
MEAN DIMENSION AND AN EMBEDDING THEOREM
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YONATAN GUTMAN AND LEI JIN ∗

Abstract. We develop mean dimension theory for R-flows. We obtain

fundamental properties and examples and prove an embedding theorem:

Any real flow (X,R) of mean dimension strictly less than r admits an

extension (Y,R) whose mean dimension is equal to that of (X,R) and

such that (Y,R) can be embedded in the R-shift on the compact function

space {f ∈ C(R, [−1, 1])| supp(f̂) ⊂ [−r, r]}, where f̂ is the Fourier

transform of f considered as a tempered distribution. These canonical

embedding spaces appeared previously as a tool in embedding results

for Z-actions.

1. Introduction

Mean dimension was introduced by Gromov [Gro99] in 1999, and was

systematically studied by Lindenstrauss and Weiss [LW00] as an invariant

of topological dynamical systems (t.d.s). In recent years it has extensively

been investigated with relation to the so-called embedding problem, mainly

for Zk-actions (k ∈ N). For Z-actions, the problem is which Z-actions (X,T )

can be embedded in the shifts on the Hilbert cubes (([0, 1]N)Z, σ), where N

is a natural number and the shift σ acts on ([0, 1]N)Z by σ((xn)n∈Z) =

(xn+1)n∈Z for xn ∈ [0, 1]N . Under the conditions that X has finite Lebesgue

covering dimension and the system (X,T ) is aperiodic, Jaworski [Jaw74]

proved in 1974 that (X,T ) can be embedded in the shift on [0, 1]Z. Us-

ing Fourier and complex analysis, Gutman and Tsukamoto showed that if

(X,T ) is minimal and has mean dimension strictly less than N/2 then it

can be embedded in (([0, 1]N)Z, σ) (see a more general result in [GQT19]).

We note that the value N/2 is optimal since a minimal system of mean di-

mension N/2 which cannot be embedded in (([0, 1]N)Z, σ) was constructed

in [LT14, Theorem 1.3]. More references for the embedding problem are

given in [Aus88, Kak68, Lin99, Gut11, Gut15, GT14, GLT16, Gut16, Gut17,

GQS18].
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2 Y. GUTMAN AND L. JIN

In this paper, we develop the mean dimension theory for R-actions and

investigate the embedding problem in this context. Throughout this paper,

by a flow we mean a pair (X,R), where X is a compact metric space and

Γ : R×X → X, (r, x) 7→ rx is a continuous map such that Γ(0, x) = x and

Γ(r1,Γ(r2, x)) = Γ(r1 + r2, x) for all r1, r2 ∈ R and x ∈ X. Let (X,R) =

(X, (ϕr)r∈R) and (Y,R) = (Y, (φr)r∈R) be flows. We say that (Y,R) can be

embedded in (X,R) if there is an R-equivariant homeomorphism of Y onto

a subspace of X; namely, there is a homeomorphism f : Y → f(Y ) ⊂ X

such that f ◦ φr = ϕr ◦ f for all r ∈ R.

This paper is organized as follows: In Section 2, we present basic no-

tions and properties of mean dimension theory for flows. In Section 3 we

construct minimal real flows with arbitrary mean dimension. In Section

4, we propose an embedding conjecture for flows and discuss its relation

to the Lindenstrauss-Tsukamoto embedding conjecture for Z-systems. In

Section 5, we state the main embedding theorem and prove it using a key

proposition. In Section 6, we prove the key proposition.

Acknowledgements. Y. Gutman was partially supported by the NCN

(National Science Center, Poland) Grant 2016/22/E/ST1/00448. Y. Gut-

man and L. Jin were partially supported by the NCN (National Science

Center, Poland) Grant 2013/08/A/ST1/00275. L. Jin was supported by

Basal funding PFB 170001 and Fondecyt Grant No. 3190127. This work

owes greatly to previous work by Y. Gutman and M. Tsukamoto. We are

grateful to the anonymous reviewer for a careful reading and many useful

suggestions.

2. Mean dimension for real flows

We first introduce the definition of mean dimension for R-actions. Let

(X, d) be a compact metric space. Let ε > 0 and Y a topological space.

A continuous map f : X → Y is called a (d, ε)-embedding if for any

x1, x2 ∈ X with f(x1) = f(x2) we have d(x1, x2) < ε. Define

Widimε(X, d) = min
K∈K

dim(K),

where dim(K) is the Lebesgue covering dimension of the space K and K
denotes the collection of compact metrizable spaces K satisfying that there

is a (d, ε)-embedding f : X → K. Note that K is always nonempty since

we can take K = X which is a compact metric space and f = id which is

the identity map from X to itself.
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Let (X,R) be a flow. For x, y ∈ X and a subset A of R let

dA(x, y) = sup
r∈A

d(rx, ry).

For R > 0 denote by dR the metric d[0,R] on X. Clearly, the metric dR is

compatible with the topology on X.

Proposition 2.1. For any ε > 0, we have

(1) Widimε(X, d) ≤ dim(X);

(2) if 0 < ε1 < ε2 then Widimε1(X, d) ≥Widimε2(X, d);

(3) if 0 ≤ R1 < R2 then Widimε(X, dR1) ≤Widimε(X, dR2);

(4) Widimε(X, d[r1,r2]) = Widimε(X, d[r0+r1,r0+r2]) for any r0, r1, r2 ∈ R;

(5) Widimε(X, dN+M) ≤Widimε(X, dN)+Widimε(X, dM) for any N,M ≥
0.

Proof. Since (X, d) is a compact metric space that belongs to K, we have

(1). Points (2) and (3) follow from the definition. Let ε > 0. If K is a

compact metrizable space and f : X → K is a continuous map such that

for any x1, x2 ∈ X with f(x1) = f(x2) we have d[r1,r2](x1, x2) < ε, then

f ◦ r0 : X → K is a continuous map such that for any x1, x2 ∈ X with

f ◦ r0(x1) = f ◦ r0(x2) we have d[r1,r2](r0x1, r0x2) < ε which implies that

d[r0+r1,r0+r2](x1, x2) < ε. This shows (4).

