

## Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey

Gwanjeong Kim<sup>1</sup><sup>(1)</sup>, Ken'ichi Tatematsu<sup>1,2</sup><sup>(1)</sup>, Tie Liu<sup>3</sup><sup>(1)</sup>, Hee-Weon Yi<sup>4</sup>, Jinhua He<sup>5,6,7</sup><sup>(1)</sup>, Naomi Hirano<sup>8</sup><sup>(0)</sup>, Sheng-Yuan Liu<sup>8</sup><sup>(1)</sup>, Minho Choi<sup>9</sup>, Patricio Sanhueza<sup>2,10</sup>, L. Viktor Tóth<sup>11</sup>, Neal J. Evans II<sup>12</sup>, Siyi Feng<sup>10,13,14</sup>, Mika Juvela<sup>15</sup>, Kee-Tae Kim<sup>9,16</sup>, Charlotte Vastel<sup>17</sup>, Jeong-Eun Lee<sup>4</sup>, Quang Nguyễn Lu'o'ng<sup>9,10,18</sup>, Miju Kang<sup>9</sup>, Isabelle Ristorcelli<sup>19</sup>, Orsolya Fehér<sup>20</sup>, Yuefang Wu<sup>21</sup>, Satoshi Ohashi<sup>22</sup>, Ke Wang<sup>23</sup>, Ryo Kandori<sup>10</sup>, Tomoya Hirota<sup>2,10</sup>, Takeshi Sakai<sup>24</sup>, Xing Lu<sup>10</sup>, Mark A. Thompson<sup>25</sup>, Gay A. Fuller<sup>26</sup>, Di Li<sup>27</sup>, Hiroko Shinnaga<sup>28</sup>, and Jungha Kim<sup>2,10</sup> <sup>1</sup> Nobeyama Radio Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan; gj.kim@nao.ac.jp <sup>2</sup> Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, People's Republic of China <sup>4</sup> School of Space Research, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea <sup>5</sup> Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, People's Republic of China <sup>6</sup> Chinese Academy of Sciences South\_America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100101, People's Republic of China Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile <sup>8</sup> Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. <sup>9</sup> Korea Astronomy and Space Science Institute, Daedeokdaero 776, Yuseong, Daejeon 305-348, Republic of Korea <sup>10</sup> National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan <sup>11</sup> Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétny 1, 1117 Budapest, Hungary <sup>12</sup> Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA <sup>13</sup> Chinese Academy of Sciences Key Laboratory of FAST, National Astronomical Observatory of China, Datun Road 20, Chaoyang, Beijing, 100012, People's Republic of China <sup>14</sup> Academia Sinica Institute of Astronomy and Astrophysics, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China <sup>15</sup> Department of Physics, P.O. Box 64, FI-00014, University of Helsinki, Finland <sup>16</sup> University of Science and Technology, Korea (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea IRAP, Université de Toulouse, CNRS, CNES, UPS, (Toulouse), France <sup>18</sup> IBM, Canada <sup>19</sup> RAP, CNRS (UMR5277), Université Paul Sabatier, 9 avenue du Colonel Roche, BP 44346, F-31028, Toulouse Cedex 4, France <sup>20</sup> Institut de Radioastronomie Millimetrique, 300 Rue de la Piscine, F-38406, Saint Martin d'Heres, France <sup>21</sup> Department of Astronomy, Peking University, 100871, Beijing, People's Republic of China <sup>22</sup> The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan <sup>23</sup> Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, People's Republic of China Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan <sup>25</sup> Centre for Astrophysics Research, Science & Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB, UK <sup>26</sup> Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, People's Republic of China <sup>28</sup> Department of Physics, Kagoshima University, 1-21-35, Korimoto, Kagoshima, 890-0065, Japan Received 2020 March 10; revised 2020 June 17; accepted 2020 July 17; published 2020 August 12 Abstract We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ( $\lambda$  Orionis, Orion A, Orion B, the Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76–94 GHz using the Nobeyama 45 m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g.,  $N_2H^+$  and c-C<sub>3</sub>H<sub>2</sub>) and deuterated molecules (e.g.,  $N_2D^+$  and DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1 kpc). For  $\lambda$  Orionis, Orion A, and Orion B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high-D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major

Unified Astronomy Thesaurus concepts: Clouds (258); Interstellar molecules (849); Astrochemistry (75); Star formation (1569)

mechanism for the beginning of star formation as judged from observations with a beam size of  $0.04 \, \text{pc}$ .

### 1. Introduction

In the process of star formation, the initial condition is believed to determine what kinds of stars will be born and how they will form (e.g., Bergin & Tafalla 2007; McKee & Ostriker 2007). However, the details of initial conditions have not been thoroughly characterized.

Stars are formed through gravitational collapse in dense molecular cores (e.g., Bergin & Tafalla 2007; McKee & Ostriker 2007), and many observations have reported that the core mass function is similar in shape to the initial mass function (IMF; e.g., André et al. 2010; Könyves et al. 2010). However, this is not the case in high-mass regimes, where deviations from the Salpeter IMF have been recently found (e.g., Zhang et al. 2015; Motte et al. 2018; Sanhueza et al. 2019). These studies suggest that studying dense cores in different mass ranges may provide valuable information on the initial conditions of star formation. Furthermore, we need to take care of the evolution in the starless phase because the internal structure of dense cores is altered physically and chemically during the core evolution (Aikawa et al. 2008). Therefore, the identification of the dense core *just prior to* the beginning of gravitational collapse, which we call "prestellar core" here, is essential in understanding the genuine initial conditions of star formation (e.g., Ohashi et al. 2018).

In low-mass star-forming regions, prestellar cores are not only compact ( $\leq 0.1 \text{ pc}$ ), cold ( $\leq 10 \text{ K}$ ), and dense ( $>5 \times 10^4 \text{ cm}^{-3}$ ) (e.g., Bergin & Tafalla 2007; McKee & Ostriker 2007) but also gravitationally bound, thermally supported, and centrally concentrated (e.g., Ward-Thompson et al. 1994; Caselli 2011). For high-mass star formation, prestellar cores are as massive as at least 30  $M_{\odot}$ , assuming a star formation efficiency of 30% (Wang et al. 2014; Sanhueza et al. 2019).

The chemical characteristic of starless cores close to the onset of star formation is high deuterium fractionation. The deuterium fraction (D/H hereafter) is defined as a column density ratio of a deuterated molecule to its hydrogenated counterpart and has commonly been used to study the chemical properties of dense cores in low- and high-mass star-forming regions (e.g., Hirota et al. 2001; Crapsi et al. 2005; Hirota & Yamamoto 2006; Bergin & Tafalla 2007; Chen et al. 2010, 2011; Fontani et al. 2011; Sakai et al. 2012, 2015, 2018; Feng et al. 2019).

The chemical evolution of a dense core in terms of D/H can be described as follows. As a dense core evolves toward gravitational collapse, it develops a steep radial density profile that increases toward the core center and a radial temperature profile that decreases toward the core center (e.g., Crapsi et al. 2007; Aikawa et al. 2008). At the core center ( $\leq$ 5000 au) with low temperature ( $T_{\text{dust}} \leq 25 \text{ K}$  and often closer to 10 K) and high density ( $n_{\text{H}_2} \ge 10^4 \text{ cm}^{-3}$ ), CO molecules (a destroyer of deuterated molecules) become frozen on the surface of the dust grain, and the enrichment of deuterated molecules is activated with exothermic ion-molecule reactions from HD molecules (e.g., Millar et al. 1989; Phillips & Vastel 2003; Vastel et al. 2004; Aikawa et al. 2005; Crapsi et al. 2005). When a protostar is born at the core center, it heats up the surroundings (e.g., Caselli et al. 2002b). At the warm  $(T_{dust} \gtrsim 25 \text{ K})$  core center, CO molecules are desorbed from the grain surface and then destroy deuterated molecules (Roberts & Millar 2000; Lee et al. 2004). Therefore, D/H varies with temperature. If the core is cold enough ( $T_{dust} < 25$  K), D/H increases in the starless phase and reaches its maximum at the onset of star formation, and then it decreases by an order of magnitude after star formation (e.g., Hirota et al. 2003; Crapsi et al. 2005; Emprechtinger et al. 2009; Friesen et al. 2010; Sakai et al. 2012; Fontani et al. 2014).

N(DNC)/N(HNC) and  $N(\text{N}_2\text{D}^+)/N(\text{N}_2\text{H}^+)$  can be used as D/H tracers. N<sub>2</sub>D<sup>+</sup> is known to be the least depleted molecule (Pagani et al. 2007), and DNC is known to trace cold molecular gas (Gerner et al. 2015). The destruction timescale of the DNC molecule is known to be much longer than that of the N<sub>2</sub>D<sup>+</sup> molecule (e.g., Sakai et al. 2012; Fontani et al. 2014). For

example, after stellar birth,  $N(N_2D^+)/N(N_2H^+)$  decreases within 100 yr, whereas N(DNC)/N(HNC) drops at a timescale of 10<sup>4</sup> yr. Fontani et al. (2014) showed that the deuterium fractionation of  $N_2H^+$  is more suitable than that of HNC to identify cores on the verge of star formation in high-mass star-forming regions.

For the chemical evolution of the dense core, it is also noticed that the abundance of gas-phase molecules decreases at different timescales because of adsorption and/or chemical reactions in the central dense region of the core (Aikawa et al. 2001, 2003; Lee et al. 2003). For example, carbon-chain molecules (e.g., CCS and HC<sub>3</sub>N) are abundant in starless cores, whereas  $c-C_3H_2$ and nitrogen-bearing molecules (e.g., N2H<sup>+</sup> and NH3) are abundant in protostellar cores (e.g., Suzuki et al. 1992; Benson et al. 1998; Ohashi et al. 2014, 2016). That is, CCS molecules are known as "early-type species," and c-C<sub>3</sub>H<sub>2</sub>, N<sub>2</sub>H<sup>+</sup>, and NH<sub>3</sub> molecules are known as "late-type species." This means that chemically evolved cores have lower abundances of C-chain molecules and higher abundances of c-C<sub>3</sub>H<sub>2</sub> and N-bearing molecules.  $N(N_2H^+)/N(CCS)$  and  $N(N_2H^+)/N(HC_3N)$  can be valid chemical evolution tracers at a spatial size scale of  $\sim 0.1$  pc for cold ( $T_{\rm dust} \lesssim 25 \,\rm K$ ) cores. These ratios are invalid as evolution tracers for warm (>25 K) cores, because the  $N_2H^+$ molecule is destroyed by CO desorption (e.g., Aikawa et al. 2001, 2003; Lee et al. 2003; Tatematsu et al. 2014).

Measurements of the column density ratios of deuterated/ hydrogenated molecules and N-bearing/C-chain molecules provide a useful tool to characterize the evolutionary status of the dense core in which a star will form (e.g., Hirota & Yamamoto 2006). In this paper,  $HC_3N$  is regarded as a C-chain molecule rather than an N-bearing molecule. Taking chemical evolution into account, Tatematsu et al. (2017) introduced the chemical evolution factor (CEF) as a comprehensive diagnostic tool for the degree of evolution of dense cores. The CEF is defined so that when a dense core evolves the CEF monotonically increases from  $\sim -100$  for a starless core to  $\sim 100$  for a protostellar core through zero corresponding to the onset of star formation (See Section 4.1). The first attempt was made toward low-mass starless cores in nearby cold clouds in the literature (Tatematsu et al. 2017), but the CEF should be established for other environments (e.g., distant high-mass starless cores) by increasing sample numbers.

Efforts toward the identification of dense cores over all sky have extended from optical to infrared wavelengths with instrumental development (e.g., dark cloud in DSS and infrared dark cloud in MSX and Spitzer; Lee & Myers 1999; Simon et al. 2006; Peretto & Fuller 2009; Kim et al. 2010; Dobashi 2011). Most recently, the Planck all-sky survey has been made and provides a catalog of Planck Galactic Cold Clumps (PGCCs; Planck Collaboration et al. 2011, 2016), which includes 13,188 sources of  $\sim$ 5'- to 10'-sized structures or "clumps" with temperatures of 10-20 K in various environments. An unbiased selection of PGCCs was mapped with Herschel in the far-IR band (e.g., Juvela et al. 2010, 2012, 2018). A series of follow-up observations have been conducted with ground-based radio telescopes such as PMO, CSO, SMT, APEX, NANTEN2, IRAM, Mopra, Effelsberg, SMA, the James Clerk Maxwell telescope (JCMT), and TRAO and are summarized by Liu et al. (2015, 2018). Specifically, the JCMT large program "SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE)" identified  $\sim 20''$ - to 60''-sized structures or "cores" within PGCCs (Liu et al. 2018). These PGCC cores are distributed in low/ high-mass star-forming regions from the Galactic plane to high latitudes (Eden et al. 2019). The initial conditions of star formation in these various environments are still poorly understood. For example, the initial conditions of high-mass star formation are poorly known and debatable because of the small numbers of massive prestellar cores in high-mass starforming regions so far identified (e.g., Wang et al. 2014; Sanhueza et al. 2017, 2019; Contreras et al. 2018) because of their large distances and short evolutionary timescale (McKee & Ostriker 2007; Caselli 2011). These PGCC cores can be valuable targets not only to assess evolutionary stages on the basis of the column density ratios of D/H and N-bearing/Cchain molecules but also to study the initial conditions of star formation in widely different environments.

Our ultimate goal is to explore the details of the initial conditions for star formation based on the physical and chemical properties of prestellar cores in various environments. The first step is to identify reliable samples of such dense cores. Thus, we report the first stage of our research with single-pointing observations of 207 cores in PGCCs in the molecular lines of N<sub>2</sub>D<sup>+</sup> J = 1-0, N<sub>2</sub>H<sup>+</sup> J = 1-0, DNC J = 1-0, HN<sup>13</sup>C J = 1-0, CCS  $J_N = 76-65$ , CCS  $J_N = 87-76$ , HC<sub>3</sub>N J = 9-8, and c-C<sub>3</sub>H<sub>2</sub>  $J_{K_aK_c} = 2_{12} - 1_{01}$  with the 45 m single-dish telescope of the Nobeyama Radio Observatory.<sup>29</sup> Cores found in this study are in the chemically evolved stage of starless cores (late starless cores hereafter) as prestellar core candidates. In the next paper, we will investigate whether these late starless cores are actually prestellar cores or not through mapping observations.

This study is organized as follows: observations and data analysis procedures are described in Section 2, the observational results are presented in Section 3, Section 4 presents the identification of late starless cores in various environments using the CEF and D/H, and the study is summarized in Section 5.

### 2. Observations and Data Analysis Procedure

### 2.1. Sample Selection

The SCOPE survey discovered more than 3000 PGCC cores across the Galaxy at 850  $\mu$ m with SCUBA-2 (Submillimetre Common-User Bolometer Array 2) on board JCMT (e.g., Yi et al. 2018; Eden et al. 2019). Yi et al. (2018) identified 119 cores embedded in 96 PGCCs in the Orion region from JCMT SCOPE data and JCMT archive data. Eden et al. (2019) released a compact source catalog using the JCMT SCOPE data, which contains 3528 cores identified in 1235 PGCCs from the Galactic plane to high latitudes. As a pilot study, we selected a total of 207 targets that are located at different Galactic positions (local Giant Molecular Clouds [GMCs], high latitude, and Galactic plane). These dense cores are among the densest cores ( $N(H_2) > 1 \times 10^{22} \text{ cm}^{-2}$ ) discovered in the SCOPE survey and consist of 113 cores in the Orion region, which is associated with GMCs, 52 cores in the Galactic plane  $(|b| < 2^{\circ})$ , and 42 cores at high latitudes  $(|b| \ge 2^{\circ})$ . Figure 1 shows the Galactic distribution of 207 SCUBA-2 cores, and the information on the targets is summarized in Table 1 with the core name, coordinate, dust temperature, H<sub>2</sub> column density, type of environment, and the related PGCC. The dust temperature is taken from the PGCC catalog, and the H<sub>2</sub> column density is derived from the 850  $\mu$ m peak intensity of the PGCC core (Yi et al. 2018; Eden et al. 2019) and the dust temperature. The 207 SCUBA-2 cores have dust temperatures ranging from 9.2 to 22.4 K with a median value of 13.3 K. They have H<sub>2</sub> column densities of (0.17–12) × 10<sup>23</sup> cm<sup>-2</sup> with a median value of 8.2 × 10<sup>22</sup> cm<sup>-2</sup>.

We investigate environments surrounding SCUBA-2 cores using the SIMBAD database. The Orion region, including the 113 SCUBA-2 cores, is a local active star-forming region where both massive stars and low-mass stars are born (e.g., Yi et al. 2018). This region consists of  $\lambda$  Orionis, Orion A, and Orion B subregions, which include GMCs and many starforming regions such as H II regions (e.g., LDN 1641 S3), star clusters (e.g., Collinder 69, Orion Nebula Cluster, NGC 2023, and OMC 2), and nebulae (e.g., Orion KL, McNeil Nebula, and IC 432). A total of 15, 70, and 28 SCUBA-2 cores are located in  $\lambda$  Orionis, Orion A, and Orion B, respectively, and their distributions are shown in Figure 2. Yi et al. (2018) found that the physical properties of the SCUBA-2 cores in the three subregions are different. The SCUBA-2 cores correspond to part of the dark clouds (e.g., L1581, L1582, L1594, L1598, L1630, and L1641).

The 52 SCUBA-2 cores in the Galactic plane are located in the vicinity of open clusters (e.g., NGC 2264, NGC 6530, and NGC 6611) and supernova remnants (e.g., W48) and are embedded in dark clouds (e.g., L463). The 42 SCUBA-2 cores at high latitudes seem to be associated with famous starforming regions (e.g., Auriga, California, Cepheus, Cygnus, IC 5146, Ophiuchus, Perseus, and Taurus), nearby dark clouds (e.g., Banard 1, L43, L183, L769, L944, L973, L1004, L1181, L1204, L1035, L1521F, and L1525), open clusters (e.g., NGC 2264), and star clusters (e.g., NGC 7129).

The information on these environments is listed in Table 1. We consider  $\lambda$  Orionis, Orion A, Orion B, the Galactic plane, and high latitudes as five different environments.

### 2.2. Single-pointing Observations

We carried out single-pointing observations toward the 850  $\mu$ m intensity peak position of 207 SCUBA-2 cores with the 45 m single-dish radio telescope of the Nobeyama Radio Observatory from 2017 February to 2018 May (CG161004, LP177001; P.I.: K. Tatematsu). One of the two-sideband SIS receivers, T70 or TZ, was used for simultaneous four-line observations in the double-polarization mode (Asayama & Nakajima 2013; Nakajima et al. 2013). The T70 receiver was adopted for observations toward all 207 SCUBA-2 cores in the c- $\overline{C_3}H_2$   $J_{K_aK_c} = 2_{12} - 1_{01}$ , DNC J = 1-0,  $HN^{13}C J = 1-0$ , and  $N_2D^+J = 1-0$  molecular emission lines. The TZ receiver was used for observations toward 111 SCUBA-2 cores in the Orion region in the CCS  $J_N = 7_6 - 6_5$  (CCS-L hereafter), CCS  $J_N = 8_7 - 7_6$  (CCS-H hereafter), HC<sub>3</sub>N J = 9 - 8, and  $N_2H^+ J = 1-0$  lines. Observations with the TZ receiver were not conducted for two Orion cores and all cores in environments other than the Orion region owing to time limitations. The rest frequencies and their references, upper energy levels, and employed receivers of the eight lines are listed in Table 2. At 82 GHz, the half-power beam widths (HPBW) of the T70 and TZ receivers are  $19\rlap.''5\pm0\rlap.''3$  and  $18\rlap.''8\pm0\rlap.''1,$  respectively. Their main-beam efficiencies  $\eta_{mb}$  are 54.7%  $\pm$  3.5% and 55.4%  $\pm$  3.5%, respectively. The FX digital spectrometer SAM45 (Kamazaki et al. 2012) was employed with a spectral resolution of 15.26 kHz (corresponding to  $\sim 0.06 \text{ km s}^{-1}$  at

<sup>&</sup>lt;sup>29</sup> Nobeyama Radio Observatory is a branch of the National Astronomical Observatory of Japan, National Institutes of Natural Sciences.



Figure 1. Galactic distribution of 207 SCUBA-2 cores. They consist of GMC cores in the Orion region (red), cores in the Galactic plane (green), and cores at high latitudes (blue). The dotted line represents Galactic latitudes of  $\pm 2^{\circ}$ .

82 GHz) for 113 SCUBA-2 cores in the Orion region and 30.52 kHz (corresponding to  $\sim 0.1 \text{ km s}^{-1}$  at 82 GHz) for the remaining 94 cores. The use of two different spectral resolutions was accidental. The system temperature was typically 200 K.

Single-pointing observation for each core typically took ~30 minutes, including the telescope overhead time in the positionswitching mode, to achieve 0.09 K rms sensitivity at a resolution of 0.1 km s<sup>-1</sup>. The telescope pointing uncertainty was established as  $\leq 5''$  through five-point measurement toward 43 GHz SiO maser sources close to targets every ~1–1.5 hr. The resulting spectrum is expressed in terms of the antenna temperature corrected for atmosphere extinction  $T_A^*$  obtained by the standard chopper wheel calibration. For the reduction of raw data, the baselines are subtracted and then the spectra are co-added on the software package "NEWSTAR"<sup>30</sup> of the Nobeyama Radio Observatory. The reduced data are transferred into a data format of the GILDAS CLASS program<sup>31</sup> and are resampled into a 0.1 km s<sup>-1</sup> velocity resolution.

### 2.3. Gaussian or Hyperfine Structure Fitting to a Spectrum

Figure 3 shows the spectra of four or eight molecular emission lines for SCUBA-2 cores.  $N_2H^+$  and  $N_2D^+$  lines show the seven components of hyperfine transitions<sup>32</sup> (e.g., Caselli et al. 2002b), but the other lines generally exhibit a single velocity component. For a further analysis, we make a Gaussian (GA) or hyperfine structure (HFS) fitting to each spectrum using the GILDAS CLASS program. For  $c-C_3H_2$ , CCS, and HC<sub>3</sub>N lines having single Gaussian shapes, we apply the GA fitting to them to measure the peak temperature  $(T_{peak})$ , systemic velocity ( $V_{\rm LSR}$ ), and line width ( $\Delta v$ ) in FWHM. DNC and HN<sup>13</sup>C lines look like single Gaussian shapes, but they are known to have four and six components of hyperfine transitions, respectively (van der Tak et al. 2009). Because our main purpose is to derive the column density, for simplicity we ignore the hyperfine splitting for DNC and HN<sup>13</sup>C, and apply simple Gaussian fitting. The derived line widths of both lines are overestimated for this reason. For  $N_2D^+$  and  $N_2H^+$ lines, where the seven components of hyperfine transitions are clearly visible, we apply the HFS fitting to them to obtain the excitation temperature  $(T_{ex})$ ,  $V_{LSR}$ ,  $\Delta v$ , optical depth  $(\tau)$ , and  $T_{ant}\tau$ . To obtain  $T_{peak}$  and  $\Delta v$  of the brightest component  $(JF_1F = 123-012)$  of the N<sub>2</sub>H<sup>+</sup> and N<sub>2</sub>D<sup>+</sup> lines, we apply the GA fitting to the brightest component of the lines. We measure the rms ( $\sigma$ ) noise level from the baseline subtraction procedure for the spectrum. The fitting results are listed in Tables 3 and 4. We regard the peak temperature higher than  $3\sigma$  as detection for further analysis. Otherwise, we give  $3\sigma$  as an upper limit and consider it as a nondetection.

### 2.4. Distance of 207 SCUBA-2 Cores

Accurate distances of cores are often unavailable because of the lack of references. When an accurate distance to the parent cloud is known in the literature, we adopt the value. Otherwise, we employ distance from the parallax-based distance estimator of the Bar and Spiral Structure Legacy Survey (Reid et al. 2016) on the basis of the systemic velocity (Section 2.3) and the sky position of the core. With other lines, the c-C<sub>3</sub>H<sub>2</sub> line is basically used for the systemic velocity because the line has the highest detection rate (Section 3.1). Distance and its reference are summarized in Table 1.

The median values of the employed distances are found to be 380 pc for cores in  $\lambda$  Orionis,  $430^{+0}_{-40}$  pc for cores in Orion A,  $390^{+30}_{-0}$  pc for cores in Orion B,  $2.3^{+7.0}_{-1.3}$  kpc for cores in the Galactic plane, and  $0.8^{+1.8}_{-0.7}$  kpc for cores at high latitudes. It is noted that most of the cores in the Galactic plane are distributed farther away than cores at other environments. Orion cores are located at similar distances, but cores at other environments are widely scattered in distance.

### 2.5. Classification of SCUBA-2 Cores into Starless and Protostellar Cores

Each of the 207 SCUBA-2 cores may be either before or after stellar birth, so they need to be classified into two groups: starless cores and protostellar cores. Reliable categorization can be difficult, depending on the availability of protostellar data and references. Therefore, we simply categorize them by visually investigating the existence of a young stellar object (YSO) within the criterion radius centered at the peak position of each core. For example, if no YSO is known within the criterion radius, the core is regarded as a starless core (candidate). If a YSO is located within the criterion radius, we consider the core as a protostellar core (candidate). For simplicity, we refer to starless cores and their candidates as starless cores and to protostellar cores and their candidates as protostellar cores. The criterion radius is adopted from Yi et al. (2018) and Eden et al. (2019). The information of the YSOs is taken from the SIMBAD database, including the past literature and protostar catalogs based on large programs such as Spitzer, WISE, Herschel, and GAIA missions (Megeath et al. 2012; Povich et al. 2013; Dunham et al. 2015; Marton et al. 2016, 2019).

From the visual inspection, the samples of our SCUBA-2 cores are classified into 58 starless cores and 149 protostellar cores. The 58 starless cores consist of 5 cores in  $\lambda$  Orionis, 24 in Orion A, 10 in Orion B, 13 in the Galactic plane, and 6 at high latitudes. Out of 149 protostellar cores, 10, 46, 18, 39, and 36 cores are located in the same five categories of environments, respectively. The classification and the associated YSOs are summarized in Table 1 but may be changed if the YSO information is updated. Considering this uncertainty, among the total 207 SCUBA-2 cores, the upper limit of the fraction of starless cores is found to be ~28%.

4

<sup>&</sup>lt;sup>30</sup> https://www.nro.nao.ac.jp/~nro45mrt/html/obs/newstar/

<sup>&</sup>lt;sup>31</sup> https://www.iram.fr/IRAMFR/GILDAS/

<sup>&</sup>lt;sup>32</sup> https://spec.jpl.nasa.gov/

| SCUBA-2 Core                                             | R.A. (J2000)  | Decl. (J2000) | YSO Ass.     | Dist. | References | $T_{\rm d}$                      | N(H <sub>2</sub> )                 | Env.     | Comment                                                                                   |
|----------------------------------------------------------|---------------|---------------|--------------|-------|------------|----------------------------------|------------------------------------|----------|-------------------------------------------------------------------------------------------|
| (1)                                                      | (hh:mm:ss.ss) | (dd:mm:ss.s)  | (4)          | (kpc) | (6)        | (K)<br>(7)                       | $(\times 10^{25} \text{ cm}^{-2})$ | (0)      | (10)                                                                                      |
| (1)                                                      | (2)           | (3)           | (4)          | (5)   | (0)        | (7)                              | (8)                                | (9)      | (10)                                                                                      |
| G190.15-13.75North                                       | 05:19:01.11   | 13:08:05.8    | Starless     | 0.38  | 11         | $10.8\pm1.7$                     | $1.1 \pm 0.2$                      | OL       | PGCC G190.15–13.75, $\lambda$ Orionis                                                     |
| G190.15-13.75South                                       | 05:18:40.55   | 13:01:41.6    | Starless     | 0.38  | 11         | $10.8 \pm 1.7$                   | $1.0 \pm 0.2$                      | OL       | PGCC G190.15–13.75, $\lambda$ Orionis                                                     |
| G191.90-11.21North                                       | 05:31:28.99   | 12:58:55.0    | Starless     | 0.38  | 11         | $14.7 \pm 4.1$                   | $0.2\pm0.1$                        | OL       | PGCC G191.90–11.21, $\lambda$ Orionis                                                     |
| G191.90-11.21South                                       | 05:31:31.73   | 12:56:15.0    | Protostellar | 0.38  | 11         | $14.7 \pm 4.1$                   | $0.7\pm0.2$                        | OL       | WISE J053131.58+125615.2, PGCC G191.90-11.21, $\lambda$ Orionis                           |
| G192.12-10.90North                                       | 05:33:02.64   | 12:57:53.6    | Protostellar | 0.38  | 11         | $13.1\pm1.5$                     | $0.6\pm0.1$                        | OL       | WISE J053302.57+125810.1, PGCC G192.12-10.88, $\lambda$ Orionis                           |
| G192.12-10.90South                                       | 05:32:52.52   | 12:55:08.6    | Protostellar | 0.38  | 11         | $13.1\pm1.5$                     | $0.6\pm0.1$                        | OL       | WISE J053252.62+125509.0, PGCC G192.12-10.88, $\lambda$ Orionis                           |
| G192.12-11.10                                            | 05:32:19.54   | 12:49:40.2    | Protostellar | 0.38  | 11         | $13.3\pm3.0$                     | $1.8\pm0.4$                        | OL       | WISE J053219.43+124942.5, PGCC G192.12-11.10, L1582, $\lambda$ Orionis                    |
| G192.32-11.88North                                       | 05:29:54.47   | 12:16:56.0    | Protostellar | 0.38  | 11         | $17.3\pm6.0$                     | $1.1 \pm 0.4$                      | OL       | [LZK2016] G192N, PGCC G192.32–11.88, L1581, $\lambda$ Orionis                             |
| G192.32-11.88South                                       | 05:29:54.74   | 12:16:32.0    | Protostellar | 0.38  | 11         | $17.3\pm6.0$                     | $0.9\pm0.4$                        | OL       | [LZK2016] G192S, PGCC G192.32–11.88, L1581, $\lambda$ Orionis                             |
| G196.92-10.37                                            | 05:44:29.56   | 09:08:50.2    | Protostellar | 0.38  | 11         | $14.8\pm0.4$                     | $1.8\pm0.1$                        | OL       | [NFA2013] 2, PGCC G196.92–10.37, B35, L1594, $\lambda$ Orionis                            |
| G198.69-09.12North1                                      | 05:52:29.61   | 08:15:37.0    | Starless     | 0.38  | 11         | $11.5\pm1.1$                     | $0.6\pm0.1$                        | OL       | PGCC G198.69–9.12, L1598, $\lambda$ Orionis                                               |
| G198.69-09.12North2                                      | 05:52:25.30   | 08:15:08.8    | Starless     | 0.38  | 11         | $11.5\pm1.1$                     | $0.7\pm0.1$                        | OL       | PGCC G198.69–9.12, L1598, $\lambda$ Orionis                                               |
| G198.69-09.12South                                       | 05:52:23.66   | 08:13:37.2    | Protostellar | 0.38  | 11         | $11.5\pm1.1$                     | $1.5\pm0.2$                        | OL       | [MJR2015] 1386, PGCC G198.69-9.12, L1598, λ Orionis                                       |
| G200.34-10.97North                                       | 05:49:03.71   | 05:57:55.7    | Protostellar | 0.38  | 11         | $13.5\pm0.9$                     | $0.8\pm0.1$                        | OL       | WISE J054903.37+055757.9, PGCC G200.34-10.98, λ Orionis                                   |
| G200.34-10.97South                                       | 05:49:07.74   | 05:55:36.2    | Protostellar | 0.38  | 11         | $13.5\pm0.9$                     | $0.7\pm0.1$                        | OL       | WISE J054907.41+055539.6, PGCC G200.34–10.98, $\lambda$ Orionis                           |
| G201.52-11.08                                            | 05:50:59.01   | 04:53:53.1    | Protostellar | 0.39  | 7          | $13.6\pm1.3$                     | $0.8\pm0.1$                        | OB       | WISE J055059.14+045349.5, PGCC G201.52-11.08, Orion B                                     |
| G201.72-11.22                                            | 05:50:54.53   | 04:37:42.6    | Starless     | 0.39  | 7          | $12.9\pm1.2$                     | $0.3\pm0.1$                        | OB       | PGCC G201.72-11.22, Orion B                                                               |
| G203.21-11.20East1                                       | 05:53:51.11   | 03:23:04.9    | Starless     | 0.39  | 7          | $11.2\pm0.7$                     | $2.4\pm0.4$                        | OB       | PGCC G203.21-11.20, Orion B                                                               |
| G203.21-11.20East2                                       | 05:53:47.90   | 03:23:08.9    | Starless     | 0.39  | 7          | $11.2\pm0.7$                     | $2.5\pm0.4$                        | OB       | PGCC G203.21-11.20, Orion B                                                               |
| G203.21-11.20West1                                       | 05:53:42.83   | 03:22:32.9    | Protostellar | 0.39  | 7          | $11.2\pm0.7$                     | $2.7\pm0.3$                        | OB       | Herschel J055342.5+032236, PGCC G203.21-11.20, Orion B                                    |
| G203.21-11.20West2                                       | 05:53:39.62   | 03:22:24.9    | Protostellar | 0.39  | 7          | $11.2\pm0.7$                     | $3.2\pm0.4$                        | OB       | Herschel J055339.5+032225, PGCC G203.21-11.20, Orion B                                    |
| G204.4-11.3A2East                                        | 05:55:38.43   | 02:11:33.3    | Protostellar | 0.39  | 7          | $11.1 \pm 1.9$                   | $4.7\pm0.9$                        | OB       | Herschel J055538.2+021135, PGCC G204.49-11.33, Orion B                                    |
| G204.4-11.3A2West                                        | 05:55:35.49   | 02:11:01.3    | Protostellar | 0.39  | 7          | $11.1 \pm 1.9$                   | $3.5\pm0.6$                        | OB       | Herschel J055535.3+021103, PGCC G204.49-11.33, Orion B                                    |
| G205.46-14.56Middle1                                     | 05:46:09.65   | -00:12:12.9   | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$                   | $5.5\pm0.5$                        | OB       | HOPS 402, PGCC G205.46-14.56, L1630, Orion B                                              |
| G205.46-14.56Middle2                                     | 05:46:07.49   | -00:12:22.4   | Protostellar | 0.39  | 7          | $12.5\pm0.9$                     | $4.7\pm0.4$                        | OB       | HOPS 401, PGCC G205.46-14.56, L1630, Orion B                                              |
| G205.46-14.56Middle3                                     | 05:46:07.37   | -00:11:53.4   | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$                   | $4.8\pm0.5$                        | OB       | SSV LDN 1630 61, PGCC G205.46-14.56, L1630, Orion B                                       |
| G205.46-14.56North3                                      | 05:46:08.06   | -00:10:43.6   | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$                   | $8.7 \pm 0.8$                      | OB       | HOPS 317, PGCC G205.46–14.56, L1630, Orion B                                              |
| G205.46-14.56North2                                      | 05:46:07.89   | -00:10:02.0   | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$                   | $5.5 \pm 0.5$                      | OB       | HOPS 387, PGCC G205.46–14.56, L1630, Orion B                                              |
| G205 46-14 56North1                                      | 05:46:05 49   | -00.09.324    | Starless     | 0.39  | 7          | $12.5 \pm 0.9$                   | $4.1 \pm 0.4$                      | OB       | PGCC G205 46–14 56 L1630 Orion B                                                          |
| G205 46-14 56South1                                      | 05:46:07.11   | -00:13:34.6   | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$<br>$12.5 \pm 0.9$ | $6.7 \pm 0.6$                      | OB       | HOPS 358, PGCC G205 46–14 56, L1630, Orion B                                              |
| G205 46-14 56South?                                      | 05:46:04 49   | -00.14.189    | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$<br>$12.5 \pm 0.9$ | $48 \pm 0.5$                       | OB       | HOPS 385 PGCC G205 46–14 56 L1630 Orion B                                                 |
| G205 46-14 56South3                                      | 05:46:03 54   | -00.14.493    | Protostellar | 0.39  | 7          | $12.5 \pm 0.9$<br>$12.5 \pm 0.9$ | $50 \pm 0.5$                       | OB       | HOPS 315 PGCC G205 46–14 56 L1630 Orion B                                                 |
| G206 12-15 76                                            | 05:42:45 27   | -01.16.114    | Protostellar | 0.39  | 7          | $11.9 \pm 1.6$                   | $26 \pm 0.0$                       | OB       | HOPS 400 PGCC G206 $12-15.76$ Orion B                                                     |
| G206 21–16 17North                                       | 05:41:39.28   | -01:35:52.9   | Starless     | 0.39  | 7          | $15.7 \pm 6.8$                   | $1.0 \pm 0.1$<br>$1.1 \pm 0.6$     | OB       | PGCC G206 21 $-16.17$ Orion B                                                             |
| G206.69–16.60North                                       | 05:40:58.08   | -02.07.283    | Starless     | 0.42  | 7          | $17.1 \pm 7.8$                   | $0.8 \pm 0.4$                      | OB       | PGCC G206.69–16.60 Orion B                                                                |
| G206.69–16.60South                                       | 05:40:58.62   | -02.08.407    | Starless     | 0.42  | 7          | $17.1 \pm 7.8$<br>$17.1 \pm 7.8$ | $12 \pm 0.6$                       | OB       | PGCC G206.69 $-16.60$ , Orion B                                                           |
| G206.93-16.61Fast1                                       | 05:41:40.54   | -02.00.40.7   | Starless     | 0.42  | 7          | $168 \pm 53$                     | $41 \pm 15$                        | OB       | PGCC G206.93-16.61 NGC 2023 Orion B                                                       |
| G206.93_16.61East2                                       | 05:41:37 32   | -02:17:16.3   | Protostellar | 0.42  | 7          | $16.8 \pm 5.3$                   | $4.1 \pm 1.5$<br>$4.5 \pm 1.5$     | OB       | HOPS 208 PGCC G206 93-16.61 NGC 2023 Orion B                                              |
| G206.93-16.61West1                                       | 05:41:25.57   | -02:17:10:3   | Protostellar | 0.42  | 7          | $16.8 \pm 5.3$                   | $4.5 \pm 1.5$<br>$2.4 \pm 0.9$     | OB       | HOPS 300, PGCC G206.93-16.61, NGC 2023, Orion B                                           |
| G206.03 16.61West3                                       | 05:41:25.04   | 02:18:08 1    | Protostellar | 0.42  | 7          | $16.8 \pm 5.3$                   | $2.4 \pm 0.9$<br>$0.0 \pm 3.1$     | OB       | HOPS 300, PGCC G206.03 16.61, NGC 2023, Orion B                                           |
| G206.93 - 16.61West3                                     | 05:41:25.04   | -02.18.08.1   | Storloss     | 0.42  | 7          | $10.8 \pm 5.3$                   | $9.9 \pm 0.1$                      | OP       | DCCC C206 02 16 61 NGC 2022 Orion P                                                       |
| $G_{200.95} = 10.01$ West4<br>$G_{206.03} = 16.61$ West5 | 05.41:23.84   | -02.19:28.4   | Starless     | 0.42  | 7          | $10.0 \pm 3.3$<br>$16.8 \pm 5.2$ | $2.2 \pm 0.7$<br>57 + 19           | OB       | PGCC G206.03 16.61 NGC 2023, Orion B                                                      |
| $G_{200.95} = 10.01 \text{ West5}$                       | 05.41.20.77   | -02.20:04.3   | Drotostalla- | 0.42  | 7          | $10.0 \pm 3.3$                   | $3.7 \pm 1.0$                      |          | 1000 0200.93 = 10.01, 1000 2023, 011011 D $1000 200 0000 0206 02 16.61 NCC 2022 0.0000 D$ |
| $C_{200.93} = 10.01$ Westo                               | 05:20:50.04   | -02:21:10.1   | Protostellar | 0.42  | 7          | $10.0 \pm 3.3$                   | $2.0 \pm 0.0$                      |          | NUSION 105205120 0/10222 DCCC C207 24 10 22 Orige A                                       |
| $C_{207,26} = 19.62$ North 1                             | 05:30:30.94   | -04:10:55.0   | Protostellar | 0.39  | 7          | $11.9 \pm 1.4$                   | $3.3 \pm 0.3$                      | OA<br>OA | VISION J05205129-0410322, FOUL 0207.30-19.82, OHON A                                      |
| $G_{207,30} = 19.82$ North2                              | 05:30:50.67   | -04:10:15.6   | Protostellar | 0.39  | 7          | $11.9 \pm 1.4$                   | $3.0 \pm 0.3$                      | 0A       | VISION JUSSUS129-0410322, FOUL G207.30-19.82, Offon A                                     |
| G207.36-19.82North3                                      | 05:30:46.40   | -04:10:2/.6   | Starless     | 0.39  | /          | $11.9 \pm 1.4$                   | $2.5 \pm 0.3$                      | 0A       | PGUU G207.50-19.82, Urion A                                                               |

