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La demanda de transporte público tiene un lugar esencial en los desplazamientos urbanos.
En Europa, el transporte público concentra el 31% de los viajes en las 28 ciudades más
grandes del continente, en América Latina este valor alcanza el 45% de los viajes. El cre-
ciente desarrollo económico y tecnológico ha contribuido a que un mayor número de personas
tenga acceso al automóvil. Esta situación genera la posibilidad de que la gente elija entre el
automóvil particular y el transporte público. Como resultado, existe una competencia por el
espacio vial, el cual siempre es limitado. Resulta fundamental buscar políticas públicas que
permitan el uso e�ciente del espacio vial y reduzcan los costos asociados a estos viajes.

El primer paper de esta tesis es un análisis teórico de la e�ciencia de los sistemas Bus Rapid
Transit (BRT). Los sistemas BRT proporcionan vías segregadas a los buses que aumentan la
velocidad. En este trabajo, utilizamos un enfoque de la congestión dinámica, lo cual considera
que tanto la congestión vial como la congestión en las estaciones de BRT son endógenas
al modelo. Mostramos analíticamente que, si la capacidad es perfectamente divisible, la
implementación de un BRT es siempre e�ciente (disminuye el costo social total). El análisis
numérico permite demostrar que si la capacidad no es perfectamente divi, un BRT es e�ciente
en la mayoría de los casos. Además, el BRT puede inducir una mejora de Pareto en la que
disminuyan tanto los costos de tiempo como los costos operativos del transporte público.
Comparado con el óptimo cuando los buses circulan en trá�co mixto, el sistema BRT óptimo
tiene: i) un período más corto de funcionamiento de los buses y los automóviles, ii) una
mayor frecuencia y, lo que es muy importante, iii) más demoras para abordar los buses, es
decir, colas más largas las paradas. El punto ii) implica que, aunque para cierto nivel de
demanda, puede ser óptimo no prestar servicios de transporte público en trá�co mixto, con
un BRT puede ser e�ciente.

El segundo paper analiza la provisión e�ciente de un sistema de transporte público operado
por autobuses, los que comparten la capacidad víal con el automóvil. Proponemos un modelo
de congestión dinámico con partición modal, con el transporte público y los autómoviles como
sustitutos. El período de congestionado, el patrón de salida y la cola en la parada de buses
son endógenos. De�nimos frecuencias diferentes para el período congestionado y el no con-
gestionado con el objetivo de capturar explícitamente los efectos de la congestión. Mostramos
bajo condiciones plausibles que la frecuencia e�ciente en el período no congestionado es mayor
que la frecuencia en el período congestionado. Si comparamos nuestros resultados, usando
análisis numérico, con el caso en que la frecuencia es constante, tenemos (i) menor umbral
donde es e�ciente ofrecer transporte público, (ii) costos de los usuarios menores, (iii) las
frecuencias óptimas son mayores, (iv) mayores gastos de operación, y (v) mayores demoras
para abordar el bus. Los puntos ii) y iii) implican que el patrón de frecuencia e�ciente reduce
los costos de los usuarios al aumentar la frecuencia y los gastos operativos.
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In large cities, the demand for public transport has an essential place in urban commuting.
In the case of Europe, public transport concentrates 31% of all journeys in the 28 largest
cities, while in Latin America this number reaches 45%. In the context of big cities, growing
economic and technological development has contributed to a higher number of people having
access to cars. This situation generates the possibility of people being able to choose between
the car and public transport to make their commute. As a result, there is competition for
road space, which is always limited. It is, therefore, essential to seek public policies aimed at
an e�cient use of road space and a reduction in the costs associated with these journeys.

The �rst paper in this thesis is a theoretical analysis of the e�ciency of Bus Rapid Transit
Systems (BRT). BRT systems provide segregated road capacity to buses to increase their
speed. In this paper, we propose a dynamic congestion approach that endogenously models
queuing both on the road and at BRT stations, which are at the center of our interest.
We show analytically that, if capacity is perfectly divisible, implementing a BRT is always
e�cient (it decreases total social cost). We show numerically that if capacity is not perfectly
divisible, a BRT is e�cient in most cases. Moreover, BRT can induce a Pareto Improvement
where both time costs and public transport operating costs decrease. Compared to the
optimum when buses run in mixed tra�c, the optimal BRT system has: (i) shorter period of
bus operation and car-peak period, (ii) greater frequency and, very importantly, (iii) more
boarding delays, i.e. longer queues at bus stops. Point (ii) implies that while it may be
optimal not to provide any public transport service under mixed tra�c for some levels of
demand, it may well be worthwhile with a BRT.

The second paper analyzes the e�cient provision of a public transport system operated
by buses that share the road capacity with cars. We propose a dynamic congestion model
with mode choice, where public transport and cars are substitutes modes. The congested
period, the departure pattern, and the queuing at the bus stop are endogenous to the model.
We de�ne di�erent frequencies for the congested and the uncongested period to explicitly
capture the e�ects of congestion on the optimal frequency pattern. We show under plausible
conditions that the e�cient frequency during the uncongested period is higher than the
frequency during the congested period. If we compare our results, using numerical analysis,
versus cases where the frequency is constant, we can ascertain (i) the demand threshold
for which it becomes e�cient to provide public transport is lower, (ii) user costs are lower,
(iii) optimal frequencies in both congested and uncongested periods are higher, (iv) the
operational expenditure is higher, and (v) boarding delays at the bus stop increases. Points
(ii) and (iii) imply that the e�cient frequency pattern reduces user costs by increasing the
frequency and operational expenditure.
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Chapter 1

Introduction

The objective of this thesis is to study public transport optimization using a classic bottleneck
model in two di�erent cases. First, we analyze the e�ciency of an infrastructure measure,
a bus rapid transit system (BRT) (Chapter 2). Secondly, we consider that it is not possible
to change infrastructure and analyze a management measure (Chapter 3).Both chapters
have a common framework: dynamic congestion through a bottleneck model. The dynamic
congestion modeling has several relevant points that are considering in this thesis. First,
the departure time scheduling to and the arrival pattern to destination are endogenous, and
second, queuing at the bus station is also endogenous. Consequently, all optimization made
in public transport will change the arrival pattern and modify the optimization results.

In a dynamic congestion environment, only a limited amount of studies have been carried
out on two-mode systems considering buses in mixed tra�c. Moreover, the only previous
paper that analyzed this area is that Huang et al. (2007). From a methodological point of
view, this thesis contributes to both the literature on public transit and the bottleneck model.

This thesis is comprised of four chapters, including the Introduction and conclusions.
Chapter 2 has been published, while Chapter 3 is a draft manuscript written in a consistent
format, then each one is self-contained. We now o�er a brief explanation of the contribution
of each Chapter.

While the literature on BRTs is extensive regarding their best operation, design, or their
urban and �nancial impact, there seldom have been analysed from a transport economics
point of view. In Chapter 2 we propose a dynamic congestion approach, which is equipped to
model queuing endogenously, both on the road and at BRT stations, which are the center of
our interest. Commuters travel from a single residential area to the city center and have to
choose to either drive or take public transportation, together with the departure time, which
makes schedule delays important. If a commuter decides to travel by car, she may face road
congestion. If she chooses to use public transport instead, she will need to go to a station
where she may face boarding delays caused by queues. The bus will then go into the road,
where it may join the queue of cars if tra�c is mixed (without BRT), or it may not face road
queuing if part of the capacity is devoted to a BRT (which decreases the capacity for cars).
We focus on second-best policies, both for mixed tra�c conditions and BRT, meaning that
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we consider that fares and tolls are time-invariant, and the public transport system operates
at a constant headway. This framework makes the problem tractable and, we believe, at the
same time, better represents what is and can be implemented in most cities.

We provide microeconomic analysis of BRTs in the context of dynamic congestion, where
queuing and congestion delays are endogenous as a result of individual schedule of depar-
tures. The main di�erence with previous literature that looks into bimodal (car and public
transport) systems is that, rather than focusing on crowding and assuming from the outset
that capacities of each mode are independent, we focus on modeling boarding delays in equi-
librium, and comparing mixed tra�c conditions with what would arise from dedicating part
of the road capacity to a BRT.

Our primary, most policy-relevant result is that in a second best-world where fares cannot
vary perfectly with time, BRTs are e�cient and have the potential to provide a Pareto
improvement of the transport system: in equilibrium both bus users and car users can be
better o�, while the costs of providing public transport decrease. With a BRT, fares will be
lower because the peak hours of operation of the system are shorter. The car peak-period is
also shorter, despite the fact that capacity was taken from private transport. Importantly,
this better-for-all situation features more boarding delays, that is, queues at bus stops will
be longer than under mixed-tra�c conditions. All these results provides strong support for
the BRT surge observed around the globe while providing one �possibly not the only one�
explanation for observed longer queues at stations. In the numerical analysis, we show that
BRT is e�cient. In most cases of indivisible capacity, a BRT is e�cient.

In Chapter 3, we take into consideration that an e�cient social design of a public transport
system depends on the demand structure and especially on its time-of-day variation. We also
consider that commuters can decide between using public transport and private cars, a modal
choice that impacts the congestion level. All of this poses a severe challenge. This pattern not
only a�ects the e�ciency of public transport but also alters the cost for car users, modifying
the system equilibrium. We deal with this problem using a dynamic congestion pattern
that allows us to �nd the optimal frequency pattern considering modal elasticity, temporal
elasticity, and congestion.

The main result of Chapter 3 is that, under plausible assumptions, the e�cient frequency
during the endogenous uncongested period is higher than the e�cient frequency during the en-
dogenous congested period. We show numerically that two-frequency optimization is e�cient
for users, reducing user cost, mainly from congestion , while increasing operator expenditure.
Our numerical analysis shows that by only using a non-constant frequency optimization,
without any additional road facilities for public transportation, we obtain a reduction of up
to 14% in the social cost compared to the constant frequency case. Moreover, if we extend
our analysis and compare the two-frequency (management measure ) optimization against a
BRT system (infrastructure measure), we �nd that the gains of a BRT system are less than
8% of the total cost.
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Chapter 2

The e�ciency of bus rapid transit (BRT)
systems: a dynamic congestion approach

Abstract: The penetration of BRT systems has been increasing fast, although there have
been many reports of heavy queuing to board the buses. We propose a dynamic congestion
approach that endogenously models queuing both on the road and at BRT stations, which
are the center of our interest. We show analytically that, if capacity is perfectly divisible,
implementing a BRT is always e�cient (it decreases total social cost), while we show numer-
ically that if capacity is not perfectly divisible, a BRT is in most cases e�cient. Moreover,
BRT can induce a Pareto Improvement where both time costs and public transport operating
costs decrease. Compared to the optimum when buses run in mixed tra�c, the optimal BRT
system has: (i) shorter period of bus operation and car-peak period, (ii) larger frequency
and, very importantly, (iii) more boarding delays, i.e. longer queues at bus stops. Point (ii)
implies that, while for some level of demands it may be optimal not to provide any public
transport service under mixed tra�c, with a BRT it may well be worthwhile.

Keywords: Bus Rapid Transit; Dynamic congestion; Bottleneck model; Bus stop delays

Di�usion: A version of this Chapter has been published as: Basso, Leonardo J. Feres,
Fernando Silva, Hugo E. (2019). The e�ciency of bus rapid transit (BRT) systems: A dy-
namic congestion approach. Transportation Research Part B: Methodological, 127:47 � 71.
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2.1 Introduction

According to The Economist, city dwellers lose nearly U$S1,000 a year while sitting in tra�c.
Considering Great Britain, Germany, and the United States, congestion costs were estimated
at US$461,000MM in 20171. Of course, congestion a�ects commuters directly, but also other
social costs are imposed on the rest of the population, such as pollution and noise. However,
an additional cost, schedule delay costs, usually receives less attention. This cost occurs
because, when there is congestion, people have to leave their homes earlier than desired or,
in many cases, they arrive later than what they should.