To see (5), let ε > 0, K (resp. L) be a compact metrizable space and

f : X → K (resp. g : X → L) be a continuous map such that for any

x1, x2 ∈ X with f(x1) = f(x2) (resp. g(x1) = g(x2)) we have dN(x1, x2) < ε

(resp. dM(x1, x2) < ε). Define F : X → K × L by F (x) = (f(x), g(Nx))

for every x ∈ X. Clearly, K × L is a compact metrizable space and the

map F is continuous. For x, y ∈ X, if F (x) = F (y) then f(x) = f(y)

and g(Nx) = g(Ny), thus we have dN(x, y) < ε and dM(Nx,Ny) < ε,

and hence dN+M(x, y) < ε. It follows that Widimε(X, dN+M) ≤ dim(K ×
L) ≤ dim(K) + dim(L). Thus, Widimε(X, dN+M) ≤ Widimε(X, dN) +

Widimε(X, dM). �

We define the mean dimension of a flow (X,R) by:

mdim(X,R) = lim
ε→0

lim
N→∞

Widimε(X, dN)

N
.

The limit exists by the Ornstein-Weiss lemma [LW00, Theorem 6.1] as

subadditivity holds.

Next we recall the definition of mean dimension for Z-actions in [LW00,

Definition 2.6]. Let (X,T ) be a Z-action. For x, y ∈ X and N ∈ N, denote

dZN(x, y) = max
n∈Z∩[0,N−1]

d(T n(x), T n(y)).
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Define the mean dimension of (X,T ) by:

mdim(X,Z) = mdim(X,T ) = lim
ε→0

lim
N→∞(N∈N)

Widimε(X, d
Z
N)

N
.

Proposition 2.2. Let (X,R) be a flow. If X is finite dimensional then

mdim(X,R) = 0.

Proof. We have Widimε(X, dN) ≤ dim(X) < +∞. The result follows. �

Although the definition of mean dimension for R-actions depends on the

metric d, the next proposition shows that the mean dimension of a flow

has the same value for all metrics compatible with the topology. Therefore

mean dimension is an invariant of R-actions.

Proposition 2.3. Let (X,R) be a flow. Suppose that d and d′ are compatible

metrics on X. Then mdim(X,R; d) = mdim(X,R; d′).

Proof. Since d are d′ are equivalent, the identity map id : (X, d′)→ (X, d) is

uniformly continuous. Thus, for every ε > 0 there is δ > 0 with δ < ε such

that for any x, y ∈ X with d′(x, y) < δ we have d(x, y) < ε which implies

that Widimε(X, dN) ≤Widimδ(X, d
′
N) for every N ∈ N. Noting that ε→ 0

yields δ → 0 we obtain that mdim(X,R; d) ≤ mdim(X,R; d′). In the same

way we also obtain mdim(X,R; d′) ≤ mdim(X,R; d). �

Proposition 2.4 ([LW00, Def. 2.6]). Let (X,Z) be a t.d.s. If d and d′ are

compatible metrics on X then we have mdim(X,Z; d) = mdim(X,Z; d′).

Note that a flow (X, (ϕr)r∈R) naturally induces a “sub-Z-action” (X,ϕ1).

Proposition 2.5. Let (X, (ϕr)r∈R) be a flow. Then mdim(X, (ϕr)r∈R) =

mdim(X,ϕ1).

Proof. Recall that for any compatible metric D on X and R > 0, we denote

DR = D[0,R]. For a flow (X, d;R) and N ∈ N, we have

(d1)ZN = (dZN)1 = dN .

Thus,

mdim(X,R; d) = mdim(X,Z; d1).

Since d1 and d are compatible metrics on X, by Proposition 2.4 we have

mdim(X,Z; d1) = mdim(X,Z; d).

Combining the two equalities we have as desired

mdim(X, (ϕr)r∈R) = mdim(X,ϕ1).

�
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Thus if the space is not metrizable then we may take mdim(X,ϕ1) as the

definition of mean dimension.

Proposition 2.6. Let (X, (ϕr)r∈R) be a flow. If the topological entropy of

(X, (ϕr)r∈R) is finite then the mean dimension of (X, (ϕr)r∈R) is zero.

Proof. By [HK03, Proposition 8.3.6] we have htop(X,ϕ1) = htop(X, (ϕr)r∈R)

which is finite. By [LW00, Theorem 4.2] we have mdim(X,ϕ1) = 0. By

Proposition 2.5, mdim(X, (ϕr)r∈R) = 0. �

The following proposition directly follows from the definition.

Proposition 2.7. For any flow (X, (ϕr)r∈R) and c ∈ R,

mdim(X, (ϕcr)r∈R) = |c| ·mdim(X, (ϕr)r∈R).

3. Construction of minimal real flows with arbitrary mean

dimension

By defintion mdim(X,R) belongs to [0,+∞]. In this section we will

show that for every r ∈ [0,+∞], there is a minimal flow (X,R) with

mdim(X,R) = r.

Recall that there are natural constructions for passing from a Z-action to

a flow, and vice versa [BS02, Section 1.11]. Let (X,T ) be a Z-action and

f : X → (0,∞) be a continuous function (in particular bounded away from

0). Consider the quotient space (equipped with the quotient topology)

SfX = {(x, t) ∈ X × R+ : 0 ≤ t ≤ f(x)}/ ∼,

where ∼ is the equivalence relation (x, f(x)) ∼ (Tx, 0). The suspension

over (X,T ) generated by the roof function f is the flow (SfX, (ψt)t∈R)

given by

ψt(x, s) = (T nx, s′) for t ∈ R and (x, s) ∈ SfX,
where n and s′ satisfy

n−1∑
i=0

f(T ix) + s′ = t+ s, 0 ≤ s′ ≤ f(T nx).

In other words, flow along {x}×R+ to (x, f(x)) then continue from (Tx, 0)

(which is the same as (x, f(x))) along {Tx} × R+ and so on. When f ≡ 1,

then SfX is called the mapping torus over X.

Let d be a compatible metric on X. Bowen and Walters introduced a

compatible metric d̃ on SfX [BW72, Section 4] known today as the Bowen-

Walters metric1. Let us recall the construction. First assume f ≡ 1. We

1Note that in [BW72] it is assumed that diam(X) < 1 but this is unnecessary.
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will introduce d̃S1X on the space S1X. First, for x, y ∈ X and 0 ≤ t ≤ 1

define the length of the horizontal segment ((x, t), (y, t)) by:

dh((x, t), (y, t)) = (1− t)d(x, y) + td(Tx, Ty).

Clearly, we have dh((x, 0), (y, 0)) = d(x, y) and dh((x, 1), (y, 1)) = d(Tx, Ty).