S

 Table 1

 Information of 207 SCUBA-2 Cores Embedded in Planck Galactic Cold Clumps

|                                            |                   |                            |               |              |            | Table 1           (Continued)    |                                                   |          |                                                           |
|--------------------------------------------|-------------------|----------------------------|---------------|--------------|------------|----------------------------------|---------------------------------------------------|----------|-----------------------------------------------------------|
| SCUBA-2 Core                               | R.A. (J2000)      | Decl. (J2000)              | YSO Ass.      | Dist.        | References | $T_{\rm d}$                      | $N(H_2)$<br>(×10 <sup>23</sup> cm <sup>-2</sup> ) | Env.     | Comment                                                   |
| (1)                                        | (111.11111.55.55) | (3)                        | (4)           | (Kpc)<br>(5) | (6)        | ( <b>K</b> )<br>(7)              | (×10° cm²)<br>(8)                                 | (9)      | (10)                                                      |
| G207.36-19.82North4                        | 05:30:44.81       | -04:10:27.6                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $2.6 \pm 0.4$                                     | OA       | PGCC G207.36–19.82, Orion A                               |
| G207.36–19.82South                         | 05:30:46.81       | -04:12:29.4                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $0.6 \pm 0.1$                                     | 0A       | PGCC G207.36–19.82. Orion A                               |
| G207.3-19.8A2North1                        | 05:31:03.40       | -04:15:46.0                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $0.7 \pm 0.1$                                     | 0A       | PGCC G207.36–19.82. Orion A                               |
| G207.3–19.8A2North2                        | 05:31:02.06       | -04:14:57.0                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $0.7 \pm 0.1$                                     | 0A       | PGCC G207.36–19.82. Orion A                               |
| G207.3–19.8A2North3                        | 05:30:59.99       | -04:15:39.0                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $0.6 \pm 0.1$                                     | 0A       | PGCC G207.36–19.82. Orion A                               |
| G207.3–19.8A2South                         | 05:31:03.27       | -04:17:00.0                | Starless      | 0.39         | 7          | $11.9 \pm 1.4$                   | $0.3 \pm 0.1$                                     | OA       | PGCC G207.36–19.82, Orion A                               |
| G208 68-19 20North1                        | 05:35:23.37       | -05.01.287                 | Protostellar  | 0.39         | 7          | $19.7 \pm 3.8$                   | $10.9 \pm 2.4$                                    | 0A       | HOPS 87 PGCC G208 $68-19.20$ ONC OMC-3 Orion A            |
| G208.68–19.20North2                        | 05:35:20.45       | -05:00:53.0                | Protostellar  | 0.39         | 7          | $19.7 \pm 3.8$                   | $11.6 \pm 3.0$                                    | OA       | HOPS 89, PGCC G208.68–19.20, ONC, OMC–3, Orion A          |
| G208 68–19 20North3                        | 05:35:18.03       | -05:00:20.6                | Protostellar  | 0.39         | 7          | $19.7 \pm 3.8$<br>$19.7 \pm 3.8$ | $11.0 \pm 2.0$<br>$11.7 \pm 2.5$                  | 0A       | HOPS 92 PGCC G208 $68-19.20$ , ONC OMC-3 Orion A          |
| G208 68–19 20South                         | 05:35:26.33       | -05:03:56.7                | Protostellar  | 0.39         | 7          | $19.7 \pm 3.6$<br>$19.7 \pm 3.8$ | $46 \pm 10$                                       | 0A       | HOPS 84 PGCC G208 68–19 20 ONC OMC-3 Orion A              |
| G208.89–20.04East                          | 05:32:48.40       | -05:34:47.1                | Protostellar  | 0.39         | 7          | $12.8 \pm 4.2$                   | $2.6 \pm 0.9$                                     | OA       | WISE 1053248.59-053451.2, PGCC G208.89–20.04, ONC, OMC–4, |
| G200.05 10.72North                         | 05.24.02.06       | 05.22.42 5                 | Storlage      | 0.20         | 7          | $15.6 \pm 9.4$                   | $0.6 \pm 0.2$                                     | 04       | DIGINA<br>DECC C200.05 10.73 ONC OMC 4 Orign A            |
| $G_{209.05} = 19.75$ North                 | 05.34.03.90       | -03.32.42.3                | Starless      | 0.39         | 7          | $13.0 \pm 8.4$<br>15.6 $\pm$ 8.4 | $0.0 \pm 0.3$<br>1.0 ± 0.5                        | OA<br>OA | POCC G209.05 = 19.73, ONC, OMC = 4, OHOH A                |
| G209.03 - 19.7550uu                        | 05:34:05.12       | -03:34:11.0                | Starless      | 0.39         | 7          | $13.0 \pm 0.4$<br>$17.2 \pm 5.2$ | $1.0 \pm 0.3$<br>$1.5 \pm 0.5$                    | OA<br>OA | POCC G209.03 $-19.73$ , ONC, OMC $-4$ , OHOH A            |
| G209.29–19.65North2                        | 05:34:57.30       | -05:40:02.4<br>-05:41:44.4 | Protostellar  | 0.39         | 7          | $17.3 \pm 5.2$<br>$17.3 \pm 5.2$ | $1.3 \pm 0.3$<br>$1.3 \pm 0.4$                    | 0A<br>OA | WISE J053458.25-054149.9, PGCC G209.29–19.65, ONC, OMC-4, |
| G200 20 10 65 North3                       | 05-34-54 75       | 05-13-31 1                 | Protostellar  | 0.30         | 7          | $173 \pm 52$                     | $13 \pm 0.4$                                      | 04       | MGM20121 1260 PGCC G200 20 10.65 ONC OMC 4 Orion A        |
| G209.29-19.05Notth5                        | 05.34.54.75       | -05:45:03 2                | Storlass      | 0.39         | 7          | $17.3 \pm 5.2$<br>$17.2 \pm 5.2$ | $1.3 \pm 0.4$<br>$2.1 \pm 1.0$                    |          | DCCC C200 20 10 65 ONC OMC 4 Orion A                      |
| G209.29-19.0550util                        | 05:34:55.99       | -03:40:03.2                | Starless      | 0.39         | 7          | $17.5 \pm 5.2$                   | $5.1 \pm 1.0$                                     | OA<br>OA | POCC G209.29-19.03, ONC, OMC-4, OHOH A                    |
| G209.29-19.05South2                        | 05:34:35.61       | -03:40:12.8                | Ducto stallen | 0.39         | 7          | $17.5 \pm 5.2$                   | $5.6 \pm 1.5$                                     | OA<br>OA | POCC 0209.29-19.03, ONC, OMC-4, OHOH A                    |
| G209.29-19.03500015<br>C200.55 10.69North1 | 05:34:49.87       | -03:40:11.0                | Protostellar  | 0.39         | 7          | $17.5 \pm 3.2$                   | $1.0 \pm 0.0$                                     | OA<br>OA | [MOM2012] 1221, POCC 0209.29–19.03, ONC, OMC-4, OHOH A    |
| G209.55 19.08North1                        | 05:35:08.76       | -05:55:50.4                | Protostellar  | 0.39         | 7          | $14.1 \pm 4.0$                   | $0.4 \pm 0.1$                                     | OA<br>OA | HOPS 12, PGCC G209.55–19.08, UMC–5, UHOH A                |
| $G_{209.55} = 19.68$ North2                | 05:35:07.01       | -05:56:38.4                | Starless      | 0.39         | 7          | $14.1 \pm 4.0$                   | $1.9 \pm 0.6$                                     | OA<br>OA | PGCC G209.55 $-19.68$ , OMC $-5$ , Orion A                |
| G209.55 19.08North3                        | 05:35:01.45       | -05:55:27.4                | Protostellar  | 0.39         | 7          | $14.1 \pm 4.0$                   | $2.3 \pm 0.8$                                     | OA<br>OA | HOPS 10, PGCC G209.55-19.08, OMC-5, OHON A                |
| G209.55-19.68South1                        | 05:35:13.25       | -05:57:54.4                | Protostellar  | 0.39         | /          | $14.1 \pm 4.0$                   | $0.8 \pm 0.2$                                     | 0A<br>OA | HOPS 11, PGCC G209.55–19.68, OMC–5, Orion A               |
| G209.55-19.68South3                        | 05:35:08.96       | -05:58:26.4                | Protostellar  | 0.39         | 7          | $14.1 \pm 4.0$                   | $1.0 \pm 0.3$                                     | OA       | HOPS 10, PGCC G209.55–19.68, OMC–5, Orion A               |
| G209.77-19.40East1                         | 05:36:32.45       | -06:01:16.7                | Protostellar  | 0.43         | 7          | $13.9 \pm 3.4$                   | $2.8 \pm 0.8$                                     | OA       | HOPS 192, PGCC G209.77–19.40, L1641, Orion A              |
| G209.77-19.40East2                         | 05:36:32.19       | -06:02:04.7                | Starless      | 0.43         | 7          | $13.9 \pm 3.4$                   | $3.9 \pm 1.1$                                     | OA       | PGCC G209.77–19.40, L1641, Orion A                        |
| G209.77-19.40East3                         | 05:36:35.94       | -06:02:44.7                | Starless      | 0.43         | /          | $13.9 \pm 3.4$                   | $3.3 \pm 0.8$                                     | 0A<br>OA | PGCC G209.77-19.40, L1641, Orion A                        |
| G209.77–19.40West                          | 05:36:21.19       | -06:01:32.7                | Starless      | 0.43         | 7          | $13.9 \pm 3.4$                   | $1.1 \pm 0.4$                                     | OA       | PGCC G209.77–19.40, L1641, Orion A                        |
| G209.77-19.61East                          | 05:35:52.23       | -06:10:00.8                | Protostellar  | 0.43         | /          | $13.3 \pm 4.7$                   | $1.5 \pm 0.6$                                     | 0A<br>OA | HOPS 194, PGCC G209.77–19.61, L1641, Orion A              |
| G209.77–19.61West                          | 05:35:37.21       | -06:09:44.8                | Starless      | 0.43         | 7          | $13.3 \pm 4.7$                   | $1.5 \pm 0.5$                                     | OA       | PGCC G209.77–19.61, L1641, Orion A                        |
| G209.79–19.80East                          | 05:35:21.92       | -06:13:08.8                | Protostellar  | 0.43         | 7          | $13.7 \pm 3.5$                   | $1.0 \pm 0.3$                                     | OA       | HOPS 198, PGCC G209.79–19.80, L1641, Orion A              |
| G209.79–19.80West                          | 05:35:11.19       | -06:14:00.7                | Starless      | 0.43         | 7          | $13.7 \pm 3.5$                   | $2.7 \pm 0.8$                                     | OA       | PGCC G209.79–19.80, L1641, Orion A                        |
| G209.94–19.52North                         | 05:36:11.55       | -06:10:44.8                | Protostellar  | 0.43         | 7          | $16.3 \pm 5.9$                   | $1.9 \pm 0.8$                                     | OA       | [MGM2012] 1025, PGCC G209.94–19.52, L1641, Orion A        |
| G209.94–19.52South1                        | 05:36:24.96       | -06:14:04.7                | Starless      | 0.43         | 7          | $16.3 \pm 5.9$                   | $1.5 \pm 0.6$                                     | OA       | PGCC G209.94–19.52, L1641, Orion A                        |
| G209.94–19.52South2                        | 05:36:37.03       | -06:15:00.6                | Protostellar  | 0.43         | 7          | $16.3 \pm 5.9$                   | $1.2 \pm 0.5$                                     | OA       | HOPS 185, PGCC G209.94–19.52, L1641, Orion A              |
| G210.37–19.53North                         | 05:36:55.03       | -06:34:33.2                | Starless      | 0.43         | 7          | $14.0 \pm 4.1$                   | $0.7 \pm 0.2$                                     | OA       | PGCC G210.37–19.53, L1641, Orion A                        |
| G210.37–19.53South                         | 05:37:00.55       | -06:37:10.2                | Protostellar  | 0.43         | 7          | $14.0 \pm 4.1$                   | $1.1 \pm 0.3$                                     | OA       | HOPS 164, PGCC G210.37–19.53, L1641, Orion A              |
| G210.49-19.79East1                         | 05:36:25.28       | -06:44:42.8                | Protostellar  | 0.43         | 7          | $11.8 \pm 2.7$                   | $5.7 \pm 1.7$                                     | OA       | HOPS 166, PGCC G210.49–19.79, L1641, Orion A              |
| G210.49-19.79East2                         | 05:36:23.13       | -06:46:10.8                | Protostellar  | 0.43         | 7          | $11.8 \pm 2.7$                   | $8.4 \pm 2.2$                                     | OA       | HOPS 203, PGCC G210.49–19.79, L1641, Orion A              |
| G210.49-19.79West                          | 05:36:18.40       | -06:45:26.8                | Protostellar  | 0.43         | 7          | $11.8 \pm 2.7$                   | $11.3 \pm 2.9$                                    | OA       | HOPS 168, PGCC G210.49–19.79, L1641, Orion A              |
| G210.82-19.47North1                        | 05:37:56.56       | -06:56:35.1                | Protostellar  | 0.43         | 7          | $16.2\pm7.9$                     | $0.4\pm0.2$                                       | OA       | HOPS 157, PGCC G210.82-19.47, L1641, Orion A              |
| G210.82-19.47North2                        | 05:37:59.84       | -06:57:09.9                | Starless      | 0.43         | 7          | $16.2\pm7.9$                     | $0.4\pm0.2$                                       | OA       | PGCC G210.82–19.47, L1641, Orion A                        |
| G210.97-19.33North                         | 05:38:40.36       | -06:58:21.9                | Protostellar  | 0.43         | 7          | $12.8 \pm 1.1$                   | $0.8\pm0.1$                                       | OA       | HOPS 149, PGCC G210.97-19.33, L1641, Orion A              |
| G210.97-19.33South1                        | 05:38:49.46       | -07:01:17.9                | Protostellar  | 0.43         | 7          | $12.8 \pm 1.1$                   | $2.1 \pm 0.4$                                     | OA       | HOPS 139, PGCC G210.97–19.33, L1641, Orion A              |

|                     |                               |                               |              |                |            | Table 1(Continued)           |                                                         |      |                                                                |
|---------------------|-------------------------------|-------------------------------|--------------|----------------|------------|------------------------------|---------------------------------------------------------|------|----------------------------------------------------------------|
| SCUBA-2 Core        | R.A. (J2000)<br>(hh:mm:ss.ss) | Decl. (J2000)<br>(dd:mm:ss.s) | YSO Ass.     | Dist.<br>(kpc) | References | <i>T</i> <sub>d</sub><br>(K) | $N({\rm H}_2)$<br>(×10 <sup>23</sup> cm <sup>-2</sup> ) | Env. | Comment                                                        |
| (1)                 | (2)                           | (3)                           | (4)          | (5)            | (6)        | (7)                          | (8)                                                     | (9)  | (10)                                                           |
| G210.97-19.33South2 | 05:38:45.30                   | -07:01:04.4                   | Protostellar | 0.43           | 7          | $12.8 \pm 1.1$               | $1.2\pm0.3$                                             | OA   | HOPS 377, PGCC G210.97-19.33, L1641, Orion A                   |
| G211.01-19.54North  | 05:37:57.23                   | -07:06:56.7                   | Protostellar | 0.43           | 7          | $14.7\pm8.4$                 | $2.5\pm1.4$                                             | OA   | HOPS 153, PGCC G211.01-19.54, L1641, Orion A                   |
| G211.01-19.54South  | 05:37:59.04                   | -07:07:32.7                   | Protostellar | 0.43           | 7          | $14.7\pm8.4$                 | $2.5\pm1.4$                                             | OA   | HOPS 152, PGCC G211.01-19.54, L1641, Orion A                   |
| G211.16-19.33North1 | 05:39:11.80                   | -07:10:29.9                   | Protostellar | 0.43           | 7          | $12.5\pm1.8$                 | $0.9\pm0.1$                                             | OA   | HOPS 129, PGCC G211.16-19.33, L1641, Orion A                   |
| G211.16-19.33North2 | 05:39:05.89                   | -07:10:37.9                   | Protostellar | 0.43           | 7          | $12.5\pm1.8$                 | $0.8\pm0.1$                                             | OA   | HOPS 133, PGCC G211.16-19.33, L1641, Orion A                   |
| G211.16-19.33North3 | 05:39:02.26                   | -07:11:07.9                   | Starless     | 0.43           | 7          | $12.5\pm1.8$                 | $0.6\pm0.1$                                             | OA   | PGCC G211.16-19.33, L1641, Orion A                             |
| G211.16-19.33North4 | 05:38:55.67                   | -07:11:25.9                   | Protostellar | 0.43           | 7          | $12.5\pm1.8$                 | $0.4\pm0.1$                                             | OA   | Herschel J053854.1-071123, PGCC G211.16-19.33, L1641, Orion A  |
| G211.16-19.33North5 | 05:38:46.00                   | -07:10:41.9                   | Protostellar | 0.43           | 7          | $12.5\pm1.8$                 | $0.7\pm0.1$                                             | OA   | HOPS 135, PGCC G211.09-19.47, L1641, Orion A                   |
| G211.16-19.33South  | 05:39:02.94                   | -07:12:49.9                   | Protostellar | 0.43           | 7          | $12.5\pm1.8$                 | $1.0\pm0.2$                                             | OA   | HOPS 130, PGCC G211.16-19.33, L1641, Orion A                   |
| G211.47-19.27North  | 05:39:57.27                   | -07:29:38.3                   | Protostellar | 0.43           | 7          | $12.4\pm1.1$                 | $4.1\pm0.4$                                             | OA   | HOPS 290, PGCC G211.47-19.27, L1641, Orion A                   |
| G211.47-19.27South  | 05:39:55.92                   | -07:30:28.3                   | Protostellar | 0.43           | 7          | $12.4\pm1.1$                 | $7.2\pm0.8$                                             | OA   | HOPS 288, PGCC G211.47-19.27, L1641, Orion A                   |
| G211.72-19.25North  | 05:40:13.72                   | -07:32:16.8                   | Protostellar | 0.43           | 7          | $12.6\pm3.4$                 | $0.9\pm0.3$                                             | OA   | WISE J054013.78-073216.0, PGCC G211.72-19.25, L1641, Orion A   |
| G211.72-19.25South1 | 05:40:19.04                   | -07:34:28.8                   | Starless     | 0.43           | 7          | $12.6\pm3.4$                 | $0.8\pm0.3$                                             | OA   | PGCC G211.72-19.25, L1641, Orion A                             |
| G212.10-19.15North1 | 05:41:21.56                   | -07:52:27.7                   | Protostellar | 0.43           | 7          | $10.8\pm1.4$                 | $1.9\pm0.3$                                             | OA   | Herschel J054120.5-075237, PGCC G212.10-19.15, Orion A         |
| G212.10-19.15North2 | 05:41:23.98                   | -07:53:48.5                   | Protostellar | 0.43           | 7          | $10.8\pm1.4$                 | $1.8\pm0.3$                                             | OA   | HOPS 263, PGCC G212.10-19.15, Orion A                          |
| G212.10-19.15North3 | 05:41:24.82                   | -07:55:08.5                   | Protostellar | 0.43           | 7          | $10.8\pm1.4$                 | $2.0\pm0.3$                                             | OA   | HOPS 254, PGCC G212.10-19.15, Orion A                          |
| G212.10-19.15South  | 05:41:26.39                   | -07:56:51.8                   | Protostellar | 0.43           | 7          | $10.8\pm1.4$                 | $1.9\pm0.3$                                             | OA   | HOPS 247, PGCC G212.10-19.15, Orion A                          |
| G212.84-19.45North  | 05:41:32.14                   | -08:40:10.9                   | Protostellar | 0.43           | 7          | $11.7\pm1.1$                 | $2.0\pm0.2$                                             | OA   | HOPS 224, PGCC G212.84-19.45, Orion A                          |
| G212.84-19.45South  | 05:41:29.70                   | -08:43:00.2                   | Protostellar | 0.43           | 7          | $11.7\pm1.1$                 | $0.7\pm0.1$                                             | OA   | HOPS 219, PGCC G212.84-19.45, Orion A                          |
| G215.44-16.38       | 05:56:58.45                   | -09:32:42.3                   | Starless     | 0.43           | 7          | $12.1\pm0.8$                 | $0.6\pm0.1$                                             | OA   | PGCC G215.44-16.38, Orion A                                    |
| G215.87-17.62North  | 05:53:41.91                   | -10:24:02.0                   | Protostellar | 0.43           | 7          | $12.2\pm1.2$                 | $0.6\pm0.1$                                             | OA   | WISE J055342.54-102400.5, PGCC G215.82-17.45, Orion A          |
| G215.87-17.62Middle | 05:53:32.41                   | -10:25:06.1                   | Protostellar | 0.43           | 7          | $12.2\pm1.2$                 | $0.5\pm0.1$                                             | OA   | WISE J055332.75-102510.2, PGCC G215.87-17.62, Orion A          |
| G215.87-17.62South  | 05:53:26.43                   | -10:27:26.0                   | Protostellar | 0.43           | 7          | $12.2\pm1.2$                 | $0.6\pm0.1$                                             | OA   | WISE J055325.06-102730.1, PGCC G215.87-17.62, Orion A          |
| SCOPEG139.12-03.23  | 02:50:21.84                   | +55:51:36.0                   | Protostellar | 2.22           | 13         | $10.6\pm1.3$                 | $0.7\pm0.1$                                             | Н    | WISE J025022.14+555128.4, PGCC G139.19-3.29                    |
| SCOPEG159.21-20.13  | 03:33:16.08                   | +31:06:50.4                   | Protostellar | 0.30           | 10         | $11.4\pm1.5$                 | $0.9\pm0.2$                                             | Н    | [EES2009] Per-emb 10, PGCC G159.19-20.11, Banard 1, Perseus    |
| SCOPEG159.18-20.09  | 03:33:17.76                   | +31:09:32.4                   | Protostellar | 0.30           | 10         | $11.4\pm1.5$                 | $3.0\pm0.7$                                             | Н    | SSTc2d J033317.8+310931, PGCC G159.19-20.11, Banard 1, Perseus |
| SCOPEG159.22-20.11  | 03:33:21.36                   | +31:07:26.4                   | Protostellar | 0.30           | 10         | $11.4\pm1.5$                 | $2.6\pm0.6$                                             | Н    | [SDA2014] West41, PGCC G159.19-20.11, Banard 1, Perseus        |
| SCOPEG162.46-08.67  | 04:21:38.16                   | +37:34:37.2                   | Protostellar | 0.45           | 8          | $12.1\pm0.7$                 | $0.5\pm0.1$                                             | Н    | WISE J042137.96+373441.7, PGCC G162.44-8.70, California        |
| SCOPEG162.48-08.68  | 04:21:41.28                   | +37:33:57.6                   | Protostellar | 0.45           | 8          | $12.1\pm0.7$                 | $0.4\pm0.1$                                             | Н    | SSTgbs J0421408+373359, PGCC G162.44-8.70, California          |
| SCOPEG171.50-14.91  | 04:28:39.36                   | +26:51:32.4                   | Protostellar | 0.14           | 4          | $9.2\pm2.1$                  | $1.2\pm0.3$                                             | Н    | NAME LDN 1521F IRS, PGCC G171.49-14.91, L1521F, Taurus         |
| SCOPEG172.88+02.26  | 05:36:51.60                   | +36:10:40.8                   | Protostellar | 1.30           | 14         | $11.6\pm2.4$                 | $1.1 \pm 0.3$                                           | Н    | WISE J053651.31+361037.1, PGCC G172.84+2.28, L1525, Auriga     |
| SCOPEG172.88+02.27  | 05:36:53.76                   | +36:10:33.6                   | Protostellar | 1.30           | 14         | $11.6\pm2.4$                 | $1.1 \pm 0.4$                                           | Н    | WISE J053653.75+361033.5, PGCC G172.84+2.28, L1525, Auriga     |
| SCOPEG172.89+02.27  | 05:36:54.96                   | +36:10:12.0                   | Protostellar | 1.30           | 14         | $11.6\pm2.4$                 | $0.7\pm0.2$                                             | Н    | WISE J053654.91+361008.2, PGCC G172.84+2.28, L1525, Auriga     |
| SCOPEG173.17+02.36  | 05:38:00.48                   | +35:58:58.8                   | Protostellar | 1.30           | 14         | $14.8\pm3.0$                 | $0.6 \pm 0.1$                                           | Н    | WISE J053800.11+355903.7, PGCC G173.12+2.36, L1525, Auriga     |
| SCOPEG173.18+02.35  | 05:38:01.68                   | +35:58:15.6                   | Protostellar | 1.30           | 14         | $14.8\pm3.0$                 | $0.7\pm0.2$                                             | Н    | Herschel J053801.5+355817, PGCC G173.12+2.36, L1525, Auriga    |
| SCOPEG173.19+02.35  | 05:38:01.68                   | +35:57:39.6                   | Protostellar | 1.30           | 14         | $14.8 \pm 3.0$               | $0.4 \pm 0.1$                                           | Н    | Herschel J053801.3+355734, PGCC G173.12+2.36, L1525, Auriga    |
| SCOPEG178.27-00.60  | 05:39:06.48                   | +30:05:24.0                   | Protostellar | 0.96           | 13         | $11.9 \pm 0.8$               | $0.4 \pm 0.1$                                           | G    | Herschel J053906.4+300524, PGCC G178.28-0.58                   |
| SCOPEG178.28-00.60  | 05:39:07.44                   | +30:04:44.4                   | Protostellar | 0.96           | 13         | $11.9 \pm 0.8$               | $0.2 \pm 0.1$                                           | G    | Herschel J053907.3+300452, PGCC G178.28-0.58                   |
| SCOPEG195.71-02.32  | 06:10:50.40                   | +14:10:15.6                   | Protostellar | 2.05           | 2          | $12.2 \pm 1.4$               | $0.7\pm0.1$                                             | Н    | [MJR2015] 1377, PGCC G195.74–2.30                              |
| SCOPEG195.74-02.30  | 06:10:58.32                   | +14:09:28.8                   | Protostellar | 2.05           | 2          | $12.2 \pm 1.4$               | $1.1 \pm 0.3$                                           | Н    | WISE J061058.71+140929.6, PGCC G195.74-2.30                    |
| SCOPEG202.30+02.53  | 06:40:58.32                   | +10:36:54.0                   | Protostellar | 0.76           | 17         | $14.5 \pm 1.7$               | $1.3 \pm 0.2$                                           | Н    | 2MASS J06405810+1036525, PGCC G202.36+2.50, NGC 2264           |
| SCOPEG202.31+02.52  | 06:40:59.28                   | +10:36:07.2                   | Protostellar | 0.76           | 17         | $14.5 \pm 1.7$               | $0.7\pm0.1$                                             | Н    | [RPG2014] 61848, PGCC G202.36+2.50. NGC 2264                   |
| SCOPEG202.32+02.53  | 06:41:01.92                   | +10:35:24.0                   | Starless     | 0.76           | 17         | $14.5 \pm 1.7$               | $0.4 \pm 0.1$                                           | Н    | PGCC G202.36+2.50, NGC 2264                                    |
| SCOPEG006.01+36.74  | 15:54:08.64                   | -02:52:44.4                   | Starless     | 0.11           | 16         | $11.2 \pm 0.4$               | $0.3 \pm 0.1$                                           | Н    | PGCC G6.04+36.77, L183                                         |
| SCOPEG001.37+20.95  | 16:34:35.28                   | -15:46:55.2                   | Starless     | 0.12           | 9          | $12.1 \pm 0.5$               | $0.6\pm0.1$                                             | Н    | PGCC G1.40+20.93, L43, Ophiuchus                               |
| SCOPEG010.19+02.41  | 17:59:15.36                   | -18:56:42.0                   | Protostellar | 0.81           | 18         | $15.0\pm1.5$                 | $0.2\pm0.1$                                             | Н    | [MJR2015] 115, PGCC G10.20+2.40                                |

|                    |                               |                               |              |                |            | Table 1(Continued)           |                                                         |      |                                                       |
|--------------------|-------------------------------|-------------------------------|--------------|----------------|------------|------------------------------|---------------------------------------------------------|------|-------------------------------------------------------|
| SCUBA-2 Core       | R.A. (J2000)<br>(hh:mm:ss.ss) | Decl. (J2000)<br>(dd:mm:ss.s) | YSO Ass.     | Dist.<br>(kpc) | References | <i>T</i> <sub>d</sub><br>(K) | $N({\rm H}_2)$<br>(×10 <sup>23</sup> cm <sup>-2</sup> ) | Env. | Comment                                               |
| (1)                | (2)                           | (3)                           | (4)          | (5)            | (6)        | (7)                          | (8)                                                     | (9)  | (10)                                                  |
| SCOPEG005.91-00.95 | 18:02:42.00                   | -24:19:04.8                   | Protostellar | 2.25           | 1          | $16.4\pm7.6$                 | $0.6\pm0.3$                                             | G    | SSTGLMC G005.9126-00.9525, PGCC G6.87-0.39, NGC 6530  |
| SCOPEG005.88-01.01 | 18:02:50.16                   | -24:22:26.4                   | Protostellar | 2.25           | 1          | $17.6\pm5.2$                 | $0.4 \pm 0.1$                                           | G    | MIRES G005.8802-01.0041, PGCC G4.81-1.42, NGC 6530    |
| SCOPEG005.92-00.99 | 18:02:51.36                   | -24:20:06.0                   | Protostellar | 2.25           | 1          | $16.4\pm7.6$                 | $0.5\pm0.3$                                             | G    | Herschel G005.9164-0.9913, PGCC G6.87-0.39, NGC 6530  |
| SCOPEG005.90-01.01 | 18:02:53.04                   | -24:21:43.2                   | Protostellar | 2.25           | 1          | $16.4\pm7.6$                 | $0.4\pm0.2$                                             | G    | WISE J180253.28-242153.8, PGCC G6.87-0.39, NGC 6530   |
| SCOPEG005.91-01.02 | 18:02:58.08                   | -24:21:25.2                   | Protostellar | 2.25           | 1          | $16.4\pm7.6$                 | $0.5\pm0.2$                                             | G    | MIRES G005.9108-01.0229, PGCC G6.87-0.39, NGC 6530    |
| SCOPEG017.38+02.26 | 18:14:18.96                   | -12:43:58.8                   | Protostellar | 2.56           | 12         | $15.3\pm2.7$                 | $0.3 \pm 0.1$                                           | Н    | WISE J181418.81-124358.7, PGCC G17.37+2.26            |
| SCOPEG017.38+02.25 | 18:14:21.12                   | -12:44:38.4                   | Protostellar | 2.56           | 12         | $15.3\pm2.7$                 | $0.6\pm0.1$                                             | Н    | MSX6C G017.3765+02.2512, PGCC G17.37+2.26             |
| SCOPEG017.37+02.24 | 18:14:22.56                   | -12:45:25.2                   | Protostellar | 2.56           | 12         | $15.3\pm2.7$                 | $0.4\pm0.1$                                             | Н    | WISE J181422.18-124521.2, PGCC G17.37+2.26            |
| SCOPEG017.36+02.23 | 18:14:24.00                   | -12:45:54.0                   | Protostellar | 2.56           | 12         | $15.3\pm2.7$                 | $0.6\pm0.1$                                             | Н    | WISE J181424.00-124548.6, PGCC G17.37+2.26            |
| SCOPEG014.20-00.18 | 18:16:55.44                   | -16:41:45.6                   | Protostellar | 3.07           | 13         | $15.8\pm4.3$                 | $0.6\pm0.2$                                             | G    | WISE J181656.04-164141.5, PGCC G14.21-0.19            |
| SCOPEG014.23-00.17 | 18:16:58.80                   | -16:39:50.4                   | Starless     | 3.06           | 13         | $15.8\pm4.3$                 | $0.5\pm0.1$                                             | G    | PGCC G14.21-0.19                                      |
| SCOPEG014.18-00.23 | 18:17:05.28                   | -16:43:44.4                   | Protostellar | 3.15           | 13         | $15.8\pm4.3$                 | $0.5\pm0.2$                                             | G    | Herschel G014.1897-0.2273, PGCC G14.21-0.19           |
| SCOPEG014.71-00.15 | 18:17:50.88                   | -16:13:48.0                   | Protostellar | 3.20           | 13         | $14.4\pm8.6$                 | $0.7\pm0.5$                                             | G    | MIRES G014.7115-00.1518, PGCC G14.71-0.19             |
| SCOPEG014.72-00.20 | 18:18:03.60                   | -16:14:42.0                   | Protostellar | 3.06           | 13         | $14.4\pm8.6$                 | $0.6\pm0.4$                                             | G    | MIRES G014.7236-00.2003, PGCC G14.71-0.19             |
| SCOPEG014.69-00.22 | 18:18:03.60                   | -16:17:09.6                   | Protostellar | 3.06           | 13         | $14.4\pm8.6$                 | $0.7\pm0.4$                                             | G    | MIRES G014.6882-00.2217, PGCC G14.71-0.19             |
| SCOPEG014.71-00.22 | 18:18:06.24                   | -16:15:54.0                   | Protostellar | 3.04           | 13         | $14.4\pm8.6$                 | $0.5\pm0.3$                                             | G    | Herschel G014.7126-0.2269, PGCC G14.71-0.19           |
| SCOPEG014.11-00.57 | 18:18:13.20                   | -16:57:21.6                   | Protostellar | 1.85           | 13         | $15.7\pm3.7$                 | $2.2\pm0.9$                                             | G    | Herschel G014.1139-0.5745, PGCC G14.14-0.55           |
| SCOPEG014.23-00.51 | 18:18:12.72                   | -16:49:33.6                   | Protostellar | 1.85           | 13         | $15.7\pm3.7$                 | $3.1\pm0.7$                                             | G    | GAL 014.23-00.51, PGCC G14.14-0.55                    |
| SCOPEG016.93+00.28 | 18:20:35.76                   | -14:04:15.6                   | Protostellar | 1.87           | 13         | $13.3\pm5.9$                 | $0.5\pm0.2$                                             | G    | MSX6C G016.9261+00.2854, PGCC G16.96+0.27, NGC 6611   |
| SCOPEG016.93+00.27 | 18:20:39.84                   | -14:04:51.6                   | Protostellar | 1.87           | 13         | $13.3\pm5.9$                 | $0.5\pm0.3$                                             | G    | Herschel G016.9253+0.2662, PGCC G16.96+0.27, NGC 6611 |
| SCOPEG016.93+00.25 | 18:20:43.20                   | -14:05:16.8                   | Starless     | 1.87           | 13         | $13.3\pm5.9$                 | $0.5\pm0.3$                                             | G    | PGCC G16.96+0.27, NGC 6611                            |
| SCOPEG016.93+00.24 | 18:20:44.88                   | -14:05:31.2                   | Starless     | 1.88           | 13         | $13.3\pm5.9$                 | $0.6 \pm 0.3$                                           | G    | PGCC G16.96+0.27, NGC 6611                            |
| SCOPEG016.92+00.23 | 18:20:46.56                   | -14:06:14.4                   | Starless     | 1.87           | 13         | $13.3\pm5.9$                 | $0.5\pm0.2$                                             | G    | PGCC G16.96+0.27, NGC 6611                            |
| SCOPEG016.93+00.22 | 18:20:50.64                   | -14:06:00.0                   | Protostellar | 1.87           | 13         | $13.3\pm5.9$                 | $0.8\pm0.4$                                             | G    | Herschel G016.9288+0.2180, PGCC G16.96+0.27, NGC 6611 |
| SCOPEG016.30-00.53 | 18:22:20.16                   | -15:00:14.4                   | Starless     | 3.15           | 13         | $19.6\pm6.1$                 | $0.3 \pm 0.1$                                           | G    | PGCC G16.36-0.62                                      |
| SCOPEG016.34-00.59 | 18:22:37.20                   | -15:00:00.0                   | Protostellar | 3.35           | 13         | $19.6\pm6.1$                 | $0.6\pm0.2$                                             | G    | WISE J182236.21-145956.5, PGCC G16.36-0.62            |
| SCOPEG016.38-00.61 | 18:22:47.52                   | -14:58:37.2                   | Protostellar | 3.36           | 13         | $19.6\pm6.1$                 | $0.3 \pm 0.1$                                           | G    | Herschel J182247.7-145848, PGCC G16.36-0.62           |
| SCOPEG016.42-00.64 | 18:22:58.08                   | -14:57:00.0                   | Starless     | 3.34           | 13         | $19.8\pm 6.3$                | $0.4 \pm 0.1$                                           | G    | PGCC G16.42-0.63                                      |
| SCOPEG017.22-01.46 | 18:27:30.48                   | -14:37:51.6                   | Protostellar | 3.02           | 13         | $9.9 \pm 1.4$                | $3.9 \pm 1.1$                                           | G    | WISE J182730.01-143747.4, PGCC G17.21-1.46            |
| SCOPEG017.21-01.47 | 18:27:31.44                   | -14:38:34.8                   | Protostellar | 3.01           | 13         | $9.9 \pm 1.4$                | $2.5\pm0.6$                                             | G    | WISE J182731.41-143844.9, PGCC G17.21-1.46            |
| SCOPEG023.63+00.59 | 18:32:14.88                   | -08:00:10.8                   | Starless     | 5.80           | 13         | $22.4\pm5.9$                 | $0.2 \pm 0.1$                                           | G    | PGCC G23.68+0.57, L463                                |
| SCOPEG023.69+00.59 | 18:32:21.36                   | -07:56:38.4                   | Protostellar | 5.82           | 13         | $22.4\pm5.9$                 | $0.6 \pm 0.3$                                           | G    | Herschel G023.6917+0.5888, PGCC G23.68+0.57, L463     |
| SCOPEG024.02+00.24 | 18:34:13.44                   | -07:48:32.4                   | Starless     | 9.21           | 13         | $20.2\pm7.0$                 | $0.3 \pm 0.1$                                           | G    | PGCC G24.04+0.26                                      |
| SCOPEG024.02+00.21 | 18:34:18.72                   | -07:49:44.4                   | Starless     | 6.00           | 13         | $20.2\pm7.0$                 | $0.4 \pm 0.1$                                           | G    | PGCC G24.04+0.26                                      |
| SCOPEG023.32-00.29 | 18:34:50.16                   | -08:40:51.6                   | Protostellar | 5.90           | 13         | $16.9\pm6.6$                 | $1.0 \pm 0.4$                                           | G    | SSTGLMC G023.3227-00.2937, PGCC G23.35-0.26           |
| SCOPEG026.50+00.71 | 18:37:07.44                   | -05:23:56.4                   | Protostellar | 3.02           | 13         | $15.7 \pm 4.4$               | $1.2\pm0.6$                                             | G    | MSX6C G026.4958+00.7105, PGCC G26.53+0.71             |
| SCOPEG037.92+02.14 | 18:52:53.76                   | +05:25:08.4                   | Protostellar | 1.90           | 13         | $14.0\pm4.0$                 | $0.3 \pm 0.1$                                           | Н    | [MJR2015] 2928, PGCC G37.91+2.18                      |
| SCOPEG033.74-00.01 | 18:52:57.12                   | +00:43:01.2                   | Protostellar | 6.50           | 13         | $16.8\pm3.5$                 | $0.6\pm0.3$                                             | G    | Herschel J185256.6+004316, PGCC G33.72-0.02           |
| SCOPEG039.74+01.99 | 18:56:46.56                   | +06:57:39.6                   | Protostellar | 1.91           | 13         | $13.6 \pm 4.7$               | $0.4 \pm 0.1$                                           | G    | [MJR2015] 2954, PGCC G39.73+1.91                      |
| SCOPEG035.48-00.29 | 18:57:06.96                   | +02:08:24.0                   | Protostellar | 2.21           | 13         | $14.0\pm5.7$                 | $0.6\pm0.4$                                             | G    | SSTGLMC G035.4858-00.2876, PGCC G35.49-0.31           |
| SCOPEG035.52-00.27 | 18:57:08.40                   | +02:10:48.0                   | Protostellar | 2.25           | 13         | $14.0\pm5.7$                 | $0.7\pm0.3$                                             | G    | Herschel G035.5235-0.2728, PGCC G35.49-0.31           |
| SCOPEG035.48-00.31 | 18:57:11.28                   | +02:07:30.0                   | Protostellar | 2.23           | 13         | $14.0\pm5.7$                 | $0.6\pm0.4$                                             | G    | MIREX G035.4823-00.3086, PGCC G35.49-0.31             |
| SCOPEG034.75-01.38 | 18:59:41.04                   | +00:59:06.0                   | Protostellar | 2.19           | 13         | $14.5\pm4.4$                 | $1.2\pm0.4$                                             | G    | Herschel J185941.2+005908, PGCC G34.73-1.39           |
| SCOPEG035.36-01.77 | 19:02:11.04                   | +01:21:00.0                   | Protostellar | 2.21           | 13         | $13.6\pm6.8$                 | $1.0\pm0.6$                                             | G    | Herschel J190210.6+012102, PGCC G35.52-1.46, W48      |
| SCOPEG035.36-01.78 | 19:02:12.72                   | +01:20:52.8                   | Starless     | 2.21           | 13         | $13.6\pm 6.8$                | $0.7\pm0.4$                                             | G    | PGCC G35.52–1.46, W48                                 |
| SCOPEG035.35-01.80 | 19:02:16.08                   | +01:19:48.0                   | Protostellar | 2.21           | 13         | $13.6\pm6.8$                 | $0.4\pm0.2$                                             | G    | WISE J190216.70+011946.7, PGCC G35.52-1.46, W48       |

 $\infty$ 

|                    |               |               |              |       |            | Table 1(Continued) |                                    |      |                                                                  |
|--------------------|---------------|---------------|--------------|-------|------------|--------------------|------------------------------------|------|------------------------------------------------------------------|
| SCUBA-2 Core       | R.A. (J2000)  | Decl. (J2000) | YSO Ass.     | Dist. | References | T <sub>d</sub>     | <i>N</i> (H <sub>2</sub> )         | Env. | Comment                                                          |
|                    | (hh:mm:ss.ss) | (dd:mm:ss.s)  |              | (kpc) |            | (K)                | $(\times 10^{23} \text{ cm}^{-2})$ |      |                                                                  |
| (1)                | (2)           | (3)           | (4)          | (5)   | (6)        | (7)                | (8)                                | (9)  | (10)                                                             |
| SCOPEG057.11+03.66 | 19:23:49.20   | +23:07:58.8   | Starless     | 0.80  | 13         | $11.7\pm0.6$       | $0.3\pm0.1$                        | Н    | PGCC G57.11+3.65, L769                                           |
| SCOPEG057.10+03.63 | 19:23:56.88   | +23:06:28.8   | Protostellar | 0.80  | 13         | $11.7\pm0.6$       | $0.5\pm0.1$                        | Н    | WISE J192356.78+230633.0, PGCC G57.11+3.65, L769                 |
| SCOPEG069.80-01.67 | 20:13:32.40   | +31:21:50.4   | Protostellar | 2.48  | 13         | $14.3\pm1.8$       | $0.3 \pm 0.1$                      | G    | [MJR2015] 3117, PGCC G69.82-1.65                                 |
| SCOPEG069.81-01.67 | 20:13:33.84   | +31:22:01.2   | Protostellar | 2.48  | 13         | $14.3\pm1.8$       | $0.4\pm0.1$                        | G    | WISE J201333.64+312206.3, PGCC G69.82-1.65                       |
| SCOPEG070.40-01.39 | 20:14:01.20   | +32:00:50.4   | Protostellar | 2.48  | 13         | $12.1\pm1.4$       | $0.4\pm0.1$                        | G    | [MJR2015] 3182, PGCC G70.34-1.40                                 |
| SCOPEG074.10+00.11 | 20:17:56.40   | +35:55:22.8   | Protostellar | 4.34  | 13         | $12.4\pm1.8$       | $0.7\pm0.2$                        | G    | Herschel J201756.3+355525, PGCC G74.12+0.15                      |
| SCOPEG074.11+00.11 | 20:17:58.56   | +35:55:51.6   | Protostellar | 4.26  | 13         | $12.4\pm1.8$       | $0.6\pm0.1$                        | G    | WISE J201758.56+355552.3, PGCC G74.12+0.15                       |
| SCOPEG082.36-01.83 | 20:51:16.56   | +41:22:58.8   | Starless     | 1.54  | 13         | $11.4\pm2.9$       | $0.4\pm0.1$                        | G    | PGCC G82.39-1.84                                                 |
| SCOPEG082.40-01.84 | 20:51:24.96   | +41:24:46.8   | Protostellar | 1.52  | 13         | $11.4\pm2.9$       | $0.4\pm0.2$                        | G    | [MJR2015] 3335, PGCC G82.39-1.84                                 |
| SCOPEG082.41-01.84 | 20:51:27.36   | +41:25:22.8   | Starless     | 1.53  | 13         | $11.4\pm2.9$       | $0.4\pm0.1$                        | G    | PGCC G82.39-1.84                                                 |
| SCOPEG082.42-01.84 | 20:51:28.80   | +41:25:48.0   | Starless     | 1.52  | 13         | $11.4\pm2.9$       | $0.4\pm0.1$                        | G    | PGCC G82.39-1.84                                                 |
| SCOPEG091.86+04.17 | 21:00:24.96   | +52:30:18.0   | Protostellar | 0.80  | 6          | $12.2\pm2.2$       | $0.6\pm0.2$                        | Н    | WISE J210025.23+523016.9, PGCC G91.87+4.18, L1004, Cygnus        |
| SCOPEG091.85+04.12 | 21:00:38.40   | +52:27:57.6   | Protostellar | 0.80  | 6          | $12.2\pm2.2$       | $0.7\pm0.1$                        | Н    | WISE J210038.77+522757.5, PGCC G91.87+4.18, L1004, Cygnus        |
| SCOPEG092.03+03.93 | 21:02:23.52   | +52:28:33.6   | Starless     | 0.80  | 6          | $11.6\pm1.9$       | $0.3 \pm 0.1$                      | Н    | PGCC G92.03+3.92, L1004, Cygnus                                  |
| SCOPEG092.27+03.79 | 21:04:04.56   | +52:33:43.2   | Protostellar | 0.80  | 6          | $12.3\pm1.3$       | $1.7 \pm 0.3$                      | Н    | [MJR2015] 3554, PGCC G92.24+3.84, L1004, Cygnus                  |
| SCOPEG087.06-04.19 | 21:17:43.92   | +43:18:46.8   | Protostellar | 0.67  | 13         | $14.5\pm1.0$       | $0.2\pm0.1$                        | Н    | WISE J211744.02+431847.7, PGCC G87.06-4.19, L944                 |
| SCOPEG089.64-06.62 | 21:37:10.56   | +43:20:45.6   | Protostellar | 0.67  | 13         | $11.1\pm1.0$       | $0.7\pm0.2$                        | Н    | [MJR2015] 3461, PGCC G89.66-6.61, L973                           |
| SCOPEG105.37+09.84 | 21:43:00.72   | +66:03:21.6   | Protostellar | 1.15  | 15         | 13.0 ± 3.0         | 3.7 ± 1.0                          | Н    | [SS2009] NGC 7129-S3-U419, PGCC G105.51+9.99, L1181,<br>NGC 7129 |
| SCOPEG105.41+09.88 | 21:43:05.28   | +66:06:54.0   | Protostellar | 1.15  | 15         | 13.0 ± 3.0         | 3.2 ± 1.0                          | Н    | 2MASS J21430502+6606533, PGCC G105.51+9.99, L1181,<br>NGC 7129   |
| SCOPEG093.53-04.26 | 21:44:52.08   | +47:40:30.0   | Protostellar | 0.49  | 3          | $11.0\pm1.2$       | $1.0 \pm 0.3$                      | Н    | HHL 73 IRS 1, PGCC G93.54-4.28, L1035, IC 5146                   |
| SCOPEG093.54-04.28 | 21:44:57.60   | +47:39:57.6   | Starless     | 0.49  | 3          | $11.0\pm1.2$       | $0.4 \pm 0.1$                      | Н    | PGCC G93.54-4.28, L1035, IC 5146                                 |
| SCOPEG107.16+05.45 | 22:21:18.00   | +63:37:33.6   | Protostellar | 0.76  | 5          | $15.8\pm3.0$       | $0.2\pm0.1$                        | Н    | [MJR2015] 3797, PGCC G107.17+5.44, L1204, Cepheus                |
| SCOPEG107.30+05.64 | 22:21:26.16   | +63:51:28.8   | Protostellar | 0.76  | 5          | $12.9\pm1.4$       | $4.0\pm0.7$                        | Н    | [SPE2008b] IRAS 22198+6336 VLA 2, PGCC G107.25+5.72, L1204,      |
|                    |               |               |              |       |            |                    |                                    |      | Cepheus                                                          |
| SCOPEG107.18+05.43 | 22:21:33.60   | +63:37:19.2   | Protostellar | 0.76  | 5          | $15.8\pm3.0$       | $0.6\pm0.2$                        | Н    | [HLB98] Onsala 164, PGCC G107.17+5.44, L1204, Cepheus            |
| SCOPEG109.81+02.70 | 22:53:40.32   | +62:31:55.2   | Protostellar | 0.78  | 13         | $11.7\pm3.1$       | $0.7\pm0.2$                        | Н    | IRAS 22517+6215, PGCC G109.79+2.71                               |

Note. Column (1): SCUBA-2 core name. Columns (2)–(3): coordinate in equatorial system (J2000). Column (4): young stellar object (YSO) association inferred by visual inspection with YSO information of SIMBAD data and protostar catalogs of WISE, Spitzer, Herschel, and GAIA. Column (5): distance from us. Column (6): reference for the adopted distance: (1) Aidelman et al. 2018; (2) Camargo et al. 2012; (3) Fischera & Martin 2012; (4) Galli et al. 2018; (5) Hirota et al. 2008; (6) Humphreys 1978; (7) Kounkel et al. 2017; (8) Lada et al. 2009; (9) Lombardi et al. 2008; (10) Ortiz-León et al. 2018; (11) Perryman et al. 1997; (12) Pidopryhora et al. 2015; (13) Reid et al. 2016; (14) Straižys et al. 2010; (15) Straižys et al. 2014; (16) Straižys et al. 2018; (17) Sunada et al. 2007; (18) Wang et al. 2016. Column (7): dust temperature is from that of PGCC. Column (8): H<sub>2</sub> column density is derived from the 850  $\mu$ m peak intensity of the core and the dust temperature of PGCC (Yi et al. 2018; Eden et al. 2019). Column (9): description of environment surrounding a SCUBA-2 core: "OL," "OA," and "OB" indicate the subregions  $\lambda$  Orionis, Orion A, and Orion B of the Orion region, respectively; "G" indicates the Galactic plane ( $|b| < 2^\circ$ ); "H" indicates high latitudes ( $|b| \ge 2^\circ$ ). Column (10): source name of YSO, PGCC, or parent cloud. Columns (1)–(3) and (7)–(8) are from Yi et al. (2018) and Eden et al. (2019), respectively.