One way to curb congestion is by taking measures to lure people into the public transport
system since a transit vehicle moves a large number of people using less road capacity per
person than a car. However, when public transport vehicles share road capacity with cars
(think buses), they face a rather grim scenario: buses will always be slower than cars, while
in addition they are usually considered less comfortable. Light- and heavy-rail may overcome
the problem of speed, but are usually quite expensive.

There is an additional alternative, however, which is far less demanding �nancially: using
part of the existing road capacity exclusively for buses. When buses are physically separated,
through some investment, from cars, this has become to be known as a Bus Rapid Transit
(BRT) system. A BRT system is de�ned, for example by the Institute for Transportation
and Development Policy as �...a high-quality bus-based transit system that delivers fast,
comfortable, and cost-e�ective services at metro-level capacities. It does this through the
provision of dedicated lanes, with busways and iconic stations typically aligned to the center of
the road, o�-board fare collection, and fast and frequent operations�2. The same organization
states that �Because BRT contains features similar to a light rail or metro system, it is much
more reliable, convenient and faster than regular bus services. With the right features, BRT
can avoid the causes of delay that typically slow regular bus services, like being stuck in
tra�c and queuing to pay on board�3.

From the �rst system in Curitiba, Brazil, in 1977, the penetration of BRT systems has been
increasing fast, mostly because of the promise of better, faster and cheaper public transport
at a fraction of the cost of what a subway or heavy rail would cost. According to Global BRT
Data Report from October 20184, in the year 2000 there were 40 cities with BRT systems,
for a total constructed length of 1,100 kilometers. By 2018, the numbers exploded to 170
cities around the world, for a total of 376 corridors and 5,046 kilometers, while 121 additional
cities are either building or have plans to build BRT systems. A regional panorama shows
that Latin America leads with 171 corridors in 55 cities, followed by Asia, which has 94 BRT
corridors in 43 cities, and Europe that has 58 corridors in 44 cities. North America has 37
corridors in 19 cities.

Despite this, not all BRTs have had a quiet life. There have been many reports of excess

1https://www.economist.com/blogs/graphicdetail/2018/02/daily-chart-20. Accessed on December 2018.
2Hensher et al. (2014) report that the mean peak-hour frequency, for 121 BRT systems on 12 countries is

116.1 buses per hour.
3https://www.itdp.org/library/standards-and-guides/the-bus-rapid-transit-standard/what-is-brt/. Ac-

cessed on December 2018.
4https://brtdata.org/. December 2018.
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demand for the systems, which have taken the form of heavy queuing to board the buses.
Well known are the cases of Transmilenio, in Bogota, Colombia, and Metrobus, in Istanbul,
Turkey, but the Inter-American Development Bank has also reported heavy queuing in BRT
systems in Lima (Peru), Montevideo (Uruguay) and Cali (Colombia); see for example Scholl
et al. (2015, 2016). Lagos, in Nigeria, has also shown queuing problems in its BRT system5.

While the literature on BRTs is extensive regarding their best operation, design, or their
urban and �nancial impact, there seldom have been analysed from a transport economics
point of view, which is what we do in this paper. The paper that comes closest to ours is
Basso and Silva (2014), who study the e�ciency and substitutability of bus lanes and pricing
measures �such as congestion pricing� but do so in a static congestion framework. Here we
propose a dynamic congestion approach, which is equipped to model queuing endogenously,
both on the road and at BRT stations, which are the center of our interest. Commuters
travel from a single residential area to the city center and have to choose to either drive or
take public transportation, together with the departure time, which makes schedule delays
important. If a commuter decides to travel by car, she may face road congestion. If she
chooses to use public transport instead, she will need to go to a station where she may face
boarding delays caused by queues. The bus will then go into the road, where it may join
the queue of cars if tra�c is mixed (without BRT), or it may not face road queuing if part
of the capacity is devoted to a BRT (which decreases the capacity for cars). We focus on
second-best policies, both for mixed tra�c conditions and BRT, meaning that we consider
that fares and tolls are time-invariant, and the public transport system operates at a constant
headway. This framework makes the problem tractable and, we believe, at the same time,
better represents what is and can be implemented in most cities.

The main result of our paper is that if capacity is perfectly divisible, implementing a BRT
is always e�cient in that it decreases total social cost. We show numerically that if capacity
is not perfectly divisible, a BRT is, in most cases, e�cient. Moreover, implementing BRT
can induce a Pareto improvement where both users cost and public transport cost decrease.
Compared to the optimum when buses run in mixed tra�c, with a BRT, the transport
system has (i) shorter hours of bus operation and car-peak period (ii) larger frequency and,
very importantly, (iii) more boarding delays, i.e., longer queues at bus stops. Point (ii)
implies that, while for some level of demands, it may be optimal not to provide any public
transport service under mixed tra�c, with a BRT, it may well be worthwhile. Point (iii)
indicates that boarding delays are not necessarily a manifestation of poor operations.

As mentioned above, the paper that comes closest to ours in terms of the analyses sought
is Basso and Silva (2014). Other papers that have analyzed dedicated bus lanes in a static
framework are Mohring (1979), Small (1983), Kutzbach (2009), Basso et al. (2011) and
Börjesson et al. (2017). Regarding dynamic congestion models, the literature is ample and
followed the seminal papers by Vickrey (1969) and Arnott et al. (1990, 1993). But most
of this literature focuses only on the case of private transport. The number of papers that
deal with two modes is much slimmer. The two modes problem in a dynamic congestion
framework was introduced in Tabuchi (1993), who considered a heavy rail, never congested,
alternative to the road. Huang (2000) analyzed a similar setting but adding crowding costs,

5https://guardian.ng/features/executive-motoring/lagos-to-decongest-queues-at-brt-busstops/. Accessed
on December 2018.
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so that the tradeo� was not only between schedule and queuing delay and the transit fare, but
also with crowding discomfort. Kraus and Yoshida (2002) and Yoshida (2008) add waiting
time, speci�cally modeling the intermittent nature of the bus service. In this paper, we opt
for a continuous frequency modeling, but use Krauss and Yoshida's approach to prove that
this is indeed a very good approximation for the intermittent case, with quite small and
bounded di�erences. Kraus (2003) optimizes the number of trains and the capacity of an
individual train, thus a�ecting crowding and waiting times, while de Palma et al. (2017) add
the analysis of optimal dynamic pricing of individual trains. van den Berg and Verhoef (2014)
considers the e�ects of user heterogeneity on the car bottleneck � crowded train problem,
while Wang et al. (2017) consider bottleneck capacity expansions and train subsidies.

Two modes systems but considering buses has been analyzed by Huang et al. (2007) and
Gonzales and Daganzo (2012). In both papers, public transport is provided by buses that
take up part of the bottleneck capacity. But Gonzales and Daganzo (2012) only consider the
case when buses operate on a bus lane, and Huang et al. (2007) only model mixed tra�c.
They, therefore, do not analyze whether it is advantageous to separate buses from the car
tra�c; moreover, they focus on crowding costs while we focus on the boarding delays that
may arise, in equilibrium, as a result of faster road travel by bus.

The structure of the paper is as follows. In Section 2.2 we describe the model and charac-
terize the equilibrium under mixed-tra�c conditions for any given public transport frequency
and fare. Section 2.3 describes the �rst-best which entails no queuing delays and shows that
time-variant fares and car tolls can decentralize it. We then, in Section 2.4, study the op-
timum under mixed tra�c conditions, optimizing the time-invariant car toll, the bus fare,
and the bus frequency. Section 2.5 studies the e�ects and e�ciency of BRT systems both
when capacity is perfectly divisible as when it is not. It also provides numerical examples to
complement the analytical results. Finally, Section 2.6 summarizes the policy implications
and concludes.

2.2 The model and equilibrium under mixed-tra�c con-

ditions

2.2.1 Basics

There are N identical users that travel from a residential area (H) to the Central Business
District (CBD). All users have an identical desired arrival time to the CBD equal to t∗, and
choose whether to travel by car or bus. As most of the analyses of dynamic road congestion,
we follow the approach of Vickrey (1969) and Arnott et al. (1993) and use the bottleneck
model. Travel by car is uncongested except for a bottleneck of capacity s, in which a queue
develops if the combined arrival rate of vehicles exceeds the capacity. As the road bottleneck
capacity is shared by both modes, it is the combined arrival rate of cars and buses that
matters.

Public transport users, on the other hand, also have to walk to a station to access the bus
and then wait for the bus. Waiting time is constant except for queuing to board the bus.
A queue develops at the bus stop if the arrival rate of bus users is higher than the capacity
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of the system k · f , where k is the �xed bus capacity and f the frequency. Throughout the
paper, we assume that buses operate continuously with a constant headway given by 1/f ,
so that the bus stop can be modeled as a bottleneck of capacity k · f . The buses also have
to pass through the bottleneck to reach the CBD, joining the cars since there is no bus lane
and using a fraction λ · f/s < 1 of the bottleneck capacity, where λ is an equivalence factor
between buses and cars6. Figure 2.1 illustrates our setting.

Home

Bus stop: k · f

Bottleneck: s

CBD

Bus commuters

Car commuters

Public Transport Buses

Figure 2.1: Two bottleneck diagram of the mixed tra�c transport system.

It is essential to note that our model is a continuous approximation of a service of inter-
mittent nature in which an integer number of buses of capacity k is dispatched at a constant
headway (h, the time between each successive departure). This simpli�cation, which has been
used before (see, e.g., Huang et al., 2007), brings large advantages in terms of exposition and
graphical analysis while only losing moderate generality. After all, frequencies are quite high
in real BRT systems: Hensher et al. (2014) report a mean frequency in peak periods of 116
buses/hour for 121 systems over 12 di�erent countries.

In Appendix A.1 we show, following Kraus and Yoshida (2002) and Yoshida (2008), that
when the intermittent nature is modeled and passengers wait at bus stops to board the
buses, there exists an equilibrium and it di�ers only slightly in terms of equilibrium costs
from our continuous approximation (which is developed in the next subsection). In fact,

6This assumption ensures that the �ow of buses alone is not large enough to generate road congestion
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our model overestimates the user time equilibrium costs and this overestimation is inversely
related to the frequency. Therefore, as frequency grows, our continuous model approaches the
intermittent model. Moreover, in our numerical examples, we compute the overestimation of
the aggregate equilibrium costs and �nd that it is always below 0.65%. Finally, the continuous
approximation has been used in the transit provision literature (see, e.g., de Palma et al.,
2017, Section 8) where the number of trains is treated as a continuous variable rather than
restricted to integer values7.

As it is customary in the literature, we follow Small (1982) and consider linear schedule
delay costs. Therefore, individuals care about the di�erence between the actual arrival time
and the desired arrival time, and every minute is valued equally. The individuals' time
valuations are α for the value of (in-vehicle) travel time savings8 and β and γ for the value of
schedule delay early and late respectively. This is also referred to in the literature as α−β−γ
preferences. The individuals' value of waiting time is denoted by α2.

Denote Nc the number of car users. Following the standard bottleneck model Arnott et al.
(1990, 1993), the generalized cost of a car user that departs from home at time t and arrives
at the CBD at time ta is:

cc(t) = pc + rc + α · Tw(t) +

{
β · (t∗ − ta) if ta ≤ t∗

γ · (ta − t∗) if ta > t∗
(2.1)

where pc is the car congestion price that the planner can set and rc represents the resource
(constant) costs of a trip which include fuel and parking costs, vehicle depreciation and
constant travel times among others. α is the value of travel time savings, Tw(t) is the travel
time through the bottleneck, and the third term on the right-hand side of Eq. (2.1) is the
schedule delay cost, which depends on whether the user arrives early or late. As usual in this
model, we normalize travel times from the origin to the bottleneck and from the bottleneck
to the destination to zero. Therefore, a user that departs at time t arrives at t+Tw(t) to the
CBD, i.e. ta = t+ Tw(t).