Secondly, for (x, t), (y, s) ∈ S1X which are on the same orbit define the

length of the vertical segment ((x, t), (y, t)) by:

dv((x, t), (y, s)) = inf{|r| : ψr(x, t) = (y, s)}.

Finally, for any (x, t), (y, s) ∈ S1X define the distance d̃S1X((x, t), (y, s)) to

be the infimum of the lengths of paths between (x, t) and (y, s) consisting

of a finite number of horizontal and vertical segments. Bowen and Walters

showed this construction gives rise to a compatible metric on S1X. Now

assume a continuous function f : X → (0,∞) is given. There is a natural

homeomorphism if : S1X → SfX given by (x, t) 7→ (x, tf(x)). Define

d̃SfX = (if )∗(d̃S1X).

Recall from [LW00, Definition 4.1] that for a Z-action (X,T ), the metric

mean dimension mdimM(X, d) of X with respect to a metric d compatible

with the topology on X is defined as follows. Let ε > 0 and n ∈ N. A subset

S of X is called (ε, d, n)-spanning if for every x ∈ X there is y ∈ S such

that dZn(x, y) ≤ ε. Set

A(X, ε, d, n) = min{#S : S ⊂ X is (ε, d, n)-spanning}

and define

mdimM(X,T, d) = lim inf
ε→0

1

| log ε|
lim sup
n→∞

1

n
logA(X, ε, d, n).

Similarly one may define metric mean dimension for flows but we will not

pursue this direction.

Theorem 3.1 (Lindenstrauss-Weiss [LW00, Theorem 4.2]). For any Z-

action (X,T ) and any metric d compatible with the topology on X,

mdim(X,T ) ≤ mdimM(X,T, d).

Theorem 3.2 (Lindenstrauss [Lin99, Theorem 4.3]). If a Z-action (X,T )

is an extension of an aperiodic minimal system then there is a compatible

metric d on X such that mdim(X,T ) = mdimM(X,T, d).

For related results we refer to [Gut17, Appendix A].
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Proposition 3.3. Let (Y, (ϕr)r∈R) be the mapping torus over (X,T ) (the

suspension generated by the roof function 1). Assume that there is a com-

patible metric d on X with mdimM(X,T, d) = mdim(X,T ). Then

mdim(X,T ) = mdim(Y, (ϕr)r∈R) = mdimM(Y, T, d̃).

Proof. By Proposition 2.5 we have mdim(Y, (ϕr)r∈R) = mdim(Y, ϕ1). Since

(X,T ) is a subsystem of (Y, T ) = (Y, ϕ1), we have mdim(X,T ) ≤ mdim(Y, ϕ1).

Note that for every r ∈ [0, 1), ϕr(X) is a ϕ1-invariant closed subset of Y ,

and (ϕr(X), ϕ1) can be regarded as a copy of (X,T ). Let ε > 0 and n ∈ N.

If dZn+1(x, y) ≤ ε
2

and |t− t′| ≤ ε
2

for 0 ≤ t, t′ < 1 then d̃Z
n ((x, t), (y, t′)) ≤ ε.

Thus it is easy to see A(Y, ε, d̃, n) ≤ ([1/ε] + 1) · A(X, ε/2, d, n + 1). In

particular

lim sup
n→∞

1

n
logA(Y, ε, d̃, n) ≤ lim sup

n→∞

1

n
logA(X, ε/2, d, n)

and we obtain that mdimM(Y, d̃) ≤ mdimM(X, d). By Theorem 3.1 we

know that mdim(Y, ϕ1) ≤ mdimM(Y, d̃). Summarizing, we have

mdim(X,T ) ≤ mdim(Y, ϕ1) ≤ mdimM(Y, ϕ1, d̃)

≤ mdimM(X,T, d) = mdim(X,T ).

This ends the proof. �

We note that for general roof functions Proposition 3.3 does not hold. In-

deed Masaki Tsukamoto has informed us that he has constructed an example

of a minimal topological dynamical system (X,T ) with compatible metric

d and f 6≡ 1 : X → (0,∞) such that mdim(X,T ) = mdimM(X, d) = 0 but

mdimM(SfX,ϕ1, d̃) > 0 ([Tsu]).

Problem 3.4. Is Proposition 3.3 always true without assuming that there

is a compatible metric d on X with mdimM(X, d) = mdim(X,T )?

Problem 3.5. Is it possible to find a topological dynamical system (X,T )

with compatible metric d and f : X → (0,∞) such that mdim(X,T ) = 0

and mdim(SfX, (ϕr)r∈R) 6= 0.

In Proposition 3.3, if (X,T ) is minimal then (Y, (ϕr)r∈R) is minimal. In

particular, by Theorem 3.2 we have the following:

Proposition 3.6. Suppose that (X,T ) is minimal and (Y,R) is be the map-

ping torus over (X,T ) (the suspension generated by the roof function 1).

Then (Y,R) is also minimal and mdim(X,T ) = mdim(Y,R).

Proposition 3.7. For every c ∈ [0,+∞] there is a minimal flow (X, (ϕr)r∈R)

such that mdim(X, (ϕr)r∈R) = c.
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Proof. By the Z-version result due to Lindenstrauss and Weiss [LW00,

Proposition 3.5] there is a minimal Z-action (Y,Z) such that mdim(Y,Z) =

c. By Proposition 3.6 we obtain a minimal flow (X,R) with mdim(X,R) =

c. �

4. An embedding conjecture

We now state the main embedding theorem of this paper. We recall some

necessary notions and results in Fourier analysis. A C∞ function f : R→ C,

is said to be rapidly decreasing if there are constants Mn,m > 0 such that

|f (m)(x)| < Mn,m|x|−n as x → ∞, for all n,m ∈ N. The space of such

function is called the Schwartz space and is denoted by S. For f ∈ S the

definitions of the Fourier transform and its inverse are given by:

F(f)(ξ) =

∫ ∞
−∞

e−2πitξf(t)dt, F(f)(t) =

∫ ∞
−∞

e2πitξf(ξ)dξ.

One has F(S) = S, F(S) = S and for all f ∈ S, F(F(f)) = F(F(f)) = f .

The operators F and F can be extended to tempered distributions in a

standard way (for details see [Sch66, Chapter 7] and [Str03, Chapters 3 &

4]). The tempered distributions include in particular bounded continuous

functions.