**Figure 2.** Spatial distribution of SCUBA-2 cores in the Orion region. The background image is the Planck dust continuum map at 850  $\mu$ m with a size of 15° × 30°. The symbol is the same as those used in Figure 1. The horizontal lines represent the boundaries for three subregions ( $\lambda$  Orionis, Orion A, and Orion B).

| Table     | 2     |
|-----------|-------|
| Molecular | Lines |

| Molecular Line                  | Freq. (GHz) | References | $E_u$ (K) | Receiver |
|---------------------------------|-------------|------------|-----------|----------|
| DNC $J = 1 - 0$                 | 76.305717   | 1          | 3.7       | T70      |
| $N_2D^+ J = 1 - 0$              | 77.109610   | 2          | 3.7       | T70      |
| c-C <sub>3</sub> H <sub>2</sub> | 85.338906   | 3          | 4.1       | T70      |
| $J_{K_aK_c} = 2_{12} - 1_{01}$  |             |            |           |          |
| $HN^{13}C J = 1-0$              | 87.090859   | 4          | 4.2       | T70      |
| CCS $J_N = 7_6 - 6_5$           | 81.505208   | 5          | 15.3      | ΤZ       |
| $HC_{3}N J = 9-8$               | 81.881461   | 6          | 19.7      | TZ       |
| $N_2H^+ J = 1 - 0$              | 93.173777   | 7          | 4.5       | ΤZ       |
| $\text{CCS } J_N = 8_7 - 7_6$   | 93.870107   | 8          | 19.9      | ΤZ       |

**Note.** Column (1): name of the molecular line. Column (2): rest frequency for the molecular line. Column (3): reference for the employed frequency: (1) Okabayashi & Tanimoto 1993; (2) Anderson et al. 1977; (3) Thaddeus et al. 1985; (4) Frerking et al. 1979; (5) Cummins et al. 1986; (6) Pickett et al. 1998; (7) Caselli & Myers 1995; (8) Yamamoto et al. 1990. Column (4): upper energy level of the molecular line. Column (5): receiver used to observe the molecular line.

### 2.6. Estimation for the Column Density and Column Density Ratio of Molecules

We derive the column densities of the six observed molecules,  $N_2D^+$ ,  $N_2H^+$ , DNC,  $HN^{13}C$ , CCS, and  $HC_3N$ (Tables 3 and 4). Among the two transitions of CCS, we use the lower-frequency transition because it has a higher detection rate (Section 3.1). The column densities of the six molecules can be derived with the assumption that the molecular lines are Kim et al. ribed in Suzuki

under local thermodynamic equilibrium as described in Suzuki et al. (1992), Sanhueza et al. (2012), and Mangum & Shirley (2015). For  $N_2D^+$  and  $N_2H^+$  lines, the column density is estimated through the HFS fitting as follows: (1) When the HFS fitting is successful to some extent, the column density is estimated from  $T_{\rm ant}\tau = (T_{\rm ex} - T_{\rm bg})\tau$  as a main factor, together with  $T_{\rm ex}$  as a weaker contribution. Here,  $\tau$  and  $T_{\rm bg}$  are the total line optical depth of all the hyperfine components and the temperature of the cosmic microwave background, respectively. (1–1) If the HFS fitting is fully successful or the  $T_{ant}\tau$ error is  $\leqslant$ 50% and excitation temperature is in a range of  $4 \text{ K} \leq T_{\text{ex}} \leq 25 \text{ K}$ , the column density is derived from  $T_{\text{ant}}\tau$ and  $T_{ex}$  from the HFS fitting. (1-1-1) In a case of the optically thin limit shown as " $\tau = 0.1$ ,"  $\tau$  is too small to constrain. The relative uncertainty in  $T_{ant}\tau$  is small, although that in  $\tau$  is large. (1-2) If the HFS fitting is partially successful or the error of  $T_{\rm ant}\tau$  is  $\leqslant$ 50% but  $T_{\rm ex}$  is out of the above range,  $T_{\rm ex}$  is estimated from dust temperature. We assume that gas kinetic temperature  $(T_k)$  is equal to dust temperature, and we also assume  $T_{\rm ex} = 0.5 T_{\rm k}$  following Tatematsu et al. (2017), who studied nine Planck Galactic clumps in the NH<sub>3</sub> lines. (2) When the HFS fitting is not successful or the  $T_{ant}\tau$  error is >50%, the column density is derived through single Gaussian fitting to the brightest hyperfine component of the  $N_2D^+$  and  $N_2H^+$  lines. The excitation temperature is, again, estimated from dust temperature. For DNC, HN<sup>13</sup>C, CCS, and HC<sub>3</sub>N lines, the column density is calculated from the peak temperature and line width through the Gaussian fitting, and excitation temperature estimated from dust temperature. We estimate the uncertainty of the column density through propagation from the  $1\sigma$  fitting error and the rms noise level of the spectrum. Some cores (e.g., G205.46–14.56North1) show excitation anomalies that the ratios of the hyperfine are not fit well with a single excitation temperature (see Figure 4). Note that the Rayleigh–Jeans approximation is assumed in the HFS fitting. Such excitation anomalies are reported by Caselli et al. (1995). We take into account excitation anomalies only as the fitting error in  $T_{ex}$ . When we employ excitation temperature from dust temperature, we assume that the error in excitation temperature is 50%, following the studies of Tatematsu et al. (2008, 2017). However, even in this case, when  $T_{ex}$  is too low, we can provide only lower limits on the column density. For instance, if  $T_{ex}$  is lower than 6.5 K, the line optical depth becomes moderate or large ( $\tau > 0.7$ ) at the lower end of the 50% error range for  $T_{ex}$ , and we cannot obtain upper limits on the column density reliably. In this case, we show lower limits on the column density obtained at the upper end of the 50% error range for  $T_{ex}$ . For undetected lines, we derive upper limits on the column density by using the  $3\sigma$  level at a 0.5 km s<sup>-1</sup> resolution. The column densities of six molecules are listed in Table 5.

For the column density ratios of D/H and N-bearing/ C-chain molecules, we calculate  $N(N_2D^+)/N(N_2H^+)$ ,  $N(DNC)/N(HN^{13}C)$ ,  $N(N_2H^+)/N(CCS)$ , and  $N(N_2H^+)/N(HC_3N)$  under the assumption that these line emissions are emitted from the same region. If one of the pairing column densities is not estimated, the lower limit or the upper limit is shown. The uncertainty of the column density ratio is given by propagating from the error of column density in the ratio. Table 5 lists the column density ratios.



Figure 3. Spectra of 207 SCUBA-2 cores in PGCC cores in eight molecular lines. A vertical line indicates a systemic velocity. A horizontal line represents 0 K in  $T_A^*$  scale. For the N<sub>2</sub>H<sup>+</sup> and N<sub>2</sub>D<sup>+</sup> emission, the cyan line represents the hyperfine structure fitting to result.



Figure 3. (Continued.)



Figure 3. (Continued.)

|                                                |                   |                         |                                    |                   | P                       | roperties                 | of 82 GH          | z CCS, 94               | <b>Fable 3</b><br>4 GHz C | CS, HC <sub>3</sub> N | , and $N_2H^+$      | Lines                   |                                           |                      |                            |                                |                                  |
|------------------------------------------------|-------------------|-------------------------|------------------------------------|-------------------|-------------------------|---------------------------|-------------------|-------------------------|---------------------------|-----------------------|---------------------|-------------------------|-------------------------------------------|----------------------|----------------------------|--------------------------------|----------------------------------|
|                                                | 82                | 82 GHz CCS              |                                    | 94                | GHz CC                  | S                         |                   | HC <sub>3</sub> N       |                           | $N_2H^+$              |                     |                         |                                           |                      |                            |                                |                                  |
| SCUBA-2 Core                                   | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{\mathrm{s}^{-1}}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$     | V <sub>LSR,GA</sub> | $\Delta v_{\rm GA}$ (km | $V_{\rm LSR, HFS}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$ (K)           | τ                              | $T_{\rm ant}\tau$                |
| (1)                                            | (2)               | (3)                     | (4)                                | (5)               | (6)                     | (7)                       | (8)               | (9)                     | (10)                      | (11)                  | (12)                | (13)                    | (14)                                      | (15)                 | (16)                       | (17)                           | (18)                             |
| G190.15-13.75North                             | ≤0.31             |                         |                                    | ≤0.29             |                         |                           | ≤0.27             |                         |                           | ≤0.29                 |                     |                         |                                           |                      |                            |                                |                                  |
| G190.15-13.75South                             | ≤0.30             |                         |                                    | ≤0.29             |                         |                           | ≤0.28             |                         |                           | 0.51                  | 1.34                | 0.19                    | 1.35                                      | 0.30                 | $5.4 \pm 2.7^{\dagger}$    |                                | $2.8\pm0.4$                      |
| G191.90-11.21North                             | ≤0.29             |                         |                                    | 0.37              | 5.62                    | 0.24                      | ≤0.25             |                         |                           | ≤0.26                 |                     |                         |                                           |                      |                            |                                |                                  |
| G191.90-11.21South                             | ≤0.26             |                         |                                    | ≤0.24             |                         |                           | ≤0.23             |                         |                           | 0.72                  | 10.53               | 0.38                    | 10.50                                     | 0.40                 | $4.2 \pm 0.3$              | $7.6 \pm 2.8$                  | $10.9 \pm 2.1$                   |
| G192.12-10.90North                             | 0.40              | 10.17                   | 0.34                               | 0.42              | 10.07                   | 0.15                      | 0.56              | 10.08                   | 0.49                      | 0.94                  | 10.04               | 0.33                    | 10.00                                     | 0.41                 | $7.0 \pm 0.7$              | $1.8 \pm 1.8$                  | $7.6 \pm 1.3$                    |
| G192 12-10 90South                             | 0.30              | 10.28                   | 0.10                               | ≤0.27             |                         |                           | ≤0.21             |                         |                           | ≤0.26                 |                     |                         |                                           |                      |                            |                                |                                  |
| $G_{192,12} = 10,0000$ mm $G_{192,12} = 11,10$ | ≤0.24             |                         |                                    | ≤0.24             |                         |                           | ≤0.22             |                         |                           | 0.52                  | 10.02               | 0.35                    | 10.10                                     | 0.73                 | $4.2 \pm 0.3$              | $3.0 \pm 1.8$                  | $45 \pm 0.8$                     |
| G192 32-11 88North                             | <0.29             |                         |                                    | <0.24             |                         |                           | <0.22             |                         |                           | 0.85                  | 12.12               | 0.59                    | 12 20                                     | 0.66                 | $43 \pm 0.2$               | $7.3 \pm 1.8$                  | $11.2 \pm 1.6$                   |
| G102 32-11 88South                             | <0.29             |                         |                                    | $\leq 0.24$       |                         |                           | 0.30              | 12.18                   | 0.64                      | 1.06                  | 12.12               | 0.59                    | 12.20                                     | 0.54                 | $4.5 \pm 0.2$<br>5 0 ± 0 2 | $6.0 \pm 1.0$                  | $11.2 \pm 1.0$<br>$13.4 \pm 1.4$ |
| G196 92-10 37                                  | <0.27             |                         |                                    | <0.24             |                         |                           | 0.55              | 11.83                   | 1.00                      | 1.00                  | 11.68               | 1.02                    | 11 70                                     | 0.84                 | $60 \pm 0.2$               | $30 \pm 10$                    | $10.4 \pm 1.4$<br>$10.0 \pm 1.2$ |
| G108.60 00.12North1                            | $\leq 0.52$       |                         |                                    | $\leq 0.20$       |                         |                           | <0.00             | 11.03                   | 1.00                      | 0.20                  | 11.00               | 0.62                    | 11.70                                     | 0.04                 | $5.0 \pm 0.4$              | $5.0 \pm 1.0$<br>1 2 $\pm$ 3 2 | $10.0 \pm 1.2$<br>$2.0 \pm 0.0$  |
| C102.60 00.12No                                | $\leq 0.25$       | •••                     | •••                                | $\leq 0.25$       | •••                     | •••                       | ≷0.24<br>0.42     | 10 49                   | 0.42                      | 0.29                  | 11.10               | 0.02                    | 10.70                                     | 0.44                 | $3.2 \pm 0.8$              | $1.2 \pm 3.3$                  | $2.9 \pm 0.9$                    |
| G198.69-09.12North2                            | ≤0.25             | •••                     | •••                                | ≤0.25             | •••                     | •••                       | 0.42              | 10.08                   | 0.43                      | 0.44                  | 10.76               | 0.08                    | 10.70                                     | 0.51                 | $4.6 \pm 0.3$              | $2.3 \pm 2.9$                  | $4.2 \pm 1.1$                    |
| G198.69–09.12South                             | <b>≤</b> 0.24     |                         | •••                                | ≤0.25             | •••                     | •••                       | 0.49              | 11.03                   | 0.93                      | 0.90                  | 10.97               | 0.95                    | 11.10                                     | 0.60                 | $4.7 \pm 0.2$              | $7.4 \pm 1.5$                  | $14.2 \pm 1.6$                   |
| G200.34–10.9/North                             | ≤0.27             | •••                     | •••                                | ≤0.25             | •••                     | •••                       | 0.27              | 13.58                   | 0.77                      | 1.37                  | 13.36               | 0.51                    | 13.40                                     | 0.45                 | $7.7 \pm 0.5$              | $2.8 \pm 1.2$                  | $14.0 \pm 1.5$                   |
| G200.34–10.97South                             | ≼0.26             |                         | •••                                | ≤0.26             |                         | •••                       | 0.37              | 13.63                   | 0.53                      | 0.64                  | 13.60               | 1.12                    | 13.60                                     | 0.55                 | $4.5 \pm 0.3$              | $5.1 \pm 2.1$                  | $8.9 \pm 1.5$                    |
| G201.52-11.08                                  | ≤0.26             | •••                     | •••                                | ≼0.27             | •••                     |                           | ≼0.27             |                         |                           | ≼0.27                 | •••                 |                         |                                           | •••                  | •••                        | •••                            | •••                              |
| G201.72-11.22                                  | ≼0.26             |                         |                                    | ≼0.26             |                         | •••                       | 0.66              | 9.44                    | 0.30                      | 0.92                  | 9.47                | 0.29                    | 9.46                                      | 0.30                 | $6.2\pm0.5$                | $2.7 \pm 1.7$                  | $9.6 \pm 1.4$                    |
| G203.21-11.20East1                             | 0.29              | 10.69                   | 0.79                               | 0.28              | 10.19                   | 0.58                      | 0.51              | 10.49                   | 0.55                      | 0.65                  | 10.15               | 1.43                    | 10.30                                     | 0.76                 | $4.2\pm0.2$                | $6.5 \pm 1.5$                  | $9.6\pm1.2$                      |
| G203.21-11.20East2                             | ≼0.26             |                         |                                    | 0.24              | 10.02                   | 0.24                      | 0.25              | 10.21                   | 0.46                      | 0.73                  | 10.19               | 0.35                    | 10.20                                     | 0.44                 | $4.3\pm0.2$                | $7.1\pm1.7$                    | $11.0\pm1.3$                     |
| G203.21-11.20West1                             | ≼0.25             |                         |                                    | ≼0.22             |                         | •••                       | 0.34              | 10.66                   | 0.70                      | 1.02                  | 10.70               | 1.02                    | 10.60                                     | 0.50                 | $4.9\pm0.1$                | $11.2\pm0.3$                   | $24.2\pm0.7$                     |
| G203.21-11.20West2                             | 0.24              | 10.15                   | 0.52                               | ≤0.23             |                         |                           | 0.52              | 10.05                   | 0.39                      | 0.91                  | 10.11               | 0.72                    | 10.10                                     | 0.50                 | $4.4\pm0.2$                | $12.6\pm0.5$                   | $20.6\pm2.7$                     |
| G204.4-11.3A2East                              | 0.31              | 1.71                    | 0.35                               | 0.37              | 1.56                    | 0.41                      | 1.49              | 1.61                    | 0.47                      | 1.59                  | 1.54                | 0.66                    | 1.53                                      | 0.47                 | $6.3 \pm 0.2$              | $7.1\pm0.9$                    | $25.2\pm1.6$                     |
| G204.4-11.3A2West                              | ≤0.28             |                         |                                    | ≤0.23             |                         |                           | 0.30              | 1.44                    | 0.89                      | 0.61                  | 1.12                | 0.44                    | 1.43                                      | 0.83                 | $4.0 \pm 0.2$              | $4.7\pm2.0$                    | $5.7\pm1.1$                      |
| G205.46-14.56Middle1                           | ≤0.29             |                         |                                    | ≤0.29             |                         |                           | 0.34              | 10.06                   | 0.82                      | 0.89                  | 9.92                | 1.34                    |                                           |                      | $6.2\pm3.1^{\dagger}$      |                                |                                  |
| G205.46-14.56Middle2                           | ≤0.19             |                         |                                    | ≤0.20             |                         |                           | 0.34              | 10.17                   | 0.89                      | 1.04                  | 10.29               | 0.75                    | 10.20                                     | 0.70                 | $6.7 \pm 0.3$              | $2.4 \pm 0.7$                  | $9.5 \pm 0.7$                    |
| G205 46-14 56Middle3                           | <0.18             |                         |                                    | <0.21             |                         |                           | 0.30              | 10.11                   | 0.96                      | 1.28                  | 10.05               | 1.07                    | 10.10                                     | 0.78                 | $10.0 \pm 0.5$             | $15 \pm 0.5$                   | $10.6 \pm 0.7$                   |
| G205.46 - 14.56 North 3                        | <0.18             |                         |                                    | <0.20             |                         |                           | <0.23             |                         |                           | 1 24                  | 9 99                | 1.18                    | 9.99                                      | 0.73                 | $83 \pm 0.4$               | $21 \pm 0.6$                   | $11.7 \pm 0.7$                   |
| G205 46-14 56North?                            | <0.10             |                         |                                    | <0.20             |                         |                           | 0.39              | 0.80                    | 0.68                      | 0.91                  | 10.05               | 1.10                    | 10.00                                     | 0.88                 | $11.2 \pm 0.3$             | $0.8 \pm 0.1$                  | $70 \pm 0.7$                     |
| G205.46 14.56North1                            | $\leq 0.17$       |                         |                                    | $\leq 0.20$       |                         |                           | 0.37              | 10.02                   | 0.00                      | 1 78                  | 10.00               | 0.73                    | 0.00                                      | 0.58                 | $78 \pm 0.2$               | $0.0 \pm 0.1$<br>$4.3 \pm 0.6$ | $7.0 \pm 0.2$<br>$21.7 \pm 1.1$  |
| G205.46 14.56South1                            | ₹0.20<br>0.22     | 10.54                   | 0.45                               | 0.21              | 0.06                    | 0.20                      | 0.55              | 10.02                   | 0.07                      | 2.20                  | 10.00               | 1.22                    | 10.30                                     | 1.19                 | $10.8 \pm 0.2$             | $4.3 \pm 0.0$                  | $21.7 \pm 1.1$<br>$17.1 \pm 0.6$ |
| $G_{205.40} = 14.505000011$                    | 0.22              | 10.54                   | 0.43                               | <0.23             | 9.90                    | 0.20                      | 0.50              | 10.44                   | 0.98                      | 2.29                  | 10.51               | 1.25                    | 10.50                                     | 1.10                 | $10.8 \pm 0.3$             | $2.1 \pm 0.2$                  | $17.1 \pm 0.0$                   |
| $G_{205.40} = 14.50South_2$                    | 0.29              | 10.52                   | 0.48                               | ≤0.23<br><0.22    | •••                     | •••                       | 0.85              | 10.55                   | 0.52                      | 1.80                  | 10.44               | 0.54                    | 10.50                                     | 0.40                 | $8.8 \pm 0.3$              | $3.2 \pm 0.5$                  | $19.5 \pm 0.9$                   |
| G205.46-14.56South3                            | ≤0.19             |                         | •••                                | ≤0.23             | •••                     | •••                       | 0.35              | 10.37                   | 0.63                      | 1.33                  | 10.36               | 0.81                    | 10.40                                     | 0.61                 | $7.5 \pm 0.3$              | $2.8 \pm 0.6$                  | $13.5 \pm 0.8$                   |
| G206.12-15.76                                  | •••               | •••                     | •••                                | •••               | •••                     | •••                       | •••               |                         |                           | •••                   |                     |                         |                                           | •••                  |                            |                                |                                  |
| G206.21–16.17North                             |                   | •••                     | •••                                |                   | •••                     | •••                       |                   |                         |                           | •••                   | •••                 | •••                     | •••                                       |                      | •••                        |                                | •••                              |
| G206.69–16.60North                             | ≼0.24             |                         | •••                                | ≤0.23             | •••                     | •••                       | 0.25              | 11.45                   | 0.47                      | 0.95                  | 11.35               | 0.39                    | 11.30                                     | 0.40                 | $6.5 \pm 0.4$              | $2.5 \pm 1.4$                  | $9.1 \pm 1.1$                    |
| G206.69-16.60South                             | ≼0.24             | •••                     | •••                                | ≤0.22             |                         | •••                       | 0.27              | 12.14                   | 0.26                      | 0.63                  | 12.08               | 1.06                    | 12.00                                     | 0.54                 | $4.4 \pm 0.3$              | $5.1 \pm 1.9$                  | $8.7 \pm 1.3$                    |
| G206.93-16.61East1                             | ≼0.21             | •••                     | •••                                | ≤0.23             |                         | •••                       | 0.22              | 9.77                    | 0.65                      | 1.91                  | 9.99                | 0.76                    | 9.84                                      | 0.79                 | $8.4 \pm 0.1$              | $3.4 \pm 0.1$                  | $19.0 \pm 0.1$                   |
| G206.93-16.61East2                             | ≤0.23             |                         |                                    | ≤0.20             |                         |                           | $\leqslant 0.20$  |                         |                           | 0.53                  | 9.76                | 0.58                    | 9.78                                      | 0.60                 | $8.4 \pm 4.2^{\dagger}$    |                                | $3.7\pm0.2$                      |
| G206.93-16.61West1                             | ≤0.23             |                         |                                    | ≼0.21             |                         |                           | 0.59              | 9.19                    | 0.76                      | 1.12                  | 9.32                | 0.74                    | 9.44                                      | 0.84                 | $11.8\pm0.2$               | $0.9\pm0.1$                    | $8.1\pm0.2$                      |
| G206.93-16.61West3                             | ≼0.21             |                         |                                    | ≤0.22             |                         |                           | 1.40              | 9.36                    | 0.64                      | 1.98                  | 9.25                | 1.02                    | 9.28                                      | 0.65                 | $7.2\pm0.2$                | $6.5\pm0.6$                    | $28.8 \pm 1.4$                   |
| G206.93-16.61West4                             | ≤0.22             |                         |                                    | ≼0.21             |                         |                           | ≼0.20             |                         |                           | 0.86                  | 10.19               | 0.51                    | 10.10                                     | 0.64                 | $7.2\pm0.6$                | $1.6 \pm 1.2$                  | $6.9\pm0.9$                      |
| G206.93-16.61West5                             | ≤0.19             |                         |                                    | ≤0.22             |                         |                           | ≤0.20             |                         |                           | 1.01                  | 9.01                | 0.42                    | 9.11                                      | 0.81                 | $5.8\pm0.3$                | $2.7\pm0.8$                    | $8.2\pm0.8$                      |
| G206.93-16.61West6                             | ≤0.22             |                         |                                    | ≤0.23             |                         |                           | ≤0.18             |                         |                           | ≤0.22                 |                     |                         |                                           |                      |                            |                                |                                  |
| G206.93–16.61West6                             | ≼0.22             |                         |                                    | ≼0.23             |                         |                           | ≼0.18             |                         |                           | 1.00                  | 10.34               | 0.69                    | 10.40                                     | 0.62                 | $6.6\pm0.3$                | $2.1\pm0.9$                    | $8.1\pm0.7$                      |

Table 3 Properties of 82 GHz CCS, 94 GHz CCS, HC<sub>3</sub>N, and N<sub>2</sub>H<sup>+</sup> Lines

|                                    |                   |                           |                           |                   |                         |                           |                    | (C                      | ontinued                  | .)                   |                  |                     |                                          |                      |                                          |                |                             |
|------------------------------------|-------------------|---------------------------|---------------------------|-------------------|-------------------------|---------------------------|--------------------|-------------------------|---------------------------|----------------------|------------------|---------------------|------------------------------------------|----------------------|------------------------------------------|----------------|-----------------------------|
|                                    | 82                | 82 GHz CCS                |                           |                   | 94 GHz CCS              |                           |                    | HC <sub>3</sub> N       |                           |                      |                  |                     |                                          | $N_2H^+$             |                                          |                |                             |
| SCUBA-2 Core                       | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km : | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$  | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$    | $V_{\rm LSR,GA}$ | $\Delta v_{GA}$ (kn | $V_{\rm LSR,HFS}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$                             | τ              | $T_{ant}\tau$               |
| (1)                                | (K)<br>(2)        | (3)                       | (4)                       | (K)<br>(5)        | (6)                     | (7)                       | (K)<br>(8)         | (9)                     | (10)                      | ( <b>K</b> )<br>(11) | (12)             | (13)                | (14)                                     | (15)                 | (K)<br>(16)                              | (17)           | (18)                        |
| G207.36-19.82North1                | ≼0.22             |                           |                           | ≼0.23             |                         |                           | 0.43               | 10.63                   | 1.01                      | 0.96                 | 10.52            | 1.48                | 10.70                                    | 1.13                 | $10.3\pm0.1$                             | $0.9\pm0.1$    | $6.7 \pm 0.1$               |
| G207.36-19.82North2                | ≤0.22             |                           |                           | ≼0.20             |                         |                           | 0.21               | 11.06                   | 1.05                      | 1.03                 | 11.25            | 0.51                | 11.20                                    | 0.45                 | $4.9\pm0.2$                              | $6.6 \pm 1.3$  | 14.3 ± 1.4                  |
| G207.36-19.82North3                | ≤0.22             |                           |                           | ≤0.22             |                         |                           | 0.47               | 11.08                   | 0.10                      | 0.74                 | 11.05            | 0.45                | 11.20                                    | 0.69                 | $4.5\pm0.2$                              | $4.0\pm1.4$    | $7.2 \pm 1.0$               |
| G207.36-19.82North4                | ≤0.23             |                           |                           | ≤0.20             |                         |                           | ≼0.21              |                         |                           | 0.65                 | 11.01            | 0.65                | 11.20                                    | 0.80                 | $4.4 \pm 0.3$                            | $3.6\pm1.5$    | $6.0 \pm 1.0$               |
| G207.36-19.82South                 | ≤0.22             |                           |                           | ≼0.23             |                         |                           | 0.24               | 11.19                   | 0.68                      | 0.74                 | 11.24            | 0.43                | 11.30                                    | 0.38                 | $4.5\pm0.2$                              | $5.9\pm1.8$    | $10.7 \pm 1.4$              |
| G207.3-19.8A2North1                | ≤0.22             |                           |                           | ≤0.23             |                         |                           | 0.23               | 11.85                   | 0.16                      | 0.43                 | 11.87            | 0.39                |                                          |                      | $5.9 \pm 3.0^{\dagger}$                  |                | 5                           |
| G207.3-19.8A2North2                | ≤0.23             |                           |                           | ≤0.22             |                         |                           | ≤0.21              |                         |                           | 0.52                 | 12.60            | 0.33                | 12.60                                    | 0.42                 | $5.9\pm3.0^{\dagger}$                    |                | $3.5 \pm 0.3$               |
| G207.3-19.8A2North3                | ≤0.22             |                           |                           | ≤0.21             |                         |                           | ≤0.19              |                         |                           | ≤0.22                |                  |                     |                                          |                      |                                          |                | ··· 2                       |
| G207.3-19.8A2South                 | ≤0.23             |                           |                           | ≤0.21             |                         |                           | ≤0.18              |                         |                           | 0.62                 | 11.82            | 0.30                | 11.80                                    | 0.45                 | $6.7\pm0.7$                              | $1.2 \pm 2.1$  | $4.7 \pm 0.9$               |
| G208.68-19.20North1                | ≤0.23             |                           |                           | ≼0.21             |                         |                           | 1.18               | 11.12                   | 0.82                      | 1.92                 | 11.13            | 0.96                | 11.20                                    | 0.72                 | $9.8\pm0.3$                              | $2.7\pm0.4$    | $19.2 \pm 0.9$              |
| G208.68-19.20North2                | ≤0.24             |                           |                           | ≤0.21             |                         |                           | 0.61               | 11.14                   | 0.77                      | 4.90                 | 11.14            | 0.67                | 11.10                                    | 0.44                 | $12.4 \pm 0.2$                           | $11.3 \pm 0.3$ | $109.0 \pm 1.9$             |
| G208.68-19.20North3                | ≤0.22             |                           |                           | ≤0.25             |                         |                           | 0.76               | 11.25                   | 1.03                      | 4.19                 | 11.12            | 0.96                | 11.10                                    | 0.69                 | $11.8 \pm 0.2$                           | $6.8 \pm 0.3$  | $61.8 \pm 1.5$              |
| G208 68-19 20South                 | ≤0.22             |                           |                           | ≤0.22             |                         |                           | 0.50               | 10.50                   | 0.90                      | 2.25                 | 10.35            | 0.94                | 10.30                                    | 0.95                 | $8.2 \pm 0.1$                            | $4.1 \pm 0.1$  | $22.1 \pm 0.1$              |
| G208 89-20 04East                  | <0.29             |                           |                           | < 0.31            |                         |                           | 1 10               | 8 77                    | 0.53                      | 2.05                 | 8 74             | 0.52                | 8 74                                     | 0.38                 | $65 \pm 0.3$                             | $112 \pm 14$   | $421 \pm 33$                |
| G209.05-19.73North                 | <0.32             |                           |                           | <0.31             |                         |                           | <0.29              |                         |                           | 0.75                 | 8 27             | 0.32                | 8 25                                     | 0.38                 | $8.8 \pm 0.2$                            | $12 \pm 0.1$   | $71 \pm 0.2$                |
| G209.05 - 19.73 South              | <0.34             |                           |                           | < 0.33            |                         |                           | 0.44               | 7 84                    | 0.38                      | 0.75                 | 7.87             | 0.45                | 7.89                                     | 0.30                 | $9.5 \pm 0.2$<br>$9.5 \pm 0.4$           | $0.9 \pm 0.1$  | $63 \pm 0.4$                |
| G209.09 19.75500th1                | <0.24             |                           |                           | <0.23             |                         |                           | < 0.19             |                         |                           | 1.80                 | 8.46             | 0.45                | 1.05                                     |                      | $9.5 \pm 0.4$<br>8 7 + 4 3 <sup>†</sup>  | 0.9 ± 0.1      | 0.5 ± 0.4                   |
| G209.29 19.65North2                | $\leq 0.23$       |                           |                           | <0.23             |                         |                           | $\leq 0.1^{\circ}$ |                         |                           | 0.00                 | 7.42             | 0.40                | 7.43                                     | 0.31                 | $6.7 \pm 4.5$                            | $28 \pm 0.4$   | $0.0 \pm 0.3$               |
| G209.29-19.05North2                | <0.22             |                           |                           | <0.23             |                         |                           | <0.21              |                         |                           | 1.06                 | 0.00             | 0.34                | 0.00                                     | 0.31                 | $0.5 \pm 0.1$<br>8.6 $\pm 4.2^{\dagger}$ | 2.8 ± 0.4      | $9.9 \pm 0.3$               |
| G209.29-19.05North2                | $\leq 0.23$       |                           |                           | $\leq 0.23$       |                         |                           | $\leq 0.21$        |                         |                           | 0.70                 | 0.00<br>8 7 2    | 0.29                | 0.00                                     | 0.20                 | $8.0 \pm 4.3$                            | $0.7 \pm 1.4$  | $13.1 \pm 0.2$<br>5.1 ± 0.8 |
| $C_{209,29} = 19.05 \text{Noture}$ | ≷0.24<br><0.20    |                           |                           | ≷0.20<br><0.21    |                         |                           | ≷0.20<br><0.20     |                         |                           | 1.25                 | 8.72<br>7.77     | 0.45                | 0.00<br>7.69                             | 1.42                 | $10.0 \pm 1.1$                           | $0.7 \pm 1.4$  | $3.1 \pm 0.6$               |
| G209.29 - 19.05500011              | ≷0.20<br><0.20    | •••                       |                           | ≤0.21<br><0.22    |                         | •••                       | ≷0.20<br><0.20     | •••                     | •••                       | 1.55                 | 7.77             | 0.98                | 7.08                                     | 1.42                 | $7.5 \pm 0.3$                            | $2.2 \pm 0.4$  | $10.0 \pm 0.0$              |
| $G_{209,29} = 19.05500002$         | ≷0.20<br><0.21    | •••                       |                           | ≤0.22             |                         | •••                       | ≷0.20<br><0.20     | •••                     | •••                       | 1.02                 | 7.04             | 0.95                | 7.64                                     | 1.12                 | $4.9 \pm 0.2$                            | $4.3 \pm 0.7$  | $9.9 \pm 0.8$               |
| $G_{209,29} = 19.65South_2$        | ≤0.21<br><0.20    | •••                       |                           | ≤0.23             | •••                     |                           | ≤0.20<br><0.20     | •••                     | •••                       | 1.55                 | 8.91             | 0.79                | 8.98                                     | 0.38                 | $4.2 \pm 0.2$                            | $11.3 \pm 2.2$ | $16.7 \pm 2.1$              |
| G209.29-19.65South5                | ≤0.20<br>0.42     |                           | 0.15                      | ≤0.23             | •••                     |                           | ≤0.20              | •••                     | •••                       | 1.05                 | 7.73             | 0.47                | 7.71                                     | 0.00                 | $5.8 \pm 0.3$                            | $3.0 \pm 1.1$  | $9.1 \pm 1.0$               |
| G209.55-19.68North1                | 0.42              | 1.14                      | 0.15                      | ≤0.21<br>≤0.22    | •••                     |                           | ≤0.21<br>≤0.22     | •••                     | •••                       | 1.76                 | 7.20             | 1.30                | 7.14                                     | 0.84                 | $6.7 \pm 0.2$                            | $5.6 \pm 0.5$  | $22.3 \pm 1.2$              |
| G209.55-19.68North2                | ≤0.20             |                           |                           | ≤0.23             | •••                     |                           | ≤0.22              |                         |                           | 1.21                 | 8.22             | 0.31                | 8.22                                     | 0.29                 | $13.0 \pm 0.3$                           | $1.0 \pm 0.1$  | $10.6 \pm 0.3$              |
| G209.55–19.68North3                | 0.21              | 7.90                      | 0.36                      | ≤0.24             | •••                     |                           | 0.32               | 8.08                    | 0.50                      | 1.22                 | 7.99             | 0.71                | 7.99                                     | 0.50                 | $5.9 \pm 0.3$                            | $5.1 \pm 1.0$  | $15.9 \pm 1.3$              |
| G209.55–19.68South1                | ≤0.23             | •••                       |                           | ≤0.23             | •••                     |                           | 0.31               | 7.43                    | 0.60                      | 1.37                 | 7.35             | 0.94                | 7.37                                     | 0.68                 | $6.0 \pm 0.2$                            | $6.0 \pm 0.7$  | $19.5 \pm 1.2$              |
| G209.55–19.68South3                | ≤0.22             |                           |                           | ≤0.24             | •••                     |                           | 0.45               | 8.12                    | 0.55                      | 2.08                 | 8.11             | 0.51                | 8.12                                     | 0.45                 | $7.6 \pm 0.2$                            | $5.9 \pm 0.7$  | $28.5 \pm 1.4$              |
| G209.77–19.40East1                 | 0.26              | 8.04                      | 0.25                      | ≤0.23             |                         |                           | 0.48               | 8.05                    | 0.48                      | 2.58                 | 8.03             | 0.46                | 8.02                                     | 0.35                 | $8.0 \pm 0.2$                            | $8.5 \pm 0.6$  | $45.3 \pm 1.9$              |
| G209.77–19.40East2                 | ≤0.20             | •••                       |                           | 0.27              | 8.19                    | 0.23                      | 0.48               | 7.99                    | 0.42                      | 1.38                 | 7.99             | 0.65                | 8.01                                     | 0.47                 | $6.7 \pm 0.3$                            | $4.0 \pm 0.9$  | $16.2 \pm 1.2$              |
| G209.77-19.40East3                 | ≤0.21             |                           |                           | ≤0.21             |                         |                           | 0.30               | 7.76                    | 0.26                      | 1.32                 | 7.73             | 0.25                | 7.75                                     | 0.22                 | $5.3 \pm 0.3$                            | $5.3 \pm 1.6$  | $13.9 \pm 1.6$              |
| G209.77-19.40East3                 | ≼0.21             |                           |                           | ≼0.22             |                         |                           | 0.25               | 8.26                    | 0.26                      | 0.79                 | 8.68             | 0.31                | 8.27                                     | 0.30                 | $7.0 \pm 3.5^{+-1}$                      |                | $5.4 \pm 0.3$               |
| G209.77-19.40West                  | 0.20              | 8.59                      | 0.20                      | ≼0.22             | ••••                    |                           | 0.32               | 8.34                    | 0.22                      | 1.54                 | 8.33             | 0.28                | 8.33                                     | 0.23                 | $6.3 \pm 0.3$                            | $6.0 \pm 1.2$  | $21.5 \pm 1.8$              |
| G209.77-19.61East                  | ≤0.22             | •••                       |                           | ≼0.23             | ••••                    |                           | 0.28               | 7.98                    | 0.27                      | 0.47                 | 8.02             | 0.47                |                                          | •••                  | $6.6 \pm 3.3^{+}$                        | •••            |                             |
| G209.77-19.61West                  | ≤0.23             | •••                       |                           | ≤0.23             | •••                     |                           | 0.22               | 7.26                    | 0.33                      | 0.75                 | 7.18             | 0.49                | 7.19                                     | 0.46                 | $6.6 \pm 3.3^{+}$                        |                | $5.9\pm0.3$                 |
| G209.79-19.80East                  | ≤0.22             |                           |                           | ≼0.24             |                         |                           | 0.36               | 5.49                    | 0.23                      | 0.66                 | 5.43             | 0.41                | 5.41                                     | 0.37                 | $5.8\pm0.6$                              | $2.1\pm2.1$    | $6.4 \pm 1.2$               |
| G209.79-19.80West                  | ≤0.23             |                           |                           | ≼0.24             |                         |                           | 0.31               | 5.82                    | 0.52                      | 1.12                 | 5.72             | 0.63                | 5.74                                     | 0.56                 | $5.9\pm0.3$                              | $3.9 \pm 1.0$  | $12.4 \pm 1.1$              |
| G209.79-19.80West                  | ≤0.23             | •••                       |                           | ≼0.24             |                         |                           | ≼0.21              |                         |                           | ≤0.23                |                  | •••                 |                                          |                      |                                          |                |                             |
| G209.94-19.52North                 | 0.39              | 8.13                      | 0.13                      | 0.27              | 8.10                    | 0.22                      | 0.73               | 8.02                    | 0.57                      | 1.45                 | 7.95             | 1.27                | 8.03                                     | 0.60                 | $6.3\pm0.2$                              | $6.4\pm0.8$    | $23.0\pm1.4$                |
| G209.94-19.52South1                | ≼0.26             |                           |                           | ≼0.22             |                         |                           | 0.25               | 7.63                    | 0.41                      | 1.41                 | 7.49             | 0.32                | 7.50                                     | 0.26                 | $4.1\pm0.2$                              | $12.2\pm2.8$   | $17.3\pm2.5$                |
| G209.94-19.52South1                | ≼0.24             |                           |                           | 0.40              | 8.12                    | 0.10                      | 0.27               | 8.18                    | 0.32                      | 1.51                 | 8.15             | 0.46                | 8.11                                     | 0.37                 | $8.9\pm0.5$                              | $2.4\pm0.9$    | $14.6 \pm 1.2$              |
| G209.94-19.52South2                | ≤0.23             |                           |                           | ≤0.23             |                         |                           | 0.25               | 7.35                    | 0.61                      | 1.09                 | 7.31             | 0.64                | 7.31                                     | 0.59                 | $6.5\pm0.3$                              | $2.9\pm0.9$    | $10.8\pm1.0$                |
| G210.37-19.53North                 | ≼0.22             |                           |                           | ≼0.20             |                         |                           | 0.28               | 6.42                    | 0.24                      | 0.72                 | 6.37             | 0.35                | 6.38                                     | 0.27                 | $4.2\pm0.1$                              | $9.4 \pm 1.8$  | $13.5 \pm 1.0$              |