The generalized cost of a bus trip follows the same logic. The di�erence is that waiting
time is valued di�erently, at α2, and that there are two sources of delays: road congestion
and bus stop queuing. Denote Nb the number of bus users. The cost of a bus user that
departs from home at time t and arrives at the CBD at time ta is given by:

cb(t) = pb + rb + α2 · Tq(t) + α · Tw (t+ Tq(t)) +

{
β · (t∗ − ta) if ta ≤ t∗

γ · (ta − t∗) if ta > t∗
(2.2)

where pb is the fare and rb is the resource (constant) cost of a trip which in this case includes
access time costs, discomfort and constant travel time among others. α2 is the value of
waiting time, and Tq(t) is the waiting time due to queuing at the bus stop. As a bus user
that departs at t from home arrives at t+Tq(t) at the bottleneck, the travel time through the
bottleneck is Tw (t+ Tq(t)), which for simplicity is valued at α as well. Finally, the schedule

7We thank one anonymous referee and the editor for suggesting to study the relationship between the two
approaches.

8We could consider di�erent travel time cost between buses and cars, however including that complicates
the expressions without conceptual gains
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delay cost is the fourth term on the right-hand side of Eq. (2.2). A bus user that departs at
time t from home arrives at the CBD at ta = t+ Tq(t) + Tw(t+ Tq(t)).

Note that in the bottleneck model it is common to normalize to zero the time costs that
are constant. In the case of a single mode this is without loss of generality, but for two modes
this may not be the case. To avoid the loss of generality, as we explain above, we assume
that the (resource) costs of each mode in the absence of tolls, pc for cars and pb for buses,
include the costs of the constant travel times. For example, rb includes the walking time to
the station and in-vehicle travel times other than through the bottleneck. Furthermore, any
di�erence that may make these two modes vertically di�erentiated, such as comfort, is also
captured in the parameters rc and rb.

In general, equilibrium in our model must imply three conditions happening simulta-
neously: �rst, all car drivers must face the same total cost irrespective of their departure
time; second, all bus users (if there is any) must also face the same total cost irrespective of
their departure time; and, third, a car driver and bus user (if there is any) departing at the
same time must face the same total cost. The �rst two conditions are dynamic equilibrium
conditions. The third is the modal split condition.

2.2.2 Equilibrium with time-invariant prices

We now turn to the equilibrium in which prices are time-invariant, i.e. pc and pb do not
depend on t and there are no bus lanes. Let tsc and tec be the times of the �rst and last
departure of an individual by car; this is what we de�ne as the start and end of the car
peak period. Analogously, let tsb and teb be the times of the �rst and last departure of an
individual by bus, or equivalently, the start and end of the bus peak period. The di�erence
[pc + rc] − [pb + rb] is key for modal equilibrium, and, for this reason, we characterize the
equilibrium in three cases depending on whether the di�erence is negative, zero or positive.
We refer to pm + rm as the time-invariant full price of mode m. We begin by studying the
case where [pc + rc]− [pb + rc] > 0. In all cases we assume a strictly positive frequency.

Lemma 2.1 If the time-invariant full price of the car is higher than that of the bus, i.e.,
pc + rc > pb + rb, and both modes are used, the bus peak period starts earlier and ends later
than the car peak hour. This is tsb < tsc < tec < teb.

proof. We proceed by contradiction. Suppose that pc + rc > pb + rb, and the �rst bus user
departs such that tsb ≥ tsc; we will show that this cannot be an equilibrium. First, the total
cost of a car user departing at tsb is pc + rc + β · (t∗ − tsb) +α · Tw (tsb). The total cost of a bus
user departing at tsb is pb + rb + β · (t∗ − tsb) + α · Tw (tsb) because she will face congestion on
the road (as tsb ≥ tsc) but will face no queuing delay (as she is the �rst bus user). From the
modal split equilibrium both total costs must be equal, implying pc + rc = pb + rb, which is
a contradiction. Therefore, tsb < tsc. The proof that tec < teb is analogous, since the last bus
user does not face queuing delay either. Note that the argument applies for intermittent bus
departures since the �rst-bus run users su�er no queuing delay.

We now describe the equilibria for this two-modes system under mixed tra�c conditions,
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starting with the situation when Lemma 2.1 holds, i.e., when pc + rc > pb + rb.

Buses and cars under mixed �ow conditions share the bottleneck of capacity s, and, as the
frequency of buses is constant (f), car users face a decreased capacity of s−λ ·f . Conditional
on Nc, the start and end of the car peak period are given by equating the schedule delay
costs for the �rst and last departure, as in Eq. (2.3). On the other hand, the length of the
car peak must be such that all car drivers pass through the bottleneck, as in Eq. (2.4). Note
that by Lemma 1, buses are in operation for all the car peak-period.

β(t∗ − tsc) = γ(tec − t∗) (2.3)

(tec − tsc) · (s− λ · f) = Nc (2.4)

Following the same reasoning, the �rst and last departure by bus must only face schedule
delay costs as in Eq. (2.5). On the other hand, the length of bus operations must be such
that all commuters can actually go trough the bottleneck at the bus stop, as in Eq. (2.6).

β(t∗ − tsb) = γ(teb − t∗) (2.5)

(teb − tsb) · k · f = Nb (2.6)

Solving the system of Eqs. (2.3) to (2.6) we obtain, conditional on Nb and Nc, the equilibrium
times for car ans bus operations and the cost of traveling by each mode9. De�ning δ =
β · γ/ (β + γ), these are:

tsc = t∗ − δ

β

Nc

s− λ · f (2.7)

tec = t∗ +
δ

γ

Nc

s− λ · f (2.8)

tsb = t∗ − δ

β

Nb

k · f (2.9)

teb = t∗ +
δ

γ

Nb

k · f (2.10)

cc = pc + rc + δ
Nc

s− λ · f (2.11)

cb = pb + rb + δ
Nb

k · f (2.12)

The equilibrium modal split is obtained by equalization of costs across modes (cc = cb)
and using that Nc +Nb = N . The solution is unique and given by:

Nc = (s− λ · f) · N −
(pc+rc−pb−rb)·k·f

δ

s− λ · f + k · f (2.13)

Nb = k · f · N + (pc+rc−pb−rb)·(s−λ·f)
δ

s− λ · f + k · f (2.14)

9The cost of traveling by car can be calculated from the �rst car departure, by multiplying β times (t∗−tsc)
from Eq. (2.7), since the dynamic equilibrium of each mode requires that the total cost of traveling in each
mode is constant irrespective of the departure time. Using Eq. (2.9) the cost of traveling by bus can be
computed.
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Finally, the equilibrium cost c is:

c = pc + rc + δ
N − (pc+rc)−(pb+rb)·k·f

δ

s− λ · f + k · f = pb + rb + δ
N + (pc+rc)−(pb+rb)·(s−λ·f)

δ

s− λ · f + k · f (2.15)

With the previous results we can now state our �rst proposition regarding equilibrium
under mixed tra�c condition:

Proposition 2.2 If the time-invariant full price of the car is higher than of the bus, i.e.,
pc + rc > pb + rb, and pc + rc − pb − rb < δN/(k · f), then there is a unique equilibrium in
which both modes are used. The bus peak period starts earlier and ends later than the car
peak period. A queue at the bus stops starts to develop until the moment of departure of the
�rst bus user that faces road congestion. During the car peak period, the length of the queue
at the bus stop remains constant, and it begins to dissipate after the departure of the last bus
user that faces road congestion. During the car peak hour, a queue at the bottleneck on the
road begins to develop at the moment of the �rst car departure and grows linearly for early
arrivals and shrinks linearly for late arrivals. The equilibrium is depicted in Figure 2.2.

proof. See Appendix A.2

The intuition for this Proposition is simple. Following Lemma 1, the �rst bus user departs
before there are cars on the road: she only faces schedule delay cost. Later bus departures
trade schedule delay for queuing delay at bus stops. Then, when the �rst car user departs,
she faces no congestion on the road but only schedule delay costs. Later departures by car
trade congestion delays for schedule delay. At the same time, as bus users experience the
same congestion delays than car users, the modal split equilibrium requires that queuing
delays at the bus stop remain constant.

Figure 2.2 summarizes the equilibrium when 0 < pc + rc− pb− rb < δN/(k · f). The lower
panel shows the cumulative arrivals of vehicles in PCU to the road bottleneck and cumulative
arrivals to the CBD. When car users are not departing, i.e., in [tsb, t

s
c] and [tec, t

e
b], there is no

road congestion and the in�ow and out�ow of vehicles occurs at a rate λf . Road congestion
begins when the �rst car user departs and the queue builds up linearly from tsc to the time
of an on-time arrival, and then dissipates linearly until it disappears at tec. The rates are the
same as in the classic bottleneck model of Arnott et al. (1993), as those are the ones that
make the sum of queuing delay and schedule delay costs constant over time.

The upper panel shows the cumulative departures of bus users from home and cumulative
arrivals to the road bottleneck. A queue at the bus stops starts to develop at tsb with bus
users departing at a rate higher than capacity ( α2

α2−βkf). The vertical distance between the
cumulative departures schedule and the cumulative arrivals schedule is queue length, and the
horizontal distance is travel time. The queue grows linearly until the moment of departure of
the �rst bus user that faces road congestion, i.e., the user who arrives at the road bottleneck
at tsc. From that moment the sum of road queuing delay and schedule delay costs are constant
over time, so that user depart at a rate equal to the capacity such that bus stop delays are
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constant over time and thus user time costs are constant over time. The queue begins to
dissipate when the �rst bus user does not face road congestion and it disappears at teb.

tsb
t

t

#

PCU

Nb

tsc

Slope=k · f

Slope = α2
α2+γ

k · f

Slope=k · fSlope = α2
α2−β k · f

teb

tebtsb t∗ tec

Slope=s
Slope= α

α−β s

Slope= α
α+γ

s

Slope=λf

Slope=λf

Figure 2.2: Interior equilibrium under mixed tra�c when 0 < pc + rc − pb − rb < δN/(k · f).
The upper panel displays cumulative departures and arrivals of passengers at the bus stop.
The lower panel displays cumulative arrivals of vehicles (in PCU) to the road bottleneck and
to the CBD.

We now deal with the cases where pc + rc − pb − rb ≤ 0.

Proposition 2.3 If the time-invariant full price of the car is lower than that of the bus, i.e.,
pc + rc < pb + rb, there is a unique equilibrium in which all individuals travel by car and that
mirrors the simple bottleneck model.

proof. See Appendix A.3

The intuition is as follows: it cannot be an equilibrium that the �rst bus departure occurs
before the �rst car departure because the �rst car user will face lower full price, lower schedule
delay cost, and no congestion (since buses do not produce road congestion by themselves).
But if the �rst bus user departs at the same time of after the �rst car user, then she will
face a higher total cost than the car user that departed at that same time, because they will
both face the same schedule delay cost, the same congestion cost, but the time-invariant full
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price of the bus is higher, so this cannot be an equilibrium either. It follows that only cars
are used and the unique equilibrium is the same as the one in the simple bottleneck model.

Proposition 2.4 If the time-invariant full prices are equal, i.e., pc + rc = pb + rb, there are
multiple equilibria. These are a continuum of equilibria that range from an equilibrium in
which the car is the only mode that is used to an equilibrium in which the peak period of both
modes are the same. The latter is the equilibrium with the highest modal share for buses, the
lowest total user travel cost, and has no queuing at bus stops.

proof. See Appendix A.4

The full proof is provided in the appendix but, to understand why everything goes consider
that pc+rc = pb+rb+ε. From Proposition 2.2, if ε > 0, the car period contains the bus period
and both modes are used. On the other hand, from Proposition 2.3, if ε < 0, then buses are
not used. Therefore, if ε approaches zero from a positive value, one obtains identical periods,
with buses being used but without queuing at bus stops, just as what happens in Figure 2.2
when periods coincide. But, if ε approaches zero from a negative value, buses are not used in
equilibrium. It follows that when ε = 0, both equilibria (from positive and negative limits)
may occur, but also everything that is in between may be an equilibrium.

2.3 First best

Road congestion and boarding delays are pure deadweight loss because they can be reduced
without increasing schedule delay costs. Also, at the social optimum trips must occur over a
continuous time interval; otherwise, there would be wasteful schedule delay costs. Therefore,
at the social optimum, there should be no road congestion or bus stop queuing, and both
capacities must be fully utilized. This is a standard result in deterministic bottleneck models
(see e.g. Arnott et al. (1993)).