Let a < b be real numbers. We define V [a, b] as the space of bounded

continuous functions f : R → C satisfying suppF(f) ⊂ [a, b]. We de-

note B1(V [a, b]) = {f ∈ V [a, b] : ||f ||∞ ≤ 1} and B1(V R[−a, a]) = {f ∈
B1(V [−a, a]) : f(R) ⊂ R}. One may show that B1(V [a, b]) is a compact

metric space with respect to the distance:

d(f1, f2) =
∞∑
n=1

||f1 − f2||L∞([−n,n])

2n
.

This metric coincides with the standard topology of tempered distributions

(for details see [Sch66, Chapter 7, Section 4]). Let R = (τr)r∈R act on

B1(V [a, b]) by the shift: for every r ∈ R and f ∈ B1(V [a, b]), (τrf)(t) =

f(t+ r) for all t ∈ R. Thus we obtain a flow (B1(V [a, b]),R).

In [LT14, Conjecture 1.2], Lindenstrauss and Tsukamoto posed the fol-

lowing conjecture:

Conjecture 4.1. Let (X,T ) be a Z dynamical system and D an integer.

For r ∈ N, define Pr(X,T ) = {x ∈ X : rx = x}. Suppose that for every

r ∈ N it holds that dimPr(X,T ) < rD
2

and mdim(X,T ) < D
2

. Then (X,T )

can be embedded in the system (([0, 1]D)Z, σ).
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By [LW00, Proposition 3.3], mdim(([0, 1]D)Z, σ) = D. It is not hard to

see that for r ∈ N,

dimPr(([0, 1]D)Z, σ) = rD.

Thus the above conjecture may be rephrased as if

dimPr(X,T ) <
dimPr(([0, 1]D)Z, σ)

2

for all r ∈ N and

mdim(X,T ) <
mdim(([0, 1]D)Z, σ)

2

then (X,T ) ↪→ (([0, 1]D)Z, σ). We expect that a similar phenomenon holds

for flows where the role of (([0, 1]D)Z, σ) is played by (B1(V R[−a, a]),R). By

[GQT19, Footnote 4], mdim(B1(V R[−a, a]),R) = 2a. For r ∈ R>0 denote

Pr(X,R) = {x ∈ X : rx = x}.

We now calculate dimPr(B1(V R[−a, a]),R).

Proposition 4.2. Let r > 0 then dimPr(B1(V R[−a, a])) = 2barc+ 1.

Proof. Let f ∈ B1(V R[−a, a]) with f(x) = f(x + r) for all x ∈ R. In

particular we have a periodic f ∈ C∞(R,R), being a restriction of a holo-

morphic function, and hence the Fourier series representation of f , f(x) =∑∞
k=−∞ cke

2πikx
r , converges uniformly to f and c−k = ck for all k. Since

F(f) = c0F(1) +
∑∞

k=1 ckF(e
2πikt
r ) + ckF(e

−2πikt
r ) is supported in [−a, a],

we have ck = 0 for |k| > ar. Let N = barc. Choose x0 < x1 < x2 <

· · · < xN so that e
2πi·xi
r 6= e

2πi·xj
r for i 6= j. The Vandermonde matrix

formula indicates that det
(
e

2πi·kxl
r

)N
l,k=0

6= 0. This implies that the func-

tions e
2πikx
r , 0 ≤ k ≤ N are linearly independent. Thus, we conclude that

dimPr(B1(V R[−a, a])) = 2barc+ 1. �

We now conjecture:

Conjecture 4.3. Let (X,R) be a flow and a > 0 a real number. Suppose

that mdim(X,R) < a and for every r ∈ R, dimPr(X,R) < barc+ 1
2
. Then

(X,R) can be embedded in the flow (B1(V R[−a, a]),R).

Problem 4.4. Does Conjecture 4.3 imply Conjecture 4.1? Does Conjecture

4.1 imply Conjecture 4.3?

We give a very partial answer:

Proposition 4.5. Assume Conjecture 4.3 holds. Let (X,T ) be a t.d.s such

that:

i. ∃D ∈ N, mdim(X,T ) < D
2

,
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ii. ∃b ∈ R, b < D
2

and ∀r > 3
D−2b

, dimPr(X,T ) < br,

iii. ∀r ≤ 1
D−2b

, Pr(X,T ) = ∅.
iv. mdim(S1X,R) = mdim(X,T )

Then (X,T ) can be embedded in the system (([0, 1]D)Z, σ).

Proof. Note that the periodic orbits of the suspension (S1X,R) have positive

integer lengthes and orbits of length r ∈ N in S1X corresponds to the r-

periodic points of (X,T ) so that Pr(X,T ) = ∅ implies Pr(S1X,R) = ∅ and

Pr(X,T ) 6= ∅ implies:

dimPr(S1X,R) = dimPr(X,T ) + 1.

Consider the following sequence of embeddings:

(X,T )
(1)
↪→ (S1X,ψ1)

(2)
↪→ (B1(V R[−c, c]), σ)

(3)
↪→ (([−1, 1]D)Z, σ).

Embedding (1) is the trivial embedding from (X,T ) into (S1X,ψ1) where

ψ1 is the time-1 map. Embedding (3) is a consequence of [GQT19, Lemma

2.4] as long as c < D
2

. We now justify Embedding (2). This Z-embedding

is induced from an R-embedding (S1X,R) ↪→ (B1(V R[−c, c]),R) whose ex-

istence follows from Conjecture 4.3 which we assume to hold. We need to

verify the conditions appearing in Conjecture 4.3. Let c be a real number

such that mdim(X,T ) < c < D
2

. Thus mdim(S1X,R) = mdim(X,T ) < c.

Let r be an integer such that r > 3
D−2b

, then dimPr(X,R) < br+1, whereas
1
2

dimPr(B1(V R[−c, c]), shift) = brcc + 1
2

= cr − tr + 1
2
, where 0 ≤ tr < 1.

Note cr− tr + 1
2
≥ br+ 1 if (c− b)r ≥ 3

2
> tr + 1

2
, i.e if r ≥ 3

2(c−b) . Thus it is

enough to check it for the minimal integer r0 such that r0 >
3

D−2b
= 3

2(D
2
−b) .