Table 3

The Astrophysical Journal Supplement Series, 249:33 (53pp), 2020 August

| ΓHE           |
|---------------|
| Astrophysical |
| Journal       |
| SUPPLEMENT    |
| Series,       |
| 249:33        |
| (53pp), :     |
| 2020 <i>F</i> |
| حمل ا         |

| Table 3     |
|-------------|
| (Continued) |

|                     | 82                       | GHz CC                  | S                         | 94 GHz CCS               |                         |                           |                       | HC <sub>3</sub> N       |                           |                       | $N_2H^+$            |                         |                                           |                      |                       |                |                       |  |  |
|---------------------|--------------------------|-------------------------|---------------------------|--------------------------|-------------------------|---------------------------|-----------------------|-------------------------|---------------------------|-----------------------|---------------------|-------------------------|-------------------------------------------|----------------------|-----------------------|----------------|-----------------------|--|--|
| SCUBA-2 Core        | T <sub>peak</sub><br>(K) | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | T <sub>peak</sub><br>(K) | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | T <sub>peak</sub> (K) | V <sub>LSR</sub><br>(km | $\frac{\Delta v}{s^{-1}}$ | T <sub>peak</sub> (K) | V <sub>LSR,GA</sub> | $\Delta v_{\rm GA}$ (kn | $V_{\rm LSR, HFS}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | T <sub>ex</sub> (K)   | τ              | $T_{\rm ant}\tau$ (K) |  |  |
| (1)                 | (2)                      | (3)                     | (4)                       | (5)                      | (6)                     | (7)                       | (8)                   | (9)                     | (10)                      | (11)                  | (12)                | (13)                    | (14)                                      | (15)                 | (16)                  | (17)           | (18)                  |  |  |
| G210.37-19.53South  | ≼0.22                    |                         |                           | ≼0.21                    |                         |                           | 0.48                  | 5.99                    | 0.91                      | 1.00                  | 5.61                | 0.69                    | 5.68                                      | 0.72                 | $6.5\pm0.4$           | $2.2\pm0.9$    | $8.4\pm0.8$           |  |  |
| G210.49-19.79East1  | 0.25                     | 8.62                    | 0.47                      | ≤0.20                    |                         |                           | 0.84                  | 8.87                    | 0.90                      | 1.35                  | 8.86                | 1.06                    | 8.84                                      | 0.76                 | $21.8\pm0.4$          | $0.6\pm0.1$    | $11.2\pm0.2$          |  |  |
| G210.49-19.79East2  | ≼0.21                    |                         |                           | ≤0.23                    |                         |                           | 0.24                  | 8.03                    | 0.34                      | 1.08                  | 8.04                | 0.42                    | 8.02                                      | 0.32                 | $5.8\pm0.3$           | $4.4 \pm 1.3$  | $13.6 \pm 1.4$        |  |  |
| G210.49-19.79East2  | ≤0.20                    |                         |                           | ≤0.23                    |                         |                           | 0.59                  | 10.45                   | 0.82                      | 1.90                  | 10.23               | 0.92                    | 10.30                                     | 0.74                 | $8.7\pm0.3$           | $3.2\pm0.4$    | $19.0\pm0.9$          |  |  |
| G210.49-19.79West   | ≤0.21                    |                         |                           | ≤0.23                    |                         |                           | 0.23                  | 9.19                    | 1.78                      | 1.48                  | 9.01                | 0.77                    | 9.04                                      | 0.60                 | $5.8\pm0.2$           | $7.8\pm0.8$    | $24.1 \pm 1.5$        |  |  |
| G210.82-19.47North1 | ≤0.18                    |                         |                           | ≤0.19                    |                         |                           | ≤0.22                 |                         |                           | 1.30                  | 5.29                | 0.49                    | 5.30                                      | 0.44                 | $7.7\pm0.3$           | $2.7\pm0.7$    | $13.5\pm0.9$          |  |  |
| G210.82-19.47North2 | ≤0.14                    |                         |                           | ≤0.15                    |                         |                           | 0.35                  | 5.20                    | 0.27                      | 1.01                  | 5.21                | 0.36                    | 5.21                                      | 0.35                 | $21.2\pm0.4$          | $0.5\pm0.1$    | $8.8\pm0.2$           |  |  |
| G210.97-19.33North  | ≼0.17                    |                         |                           | ≼0.15                    |                         |                           | ≼0.15                 |                         |                           | ≼0.16                 |                     |                         |                                           |                      |                       |                |                       |  |  |
| G210.97-19.33South1 | 0.42                     | 2.94                    | 0.38                      | ≤0.23                    |                         |                           | 0.77                  | 2.90                    | 0.43                      | 0.58                  | 2.87                | 0.40                    | 2.87                                      | 0.38                 | $4.3\pm0.2$           | $5.1 \pm 1.9$  | $8.0 \pm 1.2$         |  |  |
| G210.97-19.33South2 | 0.38                     | 3.23                    | 0.28                      | ≤0.21                    |                         |                           | 0.48                  | 3.21                    | 0.85                      | 0.35                  | 3.23                | 0.86                    |                                           |                      | $6.4\pm3.2^{\dagger}$ |                |                       |  |  |
| G210.97-19.33South2 | ≤0.20                    |                         |                           | ≤0.21                    |                         |                           | 0.31                  | 4.49                    | 0.40                      | 0.38                  | 4.24                | 1.09                    | 4.54                                      | 0.41                 | $4.3 \pm 0.1$         | $2.0\pm0.6$    | $3.2\pm0.2$           |  |  |
| G211.01-19.54North  | 0.27                     | 6.10                    | 1.17                      | 0.27                     | 6.12                    | 0.87                      | 1.07                  | 6.07                    | 0.76                      | 1.89                  | 6.03                | 0.79                    | 5.86                                      | 0.83                 | $8.7\pm0.2$           | $3.1\pm0.3$    | $18.7 \pm 0.6$        |  |  |
| G211.01-19.54South  | 0.27                     | 5.83                    | 0.95                      | 0.19                     | 5.87                    | 0.90                      | 0.63                  | 5.87                    | 0.82                      | 1.62                  | 5.72                | 1.01                    | 5.76                                      | 0.70                 | $7.2\pm0.1$           | $4.5\pm0.4$    | $19.8\pm0.7$          |  |  |
| G211.16-19.33North1 | 0.28                     | 3.54                    | 0.37                      | 0.26                     | 3.45                    | 0.41                      | 1.11                  | 3.48                    | 0.53                      | 0.64                  | 3.37                | 0.61                    | 3.42                                      | 0.44                 | $4.1 \pm 0.1$         | $7.4 \pm 1.5$  | $10.0 \pm 1.0$        |  |  |
| G211.16-19.33North2 | 0.17                     | 3.22                    | 0.55                      | ≤0.14                    |                         |                           | 0.95                  | 3.44                    | 0.54                      | 1.01                  | 3.49                | 0.70                    | 3.52                                      | 0.46                 | $4.9\pm0.1$           | $7.7 \pm 1.0$  | $16.6 \pm 1.1$        |  |  |
| G211.16-19.33North3 | 0.18                     | 3.28                    | 0.40                      | ≤0.15                    |                         |                           | 0.70                  | 3.39                    | 0.39                      | 1.03                  | 3.31                | 0.45                    | 3.33                                      | 0.35                 | $4.7 \pm 0.1$         | $9.9 \pm 1.2$  | $19.5 \pm 1.4$        |  |  |
| G211.16-19.33North4 | ≤0.16                    |                         |                           | ≤0.15                    |                         |                           | 0.42                  | 4.52                    | 0.71                      | 0.55                  | 4.59                | 1.01                    |                                           |                      | $6.2\pm3.1^{\dagger}$ |                |                       |  |  |
| G211.16-19.33North5 | ≤0.15                    |                         |                           | ≼0.14                    |                         |                           | 0.53                  | 4.30                    | 0.54                      | 1.23                  | 4.29                | 0.78                    | 4.28                                      | 0.48                 | $5.9\pm0.2$           | $5.6\pm0.6$    | $17.7 \pm 0.9$        |  |  |
| G211.16-19.33South  | ≤0.15                    |                         |                           | ≤0.16                    |                         |                           | ≤0.15                 |                         |                           | 0.18                  | 3.11                | 0.67                    | 3.18                                      | 0.49                 | $6.2\pm3.1^{\dagger}$ |                | $1.2 \pm 0.2$         |  |  |
| G211.47-19.27North  | ≤0.26                    |                         |                           | 0.36                     | 4.10                    | 0.12                      | 0.93                  | 4.00                    | 0.63                      | 1.22                  | 3.99                | 0.97                    | 4.01                                      | 0.52                 | $5.0 \pm 0.1$         | $12.7\pm0.3$   | $28.6\pm0.6$          |  |  |
| G211.47-19.27South  | 0.32                     | 5.42                    | 0.89                      | ≤0.23                    |                         |                           | 0.78                  | 5.31                    | 1.16                      | 1.67                  | 5.52                | 0.93                    | 5.34                                      | 1.03                 | $7.7\pm0.3$           | $2.8\pm0.5$    | $13.7\pm0.9$          |  |  |
| G211.72-19.25North  | ≤0.25                    |                         |                           | ≤0.23                    |                         |                           | 0.66                  | 3.51                    | 0.43                      | 1.16                  | 3.49                | 0.44                    | 3.48                                      | 0.38                 | $5.9 \pm 0.3$         | $4.4 \pm 1.3$  | $14.0 \pm 1.5$        |  |  |
| G211.72-19.25South1 | 0.53                     | 4.65                    | 0.24                      | ≤0.27                    |                         |                           | 0.59                  | 4.28                    | 0.19                      | 0.42                  | 4.31                | 0.42                    | 4.32                                      | 0.40                 | $8.4\pm0.5$           | $0.7 \pm 0.1$  | $4.2\pm0.4$           |  |  |
| G212.10-19.15North1 | ≤0.26                    |                         |                           | ≤0.24                    |                         |                           | 0.43                  | 4.33                    | 0.96                      | 0.80                  | 4.22                | 0.78                    | 4.34                                      | 0.84                 | $4.6\pm0.2$           | $4.9 \pm 1.2$  | $9.0 \pm 1.1$         |  |  |
| G212.10-19.15North2 | ≤0.24                    |                         |                           | ≤0.25                    |                         |                           | 0.50                  | 4.39                    | 0.86                      | 1.24                  | 4.45                | 1.04                    | 4.48                                      | 0.69                 | $5.2\pm0.2$           | $8.0 \pm 1.1$  | $19.7 \pm 1.6$        |  |  |
| G212.10-19.15North3 | 1.30                     | 4.30                    | 0.53                      | 0.94                     | 4.25                    | 0.37                      | 2.06                  | 4.20                    | 0.63                      | 0.82                  | 4.13                | 1.30                    | 4.16                                      | 0.55                 | $4.3 \pm 0.2$         | $12.7\pm0.5$   | $19.5 \pm 2.5$        |  |  |
| G212.10-19.15South  | ≤0.26                    |                         |                           | ≤0.26                    |                         |                           | 0.43                  | 4.02                    | 0.61                      | 1.28                  | 3.78                | 0.74                    | 3.48                                      | 0.38                 | $5.9\pm0.4$           | $4.4 \pm 1.4$  | $14.0 \pm 1.6$        |  |  |
| G212.84-19.45North  | 0.63                     | 4.40                    | 0.24                      | 0.40                     | 4.32                    | 0.31                      | 1.55                  | 4.34                    | 0.38                      | 1.00                  | 4.31                | 0.42                    | 4.31                                      | 0.34                 | $4.5\pm0.2$           | $11.5 \pm 2.5$ | $19.9 \pm 2.6$        |  |  |
| G212.84-19.45South  | ≤0.25                    |                         |                           | ≤0.26                    |                         |                           | 0.70                  | 4.46                    | 0.26                      | 0.41                  | 4.40                | 0.40                    |                                           |                      | $5.9\pm3.0^{\dagger}$ |                |                       |  |  |
| G215.44-16.38       | ≤0.25                    |                         |                           | 0.41                     | 11.40                   | 0.11                      | 0.96                  | 11.38                   | 0.49                      | 0.74                  | 11.42               | 0.42                    | 11.40                                     | 0.34                 | $4.6 \pm 0.3$         | $6.3 \pm 2.1$  | $11.6 \pm 1.7$        |  |  |
| G215.87-17.62North  | ≤0.23                    |                         |                           | ≤0.22                    |                         |                           | ≤0.21                 |                         |                           | 0.26                  | 9.28                | 0.89                    | 9.26                                      | 0.46                 | $4.2 \pm 0.6$         | $2.0 \pm 4.0$  | $3.0 \pm 1.2$         |  |  |
| G215.87-17.62Middle | 0.28                     | 8.92                    | 0.37                      | 0.25                     | 8.86                    | 0.20                      | 0.43                  | 8.99                    | 0.41                      | 0.97                  | 8.96                | 0.46                    | 8.95                                      | 0.35                 | $4.9\pm0.2$           | $7.3 \pm 1.6$  | $15.5 \pm 1.7$        |  |  |
| G215.87-17.62South  | ≤0.23                    |                         |                           | ≤0.22                    |                         |                           | 0.66                  | 9.90                    | 0.55                      | 0.49                  | 9.98                | 1.01                    |                                           |                      | $6.1\pm3.0^{\dagger}$ |                |                       |  |  |

Note. All values are measured in a spectrum whose peak temperature is higher than  $3\sigma$ . In the case of a peak temperature below  $3\sigma$ , the  $3\sigma$  level is listed as an upper limit. Column (1): SCUBA-2 core name. Columns (2)-(4): peak temperature at the  $T_A^*$  scale, systemic velocity, and FWHM inferred by Gaussian fitting to the spectrum of the 82 GHz CCS line, respectively. Columns (5)–(7): same as Columns (2)–(4), but for the 94 GHz CCS line. Columns (8)-(10): same as Columns (2)-(4), but for HC<sub>3</sub>N. Columns (11)-(13): peak temperature at the T<sup>\*</sup><sub>A</sub> scale, systemic velocity, and FWHM inferred by Gaussian fitting to the brightest hyperfine component of the N<sub>2</sub>H<sup>+</sup> line, respectively. Columns (14)–(18): systemic velocity, FWHM, excitation temperature ( $T_{ex}$ ), total line optical depth of all the hyperfine components ( $\tau$ ), and  $T_{ant}\tau$  (=( $T_{ex} - T_{bg}$ ) $\tau$ ) estimated through the hyperfine structure fitting to seven components of the N<sub>2</sub>H<sup>+</sup> line, respectively. In Columns (16) and (17), "†" indicates that the value is derived from dust temperature.

26

|                                                        |                   |                                 |            |                   |                           | Proper     | ties of c-C                                       | <b>Tabl</b><br><sub>3</sub> H <sub>2</sub> , DNC, | <b>e 4</b><br>HN <sup>13</sup> C, | and $N_2D^+$      | Lines               |                     |                                             |                      |                         |               |                                |
|--------------------------------------------------------|-------------------|---------------------------------|------------|-------------------|---------------------------|------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------|-------------------|---------------------|---------------------|---------------------------------------------|----------------------|-------------------------|---------------|--------------------------------|
|                                                        |                   | c-C <sub>3</sub> H <sub>2</sub> |            |                   | DNC                       |            |                                                   | HN <sup>13</sup> C                                |                                   |                   |                     |                     |                                             | $N_2D^+$             |                         |               |                                |
| SCUBA-2 Core                                           | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s       | $\Delta v$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$ | $T_{\text{peak}}$                                 | V <sub>LSR</sub><br>(km s                         | $\Delta v$<br>$s^{-1}$ )          | $T_{\text{peak}}$ | V <sub>LSR,GA</sub> | $\Delta v_{GA}$ (kn | $V_{\text{LSR,HFS}}$<br>1 s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$            | τ             | $T_{\rm ant}\tau$              |
| (1)                                                    | (R)<br>(2)        | (3)                             | (4)        | (K)               | (6)                       | (7)        | (8)                                               | (9)                                               | (10)                              | (11)              | (12)                | (13)                | (14)                                        | (15)                 | (16)                    | (17)          | (18)                           |
| G190.15-13.75North                                     | ≤0.13             |                                 |            | ≤0.20             |                           |            | ≪0.15                                             |                                                   |                                   | ≤0.21             |                     |                     |                                             |                      |                         |               |                                |
| G190.15-13.75South                                     | ≤0.13             |                                 |            | ≤0.18             |                           |            | ≤0.14                                             |                                                   |                                   | ≤0.18             |                     |                     |                                             |                      |                         |               |                                |
| G191 90–11 21North                                     | <0.12             |                                 |            | ≤0.16             |                           |            | <0.13                                             |                                                   |                                   | <0.14             |                     |                     |                                             |                      |                         |               |                                |
| G191.90–11.21South                                     | 0.38              | 10.49                           | 0.49       | 0.44              | 10.59                     | 1.00       | 0.11                                              | 10.52                                             | 0.76                              | 0.16              | 10.73               | 0.26                |                                             |                      | $7.4 \pm 3.7^{\dagger}$ |               |                                |
| G192.12 - 10.90North                                   | 0.77              | 10.02                           | 0.59       | 0.52              | 10.15                     | 0.89       | 0.18                                              | 9.99                                              | 0.99                              | 0.19              | 10.01               | 0.35                |                                             |                      | $65 \pm 3.2^{\dagger}$  |               |                                |
| G192.12 = 10.90 South                                  | 0.21              | 10.02                           | 0.54       | <0.52             |                           |            | < 0.10                                            |                                                   |                                   | < 0.13            |                     |                     |                                             |                      | 0.5 ± 5.2               |               |                                |
| $G_{192,12} = 10.900000000000000000000000000000000000$ | 0.37              | 10.11                           | 0.85       | 0.33              | 10.32                     | 1 35       | 0.13                                              | 10.43                                             | 1.09                              | <0.13             |                     |                     |                                             |                      |                         |               |                                |
| G192 32-11 88North                                     | 0.47              | 12 12                           | 0.65       | 0.69              | 12.13                     | 1.02       | 0.23                                              | 12.45                                             | 0.60                              | 0.18              | 12.02               | 0.68                |                                             |                      | $8.7 \pm 4.3^{\dagger}$ |               |                                |
| G192 32-11 88South                                     | 0.54              | 12.14                           | 0.74       | 0.02              | 12.13                     | 0.93       | 0.29                                              | 12.31                                             | 0.00                              | 0.10              | 12.02               | 0.00                | 12 20                                       | 0.49                 | $8.7 \pm 4.3^{\dagger}$ |               | $20 \pm 01$                    |
| G192.32 = 11.0050001<br>G106.02 = 10.37                | 0.54              | 11.61                           | 0.74       | 0.00              | 12.10                     | 1 10       | 0.29                                              | 11.23                                             | 0.71                              | <0.17             | 14.41               | 0.50                | 12.20                                       | 0.47                 | 0.7 ± 4.5               |               | 2.0 ± 0.1                      |
| G170.72 = 10.37<br>G108 60_00 12North1                 | 0.00              | 10.00                           | 0.99       | 0.40              | 11.//                     | 0.79       | < 0.01                                            | 11.70                                             | 0.99                              | $\leq 0.17$       |                     |                     |                                             |                      |                         | •••           | •••                            |
| G170.07=07.121001011                                   | 0.14              | 10.99                           | 0.41       | 0.10              | 10.74                     | 1.00       | <ul><li><a>0.09</a></li><li><a>0.16</a></li></ul> | 10.77                                             | 0.70                              | 0.11              | 10.90               | 0.42                |                                             |                      | $5.7 \pm 2.0^{\dagger}$ |               |                                |
| C108 60 00 120 00-12                                   | 0.75              | 10.07                           | 0.01       | 0.41              | 10.74                     | 1.00       | 0.10                                              | 10.77                                             | 0.70                              | 0.11              | 10.80               | 0.42                |                                             | •••                  | $5.7 \pm 2.9^{\circ}$   |               |                                |
| G198.09-09.12South                                     | 0.91              | 11.07                           | 0.82       | 0.58              | 11.22                     | 1.05       | 0.22                                              | 11.22                                             | 0.87                              | <b>€0.10</b>      | 12.20               | 0.21                |                                             | •••                  |                         |               | •••                            |
| G200.34 10.97North                                     | 0.41              | 13.33                           | 0.40       | 0.50              | 13.50                     | 0.93       | 0.19                                              | 13.51                                             | 0.54                              | 0.23              | 13.29               | 0.21                |                                             | •••                  | $0.7 \pm 3.4^{\circ}$   |               | •••                            |
| G200.34-10.9/South                                     | 0.48              | 13.58                           | 0.57       | ≤0.26             |                           | •••        | ≤0.19                                             |                                                   | •••                               | ≤0.22             | •••                 | •••                 | •••                                         | •••                  | •••                     | •••           | •••                            |
| G201.52-11.08                                          | 0.22              | 9.20                            | 0.45       | ≤0.29             |                           |            | ≤0.21                                             |                                                   |                                   | ≤0.26             | •••                 | •••                 | •••                                         | •••                  | •••                     | •••           | •••                            |
| G201.72-11.22                                          | 1.05              | 9.51                            | 0.32       | 0.59              | 9.53                      | 0.81       | 0.35                                              | 9.56                                              | 0.47                              | ≤0.24             |                     |                     |                                             | •••                  |                         |               |                                |
| G203.21-11.20East1                                     | 0.74              | 9.94                            | 0.97       | 1.11              | 10.58                     | 1.21       | 0.41                                              | 10.57                                             | 0.95                              | 0.37              | 10.66               | 0.45                |                                             | •••                  | $5.6 \pm 2.8^{+}$       |               |                                |
| G203.21–11.20East2                                     | 0.70              | 10.13                           | 0.74       | 1.05              | 10.24                     | 1.03       | 0.31                                              | 10.38                                             | 0.82                              | 0.40              | 10.32               | 0.40                |                                             |                      | $5.6 \pm 2.8^{\circ}$   |               |                                |
| G203.21-11.20West1                                     | 0.73              | 10.67                           | 0.79       | 1.17              | 10.67                     | 1.18       | 0.43                                              | 10.68                                             | 0.86                              | 0.59              | 10.70               | 0.46                | 10.70                                       | 0.53                 | $5.0 \pm 0.3$           | $2.2 \pm 1.4$ | $5.1 \pm 0.6$                  |
| G203.21-11.20West2                                     | 0.75              | 10.08                           | 0.55       | 0.94              | 10.17                     | 1.09       | 0.39                                              | 10.17                                             | 0.68                              | 0.35              | 10.20               | 0.53                | 10.20                                       | 0.47                 | $4.3 \pm 0.3$           | $2.1 \pm 2.2$ | $3.3 \pm 0.6$                  |
| G204.4-11.3A2East                                      | 1.48              | 1.60                            | 0.58       | 1.72              | 1.62                      | 1.02       | 0.66                                              | 1.64                                              | 0.73                              | 0.40              | 1.76                | 0.52                | 1.72                                        | 0.50                 | $4.2 \pm 0.4$           | $2.5\pm2.9$   | $3.6\pm0.9$                    |
| G204.4-11.3A2West                                      | 0.72              | 1.52                            | 0.94       | 0.46              | 1.70                      | 1.27       | ≼0.21                                             |                                                   |                                   | 0.24              | 1.26                | 0.34                | 1.22                                        | 0.53                 | $5.6\pm2.8^{\dagger}$   |               | $0.8\pm0.3$                    |
| G205.46-14.56Middle1                                   | 0.79              | 9.99                            | 0.87       | 0.33              | 10.07                     | 1.19       | ≼0.17                                             |                                                   |                                   | $\leq 0.19$       |                     | •••                 |                                             | •••                  |                         |               |                                |
| G205.46-14.56Middle2                                   | 1.06              | 10.25                           | 0.68       | 0.35              | 10.25                     | 1.04       | 0.29                                              | 10.39                                             | 0.61                              | ≼0.14             |                     | •••                 |                                             | •••                  |                         |               |                                |
| G205.46-14.56Middle3                                   | 0.90              | 10.03                           | 0.80       | 0.33              | 10.16                     | 1.09       | 0.22                                              | 9.97                                              | 0.95                              | ≼0.15             | •••                 |                     |                                             |                      |                         |               |                                |
| G205.46-14.56North3                                    | 0.49              | 10.04                           | 0.91       | 0.61              | 10.16                     | 1.01       | 0.26                                              | 10.14                                             | 0.83                              | 0.16              | 10.24               | 0.46                |                                             |                      | $6.2\pm3.1^{\dagger}$   |               |                                |
| G205.46-14.56North2                                    | 0.65              | 9.79                            | 0.89       | 0.38              | 10.14                     | 1.03       | 0.16                                              | 10.12                                             | 0.98                              | 0.14              | 10.20               | 0.27                |                                             |                      | $6.2\pm3.1^{\dagger}$   |               |                                |
| G205.46-14.56North1                                    | 0.62              | 9.96                            | 0.76       | 0.79              | 10.12                     | 1.02       | 0.33                                              | 10.18                                             | 0.72                              | 0.27              | 10.08               | 0.40                |                                             |                      | $6.2\pm3.1^{\dagger}$   |               |                                |
| G205.46-14.56South1                                    | 0.33              | 10.33                           | 1.29       | 0.28              | 10.19                     | 1.50       | 0.27                                              | 10.44                                             | 0.97                              | ≼0.14             |                     |                     |                                             |                      |                         |               |                                |
| G205.46-14.56South2                                    | 0.83              | 10.46                           | 0.58       | 0.49              | 10.51                     | 0.90       | 0.35                                              | 10.56                                             | 0.62                              | ≼0.14             |                     |                     |                                             |                      |                         |               |                                |
| G205.46-14.56South3                                    | 0.48              | 10.38                           | 0.72       | 0.74              | 10.50                     | 0.97       | 0.32                                              | 10.57                                             | 0.74                              | 0.24              | 10.45               | 0.50                | 10.40                                       | 0.54                 | $6.2\pm3.1^{\dagger}$   |               | $1.3\pm0.1$                    |
| G206.12-15.76                                          | 1.37              | 8.35                            | 0.31       | 1.80              | 8.46                      | 1.02       | 0.64                                              | 8.50                                              | 0.72                              | 0.44              | 8.34                | 0.38                | 8.47                                        | 0.60                 | $4.5\pm0.7$             | $1.8\pm4.4$   | $3.1\pm1.2$                    |
| G206.21-16.17North                                     | ≤0.32             |                                 |            | 0.56              | 9.89                      | 0.79       | ≤0.37                                             |                                                   |                                   | 0.51              | 9.79                | 0.34                |                                             |                      | $7.8\pm3.9^{\dagger}$   |               |                                |
| G206.69-16.60North                                     | 0.39              | 11.27                           | 0.33       | 0.52              | 11.49                     | 0.85       | ≤0.22                                             |                                                   |                                   | ≤0.24             |                     |                     |                                             |                      |                         |               |                                |
| G206.69-16.60South                                     | 0.34              | 11.98                           | 0.64       | 0.39              | 12.01                     | 0.95       | ≤0.23                                             |                                                   |                                   | ≤0.22             |                     |                     |                                             |                      |                         |               |                                |
| G206.93-16.61East1                                     | 0.43              | 9.80                            | 1.11       | 0.82              | 9.94                      | 1.03       | 0.31                                              | 9.92                                              | 0.86                              | ≤0.20             |                     |                     |                                             |                      |                         |               |                                |
| G206.93-16.61East2                                     | 0.30              | 9.63                            | 1.03       | 0.28              | 9.77                      | 0.62       | 0.18                                              | 9.82                                              | 0.65                              | ≤0.20             |                     |                     |                                             |                      |                         |               |                                |
| G206.93-16.61West1                                     | 1 19              | 9.00                            | 0.95       | 0.20              | 9 70                      | 1.11       | 0.10                                              | 9 44                                              | 1.08                              | ≤0.20             |                     |                     |                                             |                      |                         |               |                                |
| G206.93-16.61West3                                     | 0.98              | 9.29                            | 0.95       | 0.94              | 9.70                      | 1.02       | 0.65                                              | 9.47                                              | 0.87                              | 0.20              | 9.42                | 0.28                |                                             |                      | $84 + 42^{\dagger}$     |               |                                |
| G206.93-16.61West/                                     | 0.26              | 10.05                           | 1.26       | 0.53              | 10.23                     | 1.02       | 0.05                                              | 10.32                                             | 0.51                              | 0.20              | 10 19               | 0.20                | 10.30                                       | 0.49                 | $84 + 42^{\dagger}$     |               | $10 \pm 02$                    |
| $G_{200.93} = 10.01$ West 4                            | 0.50              | 0.39                            | 2 21       | 0.35              | 0.25                      | 0.05       | <0.22                                             | 10.52                                             | 0.51                              | 0.20              | 0.05                | 0.42                | 0.11                                        | 0.49                 | $8.4 \pm 4.2^{\dagger}$ |               | $1.0 \pm 0.2$<br>$1.8 \pm 0.1$ |
| $G_{200.93} = 10.01 \text{ West}$                      | 0.13              | 9.30                            | 2.31       | 0.49              | 9.23                      | 0.95       | ≷0.17<br><0.19                                    |                                                   | •••                               | 0.50              | 9.05                | 0.23                | 9.11                                        | 0.40                 | 0.4 ± 4.2               |               | $1.0 \pm 0.1$                  |
| 0200.93 - 10.01 Westo                                  | ≷0.14<br>0.41     | 10.26                           | 0.72       | ≷0.23<br>0.21     | 10.45                     | 1.16       | <b>♦</b> 0.18                                     | 10.54                                             | 0.57                              | ≷0.20<br><0.20    | •••                 | •••                 | •••                                         | •••                  |                         | •••           | •••                            |
| G200.93-10.01 West6                                    | 0.41              | 10.26                           | 0.72       | 0.31              | 10.45                     | 1.16       | 0.23                                              | 10.54                                             | 0.57                              | $\leq 0.20$       | •••                 | •••                 |                                             | •••                  | •••                     | •••           | •••                            |

**Table 4** Properties of c-C<sub>3</sub>H<sub>2</sub>, DNC,  $HN^{13}C$ , and  $N_2D^+$  Lines

|                                             |                   |                                 |            |                   |                           |                      |                   | Table<br>(Contin          | e 4<br>nued) |                   |                     |                     |                                          |                      |                                                    |               | THE AS               |
|---------------------------------------------|-------------------|---------------------------------|------------|-------------------|---------------------------|----------------------|-------------------|---------------------------|--------------|-------------------|---------------------|---------------------|------------------------------------------|----------------------|----------------------------------------------------|---------------|----------------------|
|                                             |                   | c-C <sub>3</sub> H <sub>2</sub> |            |                   | DNC                       |                      |                   | HN <sup>13</sup> C        |              |                   |                     |                     |                                          | $N_2D^+$             |                                                    |               |                      |
| SCUBA-2 Core                                | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s       | $\Delta v$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\frac{\Delta v}{1}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$   | $T_{\text{peak}}$ | V <sub>LSR,GA</sub> | $\Delta v_{GA}$ (km | $V_{\rm LSR,HFS}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$                                       | τ             | $T_{\text{ant}}\tau$ |
| (1)                                         | (2)               | (3)                             | (4)        | (1)               | (6)                       | (7)                  | (8)               | (9)                       | (10)         | (11)              | (12)                | (13)                | (14)                                     | (15)                 | (16)                                               | (17)          | (18)                 |
| G207.36-19.82North1                         | 0.64              | 10.67                           | 1.01       | 0.46              | 11.09                     | 1.07                 | 0.23              | 10.76                     | 1.02         | ≤0.23             |                     |                     |                                          |                      |                                                    | •••           | R                    |
| G207.36-19.82North2                         | 0.55              | 11.10                           | 0.56       | 1.07              | 11.36                     | 0.90                 | 0.24              | 11.25                     | 0.68         | 0.34              | 11.32               | 0.54                | 11.30                                    | 0.43                 | $5.9\pm3.0^{\dagger}$                              |               | 2.7 ± 0.5 ₽          |
| G207.36-19.82North3                         | 0.41              | 11.00                           | 0.55       | 0.68              | 11.30                     | 0.98                 | ≤0.20             |                           |              | ≤0.21             |                     |                     |                                          |                      |                                                    |               | 2                    |
| G207.36-19.82North4                         | 0.43              | 10.91                           | 0.47       | 0.40              | 11.29                     | 1.33                 | ≤0.19             |                           |              | ≤0.21             |                     |                     |                                          |                      |                                                    |               | II99                 |
| G207.36-19.82South                          | 0.65              | 11.17                           | 0.51       | 0.46              | 11.45                     | 1.11                 | ≤0.19             |                           |              | 0.23              | 11.41               | 0.20                | 11.40                                    | 0.38                 | $5.9\pm3.0^{\dagger}$                              |               | 1.0 ± 0.3            |
| G207.3-19.8A2North1                         | ≤0.17             |                                 |            | ≤0.24             |                           |                      | ≤0.19             |                           |              | ≤0.22             |                     |                     |                                          |                      |                                                    |               | Z                    |
| G207.3-19.8A2North2                         | 0.22              | 12.51                           | 0.37       | 0.28              | 12.79                     | 0.79                 | ≤0.18             |                           |              | ≤0.23             |                     |                     |                                          |                      |                                                    |               |                      |
| G207.3–19.8A2North3                         | ≤0.14             |                                 |            | ≤0.26             |                           |                      | ≤0.18             |                           |              | ≤0.22             |                     |                     |                                          |                      |                                                    |               | SER                  |
| G207 3-19 8A2South                          | ≤0.20             |                                 |            | ≤0.32             |                           |                      | ≤0.24             |                           |              | ≤0.29             |                     |                     |                                          |                      |                                                    |               | ES                   |
| G208.68–19.20North1                         | 0.62              | 11.09                           | 1.17       | 0.80              | 11.26                     | 1.15                 | 0.45              | 11.28                     | 0.83         | ≤0.20             |                     |                     |                                          |                      |                                                    |               | 4                    |
| G208 68–19 20North2                         | 0.50              | 11.12                           | 1.16       | 1.44              | 11.27                     | 0.95                 | 0.63              | 11.28                     | 0.75         | 0.82              | 11.21               | 0.49                | 11.20                                    | 0.44                 | $49 \pm 0.2$                                       | $4.3 \pm 1.2$ | $9.5 \pm 0.9$        |
| G208 68–19 20North3                         | 0.47              | 10.69                           | 1 71       | 1.02              | 11.25                     | 1.07                 | 0.36              | 11.20                     | 1 23         | 0.45              | 11.21               | 0.49                | 11.10                                    | 0.45                 | $46 \pm 0.2$                                       | $23 \pm 23$   | $42 \pm 0.8$         |
| G208 68–19 20South                          | 0.33              | 10.39                           | 1.68       | 0.46              | 10.44                     | 1.07                 | 0.22              | 10.42                     | 0.95         | 0.15              | 10.37               | 0.43                |                                          |                      | $9.8 \pm 4.9^{\dagger}$                            | 2.0 ± 2.0     |                      |
| G208 89-20 04East                           | 1 74              | 8 72                            | 0.51       | 1.21              | 8.88                      | 0.90                 | 0.73              | 8.88                      | 0.58         | 0.28              | 8.82                | 0.42                |                                          |                      | $64 \pm 32^{\dagger}$                              |               |                      |
| G209.05-19.73North                          | 0.52              | 8.17                            | 0.51       | 0.40              | 8 41                      | 0.96                 | 0.75              | 8.32                      | 0.31         | 0.30              | 8.09                | 0.42                | 8 32                                     | 0.54                 | $7.8 \pm 3.2$<br>7.8 ± 3.9 <sup>†</sup>            |               | 10+02                |
| G209.05 - 19.73 South                       | 0.52              | 7 79                            | 0.32       | 0.40              | 7.95                      | 0.94                 | 0.21              | 7.95                      | 0.51         | 0.27              | 8.04                | 0.12                |                                          |                      | $7.0 \pm 3.9^{\dagger}$<br>$7.8 \pm 3.9^{\dagger}$ |               | 1.0 ± 0.2            |
| G209.09-19.7550uth<br>G209.29-19.65North1   | < 0.01            |                                 | 0.50       | 0.05              | 8.51                      | 0.94                 | 0.21              | 8.54                      | 0.52         | 0.20              | 8.50                | 0.23                | 8 52                                     | 0.20                 | $63 \pm 0.5$                                       | $0.5 \pm 0.1$ | $18 \pm 02$          |
| G200.20 10.65North2                         | <0.18             |                                 |            | <0.50             | 0.51                      | 0.70                 | <0.15             | 0.54                      | 0.57         | < 0.16            | 0.50                | 0.54                | 0.52                                     | 0.2)                 | 0.5 ± 0.5                                          | 0.5 ± 0.1     |                      |
| G209.29-19.05North2                         | <0.18             |                                 |            | 0.19              | 0.06                      | 0.07                 | <0.15             |                           |              | ≷0.10<br>0.16     | <br>8 77            | 0.48                | <br>8 77                                 | 0.52                 | $86 \pm 42^{\dagger}$                              |               | $10 \pm 02$          |
| G209.29-19.05North2                         | ≷0.18<br><0.17    |                                 |            | 0.30              | 0.00                      | 0.97                 | ≷0.15<br>0.16     | <br>8.62                  | 0.84         | <0.10             | 0.77                | 0.46                | 0.77                                     | 0.52                 | $0.0 \pm 4.3$                                      | •••           | $1.0 \pm 0.2$        |
| G209.29-19.05Nottil5                        | <0.17             |                                 |            | 0.10              | 7.50                      | 1.55                 | <0.10             | 0.02                      | 0.84         | <pre></pre>       | 7 20                | 0.07                | 7.24                                     | 0.05                 | $86 \pm 42^{\dagger}$                              |               | $11 \pm 02$          |
| G209.29-19.0550uull<br>G200.20 10.65South2  | ≷0.20<br>0.16     | • • • •                         | 1 1 2      | 0.51              | 7.50                      | 1.55                 | ≷0.18<br>0.20     | <br>רר ר                  | 0.05         | <0.20             | 7.20                | 0.97                | 7.54                                     | 0.95                 | $0.0 \pm 4.3$                                      | •••           | $1.1 \pm 0.2$        |
| G209.29-19.0530util2<br>G200.20 10.65South2 | <0.10             | 0.52                            | 1.15       | 0.44              | 0.02                      | 0.49                 | 0.20              | 8.06                      | 0.95         | 0.21              | 0 05                | 0.48                |                                          |                      | $86 \pm 42^{\dagger}$                              |               |                      |
| G209.29-19.0550util2<br>G200.20 10.65South2 | ≷0.10<br><0.10    |                                 |            | 0.20              | 9.05                      | 0.40                 | <0.20             | 0.90                      | 0.87         | <0.21             | 0.05                | 0.46                |                                          |                      | $0.0 \pm 4.3$                                      | •••           |                      |
| $C_{200,29} = 19.05500005$                  | 0.19              | 7 45                            | 1 10       | 0.59              | 7.57                      | 1.02                 | €0.10<br>0.24     | 7 41                      | 0.75         | ≷0.10<br><0.16    | •••                 |                     |                                          |                      | •••                                                | •••           |                      |
| G209.55 = 19.06North 2                      | 0.55              | 7.43<br>8.20                    | 1.10       | 0.30              | 7.23<br>9.16              | 1.02                 | 0.54              | /.41<br>0.24              | 0.75         | ≷0.10<br>0.22     |                     | 0.22                |                                          |                      | <br>70   25 <sup>†</sup>                           | •••           |                      |
| G209.55 = 19.06 Norm2                       | 0.50              | 0.3U<br>0.15                    | 0.55       | 0.48              | 8.10                      | 0.90                 | 0.51              | 0.54                      | 0.57         | 0.25              | 6.14<br>7.01        | 0.52                |                                          | 0.57                 | $7.0 \pm 3.3^{\circ}$                              | •••           |                      |
| G209.55 19.68North3                         | 0.75              | 8.15                            | 0.58       | 0.58              | 8.01                      | 1.19                 | 0.51              | 8.14                      | 0.92         | 0.19              | 7.91                | 0.32                | 7.88                                     | 0.57                 | $7.0 \pm 3.5^{+}$                                  | •••           | $1.0 \pm 0.2$        |
| G209.55-19.68South1                         | 0.43              | 7.43                            | 0.75       | 0.74              | 7.43                      | 0.89                 | 0.35              | 1.53                      | 0.64         | 0.24              | 7.50                | 0.41                | 7.41                                     | 0.52                 | $7.0 \pm 3.5^{+}$                                  | •••           | $1.2 \pm 0.2$        |
| G209.55-19.68South3                         | 0.84              | 8.14                            | 0.57       | 0.84              | 8.13                      | 0.93                 | 0.45              | 8.22                      | 0.64         | 0.26              | 8.06                | 0.47                | 8.04                                     | 0.47                 | $7.0 \pm 3.5^{+}$                                  | •••           | $1.6 \pm 0.2$        |
| G209.77-19.40East1                          | 0.67              | 8.12                            | 0.55       | 0.72              | 8.00                      | 0.84                 | 0.45              | 8.13                      | 0.74         | 0.25              | 8.00                | 0.26                | 7.96                                     | 0.47                 | $7.0 \pm 3.5$                                      | •••           | $1.2 \pm 0.2$        |
| G209.77–19.40East2                          | 0.67              | 8.08                            | 0.60       | 0.77              | 8.07                      | 0.88                 | 0.34              | 8.08                      | 0.85         | ≤0.20             |                     |                     |                                          |                      | ····                                               | •••           |                      |
| G209.77–19.40East3                          | 0.55              | 7.87                            | 0.27       | 0.73              | 7.86                      | 0.89                 | 0.20              | 7.87                      | 0.77         | 0.21              | 7.65                | 0.42                | 7.71                                     | 0.33                 | $7.0 \pm 3.5^{\circ}$                              | •••           | $1.8 \pm 0.2$        |
| G209.77–19.40East3                          | 0.46              | 8.38                            | 0.28       | 0.49              | 8.50                      | 0.32                 | 0.21              | 8.31                      | 0.41         | ≤0.17             | •••                 | •••                 |                                          | •••                  |                                                    | •••           |                      |
| G209.77–19.40West                           | 0.57              | 8.40                            | 0.22       | 0.35              | 8.31                      | 0.75                 | 0.27              | 8.38                      | 0.46         | ≤0.18             |                     | •••                 |                                          | •••                  |                                                    | •••           |                      |
| G209.77–19.61East                           | 0.44              | 8.06                            | 0.31       | 0.26              | 7.66                      | 0.21                 | ≤0.18             | •••                       | •••          | ≤0.19             |                     | •••                 |                                          | •••                  |                                                    | •••           |                      |
| G209.77–19.61West                           | 0.31              | 7.28                            | 0.36       | 0.45              | 7.18                      | 0.93                 | $\leq 0.18$       |                           |              | ≼0.17             | •••                 |                     |                                          |                      |                                                    | •••           | •••                  |
| G209.79-19.80East                           | 0.86              | 5.57                            | 0.37       | 0.21              | 5.36                      | 0.75                 | $\leq 0.17$       |                           |              | $\leq 0.18$       | •••                 | •••                 |                                          | •••                  | •••                                                | •••           | •••                  |
| G209.79-19.80West                           | 0.86              | 5.83                            | 0.70       | 0.84              | 5.77                      | 1.12                 | 0.38              | 5.86                      | 0.71         | 0.25              | 5.72                | 0.39                | 5.69                                     | 0.42                 | $6.9 \pm 3.5^{\circ}$                              | •••           | $1.4 \pm 0.2$        |
| G209.79-19.80West                           | 0.44              | 7.05                            | 0.35       | $\leq 0.17$       |                           | •••                  | ≼0.17             | •••                       |              | $\leq 0.18$       | •••                 |                     |                                          |                      |                                                    | •••           |                      |
| G209.94-19.52North                          | 0.89              | 7.99                            | 0.80       | 1.50              | 7.95                      | 1.12                 | 0.68              | 8.05                      | 0.79         | 0.39              | 7.97                | 0.57                | 7.97                                     | 0.56                 | $4.0 \pm 0.2$                                      | $3.2\pm2.2$   | $4.0\pm0.8$          |
| G209.94-19.52South1                         | 0.74              | 7.63                            | 0.39       | 1.18              | 7.92                      | 1.19                 | 0.49              | 7.60                      | 0.49         | 0.23              | 7.41                | 0.55                |                                          |                      | $8.1 \pm 4.0^{\circ}$                              |               |                      |
| G209.94-19.52South1                         | 0.86              | 8.20                            | 0.43       | 1.24              | 8.14                      | 0.83                 | 0.55              | 8.15                      | 0.51         | 0.37              | 8.05                | 0.44                | 8.06                                     | 0.41                 | $8.1 \pm 4.0^{+}$                                  |               | $2.4 \pm 0.2$ Z      |
| G209.94-19.52South2                         | 0.68              | 7.52                            | 0.67       | 0.46              | 7.38                      | 1.23                 | 0.21              | 7.53                      | 1.01         | ≼0.17             |                     |                     |                                          |                      |                                                    |               | B                    |
| G210.37-19.53North                          | 0.56              | 6.37                            | 0.32       | 0.61              | 6.49                      | 0.79                 | 0.19              | 6.42                      | 0.35         | ≼0.19             |                     |                     |                                          | •••                  |                                                    |               | al.                  |