To avoid congestion on the road bottleneck, cars must arrive at a rate equal to s− λ · f if
the public transport frequency is strictly positive, while they must arrive at rate s otherwise.
On the other hand, to avoid boarding delays, the arrival rate to the bus stop must be k · f
while f > 0 and 0 otherwise.

If resource costs rc and rb where equal, the minimum user cost would be reached when
schedule delay cost is minimized; this happens when the period of operation of the public
transport system matches the cars' peak period, as this will ensure the best utilization of
the transport capacity, namely s+ (k − λ) · f . Moreover, the schedule delay cost of the �rst
and last departure has to be the same. If one considers that resource costs are not the same
�most likely with rc > rb� then the minimum user cost would not be reached when schedule
delay cost is minimal and, therefore, the cars' peak period would no longer be the same that
the bus hours of operation, but it will shorter.

However, in our model, we also consider the operational cost of providing public transport,
and this has an impact on the social optimum. We model these costs as a function of the
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bus �eet, to capture the capital expenses and part of the labor expenses, and as a function of
the number of buses that are dispatched in the peak period, to capture operational expenses.
As the kilometers driven for each dispatch is the same, the second term includes the total
vehicle-kilometers. The expenditure of providing a frequency f is therefore given by:

E (f) = c1 · f · T + c2 · f ·∆tb (2.16)

where the �rst term is the expenditure related to the bus �eet and the second to dispatches.
c1 is the constant cost per bus and f · T is the �eet required to provide a frequency f when
the cycle time is T . This cycle time can be decomposed into two times, the free-�ow cycle
time, T 0, and the time spent passing the road bottleneck. c2 is the constant cost per dispatch
and f ·∆tb is the number of dispatches in the entire period where buses operate, which we
denote by teb − tsb = ∆tb.

As we argue above, at the social optimum there is no road congestion and therefore the
cycle time is constant and equal to the round trip free �ow time, named T 0. The expenditure
then collapses to:

E (f) = c1 · f · T 0 + c2 · f ·∆tb (2.17)

With this formulation in which the public transport expenditure is an increasing function
of the length of the operation period and the frequency, there are two tradeo�s between
user costs and operating costs. First, conditional on the period of operation, increasing
frequency induces decreased user costs but increased expenditure. Second, conditional on a
given frequency, decreasing the operational period of buses leads to lower public transport
costs; however, this is something that leads to a decreased capacity of the public transport
system so that it can only be achieved by moving some bus users to cars. This, in turn,
increases user costs through increased schedule delay costs. Therefore, car and bus hours of
operation which minimizes user cost will only be socially optimal when there are no operating
cost advantages of decreasing the operation period of buses (c2 = 0). As c2 becomes positive,
the car peak period increases, while bus operating hours decrease. In balance, it is not clear
whether in the �rst best the car peak period is included in or includes bus operating hours.
It depends on the relative strength of the e�ect of rc > rb and c2 > 0.

In summary, the �rst best is characterized by the absence of congestion on the road and
bus stop queuing, by continuous hours of operations of both buses and cars, and:

• If rc = rb and c2 = 0, then buses and cars have identical peak hours hours.

• If rc = rb and c2 > 0, then bus operations hours are included in the car peak period

• If rc > rb and c2 = 0, then car peak hours are included in the bus operations hours.

• If rc > rb and c2 > 0, the ordering of peak periods is uncertain.

The actual optimal frequency and operating periods can be calculated from the social cost
minimization problem, yet the actual expressions are rather uninformative, so we abstain from
deriving them here.

As it is characteristic of these models, the �rst best can be decentralized with perfectly
time-variant prices. By mirroring the queuing delay costs of the untolled equilibrium, these
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time-varying prices decentralize the optimal arrival rates to both bottlenecks (the road and
the bus stop), and the optimal operational period of buses. As we argue in the Introduction,
our interest is on second-best policies rather than on the decentralization of the �rst-best.
However, before turning to second-best analysis, it is worth noting that in the �rst best
whether there is a BRT system or not is irrelevant because there is no road congestion.

2.4 Optimum in mixed tra�c with time-invariant prices

In Section 2.2 we characterized equilibria under mixed tra�c conditions for the two modes
system. We show how to optimize it and what are the features of this optimum. Start by
recalling that, according to Proposition 2.2 an interior unique equilibrium appears only when
0 < pc + rc − pb − rb < δN/(k · f). If, on the other hand, pc + rc − pb − rb = 0 there are
multiple equilibria (Proposition 2.4), while if pc + rc − pb − rb < 0 equilibrium has no bus
users (Proposition 2.3). The way to proceed to optimize the system, then, is the following:
we will minimize the social cost function that is valid for an interior equilibrium (detailed
below) over pc − pb and f . If these two values ful�ll the condition of Proposition 2.2, then
this is the optimum, and it will feature a car peak hour that is included in the bus hours of
operation, and congestion at the bottleneck and queuing at the bus stop, as in �gure 2.2.

If, on the other hand, the result of this minimization (denoted by *) leads to f ∗ < 0, this
means that it is optimum not to provide public transportation at all. If, however,f ∗ > 0 but
p∗c + rc − p∗b − rb < 0, one need to compares two things: if it is better, social welfare wise,
not to o�er any public transport, or if it is better to impose p∗c + rc − p∗b − rb, together with
a new optimal f .

An issue to address is that when pc+rc−pb−rb = 0, there are multiple interior equilibria.
We solve this by focusing on the equilibrium in which the peak period of both modes are
the same because it is the equilibrium with the lowest total user travel cost. Although
the prices cannot decentralize this particular equilibrium, it is reasonable to focus on this
one as a su�ciently small price di�erence (for example, pc + rc − pb − rb = ε > 0) would
induce an equilibrium that is arbitrarily close. In other words, as ε approaches zero, the
unique equilibrium for a positive price di�erence approaches the equilibrium in which the
peak period of both modes are the same with a zero price di�erence and, in this case, the
public transport system has no queuing at the bus stop.

We can now write the user costs and the public transport costs as a function of the time-
invariant full price di�erence and the bus frequency, for the case when equilibrium is interior,
in order to start building the social cost function. Subtracting the price paid for each user
and adding the total time costs of bus and car users using Eq. (2.15), we obtain the total
user cost (UC):

UC = δ
N2 +

(
pc+rc−pb−rb

δ

)2
k · f · (s− λ · f)

s− λ · f + k · f + rb ·Nb + rc ·Nc (2.18)

where Nc and Nb are equilibrium values.

15



Since in mixed tra�c there is always road congestion, we need to account for this travel
time in the transit costs. We assume that the cycle time that determines the �eet size is the
maximum travel time over the period plus the round trip free �ow time. Noting that the
maximum travel time is simply the user travel cost divided by α and using Eq. (2.15), we
can write the cycle time as:

T = T 0 +
δ

α

N − (pc+rc−pb−rb)·k·f
δ

s− λ · f + k · f (2.19)

Where the second term is the maximum travel time which is determined by the maximum
road queue.

Replacing the cycle time of Eq. (2.19) into the public transport expenditure function in
Eq. (2.17) and calculating the operating period of public transport, ∆tb, from Eqs. (2.9),
(2.10) and (2.14) we obtain:

E = c1 · f ·
(
T 0 +

δ

α

N − (pc+rc−pb−rb)·k·f
δ

s− λ · f + k · f

)
+ c2 · f ·

N + (pc+rc−pb−rb)·(s−λ·f)
δ

s− λ · f + k · f (2.20)

We de�ne the social cost (SC) directly as the sum of the total user cost (Eq. (2.18)) and
the public transport system cost (Eq. (2.20)). Due to the non-linearity, it is not possible
to obtain closed-form solutions of the problem. From the �rst-order condition with respect
to pc − pb, we can write the optimal time-invariant full price di�erence, conditional on the
frequency, as

p∗c + rc − p∗b − rb =
c1 · δ · f · k − c2 · α · (s− λ · f)

2α · k · (s− λ · f)
+
rc − rb

2
(2.21)

Regarding frequency, the �rst-order condition is not particularly informative, as it leads
to a nonlinear function of f and pc − pb. What may be shown though is that df ∗/dN > 0.
This is quite natural but, in terms of the optimized system, it implies that for low total
demands it may be better not to provide public transportation at all, as it will show up in
the numerical simulation in the next section.

The expression for the optimal time invariant full price di�erence �conditional on f� Eq.
(2.21) may be positive or negative, depending on the resources cost of each mode, and the
relative values of c1, the capital cost of the �eet, and c2, the operational cost. If the right-
hand side of Eq. (2.21) is negative, then the optimal solution may be a corner solution,
where p∗c + rc − p∗b − rb = 0 and frequency is positive, or a solution where transit service is
not provided.
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2.5 Bus rapid transit (BRT)

2.5.1 Analytical results

We model the implementation of a Bus Rapid Transit (BRT) system as dedicating a fraction
φ of the road capacity to buses. Since the road capacity that the buses use, for a given
frequency f , is λ · f , it would be socially optimal to dedicate exactly the capacity they need,
i.e., φ = λ · f/s. This is because dedicating less would generate road congestion for buses
in the form of queuing delays, which is ine�cient10, and dedicating more capacity to buses
would be wasteful. However, if capacity is not perfectly divisible, it may not be possible to
set the dedicated capacity to its optimum (because, for example, it is less than a lane). We
will refer to the perfect divisibility capacity case as the Optimal BRT (or BRT-DC) while,
when φ can only be set to a value larger than λf ∗, we will call it BRT-IC, for indivisible
capacity.

We �rst analyze the e�ects of implementing an optimal BRT, that is, when capacity is
perfectly divisible and it is set exactly to λ · f ∗. We carry out this analysis by steps in order
to isolate e�ects: we �rst consider that the mixed-tra�c optimal frequency and prices are
maintained, we then let frequency change, and �nally look at the full-�edged unweighted
social cost minimization values. Let us start then by describing equilibrium, conditional on
prices and frequency, under an optimal BRT system. All the calculations needed for this
Section that are not in previous Sections or part of other proofs are in Appendix A.5.

Consider �rst that the time-invariant full price of the car is higher than for the bus, i.e.,
pc + rc > pb + rb. This is the case analogous to the one in Proposition 2.2. Under an optimal
BRT system, the e�ective capacity for cars is set at s − λ · f , and therefore, the timing of
car departures mirrors the basic and classic bottleneck model of Arnott et al. (1993), but
with decreased capacity. Because of this, we will describe equilibria but omit many routine
steps. The �rst and last car user to depart face only schedule delay costs and a queue at the
bottleneck on the road begins to develop at the moment of the �rst car departure and grows
linearly for early arrivals and shrinks linearly for late arrivals. Under mixed tra�c, bus users
face two successive bottlenecks: the bus stop where boarding delays may arise and the road
bottleneck. Under a BRT system, they face no road congestion delays and the only delays
they could face are boarding delays at the bus stop. Therefore, as we model the bus stop as
a bottleneck of capacity k · f , the timing of the departures of bus users also mirrors a basic
bottleneck model. The �rst and last bus user to depart face only schedule delay cost and
a queue at the bus stops develops linearly for early arrivals and dissipates linearly for late
arrivals.