We thus choose b < c < D
2

such that r0 ≥ 3
2(c−2b)

> 3
2(D

2
−2b)

and this ends

the proof. �

5. An embedding theorem

For every n ∈ N denote by Sn the circle of circumference n! (identified

with [0, n!]). Let R act on
∏

n∈N Sn as follows: (xi)i 7→ (xi + r (mod i!))i,

r ∈ R. Define the solenoid ([NS60, V.8.15])

S = {(xn)n ∈
∏
n∈N

Sn : xn = xn+1 (mod n!)}.

It is easy to see that (S,R) is a (minimal) flow.

The following definitions are standard: A continuous surjective map ψ :

(X,Z)→ (Y,Z) is called an extension (of t.d.s) if for all n ∈ Z and x ∈ X
it holds ψ(n.x) = n.ψ(x). A continuous surjective map ψ : (X,R)→ (Y,R)

is called an extension (of flows) if for all r ∈ R and x ∈ X it holds

ψ(r.x) = r.ψ(x).
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The following embedding result, which is the main result of this paper,

provides a partial positive answer to Conjecture 4.3. This result may be

understood as an analog for flows of [GT14, Corollary 1.8] which states that

Conjecture 4.1 is true for any Z-system which is an extension of an aperiodic

subshift, i.e. an aperiodic subsystem of a symbolic shift
(
{1, 2, . . . , l}Z, σ

)
for some l ∈ N.

Theorem 5.1. Let a < b be two real numbers. If (X,R) is an exten-

sion of (S,R) and mdim(X,R) < b − a, then (X,R) can be embedded in

(B1(V [a, b]),R).

Corollary 5.2. Conjecture 4.3 holds for (X,R) which is an extension of

(S,R).

Proof. Suppose mdim(X,R) < a for some a > 0. As (X,R) is an extension

of an aperiodic system, it is aperiodic and in particular for every r ∈ R,

dimPr(X,R) = 0. We have to show that (X,R) may be embedded in the

flow (B1(V R[−a, a]),R). Indeed by Theorem 5.1 (X,R) may be embedded

in (B1(V [0, a]),R). It is now enough to notice that one has the following

embedding:

B1(V [0, a])→ B1(V R[−a, a]), ϕ 7→ 1

2
(ϕ+ ϕ).

�

Since for any flow (X,R), the product flow (X×S,R×R) is an extension

of the flow (S,R), the following result is a direct corollary of Theorem 5.1.

Theorem 5.3. For every flow (X,R) with mdim(X,R) < b − a (where

a < b are real numbers) there is an extension (Y,R) with mdim(X,R) =

mdim(Y,R) that can be embedded in (B1(V [a, b]),R).

In our proof of Theorem 5.1, the key step is to embed (X,R) in a product

flow (Theorem 5.4):

Theorem 5.4. Suppose that a < b, mdim(X,R) < b− a and Φ : (X,R)→
(S,R) is an extension. Then for a dense Gδ subset of f ∈ CR(X,B1(V [a, b]))

the map

(f,Φ) : X → B1(V [a, b])× S, x 7→ (f(x),Φ(x))

is an embedding.

Remark 5.5. It is possible to prove a similar theorem where (S,R) is re-

placed by a solenoid defined by circles of circumference rn →n→∞ ∞ but we

will not pursue this direction.

The proof is given in the next section. We start by an auxiliary result:
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Proposition 5.6. There is an embedding of (S,R) in (B1(V [0, c]),R) for

any c > 0.

Proof. Define a continuous and R-equivariant map

φ : (S,R)→ (B1(V [0, c]),R)

by:

S 3 x = (xn)n 7→ fx(t) =
∑

n≥m(c)

1

2n
· e2πi(t+xn)/n! =

∑
n≥m(c)

(
1

2n
· e

2πi
n!
xn) · e

2πi
n!
t

where m(c) ∈ N it taken to be sufficiently large so that the (RHS) belongs

to B1(V [0, c]).

Assume fx(t) = fy(t) for some x = (xn)n, y = (yn)n ∈ S. We claim x = y.

This implies that the map is an embedding. Indeed it is enough to show

that for all n, 1
2n
· e 2πi

n!
xn = 1

2n
· e 2πi

n!
yn . This is a consequence of the following

more general lemma:

Lemma 5.7. Let an be an absolutely summable series (
∑
|an| < ∞). Let

λn be a pairwise distinct sequence of real numbers bounded in absolute value

by M > 0 (|λn| ≤ M). Then f(z) =
∑
ane

iλnz, z ∈ C, defines an entire

function such that f ≡ 0 iff an = 0 for all n.

Proof. (Compare with the proof of [Man72, Theorem I.3.1]) We claim

lim
T→∞

1

T

∫ T

0

f(t)e−iλmtdt = am

for all m. Thus f ≡ 0 implies am = 0 for all m. Indeed

1

T

∫ T

0

f(t)e−iλmtdt =
1

T

∫ T

0

∑
n6=m

ane
i(λn−λm)tdt+

1

T

∫ T

0

andt.

For n 6= m as λn − λm 6= 0, we have

lim
T→∞

1

T

∫ T

0

ei(λn−λm)tdt = 0.

As absolute summability implies one may reorder the limiting operations

one has

lim
T→∞

1

T

∫ T

0

∑
n6=m

ane
i(λn−λm)tdt =

∑
n6=m

lim
T→∞

1

T

∫ T

0

ane
i(λn−λm)tdt = 0,

This completes the proof. �

�

Now we show Theorem 5.1 assuming Theorem 5.4.
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Proof of Theorem 5.1 assuming Theorem 5.4. We take a < c1 < c2 < b

with mdim(X,R) < c1 − a. By Theorem 5.4, (X,R) can be embedded in

(B1(V [a, c1]) × S,R × R), which, by Proposition 5.6, can be embedded in

(B1(V [a, c1])×B1(V [c2, b]),R×R), and finally embedded in (B1(V [a, b]),R)

by the following embedding:

B1(V [a, c1])×B1(V [c2, b])→ B1(V [a, b]), (ϕ1, ϕ2) 7→ 1

2
(ϕ1 + ϕ2).

This ends the proof. �

6. Embedding in a product

Let CR(X,B1(V [a, b])) be the space of R-equivariant continuous maps f :

X → B1(V [a, b]). This space is nonempty because it contains the constant

0. The metric on CR(X,B1(V [a, b])) is chosen to be the uniform distance

supx∈X d(f(x), g(x)). This space is completely metrizable and hence is a

Baire space (see [Mun00, Theorem 48.2]).

