields on spheres with a

correlation structure of the form (8), requiring only the

knowledge of the adaptive Schoenberg sequence.

Proposition 2 Let e be a random variable with zero mean

and unit variance, x be a random vector uniformly dis-

tributed on S2, and j be a discrete random variable with

Pðj ¼ nÞ ¼ fn, n 2 N, where P stands for the probability

and where the support of the probability mass sequence

ffn : n 2 Ng contains the support of the sequence

fbnðxÞ : n 2 Ng, for all x 2 S2. Suppose that e, j and x

are independent. Then, the random field

ZðxÞ ¼ e
bjðxÞð2jþ 1Þ

fj

� �1=2

Pjðx>xÞ; x 2 S2; ð24Þ

has zero mean and its covariance function is given by (8).

The proof of Proposition 2 can be found in Appendix B.

In essence, (24) consists of an adequate weighted and

rescaled Legendre polynomial wave. It appears as the

nonstationary extension of the turning arcs simulation

algorithm on the sphere (Alegrı́a et al. 2020) and as the

spherical extension of the continuous spectral algorithm to

simulate nonstationary random fields in Euclidean spaces

(Emery and Arroyo 2018). The choice of the probability

mass sequence ffn : n 2 Ng can be made independently of

the adaptive Schoenberg sequence, which is equivalent to

an important sampling technique. Location and dispersion

parameters can also be added in order to control the mean

and variance of the sample paths.

The random field ZðxÞ in (24) has a zero expectation and
exactly the predefined second-order structure (8). One can

furthermore impose that its finite-dimensional distributions

are close to multivariate Gaussian by recourse to a central

limit approximation, by putting

eZðxÞ ¼ 1

L1=2

XL

‘¼1

Z‘ðxÞ; x 2 S2; ð25Þ

where Z1ðxÞ; . . .; ZLðxÞ are L basic random fields (Legen-

dre waves) constructed as in (24), and L is a large integer,

typically of the order of a few thousands. Several criteria

have been proposed to assess the quality of the central limit

approximation, based on the distributional properties of the

simulated random field eZðxÞ or on the experimental

properties of its sample paths. The reader is referred to the

literature on the spectral-turning bands and turning arcs

simulation for a thorough review of such criteria (Lantué-

joul 1994, 2002; Emery and Lantuéjoul 2006, 2008; Emery

2008; Chilès and Delfiner 2012; Emery et al. 2016; Arroyo

and Emery 2017; Alegrı́a et al. 2020). An example is

presented in Sect. 4.2 and Appendix C hereunder.

The construction (25) is competitive from a computa-

tional point of view, insofar as (1) it requires a minimal

memory footprint (the simulated values can be exported as

soon as they are calculated), (2) it is scalable, in the sense

that its overall computational cost is proportional to the

number L of basic random fields and to the number nx of

target locations, and (3) its implementation is paralleliz-

able. The authors are not aware of other algorithms able to

exactly simulate random fields with an adaptive covariance

function of the form (8) on the sphere, except the one-size-

fits-all covariance matrix decomposition and sequential

algorithms (Chilès and Delfiner 2012) that have a numer-

ical complexity proportional to n3x (prohibitive when nx is

more than a few tens of thousands), let alone their

demanding memory storage requirements.

In a similar fashion, other spectral simulation algorithms

leading to random fields with a covariance of the form (8)

could be designed, by adapting the constructions based on

finite expansions into spherical harmonics proposed by

Emery and Porcu (2019) and Lantuéjoul et al. (2019).

Although these adaptations would have the same numerical

complexity in OðL nxÞ, the calculation of spherical har-

monics turns out to be much more expensive than that of

Legendre polynomials, which can be obtained straightfor-

wardly by use of recurrence relations (Olver et al. 2010,

table 18.9.1). This difference in computing time would

furthermore increase when generalizing the previous

algorithms to higher-dimensional spheres: Legendre poly-

nomials are then substituted by Gegenbauer polynomials

(cheap to calculate) (Alegrı́a et al. 2020), whereas spheri-

cal harmonics have to be replaced by costly hyperspherical

harmonics (Emery and Porcu 2019).