Given a time-invariant full price of the car higher than that of bus, the bus peak period
starts earlier and ends later than the car peak period. The proof is identical to the one for

10If the capacity dedicated to buses is less than λ · f , a queue will start developing from the beginning of
the period in which buses are running. Moreover, a queue will start developing and will continue to grow
until buses stop running. This will imply that for late arrivals the sum of road queuing delay and schedule
delay costs will grow and departures that arrive late cannot be part of an equilibrium. Therefore, if the
capacity dedicated to buses is less than λ · f not only road queuing delays are imposed, but the capacity of
the system drastically drops as late arrivals are not possible in equilibrium. As a result it is straightforward
to show that it is ine�cient to induce road congestion to buses.
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Lemma 1. It follows that, the equilibrium costs for each mode, conditional on the number of
passengers, are exactly the same as the ones under mixed tra�c in Eqs. (2.11) and (2.12):

cc = pc + rc + δ
Nc

s− λ · f (2.22)

cb = pb + rb + δ
Nb

k · f (2.23)

As a result, conditional on prices and frequency, the equilibrium modal split will also
be the same under a BRT system than under mixed tra�c. The only di�erence is that
the reduction in road congestion delays for bus users due to the implementation of the BRT
system is transformed into bus boarding delays. In the timing equilibrium, the full price must
be constant over the entire peak period, and the only way for this to hold is that boarding
delays exactly compensate schedule delay savings. Figure 2.3 summarizes the equilibrium
when the time-invariant full price of the car is higher than that of the bus. Comparing this
with Figure 2.2, it is evident how the mixed-tra�c and BRT equilibria are di�erent when
pc+ rc > pb + rb. In particular, note that the lower graph shows congestion only for cars and
not for all vehicles, as opposed to the case in Figure 2.2. This is because with a BRT, only
cars su�er from road congestion.

t

t

#

Nc

Nb

tsb

tsc

Slope =
α2

α2+γ
k · f
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α2−β k · f
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t∗ tec
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α·(s−λ·f)
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α(s−λ·f)
α+γ

Figure 2.3: Equilibrium under BRT when 0 < pc + rc − pb − rb < δN/(k · f)

Under mixed tra�c and equal time-invariant full prices for cars and buses, there are
multiple equilibria (see Proposition 2.4). This happens because, since road congestion a�ects
buses, congestion and schedule delay costs are the same for all modes at all times, making
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a unilateral switch from one mode to the other fruitless. With a BRT system implemented,
this does not longer hold. Buses do not experience road congestion and, therefore, the �rst
and last user to depart by bus only faces schedule delays. As the �rst car user to depart
also faces only schedule delays, there is a unique equilibrium in which the peak period of
both modes are the same and which is as in Figure 2.3, but with the operation periods
coinciding. From that moment, the timing of departures for each mode mirrors that of two
parallel basic bottleneck models, as explained above. The implications of this are strong:
in mixed-tra�c conditions, when time-invariant full prices are equal, there are no boarding
delays, but bus users face congestion delays. With a BRT, bus users face no congestion delays
but, in equilibrium, these costs are converted into queuing delays.

The third case, when the time-invariant full price of the car is lower than the bus, is
also very di�erent when a BRT system is implemented. Under mixed tra�c, the unique
equilibrium has all the individuals traveling by car, because buses su�er from the same road
congestion as cars and it is not possible for a bus user to experience a lower generalized cost
than a car user that departs from home exactly at the same time. Under a BRT system, this
does not hold because buses do not su�er from road congestion. The unique equilibrium is
similar to the one depicted in Figure 2.3, but with the di�erence that the car peak period
starts earlier and ends later than the bus peak period: As the time-invariant full price of the
car is lower than that the bus, in equilibrium, the schedule delay cost of the �rst user should
be higher for cars than for buses.

The following proposition summarizes the equilibria when a BRT system is implemented.

Proposition 2.5 With time-invariant full prices are not too di�erent, i.e., −δN/(s − λ ·
f) < pc + rc − pb − rb < δN/(k · f), there is a unique equilibrium in which both modes are
used. Queuing delays at bus stops occur for the whole duration of the operation of the BRT
system, while road congestion delays for cars occur for the whole duration of their peak period.
Moreover:

i if 0 < pc + rc − pb − rb < δN/(k · f), the bus peak period starts earlier and ends later
than the car peak period.

ii if pc + rc − pb − rb = 0, the peak period of both modes are the same.

iii if −δN/(s − λ · f) < pc + rc − pb − rb < 0, the bus peak period starts later and ends
earlier than the car peak period.

proof. See Appendix A.5.1

The description of equilibrium �conditional on prices and frequency� shows that there
is no gain for users from implementing a BRT system. If prices and frequencies are not
changed from the ones from mixed tra�c conditions, car users do not experience any change,
and public transport users, in equilibrium, exactly compensate reduced road congestion for
increased boarding delays at the bus stop. However, as buses do not face road congestion,
the bus speed is higher which induces cost savings because the required �eet to provide the
same frequency is lower. Thus, the gains from implementing a BRT system if frequency and
prices are not adjusted and capacity is perfectly divisible come from operating cost savings:
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conditional on prices and frequencies a BRT system is e�cient as it induces a decrease in
unweighted social cost.

We now turn to discuss how frequency and prices should be adjusted together with the
implementation of the BRT system. First, it is straightforward to understand that the
implementation of a BRT together with a frequency increase is a Pareto improvement in the
sense that both user and operators costs are reduced. To see this, consider the case described
above in which the implementation of a BRT without frequency or price adjustments reduces
non-marginally the operators' costs as it fully eliminates road congestion for buses. Now, if
a share of these cost savings is spent on increasing the frequency, the capacity of the public
transport system will be increased, the peak period will be shorter, and the user costs will
decrease. This shows that implementing a BRT may induce a Pareto Improvement: both
users' time cost and public transport costs decrease. Importantly, this better situation �which
provides strong support for the observed BRT surge� will have, compared to the optimum
when buses run in mixed tra�c: (i) shorter hours of bus operation and car-peak period (ii)
larger frequency, and (iii) more boarding delays, i.e. longer queues at bus stops. Note that
point (ii) implies that, while for some level of demands it may be optimal not to provide any
public transport service under mixed tra�c, with a BRT it may well be worthwhile. This in
fact shows up clearly on the numerical analyses below.

The last stage of the analysis of the optimal BRT is to consider a planner that minimizes
social cost. As we showed above, the user costs are the same as under mixed tra�c conditional
on the frequency and time-invariant full price di�erence, and given by Eq. (2.18), which now
also holds for negative price di�erences:

UC = δ
N2 +

(
pc+rc−pb−rb

δ

)2
k · f · (s− λ · f)

s− λ · f + k · f + rb ·Nb + rc ·Nc (2.24)

where Nc and Nb are equilibrium values.

The di�erence with mixed tra�c, though is that, under a BRT system, buses do not face
road congestion, thus the public transport expenditure function is the same as in the �rst-
best, which substituting the bus peak period ∆tb = teb− tsb, from Eqs (2.9), (2.10), and (2.14),
is:

E = c1 · f · T 0 + c2 · f ·
N + (pc+rc−pb−rb)·(s−λ·f)

δ

s− λ · f + k · f (2.25)

As a result, when choosing frequency and prices, the planner faces the trade-o�s discussed
in Section 2.3. From the �rst-order condition of the sum of user costs and public transport
costs (Eqs (2.24) and (2.25)) with respect to pc − pb, we obtain:

p∗c + rc − p∗b − rb = − c2

2k
+
rc − rb

2
(2.26)

It is immediate to note that the optimal time-invariant full price di�erence is constant in
this case, and does not depend on the frequency (which has yet to be calculated) or demand
N . This is in stark analytical contrast with the mixed tra�c conditions case and comes from
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the fact that buses do not su�er from congestion on the road under BRT. It also clear that
the sign of the left hand side depends on the relative values of c2/k and rc−rb and, therefore,
those values determine whether the optimal hours of operation of the BRT include, or are
included, in the car peak period, according to Proposition 2.5. This is, actually, perfectly
in line with what happens in the �rst best, something that can be seen by looking at the
summary of its properties in Section 2.3. To be clear, the optimal BRT will not recover �rst
best hours of operations, but the ordering of the initial and �nal operation time of each mode
will be consistent wit the �rst best.

The expression for the optimal frequency is rather complex, but can be shown to be
a linear function of demand, N ; see Appendix A.5.2. In Appendix A.5.3, we prove that
Nb/(k · f), which determines the length of the bus operations hours does not depend on N .
It thus follows directly that the car peak period does not depend on N either. Then, if a
positive frequency is optimally provided, operations periods will not change as demand N
increases: frequencies will be adjusted to accommodate the new demand (generating bus stop
queuing), but without a�ecting the rush hours. Of course, if frequencies are so high that
they cannot, technologically grow more, then operations periods will increase. The intuition
for this result is simple. As N (demand) grows, under a BRT system the transport capacity
can be adjusted through changes in frequencies. An additional unit of frequency will increase
public transport capacity by k, while reducing private transport capacity by λ < k. If N
increases, then, it induces f to increase but without changing prices (see Eq. (2.26)). And
since prices did not change, the optimal timing of the �rst departure, by either car or bus,
has no reason to be modi�ed because the change in f , for those initial times, does not a�ect
their queuing or road congestion costs. The same applies for �nal times.

We now turn to the the case when a BRT is implemented but capacity is not perfectly
divisible. What may happen is that it would be optimal to take λ · f ∗ from the capacity s of
the bottleneck, but that actually corresponds to less than a lane and buses cannot actually
circulate. What reality may dictate is that the capacity dedicated for the BRT must be a
constant φ, which corresponds, for instance, to one out of three or four lanes. It is very
evident that if λ · f ∗ is very close to the exogenous φ, where f ∗ is the optimal capacity of
the divisible capacity BRT, then implementing a BRT will be e�cient and may be a Pareto
improvement, as discussed above. But if that is not the case, it may happen that there is
too much unused capacity with a BRT, making it less e�cient than letting mixed tra�c
conditions prevail. It is, then something that depends on the speci�cs of each case and,
therefore, we relegate more insights to the numerical analysis that follows.

Still, we show in Appendix A.5.4 that, for the case when the BRT takes an exogenous
capacity given by φ′, the optimal time-invariant full price is the same as in the case of divisible
capacity and the periods of operation are all constant with respect to N (yet di�erent than
in the case of divisible capacity).

2.5.2 Numerical analyses

In this section we illustrate our analytical results using values for the parameters that may
represent an actual situation. The values for the numerical simulations are presented in Table

21



2.111. We consider that there is no (time-invariant) congestion charge for cars, i.e. pc = 0.
This way, we report below, directly, the bus fare (per trip).

Table 2.1: Parameters for numerical examples
Parameter Units Value

c1 [US$/bus] 290
c2 [US$/hour] 130
T0 [hour] 0.33
N [Conmuters] 6000 to 13000
s [PCU/hour] 6000

∆R [US$/Pax] 2.0
α [US$/hour] 2.6
β [US$/hour] 1.95
γ [US$/hour] 3.9
k [Pax/bus] 80
α2 [US$/hour] 5.2
t∗ [hh:mm] 08:00
λ [PCU/bus] 3.5

We solve for optimality under mixed tra�c conditions, BRT with perfect divisibility of
capacity and a BRT with indivisible capacity. Results are reported in Table 2.2, Figure 2.4
and Figure 2.5 panels (a) to (f).

We highlight some of the most important results next:

• As analytically predicted, when BRTs provide positive frequencies, they both have fares
and periods of operations that are constant with respect to N .

• It is very clear that an optimal BRT is e�cient in terms of the total cost, and then
even with imperfectly divisible capacity, a BRT is still a better choice for many demand
levels (starting at demands somewhere between 8,000 and 8,500 commuters).

• Without BRT, there is a large interval of demand where it is simply optimal not to
provide public transport (up to 10,000 commuters). Yet, if part of the road capacity
was dedicated exclusively for buses, then a very frequent bus service would optimally
emerge. This means that it would not be the case that, as demand increases and con-
gestion builds, planners need to incorporate public transport little by little, increasing
frequency up to a point where dedicated bus lanes �becomes� a need. On the contrary,
as car congestion builds because of increased demand, the planner should, from the
beginning, implement BRT systems.

• Under mixed tra�c conditions, when providing public transport is optimal, it is much
more infrequent and more expensive fare wise for consumers, than what a BRT provides.
Yet, despite being a large improvement, the equilibrium with BRT will feature much
more bus stop queuing.