We denote by d the metric on X. To prove Theorem 5.4, it suffices to

show that the set
∞⋂
n=1

{
f ∈ CR(X,B1(V [a, b])) : (f,Φ) is a

1

n
-embedding with respect to d

}
is a dense Gδ subset of CR(X,B1(V [a, b])). It is obviously a Gδ subset of

CR(X,B1(V [a, b])). Therefore it remains to prove the following:

Proposition 6.1. For any δ > 0 and f ∈ CR(X,B1(V [a, b])), there is

g ∈ CR(X,B1(V [a, b])) such that:

(1) for all x ∈ X and t ∈ R, |f(x)(t)− g(x)(t)| < δ;

(2) (g,Φ) : X → B1(V [a, b])× S is a δ-embedding with respect to d.

To show Proposition 6.1, we prove several auxiliary results. We start by

quoting [GT14, Lemma 2.1]:

Lemma 6.2. Let (X, d′) be a compact metric space, and let F : X →
[−1, 1]M be a continuous map. Suppose that positive numbers δ′ and ε satisfy

the following condition:

(6.1) d′(x, y) < ε =⇒ ||F (x)− F (y)||∞ < δ′,

then if Widimε(X, d
′) < M/2 then there is an ε-embedding G : X →

[−1, 1]M satisfying:

sup
x∈X
||F (x)−G(x)||∞ < δ′.
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We say that a holomorphic function g in S ⊂ C is of exponential type

if for all z ∈ S, |g(z)| ≤ CeT |z| for some C, T > 0. The following classical

theorem is proven in [DM72, Section 3.1.7].

Theorem 6.3 (Phragmén–Lindelöf principle). Let g be a function of expo-

nential type that is holomorphic in the sector

S =
{
z ∈ C

∣∣α < arg z < β
}

of angle β−α < π, and continuous on its boundary. If |g(z)| ≤ 1 for z ∈ ∂S
then |g(z)| ≤ 1 for z ∈ S.

According to the classical Paley-Wiener theorem ([Rud87, Theorem 19.3]),

if f ∈ L2(R) extends to an entire function F such that there exist A,C > 0

such that for all z = x+ iy ∈ C, |f(x+ yi)| ≤ Ce2πA|y|, then F(f) ∈ L2(R)

is supported in [−A,A]. We will need a generalized version:

Theorem 6.4. Let f ∈ L∞(R) be a function which extends to an entire

function F : C → C (F|R = f) such that there exist A,C > 0 and M ∈ N
such that for all z = x+ iy ∈ C

|F (z)| ≤ C(1 + |z|)M · e2πA|y|.

Then f ∈ V [−A,A].

Proof. See2 [Str03, Theorem 7.2.3]. �

Let ρ > 0 and N ∈ N so that ρN ! ∈ N. Define:

L(ρ) = {k
ρ
}k∈Z, L∗(ρ) = L(ρ) \ {0}.

In the next lemma we write x . y for two real numbers x and y if there

exists a constant C > 0 which depends only on ρ and N such that x ≤ Cy.

Lemma 6.5. Let

f(z) = lim
A→∞

∏
λ∈L(ρ),0<|λ|<A

(
1− z

λ

)
.

Then f defines a holomorphic function in C satisfying

f(0) = 1, f(λ) = 0, ∀ λ ∈ L∗(ρ).

Moreover, for all z ∈ C we have

|f(z)| . (1 + |z|)5ρN ! · eπρ|y|,

where y is the imaginary part of z.

2While reading the proof in the reference one should note that in [Str03] the Fourier

transform is defined as F(f)(ξ) =
∫∞
−∞ eitξf(t)dt.
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Proof. We first show the convergence of f(z). Notice

f(z) = lim
A→∞

∏
λ∈L(ρ),0<λ<A

(
1− z2

λ2

)
As

∑
λ∈L(ρ),0<λ

1
λ2

converges, the limit above converges locally uniformly

(see [Kno51, §29, Theorems 6 & 7]. Thus, f(z) is a holomorphic function

which satisfies

f(0) = 1, f(λ) = 0, ∀ λ ∈ L∗(ρ).

Next we shall estimate the growth of f on the real line. Suppose x > 0 and

let k be the integer with kN ! ≤ x < (k + 1)N !. We may assume k > 0, as

the case k = 0 is easier and can be dealt with in a similar way. For n ∈ Z,

set

Ln = L(ρ) ∩ [nN !, (n+ 1)N !).

For λ ∈ Ln with n ≤ −2 or n ≥ k + 1 we have

|1− x/λ| ≤ 1− x/(n+ 1)N !

and hence ∏
λ∈Ln

∣∣∣1− x

λ

∣∣∣ ≤ ∣∣∣∣1− x

(n+ 1)N !

∣∣∣∣ρN !

.

For λ ∈ Ln with 1 ≤ n < k we have

|1− x/λ| ≤ x/(nN !)− 1

and hence ∏
λ∈Ln

∣∣∣1− x

λ

∣∣∣ ≤ ∣∣∣1− x

nN !

∣∣∣ρN !

.

The factors for n = −1, 0, k need to be treated separately. Recall Euler’s

sine product formula ([Cia15]):

sin z

z
= lim

A→∞

∏
0<|n|<A

(
1− z

nπ

)
Using this it is easy to see that |f(x)| is bounded by∏

06=λ∈L−1∪L0∪Lk

∣∣∣1− x

λ

∣∣∣ · lim
A→∞

∏
|n|<A,n 6=0,k,k+1

∣∣∣1− x

nN !

∣∣∣ρN !

=
∏

06=λ∈L−1∪L0∪Lk

∣∣∣1− x

λ

∣∣∣ ·
∣∣∣∣∣∣ sin πx

N !

πx
N !

(
1− x

kN !

) (
1− x

(k+1)N !

)
∣∣∣∣∣∣
ρN !

.

The first factor is easy to estimate:∏
06=λ∈L−1∪L0∪Lk

∣∣∣1− x

λ

∣∣∣ . (1 + x)3ρN !.
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Set t = x/N !,

sin πx
N !

πx
N !

(
1− x

kN !

) (
1− x

(k+1)N !

) =
k(k + 1) sinπt

πt(k − t)(k + 1− t)
.

By the mean value theorem,∣∣∣∣sin πtt

∣∣∣∣ ≤ π,

∣∣∣∣sin πtk − t

∣∣∣∣ ≤ π,

∣∣∣∣ sin πt

k + 1− t

∣∣∣∣ ≤ π.