|                            |                   |                                 |                             |                   |                           |                       |                   | Table<br>(Contin          | e 4<br>nued) |                   |                     |                         |                                           |                      |                                |                                 |                                |
|----------------------------|-------------------|---------------------------------|-----------------------------|-------------------|---------------------------|-----------------------|-------------------|---------------------------|--------------|-------------------|---------------------|-------------------------|-------------------------------------------|----------------------|--------------------------------|---------------------------------|--------------------------------|
|                            |                   | c-C <sub>3</sub> H <sub>2</sub> |                             |                   | DNC                       |                       |                   | HN <sup>13</sup> C        |              |                   |                     |                         |                                           | $N_2D^+$             |                                |                                 |                                |
| SCUBA-2 Core               | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s       | $\frac{\Delta v}{\Delta v}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\frac{\Delta v}{-1}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$   | $T_{\text{peak}}$ | V <sub>LSR,GA</sub> | $\Delta v_{\rm GA}$ (km | $V_{\rm LSR, HFS}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$ (K)               | τ                               | $T_{\rm ant}\tau$              |
| (1)                        | (R)<br>(2)        | (3)                             | (4)                         | (K)<br>(5)        | (6)                       | (7)                   | (K)<br>(8)        | (9)                       | (10)         | (11)              | (12)                | (13)                    | (14)                                      | (15)                 | (16)                           | (17)                            | (18)                           |
| G210 37-19 53South         | 0.79              | 5.82                            | 1.02                        | 0.66              | 5.99                      | 1.22                  | 0.26              | 5.96                      | 1.26         | 0.27              | 5 47                | 0.28                    | 5.57                                      | 0.47                 | $7.0 \pm 3.5^{\dagger}$        |                                 | $1.2 \pm 0.2$                  |
| G210.49-19.79East1         | 0.96              | 8 59                            | 0.88                        | 0.57              | 8.66                      | 1.09                  | 0.20              | 8.85                      | 1.09         | <0.27             |                     |                         |                                           |                      | 1.0 ± 5.5                      |                                 | 1.2 ± 0.2                      |
| G210.49–19.79East2         | 0.38              | 7.90                            | 0.43                        | 0.67              | 8.13                      | 0.73                  | 0.27              | 8.10                      | 0.49         | 0.27              | 8 09                | 0.25                    | 8.08                                      | 0.33                 | $5.9 \pm 3.0^{\dagger}$        |                                 | $1.7 \pm 0.2$                  |
| G210 49-19 79East2         | 1 36              | 10.30                           | 0.73                        | 0.53              | 10.47                     | 1 15                  | 0.34              | 10.42                     | 0.94         | <0.19             |                     |                         |                                           |                      |                                |                                 |                                |
| G210.49-19.79West          | 0.64              | 9.08                            | 0.97                        | 0.89              | 9.31                      | 1.18                  | 0.44              | 9.16                      | 0.85         | 0.24              | 9.03                | 1.03                    | 9.24                                      | 0.67                 | $5.9 \pm 3.0^{\dagger}$        |                                 | $1.8 \pm 0.2$                  |
| G210.82–19.47North1        | 0.47              | 5.31                            | 0.76                        | 0.82              | 5.43                      | 0.98                  | 0.21              | 5.47                      | 1.12         | 0.45              | 5 33                | 0.49                    | 5.34                                      | 0.41                 | $8.1 \pm 4.0^{\dagger}$        |                                 | $34 \pm 0.2$                   |
| G210.82 - 19.47North2      | 0.74              | 5.15                            | 0.39                        | 1.00              | 5 34                      | 0.92                  | 0.29              | 5 36                      | 0.67         | 0.37              | 5.25                | 0.25                    | 5 24                                      | 0.28                 | $8.1 \pm 4.0^{\dagger}$        |                                 | $25 \pm 0.2$                   |
| G210.97–19.33North         | 0.16              | 3 78                            | 0.69                        | <0.16             |                           |                       | <0.17             |                           |              | <0.57             |                     |                         |                                           |                      | 0.1 ± 1.0                      |                                 | 2.0 ± 0.2                      |
| G210.97-19.33South1        | 1 12              | 2 87                            | 0.41                        | <0.38             |                           |                       | <0.30             |                           |              | <0.36             |                     |                         |                                           |                      |                                |                                 |                                |
| G210.97–19.33South?        | 0.69              | 3 27                            | 0.89                        | 0.49              | 3 34                      | 0.27                  | 0.40              | 3 10                      | 0.27         | ≪0.30             |                     |                         |                                           |                      |                                |                                 |                                |
| G210.97–19.33South2        | 0.80              | 4 54                            | 0.43                        | 0.89              | 4 47                      | 0.75                  | <0.33             |                           |              | <0.34             |                     |                         |                                           |                      |                                |                                 |                                |
| G211.01_19.54North         | 1.15              | 5.06                            | 1.01                        | 0.07              | 5.96                      | 1 33                  | Q.55              | 5.08                      | 0.95         | 0.27              | 5 70                | 1 / 1                   |                                           |                      | $73 \pm 36^{\dagger}$          |                                 |                                |
| G211.01 - 19.54 South      | 0.90              | 5 78                            | 0.78                        | 0.07              | 5.90                      | 1.55                  | 0.40              | 5.90                      | 0.75         | 0.27              | 5.66                | 0.74                    | 5 79                                      | 0.78                 | $1.5 \pm 5.0$<br>$1.4 \pm 0.5$ | 11 + 27                         | $18 \pm 0.5$                   |
| G211.16_10.33North1        | 0.90              | 3 25                            | 0.78                        | 0.75              | 3.52                      | 0.84                  | 0.22              | 3.05                      | 0.70         | < 0.15            | 5.00                | 0.74                    | 5.17                                      | 0.70                 | 4.4 ± 0.5                      | 1.1 ± 2.7                       | 1.0 ± 0.5                      |
| G211.16-19.33North?        | 1.00              | 3 35                            | 0.50                        | 0.55              | 3.52                      | 1 11                  | 0.29              | 3.48                      | 0.85         | 0.13              | 3.63                | 0.41                    | 3 56                                      | 0.38                 | $71 \pm 18$                    | $0.4 \pm 12.1$                  | $16 \pm 0.7$                   |
| G211.16 10.33North3        | 1.07              | 3.55                            | 0.03                        | 0.75              | 3.18                      | 1.11                  | 0.55              | 3 36                      | 0.65         | 0.25              | 3.05                | 0.54                    | 3.30                                      | 0.56                 | $7.1 \pm 1.0$<br>5.6 ± 0.6     | $0.4 \pm 12.1$<br>$1.1 \pm 2.5$ | $1.0 \pm 0.7$<br>$3.0 \pm 0.6$ |
| G211.16 10.33North4        | 0.83              | 3.23<br>4.40                    | 0.45                        | 0.90              | J.40<br>4 54              | 1.09                  | 0.40              | 1.50<br>1.57              | 1 30         | 0.37              | 5.50<br>1.17        | 0.54                    | 5.58<br>4.52                              | 0.45                 | $3.0 \pm 0.0$                  | $1.1 \pm 2.3$<br>$0.0 \pm 3.4$  | $3.0 \pm 0.0$<br>$1.0 \pm 0.6$ |
| G211.10-19.55North5        | 0.85              | 4.49                            | 0.80                        | 1.06              | 4.34                      | 1.23                  | 0.28              | 4.57                      | 0.60         | 0.22              | 4.47                | 0.39                    | 4.52                                      | 0.33                 | $4.7 \pm 0.0$                  | $0.9 \pm 3.4$                   | $1.9 \pm 0.0$                  |
| G211.16 10.22South         | 0.04              | 4.19                            | 0.70                        | <0.18             | 4.50                      | 1.01                  | <0.16             | 4.20                      | 0.09         | <0.42             | 4.40                | 0.45                    | 4.57                                      | 0.57                 | $4.3 \pm 0.3$                  | $2.0 \pm 2.0$                   | $4.0 \pm 0.7$                  |
| G211.10-19.5550000         | 0.24              | 2.06                            | 0.33                        | ≷0.18<br>0.01     |                           | 1 10                  | ≷0.10<br>0.48     |                           | 0.72         | ≷0.17<br>0.27     |                     | 0.46                    |                                           | 0.56                 | $6.2 \pm 2.1^{\dagger}$        |                                 | $20 \pm 0.4$                   |
| $C_{211.47} = 19.27$ North | 0.03              | 5.90                            | 1.40                        | 0.91              | 4.21                      | 1.10                  | 0.40              | 4.17                      | 1.02         | <0.17             | 4.10                | 0.40                    | 4.10                                      | 0.50                 | $0.2 \pm 3.1$                  |                                 | $2.0 \pm 0.4$                  |
| $G_{211.47} = 19.2750uui$  | 0.50              | 2.50                            | 1.49                        | 0.00              | 2.55                      | 1.54                  | 0.54              | 2.59                      | 1.05         | ≷0.17<br><0.17    | •••                 |                         |                                           | •••                  |                                |                                 |                                |
| G211.72-19.25North         | 0.74              | 5.50                            | 0.55                        | 0.75              | 5.55                      | 1.00                  | 0.51              | 5.54                      | 0.32         | ≷0.17<br><0.15    | •••                 |                         |                                           | •••                  |                                |                                 |                                |
| G211./2-19.25South1        | 0.44              | 4.49                            | 0.69                        | 0.45              | 4.30                      | 1.00                  | 0.35              | 4.52                      | 0.43         | ≤0.15<br>0.41     |                     | 0.55                    |                                           | 0.82                 |                                |                                 |                                |
| G212.10-19.15North2        | 0.48              | 4.21                            | 1.00                        | 1.54              | 4.49                      | 1.20                  | 0.30              | 4.54                      | 1.10         | 0.41              | 4.07                | 0.55                    | 4.52                                      | 0.82                 | $0.0 \pm 0.3$                  | $0.9 \pm 1.3$                   | $2.9 \pm 0.3$                  |
| G212.10-19.15North2        | 0.58              | 4.38                            | 0.76                        | 0.34              | 4.34                      | 1.15                  | 0.55              | 4.34                      | 0.80         | 0.18              | 4.41                | 0.81                    |                                           | •••                  | $3.4 \pm 2.7$                  |                                 |                                |
| G212.10-19.15North         | 1.07              | 4.07                            | 0.70                        | 0.80              | 4.54                      | 1.27                  | 0.44              | 4.30                      | 0.80         | 0.21              | 4.45                | 0.55                    |                                           | 0.72                 | $0.6 \pm 3.4^{\circ}$          |                                 |                                |
| G212.10-19.15South         | 0.60              | 3.90                            | 0.74                        | 0.87              | 5.98                      | 1.00                  | 0.54              | 3.98                      | 0.85         | 0.31              | 3.82                | 0.50                    | 3.91                                      | 0.72                 | $5.4 \pm 2.7^{\circ}$          |                                 | $2.1 \pm 0.2$                  |
| G212.84-19.45North         | 0.83              | 4.32                            | 0.39                        | 0.79              | 4.34                      | 0.87                  | 0.44              | 4.39                      | 0.61         | 0.28              | 4.30                | 0.38                    | 4.38                                      | 0.35                 | $5.9 \pm 3.0^{\circ}$          |                                 | $1.7 \pm 0.2$                  |
| G212.84-19.45South         | 0.30              | 4.48                            | 0.55                        | <u></u> ≤0.21     |                           |                       | ≤0.17             | 11 47                     |              | ≤0.19<br>≤0.19    | •••                 | •••                     |                                           | •••                  |                                |                                 | •••                            |
| G215.44-16.38              | 1.22              | 0.21                            | 0.42                        | 0.99              | 11.46                     | 0.89                  | 0.44              | 11.4/                     | 0.62         | ≤0.18             | •••                 | •••                     |                                           | •••                  | •••                            | •••                             | •••                            |
| G215.87-17.62North         | 0.64              | 9.31                            | 0.22                        | ≤0.21             |                           |                       | ≤0.20             |                           |              | ≤0.21<br>0.25     |                     |                         |                                           |                      |                                |                                 |                                |
| G215.87-17.62Middle        | 0.98              | 8.95                            | 0.36                        | 0.62              | 9.07                      | 0.94                  | 0.32              | 9.10                      | 0.63         | 0.25              | 8.96                | 0.37                    | 9.00                                      | 0.38                 | $6.1 \pm 3.0^{\circ}$          | •••                             | $1.7 \pm 0.2$                  |
| G215.8/-1/.62South         | 0.74              | 9.90                            | 0.64                        | 0.66              | 10.01                     | 1.04                  | 0.34              | 10.01                     | 0.83         | 0.17              | 10.01               | 0.50                    | 10.10                                     | 0.80                 | $6.1 \pm 3.0^{\circ}$          | •••                             | $0.7 \pm 0.2$                  |
| SCOPEG139.12-03.23         | 0.12              | -31.72                          | 1.85                        | ≤0.11             |                           |                       | ≤0.09             |                           |              | ≤0.10             |                     |                         |                                           |                      |                                |                                 |                                |
| SCOPEG159.21-20.13         | 0.91              | 6.33                            | 0.95                        | 1.44              | 6.44                      | 1.18                  | 0.69              | 6.39                      | 0.89         | 0.66              | 6.44                | 0.61                    | 6.47                                      | 0.51                 | $5.7 \pm 0.2$                  | $2.2 \pm 0.7$                   | $6.5 \pm 0.4$                  |
| SCOPEG159.18-20.09         | 1.02              | 6.23                            | 0.88                        | 1.90              | 6.18                      | 1.23                  | 0.85              | 6.17                      | 0.87         | 0.50              | 6.02                | 0.83                    | 6.11                                      | 0.82                 | $6.5 \pm 3.2'$                 |                                 | $3.2 \pm 0.1$                  |
| SCOPEG159.22-20.11         | 1.05              | 6.55                            | 1.36                        | 2.58              | 6.82                      | 1.57                  | 0.93              | 6.77                      | 1.19         | 1.19              | 6.65                | 0.94                    | 6.71                                      | 0.83                 | $9.8 \pm 0.2$                  | $1.4 \pm 0.2$                   | $9.5 \pm 0.3$                  |
| SCOPEG162.46-08.67         | 0.55              | -1.28                           | 1.00                        | 0.34              | -1.23                     | 1.04                  | 0.22              | -1.35                     | 0.58         | 0.15              | -1.39               | 0.33                    |                                           | •••                  | $6.1 \pm 3.0'$                 |                                 |                                |
| SCOPEG162.48-08.68         | 0.51              | -1.37                           | 0.76                        | 0.44              | -1.29                     | 0.89                  | 0.23              | -1.39                     | 0.56         | 0.17              | -1.37               | 0.45                    |                                           |                      | $6.1 \pm 3.0'$                 |                                 |                                |
| SCOPEG171.50-14.91         | 2.34              | 6.28                            | 0.39                        | 1.23              | 6.52                      | 1.14                  | 0.74              | 6.46                      | 0.69         | 0.50              | 6.54                | 0.37                    | 6.55                                      | 0.34                 | $4.5 \pm 0.2$                  | $2.8 \pm 1.3$                   | $4.9 \pm 0.5$                  |
| SCOPEG172.88+02.26         | 0.92              | -17.39                          | 1.36                        | 0.52              | -17.35                    | 1.56                  | 0.34              | -17.28                    | 1.23         | 0.29              | -17.36              | 0.58                    | -17.40                                    | 0.72                 | $5.8 \pm 2.9^{+}$              |                                 | $1.6 \pm 0.1$                  |
| SCOPEG172.88+02.27         | 0.65              | -18.27                          | 1.78                        | 0.52              | -17.43                    | 2.24                  | 0.21              | -17.45                    | 2.14         | 0.25              | -16.89              | 1.58                    | -17.30                                    | 1.79                 | $5.8\pm2.9^{\dagger}$          |                                 | $1.0 \pm 0.1$                  |
| SCOPEG172.89+02.27         | 0.20              | -18.20                          | 0.64                        | $\leqslant 0.08$  |                           |                       | $\leqslant 0.09$  |                           |              | ≤0.09             | •••                 |                         |                                           | •••                  | •••                            |                                 |                                |
| SCOPEG172.89+02.27         | 0.73              | -16.73                          | 0.97                        | 0.88              | -16.65                    | 1.46                  | 0.36              | -16.65                    | 0.92         | 0.25              | -16.74              | 2.00                    | -16.70                                    | 1.07                 | $5.8\pm2.9^{\dagger}$          |                                 | $1.6 \pm 0.1$                  |

|                      |                   |                                 |            |                   |                           |            |                   | Table<br>(Contin          | e <b>4</b><br>ued) |                   |                     |                     |                                             |                      |                                          |                                |                                |
|----------------------|-------------------|---------------------------------|------------|-------------------|---------------------------|------------|-------------------|---------------------------|--------------------|-------------------|---------------------|---------------------|---------------------------------------------|----------------------|------------------------------------------|--------------------------------|--------------------------------|
|                      |                   | c-C <sub>3</sub> H <sub>2</sub> |            |                   | DNC                       |            |                   | HN <sup>13</sup> C        |                    |                   |                     |                     |                                             | $N_2D^+$             |                                          |                                |                                |
| SCUBA-2 Core         | T <sub>peak</sub> | V <sub>LSR</sub><br>(km s       | $\Delta v$ | T <sub>peak</sub> | V <sub>LSR</sub><br>(km s | $\Delta v$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$         | $T_{\text{peak}}$ | V <sub>LSR,GA</sub> | $\Delta v_{GA}$ (kn | $V_{\text{LSR,HFS}}$<br>1 s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$                             | τ                              | $T_{\rm ant}\tau$              |
| (1)                  | (K)<br>(2)        | (3)                             | (4)        | (K)<br>(5)        | (6)                       | (7)        | (K)<br>(8)        | (9)                       | (10)               | (K)<br>(11)       | (12)                | (13)                | (14)                                        | (15)                 | (K)<br>(16)                              | (17)                           | (K)<br>(18)                    |
| SCOPEG173.17+02.36   | 0.25              | -20.63                          | 1.12       | 0.16              | -20.55                    | 1.46       | ≤0.12             |                           |                    | ≤0.12             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG173 17+02 36   | 0.49              | -18.85                          | 1.02       | 0.28              | -18.73                    | 1.48       | 0.21              | -18.70                    | 1.71               | ≤0.12             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG173.18+02.35   | 0.10              | -21.25                          | 0.63       | 0.13              | -20.98                    | 1.45       | ≤0.12             |                           |                    | ≪0.11             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG173.18+02.35   | 0.54              | -18.96                          | 1.31       | 0.40              | -18.96                    | 1.73       | 0.33              | -18.83                    | 1.57               | 0.14              | -19.13              | 0.94                |                                             |                      | $7.4 \pm 3.7^{\dagger}$                  |                                |                                |
| SCOPEG173.19+02.35   | 0.65              | -19.55                          | 1.51       | 0.43              | -19.42                    | 1.92       | 0.32              | -19.32                    | 1.52               | 0.15              | -19.27              | 0.94                |                                             |                      | $7.4 \pm 3.7^{\dagger}$                  |                                |                                |
| SCOPEG178.27-00.60   | 0.34              | -0.88                           | 0.76       | 0.49              | -0.67                     | 1.11       | 0.15              | -0.79                     | 0.66               | 0.24              | -0.84               | 0.53                | -0.78                                       | 0.58                 | $4.0 \pm 0.2$                            | $1.6 \pm 2.1$                  | $2.0 \pm 0.4$                  |
| SCOPEG178 28-00 60   | 0.24              | -1.04                           | 0.74       | 0.27              | -0.93                     | 1 13       | 0.17              | -1.00                     | 0.35               | 0.16              | -1.06               | 0.58                |                                             |                      | $6.0 \pm 3.0^{\dagger}$                  |                                | 210 ± 011                      |
| SCOPEG195 71-02 32   | 0.21              | 3.42                            | 1 38       | 0.45              | 4 01                      | 1.13       | 0.11              | 3.98                      | 1 45               | 0.13              | 4 19                | 0.58                |                                             |                      | $6.0 \pm 3.0^{\dagger}$                  |                                |                                |
| SCOPEG195.74 02.32   | 0.41              | 4.02                            | 1.50       | 0.15              | 4 46                      | 1.07       | 0.11              | 4 37                      | 1.13               | 0.15              | 4 89                | 1.03                |                                             |                      | $6.1 \pm 3.0^{\dagger}$                  |                                |                                |
| SCOPEG202 30+02 53   | 0.19              | 7.88                            | 1.50       | 0.30              | 8 36                      | 1.72       | 0.13              | 8 19                      | 0.95               | 0.15              | 7.98                | 0.43                | 8 25                                        | 0.84                 | $73 \pm 3.6^{\dagger}$                   |                                | $0.7 \pm 0.1$                  |
| SCOPEG202 31±02 52   | 0.17              | 7.00                            | 2.18       | 0.25              | 7.49                      | 2 23       | < 0.10            | 0.17                      | 0.95               | 0.13              | 7.90                | 0.43                | 0.25                                        | 0.04                 | $7.5 \pm 3.0$<br>$7.3 \pm 3.6^{\dagger}$ |                                | 0.7 ± 0.1                      |
| SCOPEG202.31+02.52   | 0.17              | 5 30                            | 0.55       | < 0.11            | 7.77                      | 2.23       | <0.10             |                           |                    | < 0.00            | 1.91                | 0.42                |                                             |                      | 7.5 ± 5.0                                |                                |                                |
| SCOPEG202.32+02.53   | 0.11              | 7.06                            | 0.55       | ≷0.11<br>0.70     | 7 11                      | 1 10       | ₹0.10<br>0.14     | 7 14                      | 0.01               | ₹0.09<br>0.20     | 7.05                | 0.63                |                                             |                      | $73 \pm 36^{\dagger}$                    |                                |                                |
| SCOPEC006 01 + 36 74 | 0.55              | 2 22                            | 0.82       | 1.20              | 2.12                      | 0.82       | 0.14              | 2 29                      | 0.91               | 0.20              | 2.43                | 0.05                | 2 42                                        | 0.27                 | $7.5 \pm 5.0$                            | $16 \pm 12$                    | 5.6 ± 0.6                      |
| SCOPEC001.27 + 20.05 | 0.01              | 2.32                            | 0.25       | 1.50              | 2.43                      | 0.82       | 0.45              | 2.30                      | 0.51               | 0.01              | 2.43                | 0.31                | 2.43                                        | 0.27                 | $0.3 \pm 0.4$<br>5 2 $\pm$ 0 2           | $1.0 \pm 1.2$<br>2.8 $\pm$ 1.2 | $3.0 \pm 0.0$<br>$7.0 \pm 0.8$ |
| SCOPEG001.37+20.93   | 0.10              | 5.68                            | 1.20       | 1.99              | 0.82                      | 0.92       | 0.62              | 0.78                      | 0.51               | 0.08              | 0.77                | 0.39                | 0.78                                        | 0.50                 | $5.2 \pm 0.3$                            | $2.0 \pm 1.3$                  | $7.0 \pm 0.8$                  |
| SCOPEG010.19+02.41   | 0.19              | 5.08                            | 1.20       | $\leq 0.10$       |                           | •••        | ≷0.10<br><0.10    |                           |                    | $\leq 0.17$       | •••                 | •••                 |                                             | •••                  |                                          |                                |                                |
| SCOPEG005.91-00.95   | ≷0.17<br>0.24     | 12.40                           | 1.52       | ≷0.20<br>0.21     | 12.44                     | 0.02       | ≤0.19             |                           |                    | ≷0.25             | •••                 | •••                 |                                             | •••                  |                                          |                                |                                |
| SCOPEG005.88-01.01   | 0.24              | 12.40                           | 1.55       | 0.21              | 12.44                     | 0.85       | ≤0.14<br><0.15    |                           |                    | ≤0.10<br><0.17    | •••                 | •••                 |                                             | •••                  | •••                                      | •••                            |                                |
| SCOPEG005.92-00.99   | 0.21              | 12.43                           | 1.57       | ≤0.22             |                           |            | ≤0.15             |                           |                    | ≤0.17             |                     | •••                 | •••                                         | •••                  | •••                                      | •••                            | •••                            |
| SCOPEG005.92-00.99   | 0.20              | 15.29                           | 2.00       | ≤0.21             |                           | •••        | ≤0.15             |                           |                    | ≤0.17             | •••                 | •••                 | •••                                         | •••                  | •••                                      | •••                            | •••                            |
| SCOPEG005.90-01.01   | 0.18              | 12.36                           | 2.19       | ≤0.20             |                           | •••        | ≤0.14             |                           |                    | ≤0.16             |                     | •••                 |                                             | •••                  |                                          | •••                            |                                |
| SCOPEG005.90-01.01   | 0.20              | 15.72                           | 1.37       | ≤0.19             |                           | •••        | ≤0.14             |                           |                    | ≤0.16             |                     | •••                 |                                             | •••                  |                                          | •••                            |                                |
| SCOPEG005.91-01.02   | 0.18              | 11.24                           | 0.40       | ≤0.17             | •••                       | •••        | ≤0.15             |                           |                    | ≤0.18             |                     | •••                 |                                             | •••                  |                                          |                                |                                |
| SCOPEG005.91-01.02   | ≤0.14             |                                 |            | ≤0.17             |                           | •••        | ≤0.15             |                           |                    | ≤0.18             |                     | •••                 |                                             | •••                  |                                          |                                |                                |
| SCOPEG017.38+02.26   | 0.24              | 10.74                           | 0.70       | 0.17              | 10.87                     | 1.04       | 0.15              | 10.87                     | 0.64               | ≤0.17             | •••                 | •••                 | •••                                         | •••                  |                                          | •••                            |                                |
| SCOPEG017.38+02.25   | 0.20              | 10.84                           | 1.39       | 0.17              | 10.74                     | 1.33       | ≤0.13             |                           |                    | ≤0.13             |                     | •••                 | •••                                         | •••                  |                                          | •••                            |                                |
| SCOPEG017.37+02.24   | 0.26              | 10.52                           | 1.33       | 0.16              | 10.83                     | 1.32       | 0.18              | 10.54                     | 1.01               | ≤0.13             |                     | •••                 |                                             | •••                  | •••                                      | •••                            |                                |
| SCOPEG017.36+02.23   | 0.32              | 10.31                           | 1.32       | 0.20              | 10.41                     | 1.06       | 0.23              | 10.36                     | 1.55               | 0.14              | 9.98                | 0.33                | 9.93                                        | 0.35                 | $7.7 \pm 3.9'$                           | •••                            | $0.9\pm0.2$                    |
| SCOPEG014.20-00.18   | 0.19              | 37.19                           | 0.77       | ≼0.15             |                           | •••        | ≼0.15             |                           |                    | ≤0.16             | •••                 | •••                 |                                             | •••                  |                                          | •••                            |                                |
| SCOPEG014.20-00.18   | ≼0.13             |                                 |            | ≼0.15             |                           |            | 0.16              | 39.27                     | 0.68               | ≼0.16             |                     |                     |                                             | •••                  |                                          |                                |                                |
| SCOPEG014.23-00.17   | 0.15              | 37.50                           | 2.78       | ≼0.15             |                           | •••        | 0.20              | 37.54                     | 1.97               | ≤0.14             |                     | •••                 |                                             | •••                  |                                          | •••                            |                                |
| SCOPEG014.18-00.23   | 0.16              | 39.29                           | 0.96       | ≼0.12             |                           |            | 0.18              | 39.23                     | 0.43               | ≤0.12             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG014.18-00.23   | 0.24              | 40.46                           | 0.79       | 0.12              | 40.60                     | 1.77       | 0.18              | 40.60                     | 1.03               | ≤0.12             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG014.71-00.15   | 0.48              | 40.89                           | 1.98       | ≼0.23             |                           |            | ≤0.21             |                           | •••                | ≤0.26             |                     |                     |                                             | •••                  |                                          |                                |                                |
| SCOPEG014.72-00.20   | 0.26              | 37.53                           | 1.30       | 0.21              | 37.44                     | 0.30       | 0.23              | 37.62                     | 1.54               | ≤0.20             |                     | •••                 |                                             | •••                  |                                          |                                |                                |
| SCOPEG014.69-00.22   | ≤0.13             |                                 |            | ≤0.20             |                           |            | ≼0.16             |                           |                    | $\leq 0.18$       |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG014.71-00.22   | 0.35              | 36.97                           | 1.60       | ≼0.20             |                           |            | 0.24              | 37.31                     | 2.14               | $\leq 0.18$       |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG014.11-00.57   | 0.30              | 20.50                           | 3.76       | 0.28              | 20.67                     | 3.65       | 0.24              | 20.11                     | 3.32               | ≼0.17             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG014.23-00.51   | 0.33              | 19.65                           | 2.69       | 0.34              | 19.62                     | 2.60       | 0.21              | 19.33                     | 2.61               | ≼0.17             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG016.93+00.28   | 0.19              | 24.24                           | 2.20       | ≼0.21             |                           |            | ≼0.19             |                           |                    | ≤0.23             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG016.93+00.27   | 0.25              | 24.08                           | 2.30       | ≼0.18             |                           |            | ≼0.15             |                           |                    | ≼0.16             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG016.93+00.25   | 0.41              | 24.18                           | 0.98       | 0.29              | 24.52                     | 1.50       | 0.21              | 24.37                     | 0.86               | ≼0.16             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG016.93+00.25   | 0.18              | 26.04                           | 0.88       | ≼0.17             |                           |            | ≼0.14             |                           |                    | ≼0.16             |                     |                     |                                             |                      |                                          |                                |                                |
| SCOPEG016.93+00.24   | 0.33              | 24.28                           | 1.23       | 0.20              | 24.88                     | 0.39       | 0.20              | 24.53                     | 0.63               | ≼0.16             |                     |                     |                                             |                      |                                          |                                |                                |

|                      |                   |                                 |                           |                   |                           |            |                   | Table<br>(Contin          | e 4<br>nued) |                      |                     |                         |                                          |                      |                          |              |                                                                                                                 |
|----------------------|-------------------|---------------------------------|---------------------------|-------------------|---------------------------|------------|-------------------|---------------------------|--------------|----------------------|---------------------|-------------------------|------------------------------------------|----------------------|--------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|
|                      |                   | c-C <sub>3</sub> H <sub>2</sub> |                           |                   | DNC                       |            |                   | HN <sup>13</sup> C        |              |                      |                     |                         |                                          | $N_2D^+$             |                          |              |                                                                                                                 |
| SCUBA-2 Core         | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s       | $\frac{\Delta v}{s^{-1}}$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$ | $T_{\text{peak}}$ | V <sub>LSR</sub><br>(km s | $\Delta v$   | $T_{\text{peak}}$    | V <sub>LSR,GA</sub> | $\Delta v_{\rm GA}$ (km | $V_{\rm LSR,HFS}$<br>1 s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | $T_{\rm ex}$             | τ            | $T_{ant}\tau$                                                                                                   |
| (1)                  | (K)<br>(2)        | (3)                             | (4)                       | (K)<br>(5)        | (6)                       | (7)        | (K)<br>(8)        | (9)                       | (10)         | ( <b>K</b> )<br>(11) | (12)                | (13)                    | (14)                                     | (15)                 | (K)<br>(16)              | (17)         | (18)                                                                                                            |
| SCOPEG016.93+00.24   | 0.28              | 26.28                           | 0.77                      | 0.17              | 26.19                     | 0.49       | 0.19              | 26.40                     | 0.56         | ≤0.16                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG016.92+00.23   | 0.20              | 24.19                           | 2.98                      | ≤0.15             |                           |            | ≤0.15             |                           |              | ≤0.16                |                     |                         |                                          |                      |                          |              | 6                                                                                                               |
| SCOPEG016.93+00.22   | 0.33              | 23.74                           | 1.34                      | 0.44              | 23.74                     | 1.15       | 0.25              | 23.77                     | 1.39         | ≤0.15                |                     |                         |                                          |                      |                          |              | 6                                                                                                               |
| SCOPEG016.30-00.53   | ≤0.18             |                                 |                           | ≤0.26             |                           |            | 0.20              | 38.04                     | 0.72         | ≤0.23                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG016.34-00.59   | 0.35              | 41.25                           | 1.85                      | ≤0.18             |                           |            | 0.25              | 41.34                     | 2.36         | ≤0.18                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG016.38-00.61   | 0.27              | 41.37                           | 1.41                      | ≤0.17             |                           |            | 0.16              | 41.44                     | 2.35         | ≤0.17                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG016 42-00 64   | 0.33              | 40.42                           | 1.23                      | <0.16             |                           |            | 0.25              | 40.64                     | 1.22         | ≤0.17                |                     |                         |                                          |                      |                          |              | ,                                                                                                               |
| SCOPEG016 42-00 64   | 0.19              | 42.04                           | 1.30                      | ≤0.16             |                           |            | 0.22              | 42.22                     | 0.37         | ≤0.17                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG017.22-01.46   | <0.15             |                                 |                           | ≤0.19             |                           |            | ≤0.15             |                           |              | ≤0.17                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG017.21-01.47   | 0.15              | 34.21                           | 1.98                      | ≤0.19             |                           |            | ≤0.16             |                           |              | ≤0.16                |                     |                         |                                          |                      |                          |              | 1                                                                                                               |
| SCOPEG023 63+00 59   | 0.17              | 96.72                           | 0.68                      | <0.17             |                           |            | <0.10             |                           |              | <0.16                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG023.69±00.59   | 0.13              | 97.60                           | 2.83                      | <0.17             |                           |            | 0.17              | 07.02                     | 2.61         | <0.16                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG024 02+00 24   | <0.15             |                                 | 2.05                      | <0.10             |                           |            | <0.17             |                           | 2.01         | <0.15                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG024.02+00.24   | 0.12              | 105.80                          | 2 55                      | <0.17             |                           |            | <0.13             |                           |              | <0.13                |                     |                         |                                          |                      |                          |              | in the second |
| SCOPEG023 32_00 20   | 0.12              | 102.00                          | 2.55                      | <0.14             |                           |            | 0.13              | 102.47                    | 1.60         | <0.17                |                     |                         |                                          |                      |                          |              | 1                                                                                                               |
| SCOPEG026 50 ± 00.71 | 0.15              | 102.10                          | 2.55                      | <0.10             |                           |            | 0.15              | 102.47                    | 2.48         | <0.17                |                     |                         |                                          |                      |                          |              | l                                                                                                               |
| SCOPEG020.30+00.71   | 0.23              | 40.10                           | 2.80                      | $\leq 0.20$       |                           |            | 0.15              | 40.75                     | 2.40         | ≷0.17<br><0.10       |                     |                         |                                          |                      | •••                      | •••          |                                                                                                                 |
| SCOPEC037.92+02.14   | 0.14              | 106.00                          | 0.85                      | 0.12              | 105.90                    | 2.50       | 0.08              | 106.07                    | 2.06         | ≷0.10<br><0.11       | •••                 |                         |                                          |                      |                          | •••          |                                                                                                                 |
| SCOPEG035.74-00.01   | 0.24              | 20.61                           | 2.95                      | 0.12              | 20.66                     | 2.30       | 0.20              | 20.64                     | 5.00         | ≷0.11<br><0.10       |                     |                         |                                          |                      |                          | •••          |                                                                                                                 |
| SCOPEG039.74+01.99   | 0.43              | 30.01<br>42.05                  | 1.00                      | 0.24              | 30.00                     | 1.40       | 0.10              | 30.04                     | 0.98         | ≤0.10<br><0.14       | •••                 | •••                     |                                          |                      |                          | •••          | •••                                                                                                             |
| SCOPEG035.48-00.29   | 0.24              | 42.95                           | 1.02                      | 0.18              | 42.83                     | 1.20       | <b>≷</b> 0.13     |                           | 1.15         | <b>≷</b> 0.14        |                     |                         |                                          |                      | <br>70 + 25 <sup>†</sup> | •••          |                                                                                                                 |
| SCOPEG035.48-00.29   | 0.52              | 45.29                           | 1.20                      | 0.55              | 45.05                     | 1.42       | 0.30              | 45.48                     | 1.15         | 0.18                 | 45.77               | 0.76                    | 45.70                                    | 0.08                 | $7.0 \pm 3.5^{\circ}$    | •••          | $1.2 \pm 0.1$                                                                                                   |
| SCOPEG035.52-00.27   | 0.55              | 45.51                           | 1.79                      | 0.46              | 45.97                     | 2.14       | 0.31              | 45.82                     | 1.96         | ≤0.12<br>0.10        |                     |                         | •••                                      | •••                  |                          | •••          | •••                                                                                                             |
| SCOPEG035.48-00.31   | 0.47              | 44.85                           | 1.63                      | 0.50              | 45.03                     | 1.64       | 0.31              | 44.99                     | 1.72         | 0.19                 | 44.88               | 0.95                    | •••                                      | •••                  | $7.0 \pm 3.5^{\circ}$    | •••          | •••                                                                                                             |
| SCOPEG034.75-01.38   | 0.41              | 45.68                           | 2.18                      | 0.30              | 45.95                     | 2.13       | 0.33              | 45.74                     | 2.14         | ≤0.13                | •••                 | •••                     | •••                                      | •••                  |                          | •••          | •••                                                                                                             |
| SCOPEG035.36-01.//   | 0.14              | 42.25                           | 3.25                      | ≤0.13             |                           |            | 0.11              | 42.40                     | 0.64         | ≤0.12                | •••                 | •••                     |                                          | •••                  | •••                      | •••          | •••                                                                                                             |
| SCOPEG035.36-01./8   | 0.20              | 42.41                           | 2.28                      | 0.24              | 42.68                     | 1.19       | ≤0.09             |                           | •••          | ≤0.10                | •••                 | •••                     |                                          | •••                  | •••                      | •••          | •••                                                                                                             |
| SCOPEG035.35-01.80   | 0.16              | 41.87                           | 2.32                      | 0.11              | 41.97                     | 1.90       | ≤0.08             |                           |              | ≤0.10                |                     | ••••                    |                                          |                      |                          | •••          |                                                                                                                 |
| SCOPEG057.11+03.66   | 0.47              | 12.08                           | 0.55                      | 0.51              | 12.28                     | 1.04       | 0.28              | 12.21                     | 0.78         | 0.18                 | 12.12               | 0.48                    | 12.20                                    | 0.47                 | $5.9 \pm 3.0^{+}$        |              | $1.1 \pm 0.1$                                                                                                   |
| SCOPEG057.10+03.63   | 0.94              | 11.97                           | 0.59                      | 0.59              | 12.11                     | 1.04       | 0.35              | 12.03                     | 0.81         | 0.14                 | 11.90               | 0.33                    | 12.10                                    | 0.61                 | $5.9 \pm 3.0^{\circ}$    |              | $0.6 \pm 0.1$                                                                                                   |
| SCOPEG069.80-01.67   | 0.44              | 12.29                           | 1.73                      | 0.39              | 12.47                     | 1.34       | 0.27              | 12.47                     | 1.59         | ≤0.11                | •••                 | •••                     |                                          |                      | •••                      | •••          |                                                                                                                 |
| SCOPEG069.81-01.67   | 0.70              | 11.81                           | 1.39                      | 0.36              | 11.95                     | 1.44       | 0.30              | 11.95                     | 1.36         | 0.10                 | 11.71               | 0.40                    |                                          | •••                  | $7.1 \pm 3.5^{+-1}$      |              |                                                                                                                 |
| SCOPEG070.40-01.39   | 0.31              | 11.98                           | 1.11                      | 0.16              | 12.08                     | 1.18       | 0.18              | 12.05                     | 0.99         | ≤0.09                | •••                 |                         | •••                                      | •••                  | •••                      | •••          |                                                                                                                 |
| SCOPEG074.10+00.11   | 0.44              | -2.52                           | 1.66                      | 0.19              | -2.21                     | 2.31       | 0.17              | -2.19                     | 1.75         | 0.10                 | -1.77               | 0.67                    | -2.20                                    | 1.33                 | $6.2 \pm 3.1^{+}$        | •••          | $0.3 \pm 0.1$                                                                                                   |
| SCOPEG074.11+00.11   | 0.39              | -1.14                           | 2.60                      | 0.34              | -0.65                     | 2.25       | 0.15              | -0.95                     | 2.45         | 0.14                 | -0.54               | 0.61                    | -0.88                                    | 1.80                 | $6.2 \pm 3.1^{+}$        | •••          | $0.5 \pm 0.1$                                                                                                   |
| SCOPEG082.36-01.83   | 0.60              | 4.23                            | 0.59                      | 0.55              | 4.46                      | 1.01       | 0.31              | 4.43                      | 0.77         | 0.18                 | 4.54                | 0.42                    |                                          | •••                  | $5.7 \pm 2.9^{+}$        | •••          |                                                                                                                 |
| SCOPEG082.40-01.84   | 0.77              | 5.48                            | 0.60                      | 0.52              | 5.50                      | 1.32       | 0.33              | 5.47                      | 0.96         | 0.19                 | 5.40                | 0.55                    |                                          |                      | $5.7 \pm 2.9^{+}$        |              |                                                                                                                 |
| SCOPEG082.41-01.84   | 0.50              | 4.69                            | 0.87                      | 0.84              | 4.92                      | 1.09       | 0.40              | 4.98                      | 1.09         | 0.26                 | 4.88                | 0.60                    | 4.90                                     | 0.60                 | $5.7\pm2.9^{\dagger}$    |              | $1.7 \pm 0.1$                                                                                                   |
| SCOPEG082.42-01.84   | 0.39              | 5.50                            | 0.93                      | 0.65              | 5.17                      | 1.25       | 0.33              | 5.26                      | 1.16         | 0.24                 | 4.91                | 0.59                    | 5.10                                     | 0.92                 | $6.1\pm0.1$              | $0.4\pm0.1$  | $1.4\pm0.1$                                                                                                     |
| SCOPEG091.86+04.17   | 0.68              | -3.78                           | 0.61                      | 0.32              | -3.64                     | 1.08       | 0.23              | -3.68                     | 0.80         | ≤0.12                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG091.86+04.17   | 0.30              | -1.27                           | 0.22                      | ≼0.13             |                           |            | ≼0.13             |                           |              | ≤0.12                |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG091.85+04.12   | 1.11              | -2.85                           | 0.89                      | 0.59              | -2.74                     | 1.41       | 0.33              | -2.74                     | 1.04         | 0.15                 | -2.81               | 0.73                    | -2.71                                    | 0.66                 | $8.4\pm1.6$              | $0.2\pm10.6$ | $1.1\pm0.3$                                                                                                     |
| SCOPEG092.03+03.93   | 0.11              | -1.82                           | 0.37                      | ≼0.10             |                           |            | ≼0.10             |                           |              | $\leqslant 0.08$     |                     |                         |                                          |                      |                          |              |                                                                                                                 |
| SCOPEG092.27+03.79   | 0.59              | -2.48                           | 1.40                      | 0.46              | -2.16                     | 1.42       | 0.34              | -2.31                     | 1.35         | 0.18                 | -2.08               | 0.67                    | -2.08                                    | 0.70                 | $4.3\pm0.1$              | $0.8\pm0.1$  | $1.2 \pm 0.1$                                                                                                   |
| SCOPEG087.06-04.19   | 0.54              | 5.38                            | 0.56                      | 0.43              | 5.33                      | 0.79       | 0.21              | 5.39                      | 0.60         | 0.09                 | 5.14                | 0.45                    | 5.27                                     | 0.38                 | $7.2\pm3.6^{\dagger}$    | •••          | $0.6 \pm 0.1$                                                                                                   |

|                    |                          |                                 |            |                          |                           |              |                          | (Contin                   | ued)       |                          |                     |                         |                                             |                      |                         |      |                       |
|--------------------|--------------------------|---------------------------------|------------|--------------------------|---------------------------|--------------|--------------------------|---------------------------|------------|--------------------------|---------------------|-------------------------|---------------------------------------------|----------------------|-------------------------|------|-----------------------|
|                    |                          | c-C <sub>3</sub> H <sub>2</sub> |            |                          | DNC                       |              |                          | HN <sup>13</sup> C        |            |                          |                     |                         |                                             | $N_2D^+$             |                         |      |                       |
| SCUBA-2 Core       | T <sub>peak</sub><br>(K) | V <sub>LSR</sub><br>(km s       | $\Delta v$ | T <sub>peak</sub><br>(K) | V <sub>LSR</sub><br>(km s | $(\Delta v)$ | T <sub>peak</sub><br>(K) | V <sub>LSR</sub><br>(km s | $\Delta v$ | T <sub>peak</sub><br>(K) | V <sub>LSR,GA</sub> | $\Delta v_{\rm GA}$ (km | $V_{\text{LSR,HFS}}$<br>n s <sup>-1</sup> ) | $\Delta v_{\rm HFS}$ | T <sub>ex</sub><br>(K)  | τ    | $T_{\rm ant}\tau$ (K) |
| (1)                | (2)                      | (3)                             | (4)        | (5)                      | (6)                       | (7)          | (8)                      | (9)                       | (10)       | (11)                     | (12)                | (13)                    | (14)                                        | (15)                 | (16)                    | (17) | (18)                  |
| SCOPEG089.64-06.62 | 0.90                     | 12.27                           | 0.63       | 0.46                     | 12.33                     | 1.00         | 0.21                     | 12.30                     | 0.80       | 0.12                     | 12.61               | 0.34                    |                                             |                      | $5.6\pm2.8^{\dagger}$   |      |                       |
| SCOPEG105.37+09.84 | 0.15                     | -9.94                           | 1.32       | 0.23                     | -9.59                     | 1.48         | 0.14                     | -9.56                     | 1.34       | ≼0.11                    |                     |                         |                                             |                      |                         |      |                       |
| SCOPEG105.41+09.88 | $\leqslant 0.08$         |                                 |            | ≼0.10                    |                           |              | ≼0.10                    |                           |            | ≼0.10                    |                     |                         |                                             | •••                  |                         |      |                       |
| SCOPEG093.53-04.26 | 0.80                     | 4.31                            | 0.90       | 0.73                     | 4.41                      | 1.19         | 0.45                     | 4.37                      | 1.08       | 0.19                     | 4.09                | 0.94                    | 4.21                                        | 0.73                 | $5.5\pm2.8^{\dagger}$   |      | $1.4\pm0.1$           |
| SCOPEG093.54-04.28 | 0.69                     | 4.04                            | 0.82       | 0.72                     | 4.20                      | 1.20         | 0.34                     | 4.12                      | 1.02       | 0.20                     | 4.00                | 1.01                    | 4.09                                        | 0.68                 | $5.5\pm2.8^{\dagger}$   |      | $1.3\pm0.1$           |
| SCOPEG107.16+05.45 | 0.47                     | -10.26                          | 0.80       | 0.85                     | -10.08                    | 1.23         | 0.29                     | -10.12                    | 0.69       | 0.23                     | -10.23              | 0.44                    |                                             |                      | $7.9\pm4.0^{\dagger}$   |      |                       |
| SCOPEG107.30+05.64 | 0.39                     | -11.10                          | 1.76       | 0.33                     | -11.11                    | 1.48         | 0.22                     | -11.16                    | 1.56       | $\leq 0.09$              |                     |                         |                                             |                      |                         |      |                       |
| SCOPEG107.18+05.43 | 0.54                     | -10.80                          | 0.93       | 0.30                     | -10.74                    | 1.34         | 0.25                     | -10.72                    | 0.88       | 0.10                     | -11.10              | 0.58                    |                                             |                      | $7.9 \pm 4.0^{\dagger}$ |      |                       |
| SCOPEG109.81+02.70 | 0.40                     | -9.13                           | 1.18       | 0.38                     | -9.02                     | 1.21         | 0.19                     | -9.02                     | 0.86       | ≼0.10                    |                     |                         |                                             |                      |                         |      |                       |

Table 4

Note. All values are measured in a spectrum whose peak temperature is higher than  $3\sigma$ . In the case of a peak temperature below  $3\sigma$ , the  $3\sigma$  level is listed as an upper limit. Column (1): SCUBA-2 core name. Columns (2)-(4): peak temperature at the T<sup>\*</sup><sub>A</sub> scale, systemic velocity, and FWHM inferred by Gaussian fitting to the spectrum of the c-C<sub>3</sub>H<sub>2</sub> line, respectively. Columns (5)-(7): same as Columns (2)-(4), but for DNC. Columns (8)–(10): same as Columns (2)–(4), but for HN<sup>13</sup>C. Columns (11)–(13): peak temperature at the  $T_A^*$  scale, systemic velocity, and FWHM inferred by Gaussian fitting to the brightest hyperfine component of the N<sub>2</sub>D<sup>+</sup> line, respectively. Columns (14)–(18): systemic velocity, FWHM, excitation temperature ( $T_{ex}$ ), total line optical depth of all the hyperfine components ( $\tau$ ), and  $T_{ant}\tau = (T_{ex} - T_{bg})\tau$ ) estimated through the hyperfine structure fitting to seven components of the N<sub>2</sub>D<sup>+</sup> line, respectively. In Columns (16) and (17), "†" indicates that the value is derived from dust temperature.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 249:33 (53pp), 2020 August

### 2.7. Mach Number Estimate

We calculate the Mach number  $M = \sigma_{\rm NT}/c_{\rm s}$  to measure the contribution of turbulence in the stability of the dense core. This parameter is used to judge whether a dense core is subsonic ( $M \leq 1$ ), transonic ( $1 < M \leq 2$ ), or supersonic (M > 2). The nonthermal velocity dispersion ( $\sigma_{\rm NT}$ ) is derived in the following form (e.g., Myers 1983; Fuller & Myers 1992; Caselli et al. 2002a):

$$\sigma_{\rm NT} = \sqrt{\frac{\Delta v^2}{8\ln 2} - \frac{k_{\rm B}T_{\rm k}}{m}},\tag{1}$$

where  $k_{\rm B}$  is the Boltzmann constant and  $T_{\rm k}$  is the kinetic temperature.  $\Delta v$  and *m* are the line width (FWHM) and mass of the observed molecule, respectively. The sound speed ( $c_{\rm s}$ ) is estimated by  $\sqrt{k_{\rm B}T_{\rm k}/m}$  for the H<sub>2</sub> molecule.

We assume that  $T_k$  is equal to dust temperature. For  $\Delta v$  and m, we adopt the N<sub>2</sub>H<sup>+</sup> molecule because it traces the dense gas. The uncertainty of the Mach number is derived by propagating from the error of the fitting, the error of dust temperature, and the rms ( $\sigma$ ) noise level of the spectrum. The Mach number is listed in Table 5.

### 3. Results

### 3.1. Detection Rate of Molecular Emission Lines

Table 6 summarizes the detection rates of eight molecular lines in SCUBA-2 cores in different environments. Regarding the detection rates of  $c-C_3H_2$ , DNC,  $HN^{13}C$ , and  $N_2D^+$  lines observed toward all SCUBA-2 cores, it is found that the detection rates of all lines are higher than 49%. In particular, the  $c-C_3H_2$  (late-type in the cloud chemistry) line shows the highest detection rate (91%) and is detected in almost all cores at high latitudes. The  $HN^{13}C$  line is also detected at the highest rate in cores at high latitudes. The deuterated molecular lines DNC and  $N_2D^+$  are detected at the highest rate in cores in Orion B and at high latitudes, respectively. All four lines tend to be more detected in protostellar cores than in starless cores.

Regarding the detection rates of CCS-L/H, HC<sub>3</sub>N, and N<sub>2</sub>H<sup>+</sup> lines that were only observed toward cores in  $\lambda$  Orionis, Orion A, and Orion B, it is found that, generally speaking, the N<sub>2</sub>H<sup>+</sup> (late-type molecule) and HC<sub>3</sub>N lines show high detection rates ( $\geq$ 47%), whereas CCS lines, which trace the early phase in the cloud chemistry, show low detection rates ( $\leq$ 26%). Among the three environments, all four lines are detected the highest in cores in Orion A, and the CCS-L, HC<sub>3</sub>N, and N<sub>2</sub>H<sup>+</sup> lines tend to be more detected in protostellar cores than in starless cores than in protostellar cores.