11Public transport costs c1 and c2, the di�erence in resource costs ∆R and the equivalence factor between
cars and buses, λ, come from Basso and Silva (2014). The values for α, β, γ and α2 are consistent with
Huang et al. (2007) and Gonzales and Daganzo (2012)
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Table 2.2: Numerical examples
N f Pb Nc Nb tsb tsc tec teb TC OC UC CC SDC QC

M
ix
ed

tr
a�

c

6000 0 - 6000 0 - 07:20 08:20 - 19800 0 19800 3900 3900 0
6500 0 - 6500 0 - 07:16 08:21 - 22154 0 22154 4577 4577 0
7000 0 - 7000 0 - 07:13 08:23 - 24617 0 24617 5308 5308 0
7500 0 - 7500 0 - 07:10 08:25 - 27188 0 27188 6094 6094 0
8000 0 - 8000 0 - 07:06 08:26 - 29867 0 29867 6933 6933 0
8500 0 - 8500 0 - 07:03 08:28 - 32654 0 32654 7827 7827 0
9000 0 - 9000 0 - 07:00 08:30 - 35550 0 35550 8775 8775 0
9500 0 - 9500 0 - 06:56 08:31 - 38554 0 38554 9777 9777 0
10000 0 - 10000 0 - 06:53 08:33 - 41667 0 41667 10833 10833 0
10500 5 1.75 9797 703 06:46 06:54 08:32 08:36 44867 2748 42120 11099 11262 164
11000 10 2.00 9677 1323 06:55 06:55 08:32 08:32 48089 5534 42555 11601 11601 0
11500 18 2.00 9296 2204 06:57 06:57 08:31 08:31 51272 9279 41994 11701 11701 0
12000 25 2.00 8976 3024 06:59 06:59 08:30 08:30 54436 12803 41632 11840 11840 0
12500 32 2.00 8702 3798 07:00 07:00 08:29 08:29 57583 16161 41422 12009 12009 0
13000 39 2.00 8464 4536 07:02 07:02 08:28 08:28 60716 19387 41329 12200 12200 0

B
R
T
-
D
C

6000 13 1.81 4975 1025 07:20 07:26 08:16 08:19 19589 2929 16660 2298 2951 1460
6500 20 1.81 4956 1544 07:20 07:26 08:16 08:19 21675 4413 17262 2127 3110 2114
7000 26 1.81 4937 2063 07:20 07:26 08:16 08:19 23762 5898 17864 1977 3291 2723
7500 33 1.81 4917 2583 07:20 07:26 08:16 08:19 25848 7382 18465 1844 3489 3297
8000 40 1.81 4898 3102 07:20 07:26 08:16 08:19 27934 8867 19067 1727 3703 3842
8500 46 1.81 4878 3622 07:20 07:26 08:16 08:19 30020 10351 19669 1622 3929 4361
9000 53 1.81 4859 4141 07:20 07:26 08:16 08:19 32107 11836 20271 1528 4166 4859
9500 59 1.81 4840 4660 07:20 07:26 08:16 08:19 34193 13320 20872 1443 4411 5339
10000 66 1.81 4820 5180 07:20 07:26 08:16 08:19 36279 14805 21474 1366 4665 5803
10500 73 1.81 4801 5699 07:20 07:26 08:16 08:19 38365 16289 22076 1296 4925 6253
11000 79 1.81 4781 6219 07:20 07:26 08:16 08:19 40452 17774 22678 1231 5192 6692
11500 86 1.81 4762 6738 07:20 07:26 08:16 08:19 42538 19258 23280 1172 5463 7120
12000 93 1.81 4743 7257 07:20 07:26 08:16 08:19 44624 20743 23881 1118 5740 7539
12500 99 1.81 4723 7777 07:20 07:26 08:16 08:19 46710 22227 24483 1067 6020 7949
13000 106 1.81 4704 8296 07:20 07:26 08:16 08:19 48797 23712 25085 1020 6304 8353

B
R
T
-
IC

6000 35 1.81 3279 2721 07:21 07:27 08:16 08:19 21295 7831 13464 1748 3453 1705
6500 42 1.81 3279 3221 07:21 07:27 08:16 08:19 23360 9270 14091 1748 3766 2018
7000 48 1.81 3279 3721 07:21 07:27 08:16 08:19 25426 10709 14717 1748 4079 2332
7500 55 1.81 3279 4221 07:21 07:27 08:16 08:19 27492 12148 15344 1748 4393 2645
8000 61 1.81 3279 4721 07:21 07:27 08:16 08:19 29558 13587 15971 1748 4706 2958
8500 68 1.81 3279 5221 07:21 07:27 08:16 08:19 31624 15026 16597 1748 5019 3272
9000 74 1.81 3279 5721 07:21 07:27 08:16 08:19 33690 16466 17224 1748 5333 3585
9500 81 1.81 3279 6221 07:21 07:27 08:16 08:19 35755 17905 17851 1748 5646 3898
10000 87 1.81 3279 6721 07:21 07:27 08:16 08:19 37821 19344 18477 1748 5959 4212
10500 94 1.81 3279 7221 07:21 07:27 08:16 08:19 39887 20783 19104 1748 6273 4525
11000 100 1.81 3279 7721 07:21 07:27 08:16 08:19 41953 22222 19731 1748 6586 4838
11500 107 1.81 3279 8221 07:21 07:27 08:16 08:19 44019 23661 20357 1748 6899 5152
12000 113 1.81 3279 8721 07:21 07:27 08:16 08:19 46085 25101 20984 1748 7213 5465
12500 120 1.81 3279 9221 07:21 07:27 08:16 08:19 48150 26540 21611 1748 7526 5778
13000 126 1.81 3279 9721 07:21 07:27 08:16 08:19 50216 27979 22237 1748 7839 6092
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Figure 2.4: Total cost

• The bus and car hours of operation with BRT are signi�cantly shorter than under
mixed tra�c conditions. Thus, a BRT, despite taking capacity from cars, will decrease
the car peak period, not increase it.

2.6 Conclusions

Bus rapid transit systems are a public transport development that has seen an exponential
grow around the world. Its philosophy is quite simple: by taking capacity from cars, and
dedicating it exclusively for buses, the transport capacity increases, leading to a modal change
towards a system that is fast, and that costs only a fraction of what rail or subway would.
A global overview of the number of projects being built or that have been considered is
astonishing. But at times it seems that BRTs have been victims of its success; in several
cases, severe queuing at BRT stations has been reported.

In this paper, we provide what we believe is the �rst microeconomic analysis of BRTs in
the context of dynamic congestion, where queuing and congestion delays are endogenous as
a result of individual schedule of departures. The main di�erence with previous literature
that looks into bimodal (car and public transport) systems is that, rather than focusing on
crowding and assuming from the outset that capacities of each mode are independent, we
focus on modeling boarding delays in equilibrium, and comparing mixed tra�c conditions
with what would arise from dedicating part of the road capacity to a BRT. This is, we believe,
our main methodological contribution. In terms of conclusions of the analyses, our primary,
most policy-relevant result is that in a second best-world where fares cannot vary perfectly
with time, BRTs are e�cient and have the potential to provide a Pareto improvement of
the transport system: in equilibrium both bus users and car users can be better o�, while
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(b) Congestion cost
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Figure 2.5: Sumary report
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the costs of providing public transport decrease. With a BRT, fares will be lower because
the peak hours of operation of the system are shorter. The car peak-period is also shorter,
despite the fact that capacity was taken from private transport. Importantly, this better-for-
all situation features more boarding delays, that is, queues at bus stops will be longer than
under mixed-tra�c conditions. All these results provides strong support for the BRT surge
observed around the globe while providing one �possibly not the only one� explanation for
observed longer queues at stations.

Concerning future research, we made some simplifying assumptions that may be lifted to
assess their importance in our results. To name a few, inelastic demand, homogenous users,
full access to cars and no crowding costs. We believe that pushing a research agenda along
these lines is both challenging from a methodological point of view and relevant given the
continuing importance of BRT systems in real transport policies.
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Chapter 3

Rush hour frequency management: A
dynamic congestion approach

Abstract:

This paper analyzes the e�cient provision of a public transport system operated by buses
that share the road capacity with cars. We propose a dynamic congestion model with mode
choice, where public transport and cars are substitutes modes. The congested period, the
departure pattern, and the queuing at the bus stop are endogenous to the model. We de�ne
di�erent frequencies for the congested and the uncongested period to explicitly capture the
e�ects of congestion on the optimal frequency pattern. We show under plausible conditions
that the e�cient frequency during the uncongested period is higher than the frequency during
the congested period. If we compare our results, using numerical analysis, versus cases where
the frequency is constant, we can ascertain (i) the optimal provision of public transport
is e�cient for lower demand, (ii) user costs are lower, (iii) optimal frequencies are higher,
(iv) the operational expenditure is higher, and (v) boarding delays at the bus stop increases.
Points (ii) and (iii) imply that the e�cient frequency pattern reduces users costs by increasing
the frequency and operational expenditure.

Keywords: Public transport; Optimal frequencies; Dynamic congestion; Bot-
tleneck model
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3.1 Introduction

It is no surprise that congestion is a major source of ine�ciencies. According to Citylab1, in
the U.S, congestion cost U$S305 billion during 2017, an increase of U$S10 billion compared
to the previous year. Of course, congestion a�ects commuters directly but also the urban
system. Public transportation is an essential part of the urban system; it moves a large
number of people using less road capacity per person than by car. When public transport
buses share road capacity with cars, they are a�ected by congestion on at least the same level
as cars. The typical situation is that the public transport vehicles share the road capacity
with cars. Dedicated infrastructure such as bus lanes or Bus Rapid Transit (BRT) systems
are not the general rule. In its study `The identi�cation and management of bus priority
schemes' 2 published in a April 2017, Imperial College London summarized the percentage
of bus priority in 14 cities around the world, which showed the maximum percentage of
bus priority was attained in Brussels, with less than 25% of the road network, followed
by Barcelona, Dublin and Seattle with less than 20% of bus priority kilometers, with the
remaining ten cities under 10%3 of bus priority kilometers. In terms of Latin American, in
Santiago4, the percentage of bus priority was around a 10% of the total road network by
2018.

An e�cient social design of a public transport system depends on the demand structure
and especially on its time-of-day variation. This optimal design has to take into consideration
the fact that commuters can decide between using public transport and private cars, a modal
choice that has an impact on the congestion level. All of this poses a severe challenge. An
optimal design needs to de�ne a frequency pattern. This pattern not only a�ects the e�ciency
of the public transport but also alters the cost for car users, modifying the system equilibrium.
In this paper, we deal with this problem using a dynamic congestion pattern that allows us
to �nd the optimal frequency pattern taking into consideration modal elasticity, temporal
elasticity, and congestion. Optimization of the public transport system has to consider that
public transport vehicles run during periods with and without congestion, considering that
model bus frequency depends on the congestion level to induce social e�ciencies.

Focusing on public transport optimization literature, we can highlight the papers by Jans-
son (1980, 1984), in wich he formulates a two-period problem without congestion, where the
o�-peak operation has no capital cost because it considers the incremental cost of an already
acquired bus. It does not solve the general case problem, with optimal frequency, and argues
that a single frequency is optimal in most cases. Following Jansson (1980, 1984), Jara-Díaz
et al. (2017) analyzed the optimal �eet, frequency, and vehicle capacity for two periods with

1See https://www.bloomberg.com/news/articles/2018-02-07/new-study-of-global-tra�c-reveals-that-
tra�c-is-bad (Access on Aug 2020)

2See The identi�cation and management of bus priority schemes, page 10
https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/centre-for-transport-
studies/rtsc/The-Identi�cation-and-Management-of-Bus-Priority-Schemes�RTSC-April-2017_ISBN-978-1-
5262-0693-0.pdf (Access on Aug 2020)

3The cities considered in the study are: Barcelona (Spain), Brussels (Belgium), Dublin (Ireland), Istanbul
(Turkey), Kuala Lumpur (Malaysia), Lisbon (Portugal), London (UK), Montréal (Canada),New York (USA),
Paris (France), Seattle (USA), Singapore, Sydney (Australia), and Vancouver (Canada)

4See Informe de Gestion 2018, page 22. http://www.dtpm.cl/index.php/documentos/informes-de-gestion
(Access on Aug 2020)
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known demand and shows that taking the lower demand period into consideration modi-
�es the social optimum. They consider an inelastic public transport demand, congestion is
modeled only by di�erences in cycle time between periods, and there is no demand elasticity
between periods.