Thus, ∣∣∣∣ k(k + 1) sinπt

πt(k − t)(k + 1− t)

∣∣∣∣ . k(k + 1) . (1 + x)2.

Therefore

|f(x)| . (1 + x)5ρN !.

The case x < 0 is similar so we get

|f(x)| . (1 + |x|)5ρN !.

We now turn to estimating |f(yi)| for y ∈ R \ {0}. For r > 0 we set

n(r) = #(L∗(ρ) ∩ (−r, r)).

We have

n(r) < 2ρr,

Note that for 0 < r ≤ 1
ρ
, one has n(r) = 0. Since

|f(yi)|2 =
∏

λ∈L∗(ρ)

(1 + y2/λ2),

As n(r) is monotonic increasing, we may use the RiemannStieltjes integral

to write:

log |f(yi)| = 1

2

∑
λ∈L∗(ρ)

log

(
1 +

y2

λ2

)
=

1

2

∫ ∞
1
ρ

log

(
1 +

y2

r2

)
dn(r).

Using integration by parts for the RiemannStieltjes integral ([Gor94, The-

orem 12.14]), we see that for all R ≥ 1
ρ

it holds:

1

2

∫ R

1
ρ

log

(
1 +

y2

r2

)
dn(r) =

1

2

(
log

(
1 +

y2

r2

)
n(r)

∣∣∣∣R
1
ρ

−
∫ R

1
ρ

n(r)d log

(
1 +

y2

r2

))
.

Taking R→∞, we conclude:

log |f(yi)| = y2

∫ ∞
1
ρ

n(r)

r(r2 + y2)
dr

Since n(r) ≤ 2ρr, we deduce

log |f(yi)| ≤ 2ρy2

∫ ∞
1
ρ

dr

r2 + y2
.
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It is a standard exercise to show:∫ ∞
0

dr

r2 + y2
=

1

|y|

∫ ∞
0

dr

1 + r2
=

π

2|y|
.

It follows that

|f(yi)| ≤ eπρ|y|.

Finally we show that |f(z)| grows at most exponentially. Let z = x + yi.

We may assume x, y > 0, as all the other cases are similar. Let k be the

integer with kN ! ≤ x < (k + 1)N !. Set

L′ = L(ρ) \ (Lk−1 ∪ Lk ∪ Lk+1).

We estimate ∏
06=λ∈Lk−1∪Lk∪Lk+1

∣∣∣1− z

λ

∣∣∣ . (1 + |z|)3ρN !.

lim
A→∞

∏
06=λ∈L′,|λ|<A

∣∣∣1− z

λ

∣∣∣2 = lim
A→∞

∏
06=λ∈L′,|λ|<A

{(
1− x

λ

)2

+
y2

λ2

}

=

 lim
A→∞

∏
06=λ∈L′,|λ|<A

(
1− x

λ

)2

 · ∏
06=λ∈L′

{
1 +

y2

(λ− x)2

}
.

As in the proof of |f(x)| . (1 + |x|)5ρN ! we estimate

lim
A→∞

∏
06=λ∈L′,|λ|<A

(
1− x

λ

)2

. (1 + x)12ρN !.

As in |f(yi)| ≤ eπρ|y|, ∏
06=λ∈L′

{
1 +

y2

(λ− x)2

}
≤ e2πρ|y|.

Thus, we deduce that |f(z)| grows at most exponentially.

We have thus shown that f(z) has exponential type and satisfies |f(x)| .
(1 + |x|)5ρN ! and |f(yi)| ≤ eπρ|y|. By the Phragmén–Lindelöf principle

of Theorem 6.3 (e.g. in the first quadrant x, y ≥ 0) applied to (1 +

z)−5ρN !eπρizf(z)), the claim follows. �

Next we construct an interpolation function based on [Beu89, pp. 351–

365]:

Proposition 6.6. Let a < b. Let ρ > 0 with ρ ∈ Q and ρ < b − a. There

exists ϕ ∈ V [a, b] rapidly decreasing so that ϕ(0) = 1 and for all λ ∈ L∗(ρ),

ϕ(λ) = 0.
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Proof. Fix τ > 0 so that ρ + τ < b − a. Let ψ(ξ) ∈ S be a nonnegative

smooth function in R satisfying

supp(ψ) ⊂
[
−τ

2
,
τ

2

]
,

∫ ∞
−∞

ψ(ξ)dξ = 1.

Define the function h : C→ C by

h(z) =

∫ τ
2

− τ
2

ψ(ξ)e2πizξdξ.

It is easy to see that h is an entire function which satisfies:

(6.2) h|R = F(ψ) ∈ S, h(0) = 1, |h(x+ yi)| ≤ eπτ |y|, ∀x, y ∈ R.

Let

g(z) = lim
A→∞

∏
λ∈L(ρ),0<|λ|<A

(
1− t

λ

)
.

By Lemma 6.5, g(z) is an entire function. Thus we may define the following

entire functions:

ϕ̃(z) = h(z)g(z), ϕ(z) = eπiz(a+b)ϕ̃(z).

It is easy to see that ϕ(0) = 1 and for all λ ∈ L∗(ρ), ϕ(λ) = 0. By Lemma

6.5, g|R has polynomial growth. Therefore as F(ψ) is rapidly decreasing, so

are ϕ|R and ϕ̃|R. By Lemma 6.5 and (6.2) (recall the convention z = x+ iy):

|ϕ̃(z)| . (1 + |z|)5ρN ! · eπ(ρ+τ)|y|

As in addition ϕ̃|R is bounded (as it is rapidly decreasing), it follows from

Theorem 6.4 that ϕ̃ ∈ V [−ρ−τ
2
, ρ+τ

2
] ⊂ V [a−b

2
, b−a

2
]. This immediately implies

ϕ ∈ V [a, b] which finishes the proof. �

Now we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. We take δ > 0 and f ∈ CR(X,B1(V [a, b])). With-

out loss of generality, we assume that |f(x)(t)| ≤ 1 − δ for all x ∈ X and

t ∈ R (by replacing f with (1− δ)f if necessary). Fix ρ ∈ Q with

mdim(X,R) < ρ < b− a.

Let ϕ be the function constructed in Proposition 6.6. As ϕ is a rapidly

decreasing function, we may find K > 0 such that:

(6.3) |ϕ(t)| ≤ K

1 + |t|2
.