In summary, both the low detection rate of early-type molecular lines and the high detection rate of late-type molecular lines and deuterated molecular lines suggest that most of the SCUBA-2 cores are chemically evolved.

### 3.2. Beam Dilution Effect on Distant SCUBA-2 Cores

Among the four column density ratios estimated in Section 2.6, the column density ratio of DNC/HN<sup>13</sup>C is available for cores in all environments, but the three other column density ratios, including N<sub>2</sub>H<sup>+</sup> molecules, are available only for cores in  $\lambda$  Orionis, Orion A, and Orion B. To estimate the column density ratio, we assume that the beam filling factor is the same for both the emission lines. However, because the



**Figure 4.** Examples of excitation anomalies seen in  $N_2D^+$  and  $N_2H^+$  lines. The black and green lines represent the spectrum of G205.46–14.56North1 and the result of hyperfine structure fitting, respectively. The red vertical lines represent the velocity offsets of the seven hyperfine components.

SCUBA-2 cores are located at very different distances ranging from  $\sim 0.1$  kpc to  $\sim 10$  kpc, our telescope observes them with very different linear beam sizes. Figure 5(a) shows the integrated intensity ratio of DNC/HN<sup>13</sup>C against the linear beam size in pc. The ratio does not increase or decrease significantly for a beam size of <0.1 pc but decreases with increasing beam size for >0.1 pc with a power-law index of -1. Because dense cores have a typical size of 0.1 pc, distant cores observed with larger beam size can be affected by different beam dilution between the two lines; DNC is beam diluted, while beam dilution for HN<sup>13</sup>C is much weaker. In other words, larger linear beams for distant cores tend to involve the outer, less dense region having low deuterium fraction. A linear beam size of 19" corresponds to 0.1 pc at a distance of 1.1 kpc. This differential beam dilution can lead to misinterpretations in the chemical properties of SCUBA-2 cores at different distances. We investigate whether it is the case for the column density ratio of DNC/HN<sup>13</sup>C and DNC/ HNC. In Figures 5(b) and (c), we plot the column density ratio against distance. The column density ratio of DNC/HNC is derived by using the abundance ratio formula of  ${}^{12}C/{}^{13}C$  as a function of Galactocentric distance obtained by Savage et al. (2002). Panels (b) and (c) of Figure 5 show similar trends that both the column density ratios decrease with increasing distance for distant cores (>1 kpc). It seems that the column density ratio is seriously affected by differential beam dilution between the two lines for distant cores (distance >1 kpc). Therefore, with our beam size, the column density ratio seems reliable if distance is <1 kpc.

The percentage of protostellar cores (65%) in the Orion region (distance  $\sim$ 400 pc) is smaller than that of cores with distances of 2–10 kpc in the Galactic plane (81%). It is possible that the protostellar core percentage increases with increasing distance. It is likely that the YSO sensitivity is shallower for distant cores. Furthermore, the beam dilution may merge weaker starless cores into brighter protostellar cores. In the Orion region, starless cores are half as intense as protostellar core in the SCUBA-2 flux density. Figure 10 of Eden et al. (2019) shows that the percentage of the SCUBA-2 core detection decreases with increasing distance, which may suggest that the SCUBA-2 sensitivity becomes insufficient for weaker cores at larger distances.

|                                           | Colu                                                | ımn Density, Col                                    | lumn Density Rat                               | io, Mach Numbe                                                      | r, and Integrated I                            | intensity Ratio of N                                             | $N_2D^+$ , $N_2H^+$ , $DN_2$  | C, HN <sup>13</sup> C, CC                         | S, and HC <sub>3</sub> N M | Iolecules                    |               |                                                                 |
|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|---------------|-----------------------------------------------------------------|
| SCUBA-2 Core                              | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М             | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                                       | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12)          | (13)                                                            |
| G190.15                                   | ≤15.0                                               | ≤1.8                                                | ≼4.8                                           | ≼3.8                                                                | ≤53.0                                          | ≼62.0                                                            |                               |                                                   | •••                        | •••                          |               |                                                                 |
| G190.15<br>-13.75South                    | ≤13.0                                               | $1.0\pm0.1^{\dagger}$                               | ≼4.2                                           | ≼3.5                                                                | ≼51.0                                          | ≼65.0                                                            | ≤1.30                         |                                                   | ≥0.2                       | ≥0.2                         | $0.6\pm0.1$   |                                                                 |
| G191.90<br>-11.21North                    | <b>≼</b> 9.4                                        | ≤1.4                                                | ≼3.4                                           | ≤2.8                                                                | ≤25.0                                          | ≤24.0                                                            |                               |                                                   |                            |                              |               |                                                                 |
| G191.90<br>-11.21South                    | $5.5\pm3.0^{\dagger}$                               | $6.9\pm1.3$                                         | $20.0\pm10.0$                                  | $3.5\pm1.8$                                                         | ≤23.0                                          | ≤22.0                                                            | $0.08\pm0.05$                 | $5.7\pm4.1$                                       | ≥3.0                       | ≥3.1                         | $0.7\pm0.1$   | $4.5\pm0.5$                                                     |
| G192.12<br>-10.90North                    | $8.8\pm4.6^{\dagger}$                               | $3.7\pm0.6$                                         | $22.0\pm11.0$                                  | $8.1\pm4.1$                                                         | $30.0\pm16.0$                                  | $79.0\pm40.0$                                                    | $0.24\pm0.13$                 | $2.7 \pm 1.9$                                     | $1.2\pm0.7$                | $0.5\pm0.2$                  | $0.8\pm0.1$   | $2.1\pm0.2$                                                     |
| G192.12<br>-10.90South                    | <b>≼</b> 8.5                                        | ≤1.4                                                | ≼3.4                                           | ≤2.3                                                                | $6.6\pm4.2$                                    | ≤28.0                                                            |                               |                                                   | ≤2.1                       |                              |               |                                                                 |
| G192.12-11.10                             | ≤8.5                                                | $5.1\pm0.9$                                         | $20.0\pm10.0$                                  | $6.3 \pm 3.2$                                                       | ≤25.0                                          | ≤27.0                                                            | ≤0.17                         | $3.2 \pm 2.3$                                     | ≥2.0                       | ≥1.9                         | $1.4 \pm 0.2$ | $2.7\pm0.4$                                                     |
| G192.32<br>-11.88North                    | $17.0 \pm 8.7^{\dagger}$                            | $11.0\pm1.6$                                        | $34.0\pm17.0$                                  | $6.5\pm3.3$                                                         | ≤21.0                                          | ≼18.0                                                            | $0.15\pm0.08$                 | $5.2\pm3.7$                                       | ≥5.2                       | ≥6.1                         | $1.1\pm0.2$   | $4.0\pm0.4$                                                     |
| G192.32<br>-11 88South                    | $16.0\pm0.8^{\dagger}$                              | $9.6\pm1.0$                                         | $36.0\pm18.0$                                  | $9.5\pm4.8$                                                         | ≤20.0                                          | $37.0\pm19.0$                                                    | $0.17\pm0.02$                 | $3.8\pm2.7$                                       | ≥4.8                       | $2.6\pm1.4$                  | $0.9\pm0.1$   | $3.0\pm0.2$                                                     |
| G196.92-10.37                             | ≤11.0                                               | $10.0 \pm 1.2$                                      | $22.0 \pm 11.0$                                | $12.0 \pm 6.1$                                                      | ≤28.0                                          | $140.0 \pm 71.0$                                                 | ≤0.11                         | $1.8 \pm 1.3$                                     | ≥3.6                       | $0.7 \pm 0.4$                | $1.5 \pm 0.2$ | $1.3 \pm 0.1$                                                   |
| G198.69<br>-09.12North1                   | ≼7.2                                                | $1.7 \pm 0.5$                                       | ≥5.4 <sup>‡</sup>                              | ≤2.2                                                                | ≤36.0                                          | ≼45.0                                                            | ≼0.42                         | ≥2.5                                              | ≥0.5                       | ≥0.4                         | $0.9 \pm 0.3$ | ≥1.1 0                                                          |
| G198.69<br>-09.12North2                   | ≥6.1 <sup>‡</sup>                                   | $3.0\pm0.8$                                         | $\geqslant \! 18.0^{\ddagger}$                 | $\geqslant 5.0^{\ddagger}$                                          | ≤36.0                                          | $\geqslant 28.0^{\ddagger}$                                      | ≥0.20                         | ≼3.6                                              | $\geqslant 0.8$            | ≤1.1                         | $1.0\pm0.3$   | $2.6\pm0.3$                                                     |
| G198.69<br>-09.12South                    | ≼7.0                                                | $12.0\pm1.4$                                        | $\geqslant \! 18.0^{\ddagger}$                 | $\geqslant 8.7^{\ddagger}$                                          | ≤35.0                                          | $\geqslant 71.0^{\ddagger}$                                      | ≪0.06                         | ≤2.1                                              | ≥3.4                       | ≤1.7                         | $1.2\pm0.1$   | $1.7\pm0.1$                                                     |
| G200.34<br>-10.97North                    | $6.5\pm3.7^{\dagger}$                               | $7.5\pm0.8$                                         | $25.0\pm13.0$                                  | $4.8\pm2.6$                                                         | ≤28.0                                          | $50.0\pm26.0$                                                    | $0.09\pm0.05$                 | $5.2\pm3.9$                                       | ≥2.7                       | $1.5\pm0.8$                  | $0.8\pm0.1$   | $4.1\pm0.7$                                                     |
| G200.34<br>-10.97South                    | ≼14.0                                               | $7.0\pm1.2$                                         | ≼5.7                                           | ≼4.4                                                                | ≤27.0                                          | $49.0\pm25.0$                                                    | ≼0.20                         |                                                   | ≥2.6                       | $1.4\pm0.8$                  | $1.0\pm0.2$   |                                                                 |
| G201.52 - 11.08                           | <17.0                                               | ≤1.5                                                | ≤6.4                                           | <4.8                                                                | <26.0                                          | <33.0                                                            |                               |                                                   |                            |                              |               |                                                                 |
| G201.72-11.22                             | ≤16.0                                               | $3.5 \pm 0.5$                                       | $24.0 \pm 12.0$                                | $8.0 \pm 4.1$                                                       | ≤29.0                                          | $61.0 \pm 31.0$                                                  | ≪0.46                         | $3.0 \pm 2.1$                                     | ≥1.2                       | $0.6 \pm 0.3$                | $0.5 \pm 0.1$ | $2.2 \pm 0.3$                                                   |
| G203.21<br>-11.20East1                    | ≥23.0 <sup>‡</sup>                                  | $11.0 \pm 1.4$                                      | ≥70.0 <sup>‡</sup>                             | ≥18.0 <sup>‡</sup>                                                  | ≥34.0 <sup>‡</sup>                             | ≥45.0‡                                                           | ≥0.21                         | ≼3.9                                              | ≤3.2                       | ≼2.4                         | $1.6 \pm 0.2$ | $2.7 \pm 0.2$                                                   |
| G203.21<br>-11.20East2                    | $\geqslant 22.0^{\ddagger}$                         | $7.4\pm0.9$                                         | $\geqslant 56.0^{\ddagger}$                    | $\geqslant 12.0^{\ddagger}$                                         | ≪40.0                                          | $\geqslant \! 18.0^{\ddagger}$                                   | ≥0.30                         | ≼4.7                                              | ≥1.9                       | ≪4.1                         | $0.9\pm0.1$   | $3.3\pm0.3$                                                     |
| G203.21<br>-11.20West1                    | $48.0\pm5.6$                                        | $16.0\pm0.5$                                        | ≥74.0 <sup>‡</sup>                             | $\geqslant \! 18.0^{\ddagger}$                                      | ≼38.0                                          | ≥37.0 <sup>‡</sup>                                               | $0.30\pm0.04$                 | ≼4.1                                              | ≥4.2                       | ≼4.3                         | $1.0\pm0.1$   | $2.9\pm0.2$                                                     |
| G203.21<br>-11 20West2                    | $32.0\pm5.8$                                        | $15.0\pm2.0$                                        | $\geqslant$ 52.0 <sup>‡</sup>                  | $\geqslant 13.0^{\ddagger}$                                         | $\geqslant \! 18.0^{\ddagger}$                 | ≥33.0 <sup>‡</sup>                                               | $0.21\pm0.05$                 | ≼4.0                                              | ≤8.3                       | ≼4.5                         | $1.0\pm0.1$   | $3.0\pm0.2$                                                     |
| G204.4<br>-11 3A2Fast                     | $38.0\pm9.5$                                        | $14.0\pm0.9$                                        | $\geqslant 100.0^{\ddagger}$                   | $\geqslant$ 24.0 <sup>‡</sup>                                       | $\geqslant 14.0^{\ddagger}$                    | $\geqslant 120.0^{\ddagger}$                                     | $0.27\pm0.07$                 | ≼4.2                                              | ≤10.0                      | ≼1.2                         | $1.0\pm0.1$   | $2.9\pm0.1$                                                     |
| G204.4                                    | $7.5\pm2.8^{\dagger}$                               | $8.2\pm1.6$                                         | $\geqslant 26.0^{\ddagger}$                    | ≼5.2                                                                | ≪44.0                                          | ≥41.0 <sup>‡</sup>                                               | $0.09\pm0.04$                 | ≥5.0                                              | ≥1.9                       | ≼2.0                         | $1.7\pm0.3$   | ≥2.3                                                            |
| -11.3A2 west<br>G205.46                   | ≤13.0                                               | $\geqslant 14.0^{\ddagger}$                         | $\geqslant \! 18.0^{\ddagger}$                 | ≼4.1                                                                | ≼34.0                                          | ≥37.0 <sup>‡</sup>                                               | ≼0.09                         | ≥4.4                                              | ≥4.1                       | ≼3.8                         |               | ≥1.9                                                            |
| -14.50Middle1<br>G205.46<br>-14.56Middle2 | <b>≼</b> 9.2                                        | $7.9\pm0.6$                                         | ≥16.0 <sup>‡</sup>                             | $\geqslant 8.2^{\ddagger}$                                          | ≤22.0                                          | $\geqslant 40.0^{\ddagger}$                                      | ≤0.12                         | ≤2.0                                              | ≥3.6                       | ≤2.0                         | $1.4\pm0.1$   | $1.8\pm0.2$                                                     |

|              |                |           |            |             | Table 5       |                         |                  |        |                     |      |                       |          |
|--------------|----------------|-----------|------------|-------------|---------------|-------------------------|------------------|--------|---------------------|------|-----------------------|----------|
| umn Density, | Column Density | Ratio, Ma | ch Number, | and Integra | ted Intensity | Ratio of N <sub>2</sub> | $D^+$ , $N_2H^+$ | , DNC, | HN <sup>13</sup> C, | CCS, | and HC <sub>3</sub> N | Molecule |

# The Astrophysical Journal Supplement Series, 249:33 (53pp), 2020 August

|                                         |                                                                         |                                                     |                                                |                                                                     | Tal<br>(Cont                                   | ble 5<br>tinued)                                                 |                               |                                                   |                            |                              |             |                                                                 | The As    |
|-----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|-------------|-----------------------------------------------------------------|-----------|
| SCUBA-2 Core                            | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> )                     | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М           | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ | TROPHYSIC |
| (1)                                     | (2)                                                                     | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12)        | (13)                                                            | ΑL        |
| G205.46<br>-14.56Middle3                | <b>≼</b> 9.9                                                            | $11.0\pm0.7$                                        | $\geqslant 16.0^{\ddagger}$                    | $\geqslant 9.6^{\ddagger}$                                          | ≤21.0                                          | $\geqslant 38.0^{\ddagger}$                                      | ≼0.09                         | ≼1.7                                              | ≥5.2                       | ≼2.9                         | $1.5\pm0.1$ | $1.3 \pm 0.1$                                                   | Journ     |
| G205.46<br>-14 56North3                 | $\geqslant 9.9^{\ddagger}$                                              | $10.0\pm0.6$                                        | $\geqslant 29.0^{\ddagger}$                    | $\geqslant 10.0^{\ddagger}$                                         | ≤21.0                                          | ≼34.0                                                            | ≥0.10                         | ≤2.9                                              | ≥4.8                       | ≥2.9                         | $1.4\pm0.1$ | $2.4\pm0.2$                                                     | VAL SI    |
| G205.46                                 | $\geqslant 5.1^{\ddagger}$                                              | $8.2\pm0.2$                                         | $\geqslant \! 18.0^{\ddagger}$                 | ≥7.1 <sup>‡</sup>                                                   | ≤22.0                                          | ≥35.0 <sup>‡</sup>                                               | ≥0.06                         | ≤2.5                                              | ≥3.7                       | ≤2.3                         | $1.7\pm0.1$ | $2.2\pm0.2$                                                     | JPPLE     |
| G205.46                                 | $\geqslant \! 15.0^{\ddagger}$                                          | $15.0\pm0.8$                                        | ≥39.0‡                                         | $\geqslant 11.0^{\ddagger}$                                         | ≤23.0                                          | $\geqslant 29.0^{\ddagger}$                                      | ≥0.10                         | ≼3.5                                              | ≥6.5                       | ≤5.2                         | $1.1\pm0.1$ | $2.6\pm0.2$                                                     | MENT      |
| -14.36North1<br>G205.46<br>-14.56South1 | ≼9.4                                                                    | $27.0\pm0.9$                                        | $\geqslant 19.0^{\ddagger}$                    | $\geqslant 12.0^{\ddagger}$                                         | ≥13.0 <sup>‡</sup>                             | ≥75.0 <sup>‡</sup>                                               | ≼0.04                         | ≤1.6                                              | ≤20.8                      | ≼3.6                         | $2.4\pm0.1$ | $1.3\pm0.1$                                                     | SERIES    |
| G205.46<br>-14.56South2                 | ≼9.0                                                                    | $11.0\pm0.5$                                        | $\geqslant 20.0^{\ddagger}$                    | $\geqslant 10.0^{\ddagger}$                                         | $\geqslant \! 18.0^{\ddagger}$                 | $\geqslant 64.0^{\ddagger}$                                      | ≼0.08                         | ≤2.0                                              | ≼6.1                       | ≤1.7                         | $0.9\pm0.1$ | $1.6\pm0.1$                                                     | , 249:3   |
| G205.46<br>-14.56South3                 | $11.0\pm0.8^{\dagger}$                                                  | $9.8\pm0.6$                                         | $\geqslant 35.0^{\ddagger}$                    | $\geqslant 11.0^{\ddagger}$                                         | ≤22.0                                          | $\geqslant 29.0^{\ddagger}$                                      | $0.11\pm0.01$                 | ≼3.2                                              | ≥4.5                       | ≼3.4                         | $1.2\pm0.1$ | $2.5\pm0.2$                                                     | 33 (53    |
| G206.12–15.76<br>G206.21<br>–16.17North | $\begin{array}{c} 37.0 \pm 14.0 \\ 25.0 \pm 13.0^{\dagger} \end{array}$ |                                                     | $\geqslant 110.0^{\ddagger}$<br>21.0 ± 11.0    | $\substack{\geqslant 23.0^{\ddagger}}{\leqslant 8.8}$               |                                                |                                                                  |                               | $ \leqslant 4.8 \\ \geqslant 2.4 $                | ····<br>···                |                              |             | $\begin{array}{c} 3.0\pm0.3\\ \geqslant 1.0 \end{array}$        | pp), 202( |
| G206.69<br>                             | ≤16.0                                                                   | $4.4\pm0.5$                                         | $21.0 \pm 11.0$                                | ≼5.0                                                                | ≤18.0                                          | $18.0\pm9.7$                                                     | ≼0.36                         | ≥4.2                                              | ≥2.4                       | $2.4\pm1.4$                  | $0.6\pm0.1$ | ≥1.8                                                            | ) Aug     |
| G206.69<br>-16.60South                  | ≤15.0                                                                   | $6.8\pm1.0$                                         | $16.0\pm8.1$                                   | ≤5.3                                                                | ≼17.0                                          | $11.0\pm 6.0$                                                    | ≼0.22                         | ≥3.0                                              | ≥4.0                       | $6.2\pm3.5$                  | $0.9\pm0.1$ | ≥1.3                                                            | ust       |
| G206.93<br>-16.61East1                  | ≤14.0                                                                   | $18.0\pm0.1$                                        | $41.0\pm21.0$                                  | $13.0\pm 6.6$                                                       | ≤15.0                                          | $22.0\pm11.0$                                                    | $\leqslant 0.08$              | $3.2\pm2.3$                                       | ≥12.0                      | $8.2\pm4.1$                  | $1.3\pm0.1$ | $2.8\pm0.3$                                                     |           |
| G206.93<br>-16.61East2                  | ≤13.0                                                                   | $2.7\pm0.1^{\dagger}$                               | $7.8\pm4.0$                                    | $5.1 \pm 2.7$                                                       | ≼17.0                                          | ≼15.0                                                            | ≼0.48                         | $1.5\pm1.1$                                       | ≥1.6                       | ≥1.8                         | $1.0\pm0.1$ | $1.1\pm0.2$                                                     |           |
| G206.93<br>-16 61West1                  | ≼14.0                                                                   | $9.4\pm0.2$                                         | $17.0\pm8.6$                                   | $17.0\pm8.6$                                                        | ≤17.0                                          | $73.0\pm37.0$                                                    | ≼0.15                         | $1.0\pm0.7$                                       | ≥5.5                       | $1.3\pm0.7$                  | $1.4\pm0.1$ | $0.8\pm0.1$                                                     |           |
| G206.93<br>-16 61West3                  | $7.7 \pm 4.4^{\dagger}$                                                 | $22.0\pm1.1$                                        | $48.0\pm24.0$                                  | $28.0\pm14.0$                                                       | ≤15.0                                          | $180.0\pm90.0$                                                   | $0.04\pm0.02$                 | $1.7 \pm 1.2$                                     | ≥14.7                      | $1.2\pm0.6$                  | $1.1\pm0.1$ | $1.3\pm0.1$                                                     |           |
| G206.93<br>-16 61West4                  | $8.5\pm1.7^{\dagger}$                                                   | $5.3\pm0.7$                                         | $26.0\pm13.0$                                  | $5.1\pm2.7$                                                         | ≤16.0                                          | ≤15.0                                                            | $0.16\pm0.04$                 | $5.1\pm3.7$                                       | ≥3.3                       | ≥3.5                         | $1.1\pm0.1$ | $3.8\pm0.7$                                                     |           |
| G206.93<br>-16.61West5                  | $12.0\pm0.7^{\dagger}$                                                  | $8.2\pm0.8$                                         | $22.0\pm11.0$                                  | ≼3.9                                                                | ≤14.0                                          | ≤15.0                                                            | $0.15\pm0.02$                 | ≥5.6                                              | ≥5.9                       | ≥5.5                         | $1.4\pm0.1$ | ≥2.2                                                            |           |
| G206.93                                 | ≼14.0                                                                   | ≤1.2                                                | ≼5.0                                           | ≼4.0                                                                | ≼16.0                                          | ≼14.0                                                            |                               |                                                   |                            |                              |             |                                                                 |           |
| G206.93<br>-16.61West6                  | ≼14.0                                                                   | $6.0\pm0.5$                                         | $16.0\pm8.2$                                   | $6.0\pm3.1$                                                         | ≤16.0                                          | ≼14.0                                                            | ≤0.23                         | $2.7\pm1.9$                                       | ≥3.8                       | ≥4.3                         | $1.0\pm0.1$ | $2.3\pm0.4$                                                     |           |
| G207.36<br>-19.82North1                 | ≼16.0                                                                   | $9.9\pm0.1$                                         | $\geqslant 22.0^{\ddagger}$                    | $\geqslant 11.0^{\ddagger}$                                         | ≤28.0                                          | ≥63.0 <sup>‡</sup>                                               | ≼0.16                         | ≼2.0                                              | ≥3.5                       | ≼1.6                         | $2.3\pm0.1$ | $1.8\pm0.3$                                                     |           |
| G207.36<br>-19.82North2                 | $19.0\pm3.5^{\dagger}$                                                  | $8.6\pm0.8$                                         | $\geqslant 50.0^{\ddagger}$                    | ≥7.4 <sup>‡</sup>                                                   | ≤28.0                                          | $\geqslant 31.0^{\ddagger}$                                      | $0.22\pm0.05$                 | ≼6.8                                              | ≥3.1                       | ≤2.8                         | $0.9\pm0.1$ | $4.9\pm0.6$                                                     |           |
| G207.36                                 | ≼14.0                                                                   | $7.0\pm1.0$                                         | $\geqslant$ 32.0 <sup>‡</sup>                  | ≼4.7                                                                | ≤29.0                                          | $\geqslant 6.9^{\ddagger}$                                       | ≼0.20                         | ≥6.8                                              | ≥2.4                       | ≤10.1                        | $1.4\pm0.2$ | ≥2.6                                                            | F         |
| G207.36<br>                             | ≼14.0                                                                   | $7.1\pm1.2$                                         | $\geqslant$ 24.0 <sup>‡</sup>                  | ≼4.6                                                                | ≼30.0                                          | ≼36.0                                                            | ≤0.20                         | ≥5.2                                              | ≥2.4                       | ≥2.0                         | $1.6\pm0.3$ | ≥2.3                                                            | Kim et    |

|                         | $\frac{\text{Table 5}}{\text{(Continued)}} \\ -2 \text{ Core } \frac{N(N_2D^+)}{(10^{11} \text{ cm}^{-2})} \frac{N(N_2H^+)}{(10^{12} \text{ cm}^{-2})} \frac{N(HN^{13}C)}{(10^{11} \text{ cm}^{-2})} \frac{N(HC_3N)}{(10^{11} \text{ cm}^{-2})} \frac{\frac{N(N_2D^+)}{(10^{11} \text{ cm}^{-2})}}{(10^{11} \text{ cm}^{-2})} \frac{N(HC_3N)}{(10^{11} \text{ cm}^{-2})} \frac{\frac{N(N_2D^+)}{N(N_2H^+)}}{(10^{11} \text{ cm}^{-2})} \frac{\frac{N(N_2H^+)}{N(HN^{13}C)}}{(10^{11} \text{ cm}^{-2})} \frac{\frac{N(N_2H^+)}{N(HN^{13}C)}}{(10^{11} \text{ cm}^{-2})} \frac{\frac{N(N_2H^+)}{N(HN^{13}C)}}{(10^{11} \text{ cm}^{-2})} \frac{N(N_2H^+)}{N(HN^{13}C)} \frac{N(N_2H^+)}{N(HN^{13}C)} \frac{N(N_2H^+)}{N(HC_3N)} M \frac{\frac{\int T(DNC)dv}{\int T(HN^{13}C)dv}}{\frac{1}{(10^{11} \text{ cm}^{-2})}} \frac{N(N_2H^+)}{(10^{11} \text{ cm}^{-2})} N(N_2$ |                                                     |                                                |                                                                     |                                                |                                                                  |                                                 |                                                   |                            |                              |             |                                                                 |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|------------------------------|-------------|-----------------------------------------------------------------|--|--|
| SCUBA-2 Core            | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(\mathrm{N_2D^+})}{N(\mathrm{N_2H^+})}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М           | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |  |  |
| (1)                     | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                                             | (9)                                               | (10)                       | (11)                         | (12)        | (13)                                                            |  |  |
| G207.36<br>-19.82South  | $6.3\pm1.9^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.7\pm0.8$                                         | ≥23.0 <sup>‡</sup>                             | ≼4.6                                                                | ≤28.0                                          | $\geqslant 23.0^{\ddagger}$                                      | $0.11\pm0.04$                                   | ≥5.0                                              | ≥2.0                       | ≤2.5                         | $0.7\pm0.1$ | ≥2.4                                                            |  |  |
| G207.3<br>-19.8A2North1 | ≤15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\geqslant 1.8^{\ddagger}$                          | ≼5.5                                           | ≼4.6                                                                | ≤29.0                                          | $\geqslant 5.2^{\ddagger}$                                       | ≼0.83                                           |                                                   | ≥0.6                       | ≼3.5                         |             |                                                                 |  |  |
| G207.3<br>-19.8A2North2 | ≤16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.8\pm0.1^{\dagger}$                               | $\geqslant 9.8^{\ddagger}$                     | ≼4.4                                                                | ≼30.0                                          | ≼35.0                                                            | ≤0.89                                           | ≥2.2                                              | ≥0.6                       | ≥0.5                         | $0.8\pm0.1$ | $\geqslant 0.8$                                                 |  |  |
| G207.3<br>-19.8A2North3 | ≤15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤1.2                                                | ≼5.9                                           | ≼4.2                                                                | ≤28.0                                          | ≼32.0                                                            |                                                 |                                                   |                            |                              | •••         |                                                                 |  |  |
| G207.3<br>-19.8A2South  | ≤21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.5\pm0.5$                                         | ≼7.6                                           | ≼5.8                                                                | ≼31.0                                          | ≼30.0                                                            | ≼0.84                                           |                                                   | ≥0.8                       | ≥0.8                         | 0.9 ± 0.2   |                                                                 |  |  |
| G208.68<br>-19.20North1 | ≼14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $18.0\pm0.8$                                        | $46.0\pm23.0$                                  | $18.0\pm9.1$                                                        | ≼14.0                                          | $140.0\pm70.0$                                                   | ≼0.08                                           | $2.6\pm1.8$                                       | ≥12.9                      | $1.3\pm0.6$                  | $1.1\pm0.1$ | $2.0\pm0.1$                                                     |  |  |
| G208.68<br>-19.20North2 | $75.0\pm7.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $67.0\pm1.2$                                        | $75.0\pm38.0$                                  | $24.0\pm12.0$                                                       | ≤15.0                                          | $60.0\pm30.0$                                                    | $0.11\pm0.01$                                   | $3.1\pm2.2$                                       | ≥44.7                      | $11.2\pm5.6$                 | $0.6\pm0.1$ | $2.1 \pm 0.1$                                                   |  |  |
| G208.68<br>-19.20North3 | $36.0\pm6.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $58.0\pm1.4$                                        | $56.0\pm28.0$                                  | $21.0\pm11.0$                                                       | ≼14.0                                          | $100.0\pm50.0$                                                   | $0.06\pm0.01$                                   | $2.7\pm1.9$                                       | ≥41.4                      | $5.8\pm2.9$                  | $1.1\pm0.1$ | $2.1 \pm 0.1$                                                   |  |  |
| G208.68<br>-19.20South  | $16.0\pm8.3^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $25.0\pm0.1$                                        | $31.0\pm16.0$                                  | $9.6\pm4.9$                                                         | ≼14.0                                          | $57.0\pm29.0$                                                    | $0.06\pm0.03$                                   | $3.2\pm2.3$                                       | ≥17.9                      | $4.4\pm2.2$                  | $1.5\pm0.1$ | $2.5\pm0.3$                                                     |  |  |
| G208.89<br>-20.04East   | $\geqslant$ 22.0 <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $19.0\pm1.5$                                        | ≥57.0 <sup>‡</sup>                             | $\geqslant$ 22.0 <sup>‡</sup>                                       | ≼34.0                                          | $\geqslant$ 84.0 <sup>‡</sup>                                    | ≥0.12                                           | ≤2.6                                              | ≥5.6                       | ≤2.3                         | $0.7\pm0.1$ | $1.9 \pm 0.1$                                                   |  |  |
| G209.05<br>-19.73North  | $8.9\pm1.8^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.3\pm0.1$                                         | $17.0\pm8.6$                                   | $3.0\pm1.6$                                                         | ≤26.0                                          | ≤25.0                                                            | $0.27\pm0.06$                                   | $5.7\pm4.2$                                       | ≥1.3                       | ≥1.3                         | $0.6\pm0.1$ | $4.5\pm1.1$                                                     |  |  |
| G209.05<br>-19.73South  | $7.9\pm4.3^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.4\pm0.2$                                         | $29.0\pm15.0$                                  | $4.9\pm2.6$                                                         | ≤28.0                                          | $30.0\pm16.0$                                                    | $0.23\pm0.13$                                   | $5.9\pm4.4$                                       | ≥1.2                       | $1.1\pm0.6$                  | $0.7\pm0.1$ | $4.8\pm0.8$                                                     |  |  |
| G209.29<br>-19.65North1 | $8.5\pm0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $14.0\pm7.0^{\dagger}$                              | $13.0\pm6.7$                                   | $6.6\pm3.4$                                                         | ≤16.0                                          | ≼14.0                                                            | $0.06\pm0.03$                                   | $2.0 \pm 1.4$                                     | ≥8.8                       | ≥10.0                        |             | $1.7\pm0.3$                                                     |  |  |
| G209.29<br>-19.65North2 | ≤11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.7\pm0.1$                                         | ≼4.1                                           | ≼3.4                                                                | ≤16.0                                          | ≤16.0                                                            | ≼0.30                                           |                                                   | ≥2.3                       | ≥2.3                         | $0.4\pm0.1$ |                                                                 |  |  |
| G209.29<br>-19.65North2 | $9.0\pm1.8^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.1\pm0.1^{\dagger}$                               | $17.0\pm8.6$                                   | ≤3.3                                                                | ≤16.0                                          | ≤16.0                                                            | $0.18\pm0.04$                                   | ≥5.2                                              | ≥3.2                       | ≥3.2                         | $0.4\pm0.1$ | ≥2.0                                                            |  |  |
| G209.29<br>-19.65North3 | ≼11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.1\pm0.6$                                         | ≼3.8                                           | $6.2\pm3.2$                                                         | ≤17.0                                          | ≼15.0                                                            | ≼0.27                                           | ≼0.6                                              | ≥2.4                       | ≥2.7                         | $1.1\pm0.2$ | ≤1.5                                                            |  |  |
| G209.29<br>-19.65South1 | $18.0\pm3.3^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $17.0\pm1.0$                                        | 37.0 ± 19.0                                    | ≼4.0                                                                | ≼14.0                                          | ≤15.0                                                            | $0.11\pm0.02$                                   | ≥9.2                                              | ≥12.1                      | ≥11.3                        | $2.4\pm0.1$ | ≥3.8                                                            |  |  |
| G209.29<br>-19 65South2 | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $15.0\pm1.2$                                        | $30.0\pm15.0$                                  | $8.7\pm4.5$                                                         | ≤14.0                                          | ≤15.0                                                            | $\leqslant 0.08$                                | $3.4\pm2.5$                                       | ≥10.7                      | ≥10.0                        | $1.9\pm0.2$ | $2.1\pm0.3$                                                     |  |  |
| G209.29<br>-19.65South2 | $14.0\pm7.4^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $9.9 \pm 1.2$                                       | $5.6\pm2.9$                                    | $8.0\pm4.1$                                                         | ≤15.0                                          | ≤15.0                                                            | $0.14\pm0.08$                                   | $0.7\pm0.5$                                       | ≥6.6                       | ≥6.6                         | $0.6\pm0.1$ | $0.6\pm0.1$                                                     |  |  |
| G209.29<br>-19.65South3 | ≼11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $7.3\pm0.8$                                         | $13.0\pm 6.6$                                  | ≼3.7                                                                | ≼14.0                                          | ≼15.0                                                            | ≼0.15                                           | ≥3.5                                              | ≥5.2                       | ≥4.9                         | $1.1\pm0.1$ | ≥1.6                                                            |  |  |
| G209.55<br>-19.68North1 | ≼11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $22.0\pm1.2$                                        | $24.0\pm12.0$                                  | $12.0\pm 6.1$                                                       | $12.0\pm6.4$                                   | ≤22.0                                                            | ≼0.05                                           | $2.0 \pm 1.4$                                     | $18.3\pm9.8$               | ≥10.0                        | $1.6\pm0.1$ | $1.6\pm0.2$                                                     |  |  |
| G209.55<br>-19.68North? | $9.9\pm5.3^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.4\pm0.1$                                         | $22.0\pm11.0$                                  | $5.4\pm2.8$                                                         | ≼19.0                                          | ≤23.0                                                            | $0.23\pm0.12$                                   | $4.1\pm2.9$                                       | ≥2.3                       | ≥1.9                         | $0.5\pm0.1$ | $2.9\pm0.3$                                                     |  |  |
| 17.0010101012           | $9.4 \pm 1.9^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $9.8\pm0.8$                                         | 33.0 ± 17.0                                    | $14.0\pm7.1$                                                        | $14.0\pm7.5$                                   | $36.0\pm19.0$                                                    | $0.10\pm0.02$                                   | $2.4 \pm 1.7$                                     | $7.0\pm3.8$                | $2.7 \pm 1.5$                | $0.9\pm0.1$ | $1.7\pm0.2$                                                     |  |  |

|                                         | $\frac{\text{Table 5}}{\text{(Continued)}} \xrightarrow{N(\text{N2D}^+) N(\text{DNC}) N(\text{N2H}^+) N(\text{N2H}^+)} \int_{T(\text{DNC})dv} \frac{\text{Tr}}{V(\text{N2D}^+)} = \frac{\sqrt{10}}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac$ |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |               |                                                                 |                     |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|---------------|-----------------------------------------------------------------|---------------------|--|
| SCUBA-2 Core                            | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М             | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ | TROPHYS             |  |
| (1)                                     | (10 cm )<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10 cm )<br>(3)                                     | (4)                                            | (10 cm )<br>(5)                                                     | (10 cm )<br>(6)                                | (10 cm )<br>(7)                                                  | (8)                           | (9)                                               | (10)                       | (11)                         | (12)          | (13)                                                            | ICAL                |  |
| G209.55                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |               |                                                                 | JOUR                |  |
| -19.08Norui5<br>G209.55<br>-19.68South1 | $10.0\pm1.7^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $16.0\pm1.0$                                        | 33.0 ± 17.0                                    | $11.0\pm5.6$                                                        | ≤21.0                                          | $41.0\pm21.0$                                                    | $0.06\pm0.01$                 | $3.0 \pm 2.2$                                     | ≥7.6                       | 3.9 ± 2.0                    | $1.3\pm0.1$   | $2.6\pm0.2$                                                     | NAL S               |  |
| G209.55                                 | $12.0\pm1.5^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $15.0\pm0.7$                                        | $41.0\pm21.0$                                  | $14.0\pm7.1$                                                        | ≤21.0                                          | $57.0\pm29.0$                                                    | $0.08\pm0.01$                 | $2.9\pm2.1$                                       | ≥7.1                       | $2.6\pm1.3$                  | $0.8\pm0.1$   | $2.2\pm0.2$                                                     | UPPLE               |  |
| G209.77<br>-19.40Fast1                  | $8.9\pm1.5^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $19.0\pm0.8$                                        | $30.0\pm15.0$                                  | $17.0\pm8.6$                                                        | $12.0\pm 6.6$                                  | $54.0\pm27.0$                                                    | $0.05\pm0.01$                 | $1.8 \pm 1.3$                                     | $15.8\pm8.7$               | $3.5\pm1.8$                  | $0.6\pm0.1$   | $1.5\pm0.1$                                                     | MENT                |  |
| G209.77<br>-19.40East2                  | ≤13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $9.1\pm0.7$                                         | $35.0\pm18.0$                                  | $14.0\pm7.1$                                                        | ≼19.0                                          | $49.0\pm25.0$                                                    | ≼0.14                         | $2.5\pm1.8$                                       | ≥4.8                       | $1.9\pm1.0$                  | $0.9\pm0.1$   | $1.9\pm0.2$                                                     | SERIES              |  |
| G209.77<br>-19.40East3                  | $9.6\pm1.1^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.8\pm0.4$                                         | $33.0\pm17.0$                                  | $7.0\pm3.6$                                                         | ≤20.0                                          | $18.0\pm9.5$                                                     | $0.25\pm0.04$                 | $4.7\pm3.4$                                       | ≥1.9                       | 2.1 ± 1.1                    | $0.3\pm0.1$   | $4.1\pm0.7$                                                     | , 249:              |  |
| G209.77<br>-19.40East3                  | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.9\pm0.1^{\dagger}$                               | $7.4\pm3.8$                                    | $4.0\pm2.1$                                                         | ≤20.0                                          | $14.0\pm7.5$                                                     | ≤0.63                         | $1.9\pm1.4$                                       | ≥0.9                       | $1.4\pm0.7$                  | $0.5\pm0.1$   | $1.9\pm0.5$                                                     | 33 (53 <sub>)</sub> |  |
| G209.77<br>-19.40West                   | ≼12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5.8\pm0.5$                                         | $12.0\pm6.1$                                   | $5.7\pm3.0$                                                         | $7.6\pm4.4$                                    | $16.0\pm8.6$                                                     | ≼0.21                         | $2.1\pm1.5$                                       | $7.6\pm4.5$                | $3.6\pm2.0$                  | $0.3\pm0.1$   | $2.1\pm0.3$                                                     | pp), 2(             |  |
| G209.77<br>-19.61East                   | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.6\pm1.3^{\dagger}$                               | $2.4\pm1.3$                                    | ≼4.2                                                                | ≤22.0                                          | $19.0\pm10.0$                                                    | ≼0.46                         | ≥0.6                                              | ≥1.2                       | 1.4 ± 1.0                    |               | ≥0.4                                                            | )20 Au              |  |
| G209.77<br>-19.61West                   | ≤11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.2\pm0.2^{\dagger}$                               | $19.0\pm9.6$                                   | ≼4.1                                                                | ≤23.0                                          | $18.0\pm9.9$                                                     | ≼0.34                         | ≥4.6                                              | ≥1.4                       | 1.8 ± 1.0                    | $0.9\pm0.1$   | ≥1.9                                                            | ıgust               |  |
| G209.79<br>-19.80East                   | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.9\pm0.5$                                         | $7.0\pm3.6$                                    | ≼3.8                                                                | ≤22.0                                          | $20.0\pm11.0$                                                    | ≼0.41                         | ≥1.8                                              | ≥1.3                       | $1.4 \pm 0.8$                | 0.7 ± 0.1     | ≥0.7                                                            |                     |  |
| G209.79<br>-19.80West                   | $9.8 \pm 1.4^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8.4\pm0.8$                                         | $50.0\pm25.0$                                  | 13.0 ± 6.6                                                          | ≤23.0                                          | $38.0\pm20.0$                                                    | $0.12\pm0.02$                 | 3.8 ± 2.7                                         | ≥3.7                       | $2.2\pm1.2$                  | $1.0 \pm 0.1$ | $2.9\pm0.2$                                                     |                     |  |
| G209.79<br>-19.80West                   | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤1.2                                                | ≼3.6                                           | ≼3.8                                                                | ≤23.0                                          | ≤24.0                                                            |                               |                                                   |                            | •••                          |               |                                                                 |                     |  |
| G209.94<br>-19.52North                  | $52.0\pm10.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $16.0\pm1.0$                                        | $100.0\pm50.0$                                 | $28.0\pm14.0$                                                       | $7.7\pm4.3$                                    | $74.0\pm37.0$                                                    | $0.33\pm0.07$                 | $3.6\pm2.5$                                       | $20.8\pm11.7$              | $2.2\pm1.1$                  | $1.0 \pm 0.1$ | $2.3\pm0.1$                                                     |                     |  |
| G209.94<br>-19.52South1                 | $17.0\pm8.9^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1 ± 1.0                                           | $76.0\pm38.0$                                  | $12.0\pm 6.0$                                                       | ≤19.0                                          | $16.0\pm8.5$                                                     | $0.24\pm0.13$                 | 6.3 ± 4.5                                         | ≥3.7                       | 4.4 ± 2.4                    | $0.4 \pm 0.1$ | 3.1 ± 0.2                                                       |                     |  |
| G209.94<br>-19.52South1                 | $16.0 \pm 1.3^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6.6\pm0.5$                                         | 57.0 ± 29.0                                    | 14.0 ± 7.0                                                          | ≼18.0                                          | $14.0\pm7.5$                                                     | $0.24\pm0.03$                 | 4.1 ± 2.9                                         | ≥3.7                       | 4.7 ± 2.6                    | $0.6\pm0.1$   | $1.9\pm0.1$                                                     |                     |  |
| G209.94<br>-19.52South2                 | ≤12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7.6\pm0.7$                                         | $26.0 \pm 13.0$                                | $9.5\pm4.8$                                                         | ≼17.0                                          | $25.0\pm13.0$                                                    | ≼0.16                         | 2.7 ± 1.9                                         | ≥4.5                       | 3.0 ± 1.6                    | $1.0 \pm 0.1$ | $2.2\pm0.2$                                                     |                     |  |
| G210.37<br>-19.53North                  | ≤13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5.8\pm0.4$                                         | 23.0 ± 12.0                                    | 3.0 ± 1.6                                                           | ≤21.0                                          | $15.0\pm8.0$                                                     | ≼0.22                         | 7.7 ± 5.7                                         | ≥2.8                       | 3.9 ± 2.1                    | $0.4 \pm 0.1$ | 3.1 ± 0.7                                                       |                     |  |
| G210.37<br>-19.53South                  | $9.5\pm1.6^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1 ± 0.7                                           | $40.0\pm20.0$                                  | 15.0 ± 7.6                                                          | ≤21.0                                          | $100.0\pm50.0$                                                   | $0.13\pm0.03$                 | 2.7 ± 1.9                                         | ≥3.4                       | $0.7\pm0.4$                  | $1.3 \pm 0.1$ | $1.9\pm0.2$                                                     |                     |  |
| G210.49<br>-19.79East1                  | ≤14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $17.0\pm0.3$                                        | $\geqslant 29.0^{\ddagger}$                    | $\geqslant 14.0^{\ddagger}$                                         | ≥16.0 <sup>‡</sup>                             | ≥120.0 <sup>‡</sup>                                              | ≼0.08                         | ≤2.1                                              | ≤10.6                      | ≼1.4                         | $1.5\pm0.1$   | $1.7 \pm 0.2$                                                   |                     |  |
| G210.49<br>-19.79East2                  | $9.2\pm1.1^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5.4\pm0.6$                                         | $\geqslant 23.0^{\ddagger}$                    | ≥6.1 <sup>‡</sup>                                                   | ≤28.0                                          | $\geqslant 11.0^{\ddagger}$                                      | $0.17\pm0.03$                 | ≼3.8                                              | ≥1.9                       | ≼4.9                         | $0.6\pm0.1$   | $1.9\pm0.3$                                                     |                     |  |
| G210.49<br>-19.79East2                  | ≤13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $17.0\pm0.8$                                        | $\geqslant 28.0^{\ddagger}$                    | $\geqslant 15.0^{\ddagger}$                                         | <b>≼</b> 27.0                                  | ≥72.0 <sup>‡</sup>                                               | ≼0.08                         | ≼1.9                                              | ≥6.3                       | ≼2.4                         | $1.5\pm0.1$   | $1.5\pm0.1$                                                     | Kim                 |  |
|                                         | $20.0\pm2.2^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $18.0\pm1.1$                                        | $\geqslant$ 52.0 <sup>‡</sup>                  | $\geqslant \! 18.0^{\ddagger}$                                      | ≤28.0                                          | $\geq 57.0^{\ddagger}$                                           | $0.11\pm0.01$                 | ≤2.9                                              | ≥6.4                       | ≼3.2                         | $1.2\pm0.1$   | $2.2\pm0.1$                                                     | et                  |  |