If we place the focus on dynamic congestion models, the literature is extensive, following
the seminal papers by Vickrey (1969) and Arnott et al. (1990, 1993). Almost all of this
literature focuses solely on the case of private transport. Fewer papers consider two modes
.The �rst introduction of a two modes problem in a dynamic congestion framework was
Tabuchi (1993), who models a heavy rail as a congestion-free alternative. Huang (2000)
analyzed a similar setting but adding crowding costs, so that the trade-o� was not only
between schedule and queuing delay and the transit fare, but also with crowding discomfort.
Kraus and Yoshida (2002) optimizes the number of trains and the capacity of an individual
train, thus a�ecting waiting times, and optimizes the timetable creating clusters of dispatches.
de Palma et al. (2017) add the analysis of optimal dynamic pricing of individual trains
and optimize frequency considering a constant headway. van den Berg and Verhoef (2014)
examines the e�ects of user heterogeneity on the car bottleneck-crowded train problem, while
Wang et al. (2017) consider bottleneck capacity expansions and train subsidies.

Public transport provided by buses in a two-mode system has been analyzed in Huang
et al. (2007), Gonzales and Daganzo (2012), and Basso et al. (2019). In all three papers, buses
use a part of the road capacity. Huang et al. (2007) only models mixed tra�c, Gonzales and
Daganzo (2012) only consider the case when buses operate on a bus lane, and Basso et al.
(2019) analyze and compare both scenarios. In this paper, we use the approach of Basso
et al. (2019)5, where they model a continuous frequency and prove that it is an excellent
approximation for the intermittent case. We optimize two constant frequencies considering
two periods6, one when there is road congestion and a di�erent one where there is no road
congestion. in both cases we use a continuous approximation.

The main result of our paper is that, under plausible assumtions, the e�cient frequency
during the uncongested period is higher than the e�cient frequency during the congested
period. We show numerically that two-frequency optimization is e�cient for users, reducing
user cost, mainly from congestion , while increasing operator expenditure. If we compare our
results with the optimization with one constant frequency7, the two-frequency optimization
is e�cient to provide public transport for lower demand, (ii) user costs are lower, (iii) op-
erational costs are higher and (iv) boarding delays at the bus stop increase. Points (ii) and
(iii) imply that two-frequency optimization reduces user costs through increased operational
expenditure. Point (iv) means that boarding delays are not a sign of poor operation. We
highlight that our results achieve up to 14% of cost reduction. Finally, we compare the two-
frequency optimization against an e�cient BRT system to understand how e�cient it as an
infrastructure measure as opposed to with a management measure.

The structure of the paper is as follows. In Section 3.2 we describe the model and char-

5A version of Chapter 2 has published as: Basso, Leonardo J. Feres, Fernando. Silva, Hugo E. (2019)
The e�ciency of bus rapid transit (BRT) systems: A dynamic congestion approach. Transportation Research

Part B: Methodological, 127:47 � 71.
6We call it: Two-frequency optimization
7Results from Basso et al. (2019)
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acterize the equilibrium for two di�erent known frequencies and a time-invariant fare. In
Section 3.3, we then study the optimization of the frequency pattern. Section 3.4 has nu-
merical examples to complement our analytical results. Finally, Section 3.5 summarizes the
results and concludes.

3.2 Two-frequency equilibrium

We consider two areas connected by a highway: a residential zone (H) and the Central Busi-
ness District (CBD). Every morning, N identical users travel from H to CBD. All individuals
have the same work start time t∗ and choose whether to travel by car or bus. Following the
approach of Vickrey (1969) and Arnott et al. (1990, 1993), we consider that travel by car is
uncongested except for a bottleneck of capacity s, in which car users face congestion e�ects
(queue) if and only if the combined arrival rate (comprehending private vehicles and public
transport service) exceeds the given capacity s.

Access to public transport requires walking to the nearest bus stop. At the bus stop, the
waiting time is divided into two parts: constant waiting time and a variable waiting time
according to the presence of a queue at the bus stop. A queue develops if the arrival rate to
the bus stop is higher than the system capacity.

As we show bellow, the interesting case is where buses run for a more extended period than
cars. If there is no road congestion, bus frequency is fu, and the period is called uncongested
period; when there is road congestion the period is called congested period and the frequency
is fj. We consider a �xed bus capacity equal to k passengers per bus. In each period, buses
operate continuously with a constant headway given by 1/fu and 1/fj, for the uncongested
and congested respectively. In order to ensure that the buses �ow alone is not large enough
to generate road congestion is necessary that λ · fi/s < 1 with i = u or j, where λ is an
equivalence factor between buses and cars.

Basso et al. (2019) model the bus service using a continuous approximation of a service
with an intermittent nature. Figure 3.1 illustrates our setting, considering i = u or j.

Following Small (1983), as it is customary in the literature, a user who arrives at time
t < t∗ incurs a time early cost of β · (t∗ − t); on the other hand, if she arrives at time t > t∗

incurs a time late cost of γ · (t− t∗). β and γ are schedule delay cost parameters. The travel
time valuation is α for the value of (in-vehicle) travel time . Our parameter setting is usually
referred in the literature as α − β − γ preferences. The individual's value of waiting time is
denoted by α2.

We denote with Nc the number of car users and Nb the number of bus users. The gener-
alized cost of a user that departs from home at time t and arrives at the CBD at time ta is
cc(t) if going by car, and cb(t) if using the bus. cc(t) and cb(t) are de�ned by:

cc(t) = pc + rc + α · Tw(t) +

{
β · (t∗ − ta) if ta ≤ t∗

γ · (ta − t∗) if ta > t∗
(3.1)
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Figure 3.1: Two-bottleneck diagram of the mixed tra�c transport system.

cb(t) = pb + rb + α2 · Tq(t) + α · Tw (t+ Tq(t)) +

{
β · (t∗ − ta) if ta ≤ t∗

γ · (ta − t∗) if ta > t∗
(3.2)

For car users, pc is the car congestion price that the planner can set, and rc represents the
resource (constant) costs of a trip, which include fuel and parking costs, vehicle depreciation,
and constant travel times, among others. Bus users face a fare pb and a constant resource cost
of a trip rb, which includes access time costs, discomfort, free-�ow travel time, and constant
waiting time, among others. Tw(t) is the travel time through the bottleneck if the user arrives
at the bottleneck at time t. Tq(t) represents the queuing time for the user who arrives at the
queue at time t. The last term on the right-hand side of Eqs. (3.1) and (3.2) represent the
schedule delay cost, where ta is the arrival time to the CBD.

Any di�erence that may make these two modes vertically di�erentiated, such as comfort
is captured in the parameters rc and rb. Therefore, a car user who departs at time t arrives
at t+Tw(t) to the CBD, i.e., ta = t+Tw(t). For a bus user who departs at time t from home
arrives at the CBD at ta = t + Tq(t) + Tw(t + Tq(t)). In (3.2), Tq(t) is the waiting time due
to queuing at the bus stop, α2 · Tq(t) is the waiting cost.

We consider that prices are time-invariant, i.e. pc and pb do not depend on t; buses
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and cars share the road capacity without any road facility exclusively dedicated to public
transport.

According to Basso et al. (2019), if the time-invariant full price of the car is higher than
that of the bus, i.e., pc + rc > pb + rb, and both modes are used, the bus peak period starts
earlier and ends later than the car peak hour. This is tsb < tsc < tec < teb. That result does not
depend on the frequency level; therefore, it is valid if we consider a frequency as is de�ned
in Eq. (3.3).

The times tsc and t
e
c are the times of the �rst and last departures of an individual by car; tsb

and teb are the times of the �rst and last departures of an individual by bus. In this context we
call congested period the interval between tsc and t

e
c, and uncongested period to the following

periods: tsb to t
s
c ; t

e
c to t

e
b
8. We de�ne the following frequency function:

f(t) =


fu if t ∈ [tsb, t

s
c) ∪ (tec, t

e
b]

fj if t ∈ [tsc, t
e
c]

0 if Any other case

(3.3)

The equilibrium, in this context, considers that all users have the same total cost irrespec-
tive of their departure time or their travel mode. In (3.4) and (3.5), we calculate the cost
for the �st car user and the �rst bus user, who depart at tsc and t

s
b, respectively. Congestion

and queuing at the bus stop are transitory phenomena, since we notice that the �rst bus
user who departs at tsb neither faces queuing at the bus stop nor road congestion. For the
�rst car user, the situation is similar, and does not face road congestion. Considering that
cc (tsc) = cb (tsb), we obtain (3.8).

cc (tsc) = pc + rc + β (t∗ − tsc) (3.4)

cb (tsb) = pb + rb + β (t∗ − tsb) (3.5)

Using the same argument that we use earlier, we calculate the total cost for the last
car user and the last bus user, they depart at times tec and teb respectively. In this case,
car user does not face road congestion, because, she is the last user and the congestion is
dissipated. Last public transport user does not face queuing at the bus stop. Considering
that cc (tec) = cb (teb), we obtain (3.9).

cc (tsc) = pc + rc + γ (tec − t∗) (3.6)

cb (tsb) = pb + rb + γ (teb − t∗) (3.7)

Eq. (3.8) represents the period of time of the early bus users, who use the public transport
system before the �rst car user. On the other hand, Eq. (3.9) represents the period of later
bus users, those who use the public transportation after the last car user. Combining both
equations, we obtain Eq. (3.10), which represents the duration of the uncongested period.
Whether the uncongested period exists or not depends on the full price di�erence. If the full

8The period de�nition only make sense if tsb < tsc and t
e
c < teb.
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prices are more di�erentiated uncongested period is going to be longer.

tsc − tsb =
(pc + rc)− (pb + rb)

β
(3.8)

teb − tec =
(pc + rc)− (pb + rb)

γ
(3.9)

tsc − tsb + teb − tec =
β + γ

β · γ · ((pc + rc)− (pb + rb)) (3.10)

Eq. (3.10) shows us that the uncongested duration depends directly on car and public
transport full price.

Mixed tra�c conditions imply that buses and cars share road capacity s. The frequency
of buses is constant over each period. In particular, frequency is constant and equal to fj in
the interval [tsc, t

e
c]. For that interval, car users face a decreased capacity of s − λ · fj > 0,

it means that buses are modeled as a continuous �ow, and the buses by themselves do not
generate congestion. Eq. (3.11) represents the equalization of cost for the �rst and last car
user; we consider those users only face schedule delay cost. Since they are the �rst and last
users there is no road congestion. Throughout the entired congested period it is necessary
that all vehicles pass through the bottleneck, which is summarized in Eq. (3.12). It is clear
that Eqs. (3.11) and (3.12) do not depend on Nb, tsb or t

e
b,

β(t∗ − tsc) = γ(tec − t∗) (3.11)

(tec − tsc) · (s− λ · fj) = Nc (3.12)

For bus user equilibrium, it is possible to follow the same reasoning we use below. Eq.
(3.13) shows that the �rst and last departures by bus must only face schedule delay cost.
Using Eq. (3.14) we set other important condition; the operational period of the public
transport system must be such that all commuters can go through the bottleneck at the bus
stop. As bus frequency depends on the congested and uncongested period, then Eq. (3.14)
contains tsc and t

e
c.

β(t∗ − tsb) = γ(teb − t∗) (3.13)

(tec − tsc) · k · fj + (tsc − tsb) · k · fu + (teb − tec) · k · fu = Nb (3.14)

Solving the system of equations de�ned by Eqs. (3.11) to (3.14), we obtain, conditional
on Nb and Nc, the equilibrium times for car and bus operations and the equilibrium cost of

33



traveling by each mode. De�ning δ = β · γ/ (β + γ), these are:

tsc = t∗ − δ

β

Nc

s− λ · fj
(3.15)

tec = t∗ +
δ

γ

Nc

s− λ · fj
(3.16)

tsb = t∗ − δ

β

(fu − fj) Nc
s−λ·fj + Nb

k

fu
(3.17)

teb = t∗ +
δ

γ

(fu − fj) Nc
s−λ·fj + Nb

k

fu
(3.18)

cc = pc + rc + δ
Nc

s− λ · fj
(3.19)

cb = pb + rb + δ
(fu − fj) Nc

s−λ·fj + Nb
k

fu
(3.20)

Analyzing Eqs. (3.15) to (3.20), we recover the results from Basso et al. (2019), if fu goes
to fj.