Let δ′ > 0 be such that:

(6.4) δ′ ·
∑
λ∈L(ρ)

K

1 + |t− λ|2
< δ for all t ∈ R.
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Fix ε ∈ (0, δ). Let N ∈ N be such that ρN ! ∈ N, Widimε(X, dN !) < ρN !,

and such that

(6.5) dN !(x, y) < ε implies |f(x)(t)− f(y)(t)| < δ′

2
for all t ∈ [0, N !].

Define:

F : X → [0, 1]2ρN ! = ([0, 1]2)ρN !, F (x) = (Ref(x)|L(ρ,N), Imf(x)|L(ρ,N)).

FC : X → CρN !, FC(x) = f(x)|L(ρ,N).

Let M = 2ρN !, d′ = dN !. Equation (6.5) implies that Equation (6.1) holds,

so Lemma 6.2 implies, there is an (dN !, ε)-embedding G : X → [−1, 1]2ρN !

such that supx∈X ||F (x)−G(x)||∞ < δ′

2
. Similarly to FC(x)(k), we introduce

the notation GC(x)(k), k = 0, . . . , ρN ! − 1 in the natural way. Notice it

holds:

(6.6) sup
x∈X
||FC(x)−GC(x)||∞ < δ′.

Take x ∈ X. Denote Φ(x) = (Φ(x)n)n∈N, where Φ(x)n ∈ Sn!. For every

n ∈ Z let

Λ(x, n) = nN !− Φ(x)N + L(ρ,N),

Λ(x) =
⋃
n∈Z

Λ(x, n) ⊂ R.

Figure 6.1. The set Λ(x, n).

Next we construct a perturbation g of f :

g(x)(t) = f(x)(t) + h(x)(t),

where h(x)(t) is defined by∑
n∈Z

ρN !−1∑
k=0

(
GC(T nN !−Φ(x)Nx)(k)−FC(T nN !−Φ(x)Nx)(k)

)
ϕ(t−(

k

ρ
+nN !−Φ(x)N)).

As ϕ is rapidly decreasing the sum defining g(x) for fixed x converges in

the compact open topology to a function in V [a, b]. Moreover the mapping

x 7→ g(x) is continuous. In order to see that g(x) is R-equivariant, it

suffices to deal with h(x) (because f is already R-equivariant). To see

that h(x) is R-equivariant we first note that for 0 ≤ r < N ! − Φ(x)N we
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have Φ(T rx)N = Φ(x)N +r and hence from the definition of h it follows that

h(T rx)(t) = h(x)(t+r). Similarly, if N !−Φ(x)N ≤ r < N ! then Φ(T rx)N =

r−(N !−Φ(x)N) and hence (T nN !−Φ(x)NT rx)(k) = (T (n+1)N !−Φ(x)N−rT rx)(k).

Using such information in each summand in the sum over k’s appearing in

the definition of h(T rx)(t), and then substituting n+1 by n when summing

over n ∈ Z, we get as desired h(T rx)(t) = h(x)(t + r) for r’s in this range.

If r = sN ! where s ∈ Z then Φ(T rx)N = r − (sN ! − Φ(x)N) and hence

(T nN !−Φ(T rx)NT rx)(k) = (T (n+s)N !−Φ(x)Nx)(k). Using this information in

each summand in the sum over k’s appearing in the definition of h(T rx)(t),

and substituting n+s by n when summing over n ∈ Z, we obtain as desired

h(T rx)(t) = h(x)(t + r) for r’s in this range. Finally if r = sN ! + r′ where

s ∈ Z and 0 < r′ < N ! we use the additivity properties of the terms involved

in order to combine the two cases and get the desired result. Note that by

Equations (6.3) and (6.4) for all x ∈ X and t ∈ R:∑
n∈Z

ρN !−1∑
k=0

ϕ(t− (
k

ρ
+ nN !− Φ(x)N)) <

δ

δ′
.

By Equation (6.6) for all x ∈ X, k = 0, . . . , ρN !− 1:

|GC(T nN !−Φ(x)Nx)(k)− FC(T nN !−Φ(x)Nx)(k)| < δ′.

Combining the two last inequalities we have |g(x)(t) − f(x)(t)| < δ for all

x ∈ X and t ∈ R. Since |f(x)(t)| ≤ 1−δ, we have g(x) ∈ B1(V [a, b]). Thus,

g ∈ CR(X,B1(V [a, b])). It remains to check that the map

(g,Φ) : X → B1(V [a, b])× S, x 7→ (g(x),Φ(x))

is a δ-embedding with respect to d. We take x, x′ ∈ X with (g(x),Φ(x)) =

(g(x′),Φ(x′)). We calculate for k = 0, . . . , ρN !− 1:

g(x)(−Φ(x)N+
k

ρ
) = f(x)(−Φ(x)N+

k

ρ
)+
(
GC(T−Φ(x)Nx)(k)−FC(T−Φ(x)Nx)(k)

)
.

As FC(T−Φ(x)Nx)(k) = f(T−Φ(x)Nx)(k
ρ
) = f(x)(−Φ(x)N + k

ρ
), we conclude

for k = 0, . . . , ρN ! − 1 that g(x)(−Φ(x)N + k
ρ
) = GC(T−Φ(x)Nx)(k). Simi-

larly g(x′)(−Φ(x′)N + k
ρ
) = GC(T−Φ(x′)Nx′)(k). Thus:

g(x)(−Φ(x)N +
k

ρ
) = g(x′)(−Φ(x)N +

k

ρ
) = g(x′)(−Φ(x′)N +

k

ρ
)

implies

GC(T−Φ(x)Nx)(k) = GC(T−Φ(x′)Nx′)(k) = GC(T−Φ(x)Nx′)(k).

Since GC : X → [0, 1]ρN ! is an (dN !, ε)-embedding, we have

dN !(T
−Φ(x)Nx, T−Φ(x)Nx′) < ε < δ
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which implies d(x, x′) < ε < δ. This ends the proof. �
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ences, ul. Śniadeckich 8, 00-656 Warszawa, Poland

E-mail address: y.gutman@impan.pl

Lei Jin: Center for Mathematical Modeling, University of Chile and

UMI 2807 - CNRS

E-mail address: jinleim@mail.ustc.edu.cn


	1. Introduction
	2. Mean dimension for real flows
	3. Construction of minimal real flows with arbitrary mean dimension
	4. An embedding conjecture
	5. An embedding theorem
	6. Embedding in a product
	References