|                          |                                                     |                                                     |                                                |                                                                     | Ta<br>(Con                                     | ble 5<br>tinued)                                                 |                               |                                                   |                            |                              |             |                                                                 | The As   |
|--------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|-------------|-----------------------------------------------------------------|----------|
| SCUBA-2 Core             | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М           | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ | TROPHYSI |
| (1)                      | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12)        | (13)                                                            | CAL      |
| G210.49<br>-19.79West    |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |             |                                                                 | Journ    |
| G210.82<br>-19.47North1  | $23.0\pm1.4^{\dagger}$                              | $7.1\pm0.5$                                         | $40.0\pm20.0$                                  | $10.0\pm5.1$                                                        | ≤14.0                                          | ≤18.0                                                            | $0.32\pm0.03$                 | $4.0\pm2.9$                                       | ≥5.1                       | ≥3.9                         | $0.7\pm0.1$ | $2.9\pm0.3$                                                     | VAL SU   |
| G210.82<br>-19 47North2  | $12.0\pm1.0^{\dagger}$                              | $6.1\pm0.1$                                         | $48.0\pm24.0$                                  | $9.0\pm4.6$                                                         | ≤11.0                                          | $16.0\pm8.2$                                                     | $0.20\pm0.02$                 | $5.3\pm3.8$                                       | ≥5.5                       | $3.8\pm2.0$                  | $0.5\pm0.1$ | $3.8\pm0.4$                                                     | JPPLEI   |
| G210.97<br>-19 33North   | ≤11.0                                               | $\leqslant 0.8$                                     | ≼3.4                                           | ≼3.9                                                                | ≤18.0                                          | ≤20.0                                                            |                               |                                                   |                            |                              |             |                                                                 | MENT     |
| G210.97<br>-19.33South1  | ≤26.0                                               | $4.6\pm0.7$                                         | ≼8.8                                           | ≼7.4                                                                | $\geqslant 21.0^{\ddagger}$                    | ≥45.0 <sup>‡</sup>                                               | ≼0.56                         |                                                   | ≤2.2                       | ≤1.0                         | $0.7\pm0.1$ |                                                                 | SERIES   |
| G210.97<br>-19.33South2  | ≤24.0                                               | $\geqslant 3.3^{\ddagger}$                          | $\geqslant 6.1^{\ddagger}$                     | $\geqslant 5.2^{\ddagger}$                                          | $\geqslant 14.0^{\ddagger}$                    | $\geqslant$ 53.0 <sup>‡</sup>                                    | ≼0.73                         | ≤1.2                                              | ≤2.4                       | ≼0.6                         |             | $1.4\pm0.4$                                                     | s, 249:  |
| G210.97<br>-19.33South2  | ≤24.0                                               | $2.0\pm0.1$                                         | ≥33.0 <sup>‡</sup>                             | ≼8.0                                                                | ≤22.0                                          | $\geqslant \! 16.0^{\ddagger}$                                   | ≤1.20                         | ≥4.1                                              | ≥0.9                       | ≼1.2                         | $0.8\pm0.1$ | ≥1.7                                                            | 33 (53   |
| G211.01                  | $51.0\pm26.0^{\dagger}$                             | $19.0\pm0.6$                                        | $59.0\pm30.0$                                  | $22.0\pm11.0$                                                       | $56.0\pm28.0$                                  | $200.0\pm100.0$                                                  | $0.27\pm0.14$                 | $2.7\pm1.9$                                       | $3.4\pm1.7$                | $0.9\pm0.5$                  | $1.5\pm0.1$ | $1.9\pm0.1$                                                     | 3pp), 2  |
| G211.01                  | $27.0\pm7.5$                                        | $16.0\pm0.6$                                        | $42.0\pm21.0$                                  | $20.0\pm10.0$                                                       | $45.0\pm23.0$                                  | $110.0\pm55.0$                                                   | $0.17\pm0.05$                 | $2.1\pm1.5$                                       | $3.6\pm1.8$                | $1.5\pm0.7$                  | $1.3\pm0.1$ | $1.6\pm0.1$                                                     | 2020 /   |
| G211.16                  | ≤10.0                                               | $7.1\pm0.7$                                         | ≥13.0 <sup>‡</sup>                             | $\geqslant 9.2^{\ddagger}$                                          | $\geqslant 14.0^{\ddagger}$                    | $\geqslant \! 89.0^{\ddagger}$                                   | ≼0.14                         | ≼1.4                                              | ≤5.1                       | $\leqslant 0.8$              | $0.8\pm0.1$ | $1.1\pm0.1$                                                     | August   |
| -19.55North1<br>G211.16  | $10.0\pm4.4$                                        | $10.0\pm0.7$                                        | $\geqslant 40.0^{\ddagger}$                    | ≥16.0 <sup>‡</sup>                                                  | $\geqslant 12.0^{\ddagger}$                    | ≥75.0 <sup>‡</sup>                                               | $0.10\pm0.04$                 | ≤2.5                                              | ≼8.3                       | ≤1.3                         | $0.9\pm0.1$ | $1.9\pm0.1$                                                     |          |
| -19.55Notul2<br>G211.16  | $22.0\pm4.4$                                        | $9.3\pm0.7$                                         | ≥53.0 <sup>‡</sup>                             | ≥15.0 <sup>‡</sup>                                                  | ≥9.3‡                                          | ≥38.0 <sup>‡</sup>                                               | $0.24\pm0.05$                 | ≼3.5                                              | ≤10.0                      | ≼2.4                         | $0.6\pm0.1$ | $2.3\pm0.1$                                                     |          |
| G211.16                  | $12.0\pm3.8$                                        | $\geqslant 6.2^{\ddagger}$                          | $\geqslant 41.0^{\ddagger}$                    | ≥18.0 <sup>‡</sup>                                                  | ≤18.0                                          | $\geqslant 40.0^{\ddagger}$                                      | ≤0.19                         | ≤2.3                                              | ≥3.4                       | ≼1.6                         |             | $2.0\pm0.1$                                                     |          |
| G211.16                  | $31.0\pm5.4$                                        | $10.0\pm0.5$                                        | $\geqslant$ 55.0 <sup>‡</sup>                  | ≥17.0 <sup>‡</sup>                                                  | ≤17.0                                          | $\geqslant 38.0^{\ddagger}$                                      | $0.31\pm0.06$                 | ≼3.2                                              | ≥5.9                       | ≼2.6                         | $0.9\pm0.1$ | $2.2\pm0.1$                                                     |          |
| G211.16                  | ≤12.0                                               | $0.7\pm0.1^{\dagger}$                               | ≼4.0                                           | ≼3.8                                                                | ≤18.0                                          | ≤22.0                                                            | ≤1.71                         |                                                   | ≥0.4                       | ≥0.3                         | $0.9\pm0.2$ |                                                                 |          |
| G211.47                  | $18.0\pm3.6^{\dagger}$                              | $19.0\pm0.4$                                        | $\geqslant$ 53.0 <sup>‡</sup>                  | ≥17.0 <sup>‡</sup>                                                  | ≼31.0                                          | $\geqslant \! 86.0^{\ddagger}$                                   | $0.10\pm0.02$                 | ≼3.1                                              | ≥6.1                       | ≤2.2                         | $1.0\pm0.1$ | $2.5\pm0.2$                                                     |          |
| G211.47                  | ≤11.0                                               | $17.0\pm1.1$                                        | $\geqslant$ 38.0 <sup>‡</sup>                  | ≥16.0 <sup>‡</sup>                                                  | $\geqslant 38.0^{\ddagger}$                    | ≥130.0 <sup>‡</sup>                                              | ≼0.07                         | ≤2.4                                              | ≼4.5                       | ≤1.3                         | $2.1\pm0.1$ | $1.7\pm0.1$                                                     |          |
| G211.72                  | ≤11.0                                               | $6.4\pm0.7$                                         | ≥36.0‡                                         | $\geqslant$ 7.5 <sup>‡</sup>                                        | ≼30.0                                          | ≥39.0 <sup>‡</sup>                                               | ≼0.17                         | ≪4.8                                              | ≥2.1                       | ≼1.6                         | $0.7\pm0.1$ | $3.6\pm0.4$                                                     |          |
| -19.25North<br>G211.72   | ≤10.0                                               | $2.0\pm0.2$                                         | $\geqslant 21.0^{\ddagger}$                    | ≥7.1 <sup>‡</sup>                                                   | $\geqslant \! 17.0^{\ddagger}$                 | ≥15.0 <sup>‡</sup>                                               | ≼0.50                         | ≼3.0                                              | ≤1.2                       | ≤1.3                         | $0.7\pm0.1$ | $2.0\pm0.2$                                                     |          |
| - 19.23Souin1<br>G212.10 | $39.0\pm6.7$                                        | $11.0\pm1.3$                                        | $\geqslant 97.0^{\ddagger}$                    | ≥16.0‡                                                              | ≼42.0                                          | $\geqslant \! 68.0^{\ddagger}$                                   | $0.35\pm0.07$                 | ≼6.1                                              | ≥2.6                       | ≤1.6                         | $1.8\pm0.2$ | $4.0\pm0.3$                                                     |          |
| - 19.15North1<br>G212.10 | $\geqslant \! 19.0^{\ddagger}$                      | $17.0\pm1.4$                                        | $\geqslant 29.0^{\ddagger}$                    | ≥13.0 <sup>‡</sup>                                                  | ≼40.0                                          | ≥74.0 <sup>‡</sup>                                               | ≥0.11                         | ≤2.2                                              | ≥4.2                       | ≤2.3                         | $1.5\pm0.1$ | $1.7\pm0.1$                                                     |          |
| - 19.13North2<br>G212.10 | $9.6\pm5.1^{\dagger}$                               | $16.0\pm2.1$                                        | $53.0\pm27.0$                                  | $19.0\pm9.6$                                                        | $200.0\pm100.0$                                | $1100.0\pm550.0$                                                 | $0.06\pm0.03$                 | $2.8\pm2.0$                                       | $0.8\pm0.4$                | $0.1\pm0.1$                  | $1.2\pm0.2$ | $2.0\pm0.1$                                                     | Kin      |
| -19.131N01013            | $25.0\pm2.4^{\dagger}$                              | $6.4\pm0.7$                                         | ≥46.0‡                                         | ≥13.0 <sup>‡</sup>                                                  | ≼44.0                                          | $\geqslant 44.0^{\ddagger}$                                      | $0.39\pm0.06$                 | ≼3.5                                              | ≥1.5                       | ≤1.5                         | $0.8\pm0.1$ | $2.6\pm0.2$                                                     | ı et a   |

| Table 5       (Continued) |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                                                 |                                                   |                            |                              |             |                                                                 |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|------------------------------|-------------|-----------------------------------------------------------------|
| SCUBA-2 Core              | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(\mathrm{N_2D^+})}{N(\mathrm{N_2H^+})}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М           | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                       | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                                             | (9)                                               | (10)                       | (11)                         | (12)        | (13)                                                            |
| G212.10<br>-19.15South    |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                                                 |                                                   |                            |                              |             |                                                                 |
| G212.84<br>-19.45North    | $9.8\pm1.2^{\dagger}$                               | 9.7 ± 1.3                                           | ≥33.0 <sup>‡</sup>                             | ≥13.0 <sup>‡</sup>                                                  | $\geqslant$ 22.0 <sup>‡</sup>                  | $\geqslant 110.0^{\ddagger}$                                     | $0.10\pm0.02$                                   | ≤2.5                                              | ≼4.4                       | ≼0.9                         | $0.6\pm0.1$ | $2.0\pm0.2$                                                     |
| G212.84<br>-19.45South    | ≤13.0                                               | $\geqslant 1.8^{\ddagger}$                          | ≼4.7                                           | ≼4.0                                                                | ≼34.0                                          | $\geqslant \! 28.0^{\ddagger}$                                   | ≼0.72                                           |                                                   | ≥0.5                       | ≼0.6                         |             |                                                                 |
| G215.44-16.38             | ≤13.0                                               | $5.5\pm0.8$                                         | ≥44.0‡                                         | ≥13.0 <sup>‡</sup>                                                  | ≼32.0                                          | ≥71.0 <sup>‡</sup>                                               | ≼0.24                                           | ≼3.4                                              | ≥1.7                       | $\leqslant 0.8$              | $0.6\pm0.1$ | $2.7\pm0.2$                                                     |
| G215.87<br>-17.62North    | ≤14.0                                               | $2.2\pm0.9$                                         | ≼4.8                                           | ≪4.8                                                                | ≤29.0                                          | ≼33.0                                                            | ≼0.64                                           |                                                   | $\geqslant 0.8$            | ≥0.7                         | $0.9\pm0.4$ |                                                                 |
| G215.87<br>-17.62Middle   | $10.0\pm1.2^{\dagger}$                              | $7.2\pm0.8$                                         | ≥27.0 <sup>‡</sup>                             | $\geqslant 9.4^{\ddagger}$                                          | $\geqslant 14.0^{\ddagger}$                    | $\geqslant 24.0^{\ddagger}$                                      | $0.14\pm0.02$                                   | ≤2.9                                              | ≤5.1                       | ≼3.0                         | $0.7\pm0.1$ | $2.4 \pm 0.2$                                                   |
| G215.87<br>-17.62South    | $9.2\pm2.6^{\dagger}$                               | $\geqslant 5.5^{\ddagger}$                          | ≥33.0‡                                         | $\geqslant 13.0^{\ddagger}$                                         | ≤29.0                                          | $\geqslant$ 52.0 <sup>‡</sup>                                    | ≼0.17                                           | ≤2.5                                              | ≥1.9                       | ≤1.1                         |             | $1.9\pm0.1$                                                     |
| SCOPEG139.12<br>-03.23    | ≼7.3                                                |                                                     | ≤2.6                                           | ≤2.3                                                                |                                                |                                                                  |                                                 |                                                   |                            |                              |             |                                                                 |
| SCOPEG159.21<br>-20.13    | $56.0\pm3.4$                                        |                                                     | ≥97.0 <sup>‡</sup>                             | ≥31.0 <sup>‡</sup>                                                  |                                                |                                                                  |                                                 | ≼3.1                                              |                            |                              |             | $2.2\pm0.1$                                                     |
| SCOPEG159.18<br>-20.09    | $43.0\pm1.3^{\dagger}$                              |                                                     | $660.0\pm330.0$                                | $48.0\pm24.0$                                                       |                                                |                                                                  |                                                 | $13.8\pm9.7$                                      |                            |                              |             | $2.5\pm0.1$                                                     |
| SCOPEG159.22<br>-20.11    | $140.0\pm4.4$                                       |                                                     | $670.0\pm340.0$                                | $64.0\pm32.0$                                                       |                                                |                                                                  |                                                 | $10.5\pm7.5$                                      |                            |                              |             | $2.8\pm0.1$                                                     |
| SCOPEG162.46<br>-08.67    | $\geqslant 6.6^{\ddagger}$                          |                                                     | $\geqslant 16.0^{\ddagger}$                    | $\geqslant 5.8^{\ddagger}$                                          |                                                |                                                                  |                                                 | ≤2.8                                              |                            |                              |             | $1.9\pm0.2$                                                     |
| SCOPEG162.48<br>-08.68    | $\geqslant 10.0^{\ddagger}$                         |                                                     | $\geqslant \! 18.0^{\ddagger}$                 | $\geqslant 5.9^{\ddagger}$                                          |                                                |                                                                  |                                                 | ≼3.1                                              |                            |                              |             | $2.4\pm0.2$                                                     |
| SCOPEG171.50<br>-14.91    | $32.0\pm3.3$                                        |                                                     | $\geqslant 78.0^{\ddagger}$                    | ≥27.0 <sup>‡</sup>                                                  |                                                |                                                                  |                                                 | ≼2.9                                              |                            |                              |             | $2.1\pm0.1$                                                     |
| SCOPEG172.88<br>+02.26    | $19.0\pm1.2^{\dagger}$                              |                                                     | ≥37.0 <sup>‡</sup>                             | $\geqslant 19.0^{\ddagger}$                                         |                                                |                                                                  |                                                 | ≼1.9                                              |                            |                              |             | $1.4\pm0.1$                                                     |
| SCOPEG172.88<br>+02.27    | $30.0\pm3.0^{\dagger}$                              |                                                     | ≥54.0‡                                         | $\geqslant 20.0^{\ddagger}$                                         |                                                |                                                                  |                                                 | ≼2.7                                              |                            |                              |             | $2.1\pm0.1$                                                     |
| SCOPEG172.89<br>+02.27    | ≼6.0                                                |                                                     | ≤1.8                                           | ≤2.0                                                                |                                                |                                                                  |                                                 |                                                   |                            |                              |             |                                                                 |
| SCOPEG172.89<br>+02.27    | $29.0 \pm 1.8^{\dagger}$                            |                                                     | ≥64.0 <sup>‡</sup>                             | $\geqslant 16.0^{\ddagger}$                                         |                                                |                                                                  |                                                 | ≼4.0                                              |                            |                              |             | $2.8\pm0.1$                                                     |
| SCOPEG173.17<br>+02.36    | ≼8.0                                                |                                                     | $9.7\pm5.0$                                    | ≤2.6                                                                |                                                |                                                                  |                                                 | ≥3.7                                              |                            |                              |             | ≥1.2                                                            |
| SCOPEG173.17<br>+02.36    | ≼8.0                                                |                                                     | $18.0\pm9.1$                                   | $16.0\pm8.1$                                                        |                                                |                                                                  |                                                 | $1.1\pm0.8$                                       |                            |                              |             | $1.1\pm0.1$                                                     |
| SCOPEG173.18<br>+02.35    | ≼7.4                                                |                                                     | $8.0\pm4.1$                                    | ≤2.6                                                                |                                                |                                                                  |                                                 | ≥3.1                                              |                            |                              |             | ≥1.0                                                            |
| SCOPEG173.18<br>+02.35    | $17.0\pm8.8^{\dagger}$                              |                                                     | $32.0\pm16.0$                                  | $24.0\pm12.0$                                                       |                                                |                                                                  |                                                 | $1.3\pm0.9$                                       |                            |                              |             | $0.9\pm0.1$                                                     |
| SCOPEG173.19<br>+02.35    | $19.0\pm9.8^{\dagger}$                              |                                                     | $37.0\pm19.0$                                  | $23.0\pm12.0$                                                       |                                                |                                                                  |                                                 | $1.6\pm1.2$                                       |                            |                              |             | $1.3\pm0.1$                                                     |

The Astrophysical Journal Supplement Series, 249:33 (53pp), 2020 August

| Table 5       (Continued) |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|----------------------------|------------------------------|------|-----------------------------------------------------------------|
| SCUBA-2 Core              | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(\mathrm{N}_{2}\mathrm{D}^{+})}{N(\mathrm{N}_{2}\mathrm{H}^{+})}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М    | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                       | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                                                                       | (9)                                               | (10)                       | (11)                         | (12) | (13)                                                            |
| SCOPEG178.27<br>-00.60    | $27.0\pm5.4$                                        |                                                     | $\geqslant 25.0^{\ddagger}$                    | ≥4.4 <sup>‡</sup>                                                   |                                                |                                                                  |                                                                           | ≼5.7                                              |                            |                              |      | 4.7 ± 0.6                                                       |
| SCOPEG178.28<br>-00.60    | $\geqslant 12.0^{\ddagger}$                         |                                                     | ≥13.0 <sup>‡</sup>                             | ≥2.7‡                                                               |                                                |                                                                  |                                                                           | ≪4.8                                              |                            |                              |      | $3.5\pm0.7$                                                     |
| SCOPEG195.71<br>-02.32    | $\geqslant 10.0^{\ddagger}$                         |                                                     | ≥34.0 <sup>‡</sup>                             | ≥7.1 <sup>‡</sup>                                                   |                                                |                                                                  |                                                                           | ≪4.8                                              |                            |                              |      | 3.3 ± 0.4                                                       |
| SCOPEG195.74<br>-02.30    | $\geqslant$ 22.0 <sup>‡</sup>                       |                                                     | $\geqslant 58.0^{\ddagger}$                    | $\geqslant 10.0^{\ddagger}$                                         |                                                |                                                                  |                                                                           | ≼5.8                                              |                            |                              |      | $4.1\pm0.3$                                                     |
| SCOPEG202.30<br>+02.53    | $9.6\pm1.4^{\dagger}$                               |                                                     | $17.0\pm8.5$                                   | $5.6\pm2.9$                                                         |                                                |                                                                  |                                                                           | $3.0 \pm 2.2$                                     |                            |                              |      | $2.5\pm0.3$                                                     |
| SCOPEG202.31<br>+02.52    | $6.0\pm3.2^{\dagger}$                               |                                                     | $24.0\pm12.0$                                  | ≤2.2                                                                |                                                |                                                                  |                                                                           | ≥10.9                                             |                            |                              |      | ≥4.9                                                            |
| SCOPEG202.32<br>+02.53    | ≼6.0                                                |                                                     | ≤2.3                                           | ≤2.2                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG202.32<br>+02.53    | $17.0\pm8.6^{\dagger}$                              |                                                     | $41.0\pm21.0$                                  | $5.9\pm3.0$                                                         |                                                |                                                                  |                                                                           | $6.9\pm5.0$                                       |                            |                              |      | $5.4\pm0.5$                                                     |
| SCOPEG006.01<br>+36.74    | $25.0\pm2.7$                                        |                                                     | $\geqslant 59.0^{\ddagger}$                    | ≥11.0 <sup>‡</sup>                                                  |                                                |                                                                  |                                                                           | ≼5.4                                              |                            |                              |      | $3.2\pm0.2$                                                     |
| SCOPEG001.37<br>+20.95    | $43.0\pm4.9$                                        |                                                     | $380.0\pm190.0$                                | $26.0\pm13.0$                                                       |                                                |                                                                  |                                                                           | $14.6\pm10.3$                                     |                            |                              |      | $3.4\pm0.1$                                                     |
| +002 41                   | ≤12.0                                               |                                                     | ≼3.5                                           | ≼3.6                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.91              | ≤15.0                                               |                                                     | ≼5.7                                           | ≼4.3                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.88              | ≼11.0                                               |                                                     | $7.6\pm3.9$                                    | ≼3.1                                                                |                                                |                                                                  |                                                                           | ≥2.5                                              |                            |                              |      | ≥1.0                                                            |
| SCOPEG005.92              | ≤12.0                                               |                                                     | ≼4.7                                           | ≼3.3                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.92              | ≤11.0                                               |                                                     | ≼4.6                                           | ≼3.3                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.90              | ≤11.0                                               |                                                     | ≼4.2                                           | ≼3.0                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.90              | ≤10.0                                               |                                                     | ≼4.1                                           | ≼3.0                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| SCOPEG005.91              | ≤12.0                                               |                                                     | ≤3.6                                           | ≼3.4                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| =01.02<br>SCOPEG005.91    | ≤12.0                                               |                                                     | ≼3.6                                           | ≼3.4                                                                |                                                |                                                                  |                                                                           |                                                   |                            |                              |      |                                                                 |
| -01.02<br>SCOPEG017.38    | ≼11.0                                               |                                                     | $7.6\pm4.0$                                    | $4.4\pm2.3$                                                         |                                                |                                                                  |                                                                           | $1.7\pm1.3$                                       |                            |                              |      | $1.6\pm0.3$                                                     |
| +02.26<br>SCOPEG017.38    | ≼8.6                                                |                                                     | $9.6\pm4.9$                                    | ≤2.8                                                                |                                                |                                                                  |                                                                           | ≥3.4                                              |                            |                              |      | ≥1.6                                                            |
| +02.25<br>SCOPEG017.37    | ≼8.2                                                |                                                     | $9.2\pm4.7$                                    | $8.4\pm4.3$                                                         |                                                |                                                                  |                                                                           | $1.1\pm0.8$                                       |                            |                              |      | $0.9\pm0.1$                                                     |
| +02.24                    | $4.9 \pm 1.1^{\dagger}$                             |                                                     | $9.2\pm4.7$                                    | $16.0 \pm 8.1$                                                      |                                                |                                                                  |                                                                           | $0.6\pm0.4$                                       |                            |                              |      | $0.5\pm0.1$                                                     |

| Table 5     (Continued) |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
|-------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|------|-----------------------------------------------------------------|
| SCUBA-2 Core            | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М    | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                     | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12) | (13)                                                            |
| SCOPEG017.36<br>+02.23  |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG014.20<br>-00.18  | ≤11.0                                               |                                                     | ≼3.2                                           | ≼3.4                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG014.20<br>-00.18  | ≤11.0                                               |                                                     | ≼3.2                                           | $4.9\pm2.6$                                                         |                                                |                                                                  |                               | ≼0.7                                              |                            |                              |      | ≼0.8                                                            |
| SCOPEG014.23<br>-00.17  | ≼9.1                                                |                                                     | ≼3.3                                           | 18.0 ± 9.1                                                          |                                                |                                                                  |                               | ≼0.2                                              |                            |                              |      | ≼0.3                                                            |
| SCOPEG014.18<br>-00.23  | ≼7.7                                                |                                                     | ≤2.5                                           | 3.4 ± 1.8                                                           |                                                |                                                                  |                               | ≼0.7                                              |                            |                              |      | ≤1.0                                                            |
| SCOPEG014.18<br>-00.23  | ≼7.7                                                |                                                     | 9.3 ± 4.8                                      | 8.5 ± 4.3                                                           |                                                |                                                                  |                               | $1.1 \pm 0.8$                                     |                            |                              |      | $0.6 \pm 0.1$                                                   |
| SCOPEG014.71<br>-00.15  | ≤18.0                                               |                                                     | ≼5.0                                           | ≼4.8                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG014.72<br>-00.20  | ≤13.0                                               |                                                     | 2.8 ± 1.5                                      | 16.0 ± 8.1                                                          |                                                |                                                                  |                               | $0.2 \pm 0.1$                                     |                            |                              |      | $0.1 \pm 0.1$                                                   |
| SCOPEG014.69<br>-00.22  | ≤12.0                                               |                                                     | ≼4.3                                           | ≼3.6                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| -00.22                  | ≤12.0                                               |                                                     | ≤4.3                                           | $24.0 \pm 12.0$                                                     |                                                |                                                                  |                               | ≤0.2                                              |                            |                              |      | ≤0.3 V                                                          |
| -00.57                  | ≤11.0                                               |                                                     | $46.0 \pm 23.0$                                | $37.0 \pm 19.0$                                                     |                                                |                                                                  |                               | $1.2 \pm 0.9$                                     |                            |                              |      | $1.0 \pm 0.1$                                                   |
| -00.51                  | <b>≷</b> 11.0                                       |                                                     | 59.0 ± 20.0                                    | $23.0 \pm 13.0$                                                     |                                                | •••                                                              |                               | $1.0 \pm 1.1$                                     |                            |                              |      | $1.2 \pm 0.1$                                                   |
| SCOPEG016.93<br>+00.28  | ≤15.0                                               |                                                     | ≼4.6                                           | ≼4.3                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG016.93<br>+00.27  | ≤11.0                                               |                                                     | ≼3.9                                           | ≼3.4                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG016.93<br>+00.25  | ≼11.0                                               |                                                     | 19.0 ± 9.6                                     | 8.4 ± 4.3                                                           |                                                |                                                                  |                               | 2.3 ± 1.6                                         |                            |                              |      | $1.6 \pm 0.2$                                                   |
| SCOPEG016.93<br>+00.25  | ≤11.0                                               |                                                     | ≼3.7                                           | ≼3.2                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG016.93<br>+00.24  | ≤11.0                                               |                                                     | $3.4 \pm 1.8$                                  | $5.8 \pm 3.0$                                                       |                                                |                                                                  |                               | $0.6 \pm 0.4$                                     |                            |                              |      | $1.0 \pm 0.2$                                                   |
| SCOPEG016.93<br>+00.24  | ≤11.0                                               |                                                     | 3.6 ± 2.0                                      | 4.8 ± 2.5                                                           |                                                |                                                                  |                               | $0.8 \pm 0.6$                                     |                            |                              |      | $1.2 \pm 0.3$                                                   |
| +00.23                  | ≤10.0                                               |                                                     | ≤3.3                                           | ≤3.3                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| +00.22                  | ≤10.0                                               |                                                     | $23.0 \pm 12.0$                                | $16.0 \pm 8.1$                                                      |                                                |                                                                  |                               | $1.4 \pm 1.0$                                     |                            |                              |      | $1.4 \pm 0.1$                                                   |
| -00.53                  | ≤10.0                                               |                                                     | ≤ <b>6.</b> 0                                  | $0.8 \pm 3.3$                                                       |                                                |                                                                  |                               | ≤0.9                                              |                            |                              | •••  | ≤1.4                                                            |
| -00.59                  | <12.0<br><12.0                                      |                                                     | ≷4.0<br><3.7                                   | $27.0 \pm 14.0$<br>$17.0 \pm 8.6$                                   |                                                |                                                                  |                               | ≷0.1<br><0.2                                      |                            |                              |      | ≥0.2                                                            |
|                         | <12.0                                               |                                                     | ₹3.1                                           | $17.0 \pm 0.0$                                                      |                                                |                                                                  |                               | ≪0.∠                                              |                            |                              |      | <0. <del>4</del>                                                |

Kim et al.

The Astrophysical Journal Supplement Series, 249:33 (53pp), 2020 August

| Table 5       (Continued) |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|------|-----------------------------------------------------------------|
| SCUBA-2 Core              | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М    | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                       | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12) | (13)                                                            |
| SCOPEG016.38<br>-00.61    |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG016.42<br>-00.64    | ≤11.0                                               |                                                     | ≼3.5                                           | $14.0 \pm 7.1$                                                      |                                                |                                                                  |                               | ≼0.2                                              |                            |                              |      | ≼0.4                                                            |
| SCOPEG016.42<br>-00.64    | ≼11.0                                               |                                                     | ≤3.5                                           | 3.7 ± 1.9                                                           |                                                |                                                                  |                               | ≼0.9                                              |                            |                              |      | ≼0.4                                                            |
| SCOPEG017.22<br>-01.46    | ≤13.0                                               |                                                     | ≼4.8                                           | ≼4.1                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      |                                                                 |
| SCOPEG017.21<br>-01.47    | ≤13.0                                               |                                                     | ≼4.7                                           | ≼4.5                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      |                                                                 |
| SCOPEG023.63<br>+00.59    | ≼11.0                                               |                                                     | ≼3.9                                           | ≼3.3                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      |                                                                 |
| SCOPEG023.69<br>+00.59    | ≤12.0                                               |                                                     | ≼3.6                                           | 22.0 ± 11.0                                                         |                                                |                                                                  |                               | ≼0.2                                              | •••                        | •••                          |      | <b>≼</b> 0.3                                                    |
| SCOPEG024.02<br>+00.24    | ≼11.0                                               |                                                     | ≼3.7                                           | ≼3.5                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      |                                                                 |
| SCOPEG024.02<br>+00.21    | ≼9.6                                                |                                                     | ≼3.0                                           | ≤2.9                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      |                                                                 |
| SCOPEG023.32<br>-00.29    | ≤11.0                                               |                                                     | ≼3.5                                           | 18.0 ± 9.1                                                          |                                                |                                                                  |                               | ≼0.2                                              | •••                        | •••                          |      | <b>≼</b> 0.3                                                    |
| SCOPEG026.50<br>+00.71    | ≤12.0                                               |                                                     | ≼4.3                                           | $17.0\pm8.6$                                                        |                                                |                                                                  |                               | ≼0.3                                              | •••                        | •••                          |      | ≼0.4                                                            |
| SCOPEG037.92<br>+02.14    | ≼6.2                                                |                                                     | ≤2.2                                           | $2.8\pm1.5$                                                         |                                                |                                                                  |                               | ≪0.8                                              | •••                        | •••                          |      | ≤1.2                                                            |
| SCOPEG033.74<br>-00.01    | ≼7.3                                                |                                                     | $13.0\pm6.6$                                   | 36.0 ± 18.0                                                         |                                                |                                                                  |                               | $0.4 \pm 0.3$                                     |                            |                              |      | $0.3 \pm 0.1$                                                   |
| SCOPEG039.74<br>+01.99    | ≼6.5                                                |                                                     | $15.0\pm7.6$                                   | $7.0\pm3.5$                                                         |                                                |                                                                  |                               | 2.1 ± 1.5                                         | •••                        | •••                          |      | $1.7 \pm 0.2$                                                   |
| SCOPEG035.48<br>-00.29    | ≼9.3                                                |                                                     | 9.6 ± 4.9                                      | ≤2.9                                                                |                                                |                                                                  |                               | ≥3.3                                              | •••                        | •••                          |      | ≥1.6                                                            |
| SCOPEG035.48<br>-00.29    | $13.0 \pm 1.1^{\dagger}$                            |                                                     | 36.0 ± 18.0                                    | $20.0\pm10.0$                                                       |                                                |                                                                  |                               | $1.8 \pm 1.3$                                     |                            |                              |      | $1.4 \pm 0.1$                                                   |
| SCOPEG035.52<br>-00.27    | ≼7.7                                                |                                                     | 46.0 ± 23.0                                    | 29.0 ± 15.0                                                         |                                                |                                                                  |                               | 1.6 ± 1.1                                         |                            |                              |      | $1.2 \pm 0.1$                                                   |
| SCOPEG035.48<br>-00.31    | $23.0\pm12.0^{\dagger}$                             |                                                     | 39.0 ± 20.0                                    | 25.0 ± 13.0                                                         |                                                |                                                                  |                               | $1.6 \pm 1.1$                                     |                            |                              |      | $1.3 \pm 0.1$                                                   |
| SCOPEG034.75<br>-01.38    | ≼8.2                                                |                                                     | 29.0 ± 15.0                                    | 34.0 ± 17.0                                                         |                                                |                                                                  |                               | $0.9\pm0.6$                                       |                            |                              |      | $0.7 \pm 0.1$                                                   |
| SCOPEG035.36<br>-01.77    | ≤8.1                                                |                                                     | ≤2.9                                           | 3.1 ± 1.6                                                           |                                                |                                                                  |                               | ≼0.9                                              | •••                        | •••                          |      | ≤1.3                                                            |
| SCOPEG035.36<br>-01.78    | ≼6.4                                                |                                                     | 13.0 ± 6.5                                     | ≤2.0                                                                |                                                |                                                                  |                               | ≥6.5                                              |                            |                              |      | ≥2.5                                                            |
| SCOPEG035.35<br>-01.80    | ≼6.2                                                |                                                     | $8.7\pm4.4$                                    | ≤1.9                                                                |                                                |                                                                  |                               | ≥4.6                                              |                            |                              |      | ≥1.7                                                            |
|                           | $8.1\pm0.7^{\dagger}$                               |                                                     | $\geqslant 24.0^{\ddagger}$                    | $\geqslant 10.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≤2.4                                              |                            |                              |      | $2.0\pm0.2$                                                     |

| Table 5       (Continued) |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|------|-----------------------------------------------------------------|
| SCUBA-2 Core              | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М    | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                       | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12) | (13)                                                            |
| SCOPEG057.11<br>+03.66    |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG057.10<br>+03.63    | $6.2 \pm 1.0^{\dagger}$                             |                                                     | $\geqslant 29.0^{\ddagger}$                    | ≥13.0 <sup>‡</sup>                                                  |                                                |                                                                  |                               | ≤2.2                                              |                            |                              |      | $1.7\pm0.1$                                                     |
| SCOPEG069.80<br>-01.67    | ≼7.2                                                |                                                     | $24.0\pm12.0$                                  | $20.0\pm10.0$                                                       |                                                |                                                                  |                               | $1.2\pm0.8$                                       |                            |                              |      | $0.9\pm0.1$                                                     |
| SCOPEG069.81<br>-01.67    | $5.4\pm2.9^{\dagger}$                               |                                                     | $23.0\pm12.0$                                  | $19.0\pm9.5$                                                        |                                                |                                                                  |                               | $1.2\pm0.9$                                       | •••                        | •••                          |      | $1.0\pm0.1$                                                     |
| SCOPEG070.40<br>-01.39    | ≼6.2                                                |                                                     | $\geqslant 8.2^{\ddagger}$                     | $\geqslant 8.1^{\ddagger}$                                          |                                                |                                                                  |                               | ≤1.0                                              | •••                        | •••                          |      | $0.8\pm0.1$                                                     |
| SCOPEG074.10<br>+00.11    | $7.6\pm2.5^{\dagger}$                               |                                                     | $\geqslant 19.0^{\ddagger}$                    | ≥13.0 <sup>‡</sup>                                                  |                                                |                                                                  |                               | ≤1.5                                              |                            |                              |      | $0.9\pm0.1$                                                     |
| SCOPEG074.11<br>+00.11    | $14.0\pm2.8^{\dagger}$                              |                                                     | $\geqslant$ 34.0 <sup>‡</sup>                  | $\geqslant \! 17.0^{\ddagger}$                                      |                                                |                                                                  |                               | $\leqslant$ 2.0                                   |                            |                              |      | $1.6\pm0.1$                                                     |
| SCOPEG082.36              | $\geqslant 10.0^{\ddagger}$                         |                                                     | $\geqslant 26.0^{\ddagger}$                    | $\geqslant 11.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≤2.4                                              |                            |                              |      | $1.7\pm0.1$                                                     |
| SCOPEG082.40              | ≥14.0 <sup>‡</sup>                                  |                                                     | ≥32.0 <sup>‡</sup>                             | ≥15.0 <sup>‡</sup>                                                  |                                                |                                                                  |                               | ≤2.1                                              |                            |                              |      | $1.6\pm0.1$                                                     |
| SCOPEG082.41              | $17.0\pm1.0^{\dagger}$                              |                                                     | ≥45.0 <sup>‡</sup>                             | $\geqslant 21.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≤2.1                                              |                            |                              |      | $2.2\pm0.1$                                                     |
| SCOPEG082.42              | $21.0\pm1.5$                                        |                                                     | ≥38.0‡                                         | $\geqslant \! 18.0^{\ddagger}$                                      |                                                |                                                                  |                               | ≤2.1                                              |                            |                              |      | $1.7\pm0.1$                                                     |
| -01.84<br>SCOPEG091.86    | ≼8.0                                                |                                                     | ≥15.0‡                                         | $\geqslant 8.4^{\ddagger}$                                          |                                                |                                                                  |                               | ≤1.8                                              |                            |                              |      | $1.5\pm0.2$                                                     |
| +04.17<br>SCOPEG091.86    | ≼8.2                                                |                                                     | ≤2.9                                           | ≼3.0                                                                |                                                |                                                                  |                               |                                                   | •••                        | •••                          |      | •••                                                             |
| +04.17<br>SCOPEG091.85    | $12.0\pm3.3$                                        |                                                     | ≥39.0 <sup>‡</sup>                             | $\geqslant 16.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≼2.4                                              |                            |                              |      | $1.9\pm0.1$                                                     |
| +04.12<br>SCOPEG092.03    | ≼5.7                                                |                                                     | ≤2.1                                           | ≼2.4                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| +03.93<br>SCOPEG092.27    | $18.0\pm1.5$                                        |                                                     | $\geqslant 30.0^{\ddagger}$                    | $\geqslant 21.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≤1.4                                              |                            |                              |      | $1.1\pm0.1$                                                     |
| +05.79<br>SCOPEG087.06    | $3.7\pm0.6^{\dagger}$                               |                                                     | $15.0\pm7.5$                                   | $5.9\pm3.0$                                                         |                                                |                                                                  |                               | $2.5\pm1.8$                                       |                            |                              |      | $2.0\pm0.2$                                                     |
| -04.19<br>SCOPEG089.64    | $\geqslant$ 5.4 <sup>‡</sup>                        |                                                     | $\geqslant 21.0^{\ddagger}$                    | ≥7.6 <sup>‡</sup>                                                   |                                                |                                                                  |                               | ≤2.8                                              |                            |                              |      | $2.3\pm0.2$                                                     |
| -06.62<br>SCOPEG105.37    | ≼6.9                                                |                                                     | $15.0\pm7.6$                                   | $8.3\pm4.2$                                                         |                                                |                                                                  |                               | $1.8\pm1.3$                                       |                            |                              |      | $1.7\pm0.2$                                                     |
| +09.84<br>SCOPEG105.41    | ≼6.7                                                |                                                     | ≤2.2                                           | ≤2.2                                                                |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| +09.88<br>SCOPEG093.53    | $17.0\pm1.2^{\dagger}$                              |                                                     | $\geqslant 42.0^{\ddagger}$                    | $\geqslant 23.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≼1.8                                              |                            |                              |      | $1.4 \pm 0.1$                                                   |
| -04.26<br>SCOPEG093.54    | $15.0\pm1.2^{\dagger}$                              |                                                     | $\geqslant 41.0^{\ddagger}$                    | $\geqslant 16.0^{\ddagger}$                                         |                                                |                                                                  |                               | ≤2.6                                              |                            |                              |      | $1.9\pm0.1$                                                     |
| -04.28                    | $14.0\pm7.1^{\dagger}$                              |                                                     | $52.0\pm26.0$                                  | $9.4\pm4.7$                                                         |                                                |                                                                  |                               | $5.5\pm3.9$                                       |                            |                              |      | $3.7\pm0.3$                                                     |

|                        | Table 5       (Continued)                           |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
|------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------|------------------------------|------|-----------------------------------------------------------------|
| SCUBA-2 Core           | $N(N_2D^+)$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(N_2H^+)$<br>(10 <sup>12</sup> cm <sup>-2</sup> ) | N(DNC)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HN}^{13}\text{C})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | N(CCS)<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $N(\text{HC}_3\text{N})$<br>(10 <sup>11</sup> cm <sup>-2</sup> ) | $\frac{N(N_2D^+)}{N(N_2H^+)}$ | $\frac{N(\text{DNC})}{N(\text{HN}^{13}\text{C})}$ | $\frac{N(N_2H^+)}{N(CCS)}$ | $\frac{N(N_2H^+)}{N(HC_3N)}$ | М    | $\frac{\int T(\text{DNC})dv}{\int T(\text{HN}^{13}\text{C})dv}$ |
| (1)                    | (2)                                                 | (3)                                                 | (4)                                            | (5)                                                                 | (6)                                            | (7)                                                              | (8)                           | (9)                                               | (10)                       | (11)                         | (12) | (13)                                                            |
| SCOPEG107.16<br>+05.45 |                                                     |                                                     |                                                |                                                                     |                                                |                                                                  |                               |                                                   |                            |                              |      |                                                                 |
| SCOPEG107.30<br>+05.64 | ≼6.2                                                |                                                     | $\geqslant 22.0^{\ddagger}$                    | ≥16.0 <sup>‡</sup>                                                  |                                                |                                                                  |                               | ≤1.4                                              |                            |                              |      | $1.3\pm0.1$                                                     |
| SCOPEG107.18<br>+05.43 | $7.4\pm3.9^{\dagger}$                               |                                                     | $18.0\pm9.0$                                   | $10.0\pm5.0$                                                        |                                                |                                                                  |                               | $1.8\pm1.3$                                       |                            |                              |      | $1.5\pm0.1$                                                     |
| SCOPEG109.81<br>+02.70 | ≼6.7                                                |                                                     | ≥21.0 <sup>‡</sup>                             | ≥7.4 <sup>‡</sup>                                                   |                                                |                                                                  |                               | ≤2.8                                              |                            |                              |      | $2.1\pm0.2$                                                     |

**Note.** All values are listed for the source whose peak temperature is higher than  $3\sigma$ . Column (1): SCUBA-2 core name. Columns (2)–(7): column densities of N<sub>2</sub>D<sup>+</sup>, N<sub>2</sub>H<sup>+</sup>, DNC, HN<sup>13</sup>C, 82 GHz CCS, and HC<sub>3</sub>N, respectively. Columns (8)–(11): ratio of the column densities. Column (12): Mach number of the N<sub>2</sub>H<sup>+</sup> line. Column (13): integrated intensity ratio of DNC to HN<sup>13</sup>C lines. "†" indicates that the column density is derived from dust temperature, and "‡" indicates the lower limit when the assumed  $T_{ex}$  is too low to constrain the upper bound.



**Figure 5.** (a) Integrated intensity ratio of DNC to  $HN^{13}C$  plotted against the linear beam size. (b) Column density ratio of DNC/ $HN^{13}C$  plotted against distance. (c) Same as panel (b), but for DNC/HNC. The color symbols represent SCUBA-2 cores in  $\lambda$  Orionis (pink), Orion A (magenta), Orion B (brown), the Galactic plane (green), and at high latitudes (blue). The circle and star symbols represent the starless and protostellar core, respectively. The large symbol with the error bar represents the dense core where both values in the ratio are successfully estimated. The small symbol with the arrow represents the dense core with upper or lower limits. The dashed line with the slope value represents the least-squares fitting to the cores detected in both molecular lines. In panel (a), the fittings are made for linear beam sizes of  $\leq 0.1$  pc and of >0.1 pc separately. In panels (b) and (c), the fittings are made for distances of >1 kpc.

