Contents

1.	Introduction 1						
	1.1.	Motivation	1				
	1.2.	Star and Planet Formation	2				
		1.2.1. Dust Evolution in Protoplanetary Disk	3				
		1.2.2. Gas structure in Protoplanetary Disk	5				
	1.3.	Observations of Protoplanetary Disks	6				
		1.3.1. Structure in dust continuum emission	7				
		1.3.2. Gas observations and Kinematic Tracers	8				
	1.4.	Spiral Structures in Protoplanetary Disks	9				
		1.4.1. Spirals arising from Gravitational Instability	11				
		1.4.2. Spirals arising from Planet-Disk Interaction	13				
	1.5.	The young star Elias 2-27	15				
2.	Observations 17						
	2.1.	Observing with ALMA	17				
	2.2.	Elias 2-27 Observations	19				
		2.2.1. Imaging dust continuum emission	20				
		2.2.2. Imaging molecular gas emission	21				
3.	Dust Spiral Structure 24						
	3.1.	Previous analysis of Continuum Emission in Elias 2-27	24				
	3.2.	Tracing the Spiral Morphology	26				
	3.3.	Contrast variations along the Spiral	30				
	3.4.	Spectral Index Analysis	33				
4.	Gas	distribution as traced by CO isotopologues in Elias 2-27	38				
	4.1.	Previous analysis of CO isotopologues in Elias 2-27	38				
	4.2.	Channel and moment maps	39				
	4.3.	Tracing the emitting layer in 13 CO and C 18 O	1 9				
	4.4.	Tracing the kinematics in 13 CO and C 18 O	53				
	4.5.	Features in the channel maps of $C^{18}O$ and ^{13}CO	57				
5.	Tracing CN emission in Elias 2-27 67						
	5.1.	CN as tracer of spiral shocks	31				
	5.2.	CN Emission Analysis	52				

6.	5. Smooth-Particle Hydrodynamic Simulations of a Gravitationally Unstable Disk					
	6.1.	etical Considerations	70			
	6.2. SPH Simulation Results					
		6.2.1.	Hydrodynamical Model Setup	71		
		6.2.2.	Radiative Transfer Calculation and Simulated ALMA Observations .	73		
		6.2.3.	Dust Simulations	73		
		6.2.4.	Gas Simulations	74		
7.	Discussion					
	7.1. Dust structure and multi-wavelength emission					
	7.2.	Asymr	netries and Perturbations in the Gas	80		
	7.3.	CN Er	nission Analysis	83		
	7.4.	Compa	arison with SPH simulations	84		
	7.5.	Spiral	Structure Origin	85		
8.	3. Conclusion					
Bi	Bibliography					
Aj	Appendix A. Additional Azimuthal cuts Spectral Index					
A	Appendix B. Rejected SPH Simulations					