In many applications, it is also of interest to condition

the simulated random field to a finite set of observations

scattered over the sphere. Following a standard procedure

in spatial statistics, the non-conditional simulation (25) can

be converted into a conditional one by means of post-

conditioning kriging, see de Fouquet (1994) and Chilès and

Delfiner (2012), which requires the analytical expression of

the correlation function. This expression is known exactly

in some cases (such as in Examples 2, 3 and 4 above), or

approximately, by truncating the adaptive Schoenberg

representation (8) at a high polynomial degree.

4.2 Numerical examples

For x 2 S2, let us denote by hðxÞ its colatitude (inclina-

tion), valued between 0 and p, and by uðxÞ its longitude
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(azimuth), valued between 0 and 2p, and consider the

following adaptive models:

• Legendre–Matérn model with aðxÞ ¼ 2þ 1:5 cosðuðxÞÞ
and mðxÞ ¼ 0:2þ 1:6 hðxÞ

p ;

• multiquadric model with aðxÞ ¼ 0:9� 0:8 hðxÞ
p ;

• exponential-Bessel model with aðxÞ ¼ 8� 7:9 hðxÞ
p ;

• hypergeometric model with aðxÞ ¼ 0:9� 0:8 hðxÞ
p and

mðxÞ ¼ 10þ 9 cosðuðxÞÞ.
Figure 1 displays sample paths and star-shape representa-

tions of these models, obtained by using L ¼ 5000 basic

random fields, a Rademacher distribution for e and a zeta

distribution of parameter 2 for jþ 1:

Pðe ¼ �1Þ ¼ Pðe ¼ 1Þ ¼ 1

2
;

Pðj e j6¼ 1Þ ¼ 0

and

Pðj ¼ nÞ ¼ 6

p2 ðnþ 1Þ2
; n 2 N:

The Rademacher distribution for e has been chosen because
it leads to the smallest Berry–Esséen bound when calcu-

lating the Kolmogorov distance between the finite-dimen-

sional distributions of the simulated random field and

multivariate Gaussian distributions (Alegrı́a et al. 2020).

On the other hand, based on the fact that the support of the

Schoenberg sequence is unbounded in all the models under

consideration, a shifted zeta distribution has been chosen

for j because it is supported in N and long-tailed, hence it

allows sampling a large range of polynomial degrees and

reproducing both the low- and high-frequency variations of

the target random field; in particular, it ensures that the

Berry–Esséen bound between the marginal distribution of

the simulated random field and the standard Gaussian

distribution is finite and proportional to L�1=2 (details in

Appendix C). Zeta distributed random integers can be

generated by recourse to an acceptance-rejection algorithm

(Devroye 1986, Chapter 10).

The sample path of the adaptive Legendre–Matérn

model (top left) becomes smoother and smoother as one

gets farther from the north pole, which is explained

because m (therefore, the fractal index a ¼ 2 minð1; mÞ)
increases with the colatitude. One can also observe that the

scale of the spatial variations is not the same from east to

west, which arises because a varies with the longitude. This

Legendre-Matérn model offers a general strategy for

modeling and simulating three-dimensional multifractal

star-shaped particles, for which the Hausdorff dimension

may vary from place to place on the boundary of the

particle. In contrast, the simulation of isotropic random

fields only implies monofractal objects (Hansen et al.

2015).

In the following two examples (multiquadric and

exponential-Bessel models), a decreases with the colati-

tude, implying a shorter range of variations toward the

north pole and a larger range of variations towards the

south pole, as well as some pseudo-periodicity in the

northern hemisphere in the case of the exponential-Bessel

model. Both examples correspond to axially symmetric

random fields, insofar as the correlation function Cðx1; x2Þ
only depends on hðx1Þ, hðx2Þ and uðx1Þ � uðx2Þ. In con-

trast, the last example (hypergeometric model) exhibits a

range of variations that differs from north to south and

from east to west, controlled by the latitudinally-varying

parameter a and the longitudinally-varying parameter m. In
all these three examples, the boundary of the star-shape

particle is smooth, insofar as the fractal index is constant

over the sphere (a ¼ 2).