 Table 6

 Detection Rates of Molecular Lines in SCUBA-2 Cores in Different Environments

| Environment       | Source                  | c-C <sub>3</sub> H <sub>2</sub> | DNC | HN <sup>13</sup> C | $N_2D^+$ | CCS-L | CCS-H | HC <sub>3</sub> N | $N_2H^+$ |
|-------------------|-------------------------|---------------------------------|-----|--------------------|----------|-------|-------|-------------------|----------|
|                   |                         |                                 |     |                    | 0        | %     |       |                   |          |
| All region        | Both (207)              | 91                              | 78  | 74                 | 49       |       |       |                   |          |
|                   | Starless core (58)      | 81                              | 76  | 60                 | 47       |       |       |                   |          |
|                   | Protostellar core (149) | 95                              | 79  | 79                 | 50       |       |       |                   |          |
| $\lambda$ Orionis | Both (15)               | 80                              | 67  | 60                 | 40       | 13    | 13    | 47                | 80       |
|                   | Starless core (5)       | 40                              | 40  | 20                 | 20       | 0     | 20    | 20                | 60       |
|                   | Protostellar core (10)  | 100                             | 80  | 80                 | 50       | 20    | 10    | 60                | 90       |
| Orion A           | Both (70)               | 89                              | 87  | 74                 | 57       | 26    | 16    | 76                | 97       |
|                   | Starless core (24)      | 79                              | 88  | 63                 | 50       | 13    | 13    | 63                | 96       |
|                   | Protostellar core (46)  | 93                              | 87  | 80                 | 61       | 33    | 17    | 83                | 98       |
| Orion B           | Both (28)               | 96                              | 96  | 75                 | 54       | 18    | 14    | 71                | 89       |
|                   | Starless core (10)      | 90                              | 100 | 60                 | 60       | 10    | 20    | 70                | 90       |
|                   | Protostellar core (18)  | 100                             | 94  | 83                 | 50       | 22    | 11    | 72                | 89       |
| Galactic plane    | Both (52)               | 90                              | 52  | 67                 | 21       |       |       |                   |          |
| -                 | Starless core (13)      | 85                              | 46  | 62                 | 23       |       |       |                   |          |
|                   | Protostellar core (39)  | 92                              | 54  | 69                 | 21       |       |       |                   |          |
| High latitudes    | Both (42)               | 98                              | 88  | 86                 | 69       |       |       |                   |          |
|                   | Starless core (6)       | 100                             | 83  | 83                 | 83       |       |       |                   |          |
|                   | Protostellar core (36)  | 97                              | 89  | 86                 | 67       |       |       |                   |          |

Note. "CCS-L" and "CCS-H" represent the low and high transitions of the CCS line, respectively. The numbers in parentheses indicate the total number of cores. The numbers represent the number of dense cores detected in the molecular line in percentages. All detection rates are inferred for sources whose peak temperature is higher than  $3\sigma$ . There are no available data of CCS, HC<sub>3</sub>N, and N<sub>2</sub>H<sup>+</sup> lines for cores at other environments except for the Orion region.

To avoid distance-related issues, we start with the properties of cores in the three subregions of the Orion region with similar distances.

3.3. Column Density Ratios of  $N_2D^+/N_2H^+$ , DNC/HN<sup>13</sup>C,  $N_2H^+/CCS$ , and  $N_2H^+/HC_3N$  for SCUBA-2 Cores in  $\lambda$  Orionis, Orion A, and Orion B

Figure 6 plots the column density ratios of  $N_2D^+/N_2H^+$ ,  $N_2H^+/CCS$ , and  $N_2H^+/HC_3N$  against that of DNC/HN<sup>13</sup>C for starless/protostellar cores in  $\lambda$  Orionis, Orion A, and Orion B. Table 7 summarizes the statistics of the column density ratios. We consider only cores where both column densities are successfully estimated.

For the four column density ratios, there is no systematic difference between starless and protostellar cores in  $\lambda$  Orionis, Orion A, and Orion B. This may indicate that cores in these three regions have similar chemical properties as a whole.

We examine the correlations between the four column density ratios using the correlation coefficient (C.C) derived by the Pearson product-moment correlation coefficient. This method estimates the strength of the relationship between the relative movements of two variables and provides a value between -1.0 and +1.0. The values of +1.0 and -1.0 indicate a strong positive and negative correlation, respectively, and the value of 0 represents no correlation. The C.C. considers only cores of 7 or more in the number of samples where both column densities in the ratio are



**Figure 6.** Column density ratios of  $N_2D^+/N_2H^+$ ,  $N_2H^+/CCS$ , and  $N_2H^+/HC_3N$  plotted against that of DNC/HN<sup>13</sup>C for SCUBA-2 cores in  $\lambda$  Orionis, Orion A, and Orion B. Black and orange represent starless and protostellar cores, respectively. The large symbol with the error bar represents the dense core where both column densities in the ratio are successfully estimated. The small symbol with the arrow represents the dense core with either upper or lower limits. C.C. represents the correlation coefficient; we show the C.C. only when both the pairing column densities are successfully estimated for seven or more dense cores. C.C. does not take into account outliers in the sample.

successfully calculated, but it does not take into account outliers in the sample. For  $N(N_2D^+)/N(N_2H^+)$  and  $N(DNC)/N(HN^{13}C)$ , cores in Orion A show a positive correlation. This result suggests that  $N(N_2D^+)/N(N_2H^+)$  and  $N(DNC)/N(HN^{13}C)$  seem effective for SCUBA-2 cores as chemical evolution tracers.

YSOs inside star-forming cores will have shocks and radiation and make the chemistry of protostellar cores more complex. In this paper, we defer our discussion on protostellar cores to our future papers and concentrate on the characteristics of starless cores.

# 3.4. Column Density Ratio against H<sub>2</sub> Column Density and Dust Temperature

The  $H_2$  column density and dust temperature in the central region of the core can be used as the indicator of core evolution because the density increases and the temperature decreases throughout the starless core evolution (Shirley et al. 2005;

Aikawa et al. 2008). We investigate whether D/H has any correlation with the dust temperature and H<sub>2</sub> column density for local (<1 kpc) starless cores in different environments using the correlation coefficient. Figure 7 shows the column density ratio of DNC/HN<sup>13</sup>C and N<sub>2</sub>D<sup>+</sup>/N<sub>2</sub>H<sup>+</sup> against the dust temperature and H<sub>2</sub> column density. Cores in the Galactic plane are excluded because all of the cores are more distant than 1 kpc.

For D/H against the dust temperature and against the  $H_2$  column density, there seems to be no apparent correlation. This is likely due to the fact that the spatial resolution of the Planck telescope (5' corresponds to ~0.5 pc at a distance of ~400 pc) is too low to trace the variation of temperature or density. Figure 8 plots the  $H_2$  column density as a function of dust temperature for local starless cores in different environments and shows no clear correlation between the two quantities. No clear trend is seen, probably because the resolution is too low.

| Environment               | Source            |      | $\frac{N(N_2D^+)}{N(N_2H^+)}$ |      |        |      | $\frac{N}{N}$ | (DNC)<br>HN <sup>13</sup> C) |        |      | N<br>N | (N <sub>2</sub> H <sup>+</sup> )<br>(CCS) |        |      | N<br>N | (N <sub>2</sub> H <sup>+</sup> )<br>(HC <sub>3</sub> N) | 2H <sup>+</sup> )<br>C <sub>3</sub> N) |  |
|---------------------------|-------------------|------|-------------------------------|------|--------|------|---------------|------------------------------|--------|------|--------|-------------------------------------------|--------|------|--------|---------------------------------------------------------|----------------------------------------|--|
|                           |                   | Min. | Max.                          | Mean | Median | Min. | Max.          | Mean                         | Median | Min. | Max.   | Mean                                      | Median | Min. | Max.   | Mean                                                    | Median                                 |  |
| Orion region              | Both              | 0.04 | 0.4                           | 0.2  | 0.2    | 0.7  | 7.7           | 3.3                          | 3.0    | 0.8  | 20.8   | 8.7                                       | 7.0    | 0.1  | 11.2   | 2.7                                                     | 2.1                                    |  |
|                           | Starless core     | 0.06 | 0.3                           | 0.2  | 0.2    | 0.7  | 7.7           | 4.0                          | 4.0    | 7.6  | 7.6    | 7.6                                       | 7.6    | 0.6  | 8.2    | 3.2                                                     | 2.4                                    |  |
|                           | Protostellar core | 0.04 | 0.4                           | 0.2  | 0.1    | 1.0  | 5.7           | 2.9                          | 2.7    | 0.8  | 20.8   | 8.9                                       | 5.3    | 0.1  | 11.2   | 2.4                                                     | 1.5                                    |  |
| $\lambda$ Orionis         | Both              | 0.08 | 0.2                           | 0.1  | 0.2    | 1.8  | 5.7           | 4.0                          | 3.8    | 1.2  | 1.2    | 1.2                                       | 1.2    | 0.5  | 2.6    | 1.3                                                     | 1.4                                    |  |
|                           | Starless core     |      |                               |      |        |      |               |                              |        |      |        |                                           |        |      |        |                                                         |                                        |  |
|                           | Protostellar core | 0.08 | 0.2                           | 0.1  | 0.2    | 1.8  | 5.7           | 4.0                          | 3.8    | 1.2  | 1.2    | 1.2                                       | 1.2    | 0.5  | 2.6    | 1.3                                                     | 1.4                                    |  |
| Orion A                   | Both              | 0.05 | 0.4                           | 0.2  | 0.1    | 0.7  | 7.7           | 3.4                          | 2.9    | 0.8  | 20.8   | 9.7                                       | 7.3    | 0.1  | 11.2   | 2.9                                                     | 2.2                                    |  |
|                           | Starless core     | 0.06 | 0.3                           | 0.2  | 0.2    | 0.7  | 7.7           | 4.0                          | 4.1    | 7.6  | 7.6    | 7.6                                       | 7.6    | 1.1  | 4.7    | 2.8                                                     | 2.2                                    |  |
|                           | Protostellar core | 0.05 | 0.4                           | 0.2  | 0.1    | 1.8  | 4.0           | 2.8                          | 2.7    | 0.8  | 20.8   | 10.0                                      | 7.0    | 0.1  | 11.2   | 2.9                                                     | 2.4                                    |  |
| Orion B                   | Both              | 0.04 | 0.3                           | 0.2  | 0.2    | 1.0  | 5.1           | 2.6                          | 2.7    |      |        |                                           |        | 0.6  | 8.2    | 3.3                                                     | 1.9                                    |  |
|                           | Starless core     | 0.15 | 0.2                           | 0.2  | 0.2    | 3.0  | 5.1           | 3.8                          | 3.2    |      |        |                                           |        | 0.6  | 8.2    | 4.3                                                     | 4.3                                    |  |
|                           | Protostellar core | 0.04 | 0.3                           | 0.2  | 0.2    | 1.0  | 2.7           | 1.7                          | 1.6    |      |        |                                           |        | 1.2  | 1.3    | 1.3                                                     | 1.3                                    |  |
| Galactic plane            | Both              |      |                               |      |        | 0.2  | 2.3           | 1.2                          | 1.2    |      |        |                                           |        |      |        |                                                         |                                        |  |
|                           | Starless core     |      |                               |      |        | 0.6  | 2.3           | 1.2                          | 0.8    |      |        |                                           |        | •••  |        | •••                                                     | •••                                    |  |
|                           | Protostellar core |      |                               |      |        | 0.2  | 2.1           | 1.2                          | 1.2    |      |        |                                           |        |      |        |                                                         |                                        |  |
| High latitudes            | Both              |      |                               |      |        | 0.6  | 14.6          | 4.5                          | 1.8    |      |        |                                           |        |      |        |                                                         |                                        |  |
|                           | Starless core     |      |                               |      |        | 6.9  | 14.6          | 10.8                         | 10.8   |      |        |                                           |        | •••  |        | •••                                                     | •••                                    |  |
|                           | Protostellar core |      |                               |      |        | 0.6  | 13.8          | 3.6                          | 1.8    |      |        |                                           |        |      |        |                                                         |                                        |  |
| High latitudes (≲1.1 kpc) | Both              |      |                               |      |        | 1.8  | 14.6          | 7.3                          | 6.2    |      |        |                                           |        |      |        |                                                         |                                        |  |
|                           | Starless core     |      |                               |      |        | 6.9  | 14.6          | 10.8                         | 10.8   |      |        |                                           |        |      |        |                                                         |                                        |  |
|                           | Protostellar core |      |                               |      |        | 1.8  | 13.8          | 6.2                          | 4.3    |      |        |                                           |        |      |        |                                                         |                                        |  |

 Table 7

 Minimum, Maximum, Mean, and Median of Column Density Ratios of  $N_2D^+/N_2H^+$ , DNC/HN<sup>13</sup>C,  $N_2H^+/CCS$ , and  $N_2H^+/HC_3N$  for 207 SCUBA-2 Cores in Different Environments

Note. Only cores where both column densities are successfully estimated are considered. The N<sub>2</sub>H<sup>+</sup>, CCS, and HC<sub>3</sub>N data are available for only the Orion region.

47



Figure 7. Column density ratios of  $DNC/HN^{13}C$  and  $N_2D^+/N_2H^+$  are plotted against the dust temperature and  $H_2$  column density for local (<1 kpc) starless cores in different environments. The meanings of the symbols and C.C. are the same as those used in Figure 6.

### 3.5. Variation of D/H, Dust Temperature, and $H_2$ Column Density against Declination for Starless Cores in $\lambda$ Orionis, Orion A, and Orion B

In the Orion region, shell/ring-shaped structure  $\lambda$  Orionis and filamentary clouds Orion A and B are extensively distributed along the declination, as shown in Figure 2. For starless cores in  $\lambda$  Orionis, Orion A, and Orion B, we examine whether there is any variation in dust temperature, H<sub>2</sub> column density, and D/H along the declination Figure 9 shows the spatial distribution, dust temperature, H<sub>2</sub> column density,  $N(N_2D^+)/N(N_2H^+)$ , and  $N(DNC)/N(HN^{13}C)$  with respect to declination. Along the declination, the dust temperature and H<sub>2</sub> column density appear to increase toward a declination of  $\sim -4^{\circ}$  to  $-3^{\circ}$ . We exclude cores with a declination from  $-5^{\circ}$  50' to  $-5^{\circ}$  strongly externally heated by the Orion Nebula. Although we see slight increase in the dust temperature and H<sub>2</sub> column density near the Orion Nebula, we do not see any systematic trend in the D/H fraction.

### 3.6. Comparison of Deuterium Fraction between Starless Cores and Other Cores

We compare the deuterium fraction between starless cores and other cores reported in previous studies. The average  $N(N_2D^+)/N(N_2H^+)$  of starless cores in the Orion region  $(0.2 \pm 0.1)$  is found to be lower than that of PGCCs (0.5) reported in Tatematsu et al. (2017), which is similar to that of low-mass starless cores (0.1, Crapsi et al. 2005) and higher than that of massive protostellar IRAS cores (0.01, Fontani et al. 2006). If we assume  ${}^{12}C/{}^{13}C = 52$  (Savage et al. 2002), the average N(DNC)/N(HNC) of starless cores in the Orion region (0.08 ± 0.03) seems to be similar to those of 13 PGCCs (0.08) found in Tatematsu et al. (2017) and protostellar cores in the Perseus molecular cloud (0.06) in Imai et al. (2018), but higher than that of low-mass starless cores (0.02) in Hirota & Yamamoto (2006). Approximately 30% of the starless cores in the Orion region are found to have an N(DNC)/N(HNC) higher



Figure 8.  $H_2$  column density plotted against dust temperature for local (<1 kpc) starless cores in different environments. The meanings of the symbols and C.C. are the same as those used in Figure 6.



**Figure 9.** Spatial distribution, dust temperature,  $H_2$  column density,  $N(N_2D^+)/N(N_2H^+)$ , and  $N(DNC)/N(HN^{13}C)$  against declination for starless cores in the Orion region. The large symbol with an error bar and the small symbol with an arrow are the same as those used in Figure 6. The background image in the left panel is the Planck 850  $\mu$ m dust continuum map. The blue star symbol in the left panel represents the position of the Orion Nebula (R.A., decl. = 05<sup>h</sup>35<sup>m</sup>17<sup>s</sup>3, -05°23'28''). The dashed horizontal lines represent the boundaries of  $\lambda$  Orionis, Orion B, and Orion A. The dotted horizontal lines represent the boundaries of the potential impact zone of the Orion Nebula on the declination.

than the value of 0.05 for L1544 (Hirota et al. 2003; Hirota & Yamamoto 2006), suggesting that they could be starless cores more evolved toward the beginning of star formation.

### 4. Discussion

### 4.1. Identification of the Dense Cores on the Verge of Star Formation in the Orion Region Using CEFs

The CEF is expressed in the form of CEF =  $\log([N(A)/N(B)]/[N_0(A)/N_0(B)]) \times d$  for molecules A and B. N(A)/N(B) is the ratio of column densities inferred from observations, and  $N_0(A)/N_0(B)$  is the ratio of column densities at the onset of star formation. The factor *d* is defined so that all cores range from  $\sim -100$  for starless cores to  $\sim +100$  for star-forming cores through 0 for cores on the verge of star formation. In this paper,

we derive the CEF for only starless cores to identify late starless cores using  $N(N_2D^+)/N(N_2H^+)$  and  $N(DNC)/N(HN^{13}C)$ . For starless cores,  $N_0(A)/N_0(B)$  approximately corresponds to the maximum of the column density ratio of D/H molecules, and *d* is determined for all starless cores so that the CEF ranges from  $\sim -100$  to  $\sim 0$ . Using two column density ratios listed in Table 5, we determine  $N_0(A)/N_0(B)$  and *d*. We consider only starless cores in the Orion region because they should be located at similar distances. Out of them, we consider only cores in which both column densities in the ratio are successfully estimated. We exclude cores externally affected by large-scale star-forming activities (e.g., Orion Nebula; see Figure 9). For the 16 starless cores in the Orion region for which column density ratios are successfully obtained, we first derive the CEF values using the definition



Figure 10. CEF for starless cores in the Orion region and for local (<1 kpc) starless cores studied in Tatematsu et al. (2017) in ascending numeric order of the average CEF. The top and bottom panels show CEF1.0 derived by the equations in Tatematsu et al. (2017) and CEF2.0 by our study, respectively. The source name with the asterisk represents the cores taken from Tatematsu et al. (2017).

of Tatematsu et al. (2017), which we call CEF1.0. The top panel of Figure 10 shows the CEF1.0 values of the Orion cores. We also plot local (<1 kpc) cores studied in Tatematsu et al. (2017). CEF1.0 ranges from  $\sim$ -75 to  $\sim$ 50, which is different from the original definition of the CEF. For example, L1544, known as a gravitational collapsing prestellar core (Tafalla et al. 1998), has a CEF1.0 close to zero, which is reasonable. However, half of the starless Orion cores have positive CEF1.0, suggesting that CEF1.0 of Tatematsu et al. (2017) needs to be updated.

Using both samples of our starless Orion cores and the local cores from Tatematsu et al. (2017), we determine new CEF2.0 equations in the following forms:

CEF2.0(N<sub>2</sub>D<sup>+</sup>) = log 
$$\left(\frac{N(N_2D^+)/N(N_2H^+)}{0.56}\right) \times 59,$$
 (2)

CEF2.0(DNC) = 
$$\log\left(\frac{N(\text{DNC})/N(\text{HN}^{13}\text{C})}{9.3}\right) \times 87.$$
 (3)

We search for  $N_0(A)/N_0(B)$  and *d* for CEF2.0(N<sub>2</sub>D<sup>+</sup>) and CEF2.0(DNC) that minimizes the rms of CEF2.0(N<sub>2</sub>D<sup>+</sup>)– CEF2.0(DNC) while satisfying a condition that the minimum

CEF2.0(average) is -100 and the maximum CEF2.0(average) is 0 for the starless cores. The reason for finding  $N_0(A)/N_0(B)$  and d in this manner is to illustrate chemical evolution as simple as possible because different pairs of molecules may show different characteristics. The uncertainty of the CEF is estimated through propagation from the error of the column density ratio. The derived CEF2.0 is shown in the bottom panel of Figure 10, and values for the starless Orion cores are listed in Table 8.

The CEF1.0 of Tatematsu et al. (2017) was constructed on the basis of 15 nearby low-mass starless cores with kinetic temperatures of 10–20 K observed at spatial resolutions of 0.015–0.05 pc. In the present study, the CEF2.0 is constructed by adding the data of the 16 starless GMC cores in the Orion region to the existing samples having similar ranges of temperature and spatial resolution. Part of the origin of differences between the two CEF versions is probably due to the different range of evolutionary stages. For instance, Tatematsu et al. (2017) used cores of a broad range of different environments, while the present study investigates one region where environmental differences may be smaller. Indeed, the

 Table 8

 Chemical Evolutionary Factor (CEF2.0) for Starless Cores in the Orion Region

|                    | CEF2.0       | CEF2.0       | CEF2.0       |
|--------------------|--------------|--------------|--------------|
| SCUBA-2 Core       | $(N_2D^+)$   | (DNC)        | (Average)    |
| G209.77-19.40East3 |              | $-61\pm28$   | $-61 \pm 28$ |
| G209.77-19.40West  |              | $-56\pm28$   | $-56\pm28$   |
| G209.77-19.40East2 |              | $-50\pm27$   | $-50\pm27$   |
| G201.72-11.22      |              | $-43\pm27$   | $-43 \pm 27$ |
| G207.36-19.82South | $-41 \pm 8$  |              | $-41\pm8$    |
| G206.93-16.61East1 |              | $-41 \pm 27$ | $-41 \pm 27$ |
| G209.79-19.80West  | $-40\pm4$    | $-33\pm27$   | $-37 \pm 14$ |
| G206.93-16.61West5 | $-34\pm3$    |              | $-34 \pm 3$  |
| G206.93-16.61West4 | $-32\pm 6$   | $-23\pm28$   | $-27 \pm 14$ |
| G209.55            | $-23 \pm 14$ | $-31\pm27$   | $-27 \pm 15$ |
| -19.68North2       |              |              |              |
| G209.94            | $-21\pm3$    | $-31\pm27$   | $-26\pm14$   |
| -19.52South1       |              |              |              |
| G210.82            | $-27\pm2$    | $-21\pm27$   | $-24 \pm 14$ |
| -19.47North2       |              |              |              |
| G209.77-19.40East3 | $-20 \pm 4$  | $-26\pm28$   | $-23 \pm 14$ |
| G211.16            | $-22\pm5$    |              | $-22\pm5$    |
| -19.33North3       |              |              |              |
| G209.94            | $-22\pm14$   | $-15\pm27$   | $-18\pm15$   |
| -19.52South1       |              |              |              |
| G210.37-19.53North |              | $-7\pm28$    | $-7\pm28$    |

Note. Column (1): SCUBA-2 core name. Columns (2)–(3): CEF2.0 for  $N_2D^+$  and DNC molecules, respectively. Column (4): average CEF2.0. Ellipses indicate no detection.

detection rate of CCS is low in the Orion cores (Section 3.1), suggesting that they are chemically evolved. Furthermore, we used SCUBA-2 cores for observations, which are possibly biased to evolved cores having steeper radial intensity distribution. It is likely that these facts make the CEF2.0 values of starless Orion cores closer to zero. Probably our new CEF2.0 can be used more reliably if the telescope beam size is  $\leq 0.1$  pc.

The bottom panel of Figure 10 shows the CEF2.0 of the 16 starless cores in the Orion region and the samples of Tatematsu et al. (2017) aligned in ascending numeric order of the CEF2.0. For the starless Orion cores, the CEF2.0 ranges from  ${\sim}{-60}$ (G209.77-19.40East3) to ~0 (G210.37-19.53North). Compared to the CEF2.0 for L1544, we judge that at least eight starless cores have CEF2.0 close to zero ( $\geq$ -33), suggesting that they are late starless cores on the verge of star formation. Figure 11 shows their spatial distribution on the Planck 850  $\mu$ m dust continuum map. They are mostly located in the south of Orion KL, at decl.  $(J2000) = -7^{\circ}.2$  to  $-5^{\circ}.9$ . We suggest that these cores are good targets for studying the initial conditions of star formation. G211.16-19.33North3, one of these starless cores having CEF2.0 close to zero, and the star-forming Orion core G210.82–19.47North1, having bright  $N_2D^+$  emission, were recently observed by Tatematsu et al. (2020) with the ALMA ACA interferometer.

Regarding the number of the starless cores with successful CEF2.0 estimation, the Orion A subregion has the largest number. The percentages of the starless cores with successful CEF2.0 estimation are 43% and 40% for Orion A and B, respectively, which are very similar.  $\lambda$  Orionis has no core with successful CEF2.0, which is natural because the number of SCUBA-2 cores is small. We see no difference among the Orion subregions in terms of the success rate of CEF2.0 estimation.





**Figure 11.** Same as Figure 9, but for the spatial distribution and average CEF2.0 against declination for starless cores in the Orion region. The vertical lines represent CEF2.0 of -33 and 0. The horizontal dotted lines represent declination of  $-7^{\circ}2$  and  $-5^{\circ}9$ .



**Figure 12.** H<sub>2</sub> column density, dust temperature, and Mach number against average CEF2.0 for starless cores in the Orion region. Red and blue represent starless cores with average CEF2.0 of <-33 and  $\geq-33$ , respectively.

We investigate whether there is any variation in the physical properties of starless cores when the average CEF approaches zero. Figure 12 shows the diagrams for H<sub>2</sub> column density, dust temperature, and Mach number as a function of the average CEF2.0. We simply compare the mean values of the physical properties for two groups separated by an average CEF2.0 of -33: early starless phase (CEF2.0 < -33) and late starless phase (CEF2.0, -33) and late starless phase ( $-33 \leq CEF2.0$ ). When starless cores evolve, three physical properties do not seem to increase or decrease significantly. The lack of trends in the H<sub>2</sub> column density and dust temperature appears to be inconsistent with the prediction of the core evolution model (e.g., Shirley et al. 2005; Aikawa et al. 2008). These discrepancies may be due to the reasons discussed in Section 3.4. The lack of a trend in the Mach number may suggest that the turbulence dissipation in

the dense region of starless core is not required for the onset of star formation, because turbulent dissipation is regarded as one possibility to change a stable core to an unstable one (e.g., Nakano 1998). Other mechanisms may be required to change stable cores to unstable ones (e.g., accretion flow of gas; Gómez et al. 2007). Indeed, in G211.16–19.33North3, Tatematsu et al. (2020) obtained a hint of gas accretion onto one subcore inside, with the ALMA ACA interferometer. However, we cannot rule out the possibility of turbulence dissipation for the beginning of star formation completely because the angular resolution of our telescope may be insufficient, and systematic observations with higher angular resolution are needed.

### 4.2. Identification of Candidates for Late Starless Cores in Environments Other Than the Orion Region

For most of the starless cores in environments other than the Orion region, it is difficult to establish the CEF2.0 because of largely different linear beam sizes (Section 3.2). Moreover, only  $N(\text{DNC})/N(\text{HN}^{13}\text{C})$  is available for these environments. Taking this into account, we look for late starless core candidates with both high  $N(\text{DNC})/N(\text{HN}^{13}\text{C})$  and  $N_2\text{D}^+$  detection among local (<1 kpc) starless cores in two environments. All starless cores in the Galactic plane are more distant than 1 kpc. Two cores (SCOPEG001.37+20.95, SCOPEG202.32 +02.53) at high latitudes are found to have high  $N(\text{DNC})/N(\text{HN}^{13}\text{C})$  and detection in  $N_2\text{D}^+$  line. Among these cores, the highest  $N(\text{DNC})/N(\text{HN}^{13}\text{C})$  is found in SCOPEG001.37+20.95 (14.6).

### 5. Summary

We conducted a molecular line survey of 207 SCUBA-2 cores embedded in the PGCCs with the Nobeyama 45 m telescope in the N<sub>2</sub>D<sup>+</sup> J = 1-0, N<sub>2</sub>H<sup>+</sup> J = 1-0, DNC J = 1-0, HN<sup>13</sup>C J = 1-0, CCS  $J_N = 7_6-6_5$ , CCS  $J_N = 8_7-7_6$ , HC<sub>3</sub>N J = 9-8, and c-C<sub>3</sub>H<sub>2</sub>  $J_{K_aK_c} = 2_{12} - 1_{01}$  lines to identify dense cores on the verge of star formation in five different environments ( $\lambda$  Orionis, Orion A, Orion B, the Galactic plane, and high latitudes). The main results are summarized as follows:

- 1. A total of 207 SCUBA-2 cores are classified into 58 starless cores (candidates) and 149 protostellar cores (candidates). They consist of 5 starless cores and 10 protostellar cores in  $\lambda$  Orionis, 24 and 46 in Orion A, 10 and 18 in Orion B, 13 and 39 in the Galactic plane, and 6 and 36 at high latitudes. Among the total 207 SCUBA-2 cores, starless cores occupy ~28%.
- 2. The detection rates of early-type molecules (CCS) are low and the detection rates of late-type molecules (c-C<sub>3</sub>H<sub>2</sub>, N<sub>2</sub>H<sup>+</sup>) and the deuterated molecules (DNC, N<sub>2</sub>D<sup>+</sup>) are high, suggesting that most of the SCUBA-2 cores are chemically evolved.
- 3. The integrated intensity ratio and column density ratio of DNC to  $HN^{13}C$  (HNC) tend to decrease with increasing distance (>1 kpc correspond to linear beam sizes of >0.1 pc). This suggests that the deuterium fraction suffers from differential beam dilution between the two lines for distant cores (>1 kpc).
- 4. For starless and protostellar cores in  $\lambda$  Orionis, Orion A, and Orion B, the column density ratios of N<sub>2</sub>D<sup>+</sup>/N<sub>2</sub>H<sup>+</sup>, DNC/HN<sup>13</sup>C, N<sub>2</sub>H<sup>+</sup>/CCS, and N<sub>2</sub>H<sup>+</sup>/HC<sub>3</sub>N are similar. This suggests that cores in these three regions have

similar chemical properties. Between four column density ratios,  $N(\text{DNC})/N(\text{HN}^{13}\text{C})$  and  $N(\text{N}_2\text{D}^+)/N(\text{N}_2\text{H}^+)$  have a positive correlation, suggesting that the two ratios could act as better tracers for core chemical evolution.

5. In the Orion region, at least eight starless cores are identified as dense cores on the verge of star formation using the chemical evolution factor built on the basis of  $N(N_2D^+)/N(N_2H^+)$  and  $N(DNC)/N(HN^{13}C)$ . At high latitudes, at least two starless cores are identified to be close to the beginning of star formation on the basis of high  $N(DNC)/N(HN^{13}C)$  and  $N_2D^+$  line detection. For starless cores in the Orion region, when starless cores evolve, the Mach number does not increase or decrease, which may indicate that the dissipation of turbulence in the dense region of the cores may not be an important mechanism for the onset of star formation as judged from observations with a beam size of 0.04 pc.

SCUBA-2 cores associated with high/low-mass star-forming regions from the Galactic plane to high latitudes are located at highly different distances. For the study of the properties of dense cores at the constant spatial resolution with a single telescope, we need a set of observations to circumvent the beam dilution effect. In addition, for starless cores close to the onset of star formation found in this study, mapping observations are necessary to investigate whether they are gravitationally bound.

K.T. acknowledges Kouji Ohta for discussion. P.S. is partially supported by a Grant-in-Aid for Scientific Research (KAKENHI No. 18H01259) of the Japan Society for the Promotion of Science (JSPS). J.H.H. thanks the National Natural Science Foundation of China under grant Nos. 11873086 and U1631237 and support by the Yunnan Province of China (No. 2017HC018). This work is sponsored (in part) by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile. N.H. acknowledges support from the Ministry of Science and Technology (MoST) with grant 108-2112-M-001-017. K.W. acknowledges support by the National Key Research and Development Program of China (2017YFA0402702, 2019YFA0405100), the National Science Foundation of China (11973013, 11721303), and the starting grant at the Kavli Institute for Astronomy and Astrophysics, Peking University (7101502287).

Facility: No:45 m.

*Software:* astropy (Astropy Collaboration et al. 2013, 2018), GILDAS (Pety 2005; Gildas Team 2013), NEWSTAR.

### **ORCID** iDs

Gwanjeong Kim https://orcid.org/0000-0003-2011-8172 Ken'ichi Tatematsu https://orcid.org/0000-0002-8149-8546 Tie Liu https://orcid.org/0000-0002-5286-2564 Jinhua He https://orcid.org/0000-0002-3938-4393 Naomi Hirano https://orcid.org/0000-0001-9304-7884 Sheng-Yuan Liu https://orcid.org/0000-0003-4603-7119 Patricio Sanhueza https://orcid.org/0000-0002-7125-7685 L. Viktor Tóth https://orcid.org/0000-0002-5310-4212 Neal J. Evans II https://orcid.org/0000-0001-5175-1777 Siyi Feng https://orcid.org/0000-0002-4707-8409 Mika Juvela https://orcid.org/0000-0002-5809-4834 Kee-Tae Kim https://orcid.org/0000-0003-2412-7092 Jeong-Eun Lee https://orcid.org/0000-0003-3119-2087 Miju Kang https://orcid.org/0000-0002-5016-050X Orsolya Fehér https://orcid.org/0000-0003-3453-4775 Yuefang Wu <sup>(i)</sup> https://orcid.org/0000-0002-5076-7520 Satoshi Ohashi https://orcid.org/0000-0002-9661-7958 Ke Wang () https://orcid.org/0000-0002-7237-3856 Ryo Kandori <sup>(1)</sup> https://orcid.org/0000-0003-2610-6367 Tomoya Hirota https://orcid.org/0000-0003-1659-095X Takeshi Sakai lhttps://orcid.org/0000-0003-4521-7492 Xing Lu <sup>(b)</sup> https://orcid.org/0000-0003-2619-9305 Mark A. Thompson https://orcid.org/0000-0001-5392-909X

Gary A. Fuller () https://orcid.org/0000-0001-8509-1818 Di Li https://orcid.org/0000-0003-3010-7661 Hiroko Shinnaga https://orcid.org/0000-0001-9407-6775 Jungha Kim https://orcid.org/0000-0002-9933-2851

### References

- Aidelman, Y., Cidale, L. S., Zorec, J., & Panei, J. A. 2018, A&A, 610, A30
- Aikawa, Y., Herbst, E., Roberts, H., & Caselli, P. 2005, ApJ, 620, 330
- Aikawa, Y., Ohashi, N., & Herbst, E. 2003, ApJ, 593, 906
- Aikawa, Y., Ohashi, N., Inutsuka, S.-i., Herbst, E., & Takakuwa, S. 2001, ApJ, 552 639
- Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. 2008, ApJ, 674, 984
- Anderson, T. G., Dixon, T. A., Piltch, N. D., et al. 1977, ApJL, 216, L85
- André, P., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
- Asayama, S., & Nakajima, T. 2013, PASJ, 125, 213
- Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123
- Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
- Benson, P. J., Caselli, P., & Myers, P. C. 1998, ApJ, 506, 743
- Bergin, E. A., & Tafalla, M. 2007, ARA&A, 45, 339
- Camargo, D., Bonatto, C., & Bica, E. 2012, MNRAS, 423, 1940
- Caselli, P. 2011, in IAU Symp. 280, The Molecular Universe, ed. J. Cernicharo & R. Bachiller (Cambridge: Cambridge Univ. Press), 19
- Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002a, ApJ, 572, 238
- Caselli, P., & Myers, P. C. 1995, ApJ, 446, 665
- Caselli, P., Myers, P. C., & Thaddeus, P. 1995, ApJL, 455, L77
- Caselli, P., Walmsley, C. M., Zucconi, A., et al. 2002b, ApJ, 565, 344
- Chen, H.-R., Liu, S.-Y., Su, Y.-N., & Wang, M.-Y. 2011, ApJ, 743, 196
- Chen, H.-R., Liu, S.-Y., Su, Y.-N., & Zhang, Q. 2010, ApJL, 713, L50
- Contreras, Y., Sanhueza, P., Jackson, J. M., et al. 2018, ApJ, 861, 14
- Crapsi, A., Caselli, P., Walmsley, C. M., et al. 2005, ApJ, 619, 379
- Crapsi, A., Caselli, P., Walmsley, M. C., & Tafalla, M. 2007, A&A, 470, 221 Cummins, S. E., Linke, R. A., & Thaddeus, P. 1986, ApJS, 60, 819
- Dobashi, K. 2011, PASJ, 63, 1
- Dunham, M. M., Allen, L. E., Evans, N. J. I., et al. 2015, ApJS, 220, 11
- Eden, D. J., Liu, T., Kim, K.-T., et al. 2019, MNRAS, 485, 2895
- Emprechtinger, M., Caselli, P., Volgenau, N. H., Stutzki, J., & Wiedner, M. C. 2009, A&A, 493, 89
- Feng, S., Caselli, P., Wang, K., et al. 2019, ApJ, 883, 202
- Fischera, J., & Martin, P. G. 2012, A&A, 547, A86
- Fontani, F., Caselli, P., Crapsi, A., et al. 2006, A&A, 460, 709
- Fontani, F., Palau, A., Caselli, P., et al. 2011, A&A, 529, L7
- Fontani, F., Sakai, T., Furuya, K., et al. 2014, MNRAS, 440, 448
- Frerking, M. A., Langer, W. D., & Wilson, R. W. 1979, ApJL, 232, L65
- Friesen, R. K., Di Francesco, J., Shimajiri, Y., & Takakuwa, S. 2010, ApJ, 708, 1002
- Fuller, G. A., & Myers, P. C. 1992, ApJ, 384, 523
- Galli, P. A. B., Loinard, L., Ortiz-León, G. N., et al. 2018, ApJ, 859, 33
- Gerner, T., Shirley, Y. L., Beuther, H., et al. 2015, A&A, 579, A80
- Gildas Team 2013, GILDAS: Grenoble Image and Line Data Analysis Software v.jun19b, Astrophysics Source Code Library, ascl:1305.010
- Gómez, G. C., Vazquez Semadeni, E., Shadmehri, M., & Ballesteros Paredes, J. 2007 ApJ 669 1042
- Hirota, T., Ando, K., Bushimata, T., et al. 2008, PASJ, 60, 961
- Hirota, T., Ikeda, M., & Yamamoto, S. 2001, ApJ, 547, 814
- Hirota, T., Ikeda, M., & Yamamoto, S. 2003, ApJ, 594, 859
- Hirota, T., & Yamamoto, S. 2006, ApJ, 646, 258
- Humphreys, R. M. 1978, ApJ, 38, 309
- Imai, M., Sakai, N., López-Sepulcre, A., et al. 2018, ApJ, 869, 51
- Juvela, M., Juvela, M., Ristorcelli, I., et al. 2012, A&A, 541, A12
- Juvela, M., Malinen, J., Montillaud, J., et al. 2018, A&A, 614, A83

Juvela, M., Ristorcelli, I., Montier, L. A., et al. 2010, A&A, 518, L93

- Kamazaki, T., Okumura, S. K., Chikada, Y., et al. 2012, PASJ, 64, 29
- Kim, G., Lee, C. W., Kim, J., et al. 2010, JKAS, 43, 9
- Könyves, V., André, P., Men'shchikov, A., et al. 2010, A&A, 518, L106

Kim et al.

- Kounkel, M., Hartmann, L., Loinard, L., et al. 2017, ApJ, 834, 142
- Lada, C. J., Lombardi, M., & Alves, J. F. 2009, ApJ, 703, 52 Lee, C. W., & Myers, P. C. 1999, ApJS, 123, 233
- Lee, J.-E., Bergin, E. A., & Evans, N. J. I. 2004, ApJ, 617, 360
- Lee, J.-E., Evans, N. J. I., Shirley, Y. L., & Tatematsu, K. 2003, ApJ, 583, 789
- Liu, T., Kim, K.-T., Juvela, M., et al. 2018, ApJS, 234, 28
- Liu, T., Wu, Y., Mardones, D., et al. 2015, PKAS, 30, 79
- Lombardi, M., Lada, C. J., & Alves, J. 2008, A&A, 480, 785
- Mangum, J. G., & Shirley, Y. L. 2015, PASJ, 127, 266
- Marton, G., Ábrahám, P., Szegedi-Elek, E., et al. 2019, MNRAS, 487, 2522
- Marton, G., Tóth, L. V., Paladini, R., et al. 2016, MNRAS, 458, 3479
- McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
- Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2012, AJ, 144, 192
- Millar, T. J., Bennett, A., & Herbst, E. 1989, ApJ, 340, 906
- Motte, F., Nony, T., Louvet, F., et al. 2018, NatAs, 2, 478
- Myers, P. C. 1983, ApJ, 270, 105 Nakajima, T., Kimura, K., Nishimura, A., et al. 2013, PASJ, 125, 252
- Nakano, T. 1998, ApJ, 494, 587
- Ohashi, S., Sanhueza, P., Sakai, N., et al. 2018, ApJ, 856, 147
- Ohashi, S., Tatematsu, K., Choi, M., et al. 2014, PASJ, 66, 119
- Ohashi, S., Tatematsu, K., Fujii, K., et al. 2016, PASJ, 68, 3
- Okabayashi, T., & Tanimoto, M. 1993, JChPh, 99, 3268
- Ortiz-León, G. N., Loinard, L., Dzib, S. A., et al. 2018, ApJ, 865, 73
- Pagani, L., Bacmann, A., Cabrit, S., & Vastel, C. 2007, A&A, 467, 179
- Peretto, N., & Fuller, G. A. 2009, A&A, 505, 405
- Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49 Pety, J. 2005, in Proc. Semaine de l'Astrophysique Francaise, SF2A-2005, ed.
- F. Casoli et al. (Paris: EdP Sci.), 721
- Phillips, T. G., & Vastel, C. 2003, in Proc. SFChem 2002 Conf., Chemistry as a Diagnostic of Star Formation, ed. C. L. Curry & M. Fich (Ottawa: NRC PRess), 3
- Pickett, H. M., Poynter, R. L., Cohen, E. A., & Delitsky, M. L. 1998, JOSRT, 60, 883
- Pidopryhora, Y., Lockman, F. J., Dickey, J. M., & Rupen, M. P. 2015, ApJS, 219, 16
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, A&A, 536, A23
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A28
- Povich, M. S., Kuhn, M. A., Getman, K. V., et al. 2013, ApJS, 209, 31
- Reid, M. J., Dame, T. M., Menten, K. M., & Brunthaler, A. 2016, ApJ, 823, 77
- Roberts, H., & Millar, T. J. 2000, A&A, 361, 388
- Sakai, T., Sakai, N., Furuya, K., et al. 2012, ApJ, 747, 140
- Sakai, T., Sakai, N., Furuya, K., et al. 2015, ApJ, 803, 70
- Sakai, T., Yanagida, T., Furuya, K., et al. 2018, ApJ, 857, 35
- Sanhueza, P., Contreras, Y., Wu, B., et al. 2019, ApJ, 886, 102
- Sanhueza, P., Jackson, J. M., Foster, J. B., et al. 2012, ApJ, 756, 60
- Sanhueza, P., Jackson, J. M., Zhang, Q., et al. 2017, ApJ, 841, 97
- Savage, C., Apponi, A. J., Ziurys, L. M., et al. 2002, ApJ, 578, 211
- Shirley, Y. L., Nordhaus, M. K., Grcevich, J. M., et al. 2005, ApJ, 632, 982
- Simon, R., Jackson, J. M., Rathborne, J. M., & Chambers, E. T. 2006, ApJ, 639, 227
- Straižys, V., Boyle, R. P., Zdanavičius, J., et al. 2018, A&A, 611, A9
- Straižys, V., Drew, J. E., & Laugalys, V. 2010, BaltA, 19, 169 Straižys, V., Maskoliūnas, M., Boyle, R. P., et al. 2014, MNRAS, 438, 1848 Sunada, K., Nakazato, T., Ikeda, N., et al. 2007, PASJ, 59, 1185

Suzuki, H., Yamamoto, S., Ohishi, M., et al. 1992, ApJ, 392, 551 Tafalla, M., Mardones, D., Myers, P. C., et al. 1998, ApJ, 504, 900

Tatematsu, K., Liu, T., Ohashi, S., et al. 2017, ApJS, 228, 12

507, 347

268 276

53

Tatematsu, K., Kandori, R., Umemoto, T., et al. 2008, PASJ, 60, 407 Tatematsu, K., Liu, T., Kim, G., et al. 2020, ApJ, 895, 119

Tatematsu, K., Ohashi, S., Umemoto, T., et al. 2014, PASJ, 66, 16 Thaddeus, P., Vrtilek, J. M., & Gottlieb, C. A. 1985, ApJL, 299, L63

Vastel, C., Phillips, T. G., & Yoshida, H. 2004, ApJL, 606, L127 Wang, J., Shi, J., Pan, K., et al. 2016, MNRAS, 460, 3179

Wang, K., Zhang, Q., Testi, L., et al. 2014, MNRAS, 439, 3275

Yi, H.-W., Lee, J.-E., Liu, T., et al. 2018, ApJS, 236, 51

Zhang, Q., Wang, K., Lu, X., et al. 2015, ApJ, 804, 141

Yamamoto, S., Saito, S., Kawaguchi, K., et al. 1990, ApJ, 361, 318

van der Tak, F. F. S., Müller, H. S. P., Harding, M. E., & Gauss, J. 2009, A&A,

Ward-Thompson, D., Scott, P. F., Hills, R. E., & André, P. 1994, MNRAS,