5 Conclusions and perspectives

We introduced a flexible framework for modeling nonsta-

tionary random fields on spheres, which are generated from

a locally varying Schoenberg sequence, and proposed a

computationally efficient simulation algorithm that allows

reproducing exactly the second-order dependency struc-

ture. A simple locally adaptive version of the Legendre–

Matérn, multiquadric, exponential-Bessel and hypergeo-

metric covariance functions has been proposed and exem-

plified through numerical experiments to emulate random

fields with place-to-place variable practical range and/or

fractal index. In passing, the closed-form expressions of the

latter two covariance functions, as well as their Schoenberg

sequences, have been established. We also described the

construction of multifractal star-shaped objects from our

proposal.

A natural generalization of this work is to consider

temporally dependent Schoenberg sequences, allowing for

nonstationary random fields evolving in time. The findings

of Berg and Porcu (2017) might be useful here. Another

interesting problem is the search for efficient methods for

estimating the covariance structure, an issue that has been

left aside in this work focused on the simulation problem.

In this respect, we already mentioned in the introductory

section the approach proposed by Fouedjio et al. (2016) to

estimate nonstationary covariance functions. Another

challenging possibility is to adapt the tools reviewed in

Gneiting et al. (2012), who focus on the estimation of the

fractal index. Advances in this direction also include the

work of Ziegel (2013).
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Fig. 1 Orthographic projections

(left) and star-shaped

representations (right) showing

sample paths of nonstationary

random fields with Legendre-

Matérn (top row), multiquadric

(second row), exponential-

Bessel (third row) and

hypergeometric (bottom)

covariances. All these

representations have been

obtained by considering a

discretization of the sphere into

500
 500 faces and by using

L ¼ 5000 Legendre waves, a

Rademacher distribution for e
and a zeta distribution with

parameter 2 for jþ 1. A black

square indicates the north pole

in each representation. The

radial function used in the star-

shaped representations is the

simulated random field

increased by a constant value of

60
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From a computational viewpoint, the simulation algo-

rithm is very fast, as the number of required floating point

operations is proportional to the number L of basic random

fields (Legendre waves) and to the number of target loca-

tions. One may be interested in proposing an improved

version of this algorithm by using high-performance

computing.

According to the Open Problem 15 in Gneiting (2013),

new methodologies involving nonstationary dependencies

could be beneficial in environmental and climatological

phenomena (see also (Castruccio and Stein 2013)). So we

believe that our findings in Sect. 3 can be helpful to con-

duct new investigations in various fields related to spatial

analysis.
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Appendices

A. Proof of Proposition 1

The positive semidefiniteness of (7) is a direct consequence

of the addition theorem for spherical harmonic functions,

which is described below. The set of spherical harmonic

functions, fYnm : n 2 N;m ¼ �n; . . .; ng, is an orthogonal

basis of the Hilbert space of complex-valued square inte-

grable functions on S2. Explicit expressions for these

functions can be found in Olver et al. (2010, formula

14.30.1) and Marinucci and Peccati (2011). The addition

theorem for spherical harmonic functions (Olver et al.

2010, formula 14.30.9) establishes that

Pnðx>1 x2Þ ¼
4p

2nþ 1

Xn

m¼0

	
Re Ynmðx1Þf gRe Ynmðx2Þf g

þ Im Ynmðx1Þf gIm Ynmðx2Þf g


;

x1; x2 2 S2;

where Re and Im represent real and imaginary parts,

respectively. A straightforward calculation shows that, for

any k 2 N�, and for any system of points x1; . . .; xk 2 S2

and constants a1; . . .; ak 2 R,

Xk

i;j¼1

aiajCðxi; xjÞ ¼
Xk

i;j¼1

aiaj
X1

n¼0

bnðxi; xjÞ

Pnðx>i xjÞ

¼
X1

n¼0

4p
2nþ 1

Xn

m¼0

Xk

i;j¼1

"


 cnm;icnm;j þ dnm;idnm;j
� �


bnðxi; xjÞ�;

where cnm;i ¼ aiRe YnmðxiÞf g and dnm;i ¼ aiIm YnmðxiÞf g.
The last expression is clearly nonnegative due to the pos-

itive semidefiniteness of the functions bn, and the exchange

order of summations is well justified by dominated

convergence.

B. Proof of Proposition 2

The basic random field defined in (24) clearly has a zero

expectation. On the other hand, in order to obtain its

covariance function, we use the same arguments as in

Alegrı́a et al. (2020). Indeed, note that

EfZðx1ÞZðx2Þg ¼ Eðe2Þ
X1

n¼0

fbnðx1Þbnðx2Þg1=2ð2nþ 1Þ



Z

S2

Pnðx>x1ÞPnðx>x2ÞUðdxÞ;

x1; x2 2 S2;

where U is the uniform probability measure on S2. The

result follows from the duplication equation for Legendre

polynomials (see, e.g., (Ziegel 2014, equation 2.4)): for any

n; k 2 N,
Z

S2

Pnðx>x1ÞPkðx>x2ÞUðdxÞ ¼ dn;k
2nþ 1

Pnðx>1 x2Þ;

x1; x2 2 S2;

where dn;k denotes the Kronecker delta.

C. Assessment of the central limit
approximation

Starting with the well-known Berry–Esséen inequality,

Alegrı́a et al. (2020) showed that the Kolmogorov–Smir-

nov distance between the marginal distribution of eZðxÞ as
defined in (25) and a Gaussian distribution is upper

bounded as follows:

Stochastic Environmental Research and Risk Assessment

123



sup
z2R






P
eZðxÞ

Cðx; xÞ1=2
\z

 !
� GðzÞ






�
n Eðjej3Þ

Cðx; xÞ3=2 L1=2



X

n

bnðxÞ3=2 ð2nþ 1Þ3=2 E jPnðxTxÞj3
� �

f1=2n

;

where the sum is extended over all the integers n such that

fn is positive, G is the standard Gaussian cumulative dis-

tribution function, n is a constant between 0.4097 and

0.4748, and E jPnðxTxÞj3
� �

does not depend on x and

behaves as Oðn�3=2Þ at large n. Now, in the four examples

presented in Sect. 4.2, the simulated random field eZðxÞ has
a unit variance, e has a Rademacher distribution and ffn :
n 2 Ng is the probability mass sequence of a shifted zeta

distribution with parameter 2, so that Cðx; xÞ ¼ 1,

Eðjej3Þ ¼ 1 and f�1=2
n ¼ p ðnþ 1Þ=

ffiffiffi
6

p
. Accordingly:

sup
z2R






P
eZðxÞ\z
� �

� GðzÞ





�

n

L1=2

X

n

bnðxÞ3=2 sn;

with sn ¼ ð2nþ 1Þ3=2 E jPnðxTxÞj3
� �

p ðnþ 1Þ=
ffiffiffi
6

p
¼

OðnÞ as n ! þ1. Furthermore, one has:

• bnðxÞ ¼ Oðn�2mðxÞ�1Þ with mðxÞ 2 ½0:2; 1:8� (Legendre-
Matérn model);

• bnðxÞ ¼ OðaðxÞnÞ with aðxÞ 2 ½0:1; 0:9� (multiquadric

model);

• bnðxÞ ¼ O aðxÞn
n!

� �
with aðxÞ 2 ½0:1; 8:0� (exponential-

Bessel model);

• bnðxÞ ¼ OðaðxÞn nmðxÞ�1Þ, with aðxÞ 2 ½0:1; 0:9� and

mðxÞ 2 ½1; 19� (hypergeometric model).

As a result, in all the four cases, the sequence fbnðxÞ3=2 sn :
n 2 Ng is summable, hence, the Berry–Esséen upper

bound is finite and proportional to L�1=2. By increasing L, it

is possible to ensure that the distance between the marginal

distribution of the simulated random field and a standard

Gaussian distribution is less that any given positive

threshold.
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