Equalizing costs across modes give us the equilibrium modal split (cc = cb) and using that
Nc +Nb = N , we get the unique solution given by:

Nc =
(s− λ · fj) (δ ·N − k · fu · ((pc + rc)− (pb + rb)))

δ(s− λ · fj + k · fj)
(3.21)

Nb = k · δ · fj ·N + fu · ((pc + rc)− (pb + rb)) (s− λ · fj)
δ(s− λ · fj + k · fj)

(3.22)

It seems natural to consider that Nc, Nb > 0. Analyzing Eqs. (3.21) and (3.22), the
interior solution requires:

δ ·N − k · fu · ((pc + rc)− (pb + rb)) > 0 (3.23)

Condition (3.23) indicates that fu is not enough large to captures all demand during the
uncongested period. It is important to remember that ((pc + rc)− (pb + rb)) /δ represents
the total duration of the uncongested period. In all cases, we use the analysis Nc and Nb

that satis�es Condition (3.23). In Section 3.3 we optimize fu and fj, however we will assume
that fu satis�es Condition (3.23).

Finally, the equilibrium cost c is:

c =
(pc + rc) · (s− λ · fj + k · fj)− fu · k · (pc + rc − pb − rb) + δ ·N

s− λ · fj + k · fj
(3.24)

Considering all the previous results, we can state the �rst proposition.
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Proposition 3.1 If the full car full price (congestion price plus resource costs) is higher than
the public transport full price (bus fare plus resource cost), and the di�erence between car full
price and bus full price is not large enough, ie. pc+rc > pb+rb and pc+rc−pb−rb < δN/(k·fu),
then there is a unique equilibrium in which both modes are used. The public transport demand
starts earlier and ends later than the car demand. Queues at bus stops start to develop up
until the moment of departure of the �rst bus user that faces road congestion. During the
car peak period, the length of the queue at the bus stop remains constant, and it begins to
dissipate after the departure of the last bus user that faces road congestion. During the car
peak hour, a queue at the bottleneck on the road begins to develop at the moment of the �rst
car departure and grows linearly for early arrivals and shrinks linearly for late arrivals.

proof. See appendix B.1

The intuition for this Proposition is as follows. Since the car full price is higher than the
bus full price, in order to keep the total cost constant, there are incentives for bus users to
start their journeys earlier, because bus users trade schedule delay cost for price (monetary
and resources), it implies that the �rst bus user departs when there are no cars on the road.
Since the total cost between modes is constant, subsequent bus departures trade schedule
delay for queuing delays at bus stops. Then, when the �rst car user departs, they face no
road congestion, only schedule delay costs. Later departures by car trade congestion delays
for schedule delays. As we know, car users time cost is given by congestion cost plus schedule
delay cost. A bus user who takes the bus at the same moment as a car user starting their
trip will experiences the same congestion and schedule delays as car users; then there is no
possibility of any variation in the bus users cost during this period, consequently queuing
delays at the bus stop remain constant during the congested period.

In Section 3.3, we optimize fu and fj. However it is important to show a few extreme
cases that will be useful in the following section.

It is not di�cult to consider an equilibrium without public transportation; we set fu =
fj = 0, and we recover the results from Arnott et al. (1990, 1993). In this case the equilibrium
cost (coc) and the user time cost (c̄c) are :

coc = pc + rc +
δ ·N
s

(3.25)

c̄c =
δ ·N
s

(3.26)

On the other hand, an equilibrium without cars on the road is much harder to conceive.
First, we would require a situation where cars are not used. For this, we need to consider a
bus-only situation, it means, if a commuter wishes to switch modes unilaterally, the commuter
has to face a cost higher or equal than the current cost. If there are no cars on rad and
frequency is f , then equilibrium cost is the following.
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cfb = pb + rb +
δ ·N
k · f (3.27)

c̄b
f =

δ ·N
k · f (3.28)

where cfb and c̄bf are the average cost and the user time cost of the only-bus situation for a
frequency f .

A bus user who wants to switch to car will face a cost csc = pc + rc, then it is necesary
that f satis�es:

f ≥ f o =
δ ·N

k · ((pc + rc)− (pb + rb))
(3.29)

where f o is the minimum frequency that allows us to have an equilibrium without cars on
the road.

3.3 Frequency optimization

We characterized one equilibrium under mixed tra�c conditions for two modes, and two
frequencies for public transport. The main idea of frequency di�erentiation is to consider the
changes in operational expenditure in relation to the congestion level. As users are homoge-
neous, those who start their trip at the beginning of the uncongested period show the same
behavior in comparison with any other user during the congested period. During the con-
gested period, we simplify the modeling considering a �at frequency throughout the period.
It would then seem natural to also consider a constant frequency during the uncongested
period.

In Section 3.2, we describe an interior equilibrium, requiring that 0 < pc + rc − pb −
rb < δN/(k · fj). We proceed to optimize frequency following the next procedure: we will
minimize the social cost function that is valid for an interior equilibrium (detailed next) over
∆p = pc − pb and fu, and fj. If these three values ful�ll the conditions of Proposition 3.1
and 3.2, then this is the optimum.

If, on the other hand, the result for the �rst-order conditions (denoted by *) do not
satisfy the conditions of Propositions 3.1 and 3.2, then it is optimum not to provide public
transportation at all. The uncongested period does not exist if p∗c + rc− p∗b − rb = 0, and the
analysis is the same as in Basso et al. (2019).

De�ning ∆r = rc − rb and ∆p = pc − pb we calculate the total user cost (UC) for the
interior equilibrium as N times the equilibrium users cost determined by Eq. (3.24) and
subtracting the price paid9 by each user.

UC = N · (pc + rc) · (s− λ · fj + k · fj)− fu · k · (∆p+ ∆r) + δ ·N
s− λ · fj + k · fj

−Nc · pc −Nb · pb
(3.30)

9We consider congestion charges or bus fares as resource transfers.
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Reordering the terms and using the equilibrium modal split, Nc and Nb, from Eqs. (3.21)
and (3.22), we get the following result:

UC =N · (pc + rc) · (s− λ · fj + k · fj)− fu · k · (∆p+ ∆r) + δ ·N
s− λ · fj + k · fj

− pc ·
(s− λ · fj) (δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)

− pb · k ·
δ · fj ·N + fu · (∆p+ ∆r) (s− λ · fj)

δ(s− λ · fj + k · fj)

(3.31)

The operational cost has an impact on the social optimum. It is, therefore, necessary to
consider this in our model. We model the operational cost considering two components: �eet
size and the number of buses that are dispatched. The number of dispatched buses at rush
hour captures the operational and labor expenses. Also, as shown in our model, since all
buses run the same distance, they capture the total vehicle-kilometers. Considering this, we
de�ne the expenditure of providing a frequency described in Eq. (3.3) by:

E (f) = c1 ·max {fj · Tj; fu · Tu}︸ ︷︷ ︸
E1(f)

+ c2 · (fj · (tec − tsc) + fu · ((tsc − tsb) + (teb − tec)))︸ ︷︷ ︸
E2(f)

(3.32)

where E1(f) represents the expenditure related to the bus �eet and E2(f) to dispatche and
c1 is the constant cost per bus. Initially, we are unaware what the frequency levels are, there-
fore the �eet size required to provide a frequency f(t) is expressed by max {fj · Tj; fu · Tu}, Tj
is the cycle time during the congested period and Tu is the cycle time during the uncongested
period. The cycle time can be split into two terms; the free-�ow cycle time (that is also the
cycle time in the uncongested period, T 0) and the time spent passing through the road bottle-
neck. The constant c2 is the cost per bus dispatched and fj ·(tec − tsc)+fu·((tsc − tsb) + (teb − tec))
is the number of dispatches during the entire operational period.

Since mixed tra�c always su�ers road congestion, we need to account for this travel time
in transit expenditures. We consider that the cycle time that determines the �eet size during
the peak period is a fraction of the maximum travel time over the period and round trip free
�ow time. The maximum travel time is simply the individual user cost minus the car full
price and divided by α. Using Eq. (3.19) minus pc + rc and considering Nc from Eq. (3.21).
We write the cycle times as:

Tu = T 0 (3.33)

Tj = T 0 + z · δ
α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj
(3.34)

where the second term of Eq. 3.34 is a fraction of the maximum travel time which is deter-
mined by the maximum road queue length, and z ∈ (0, 1]10.

Replacing the cycle time of Eq. (3.34) into E1, and Eqs. (3.15) to (3.21), into E2 we

10It is easy to prove that if the frequency is constant during the congested period then z = 1/2.
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obtain:

E1 = c1 ·max

{
fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
; fu · T 0

}
(3.35)

E2 = c2 ·
(

∆p+ ∆r

δ
· fu +

(δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)
· fj
)

(3.36)

We de�ne the social cost (SC) directly as the sum of the total user cost (Eq. (3.31)) and
the public transport system expenditure (Eqs. (3.35) and (3.36)).

SC =N · (pc + rc) · (s− λ · fj + k · fj)− fu · k · (∆p+ ∆r) + δ ·N
s− λ · fj + k · fj

− pc ·
(s− λ · fj) (δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)

− pb · k ·
δ · fj ·N + fu · ((∆p+ ∆r)) (s− λ · fj)

δ(s− λ · fj + k · fj)

+ c1 ·max

{
fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
; fu · T 0

}

+ c2 ·
(

∆p+ ∆r

δ
· fu +

(δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)
· fj
)

(3.37)

Let us de�ne Tu as the duration of the uncongested period, the sum of the early and late
periods. Using Eqs. (3.17) and (3.18) and the de�nitions of ∆p, ∆r and δ.

Tu =
∆p+ ∆r

δ
(3.38)

We assume for all the following analysis that ∆p+∆r = pc−pb+rc−rb is strictly positive
and constant.

We show in Section 3.2, that there are three possible equilibria. After the frequency
optimization, it is possible to reach one of those. We focus on the equilibrium where both
modes have positive demand. However, it is essential to set conditions for the other two
cases: all demand using public transportation, and all demand using a private car.

It seems natural that if public transportation expenditure is low, it is e�cient to a provide
frequency high enough to transport all demand by bus. In Appendix B.3, we show that Eqs
(3.39) and (3.40) are su�cient conditions for c1 and c2 to reach an optimal frequency in which
all commuters use public transportation.

c2 < k · δ ·N
s
− c1 ·

T 0

Tu
− k ·∆p (3.39)

c1 <
N · δ · λ

s
· Tu
T 0

(3.40)
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On the other hand, if public transportation expenditure is high, it comes as no surprise
that it is ine�cient to o�er a bus service. In Appendix B.3, we prove that Eq. (3.41) is a
su�cient condition to ensure that the optimal frequencies are f ∗j = f ∗u = 0.

c2 > max

{
k · δ ·N

s
− c1 ·

T 0

Tu
− k ·∆p; δ ·N

s
· (k − λ)− k ·∆p

}
(3.41)

To achieve positive demand in both modes, it is necessary that c1 and c2 satisfy the
following conditions.

c2 < max

{
k · δ ·N

s
− c1 ·

T 0

Tu
− k ·∆p; δ ·N

s
· (k − λ)− k ·∆p

}
(3.42)

c1 >
N · δ · λ

s
· Tu
T 0

(3.43)

Keeping these conditions in mind , we state the following proposition.

Proposition 3.2 If both modes have positive demand, then the total �eet is used completely

in both period, i.e. f ∗j ·
(
T 0 + z · δ

α

N− (∆p+∆r)·k·f∗u
δ

s−λ·f∗j +k·f∗j

)
= f ∗u · T 0, and we conclude that f ∗u > f ∗j .

proof. See Appendix B.2

The intuition for Proposition 3.2 is as follows. Let us to suppose that �eet size is �xed,
and the dispatched cost is equal to zero (c2 = 0). In this case, the optimal solution is to
move as many buses as possible; it means the optimal solution considers a higher frequency
during the uncongested period (due to the lower cycle time) and a lower frequency during
the congested period. If we consider c2 > 0 and small, the intuition still considers that it
is e�cient to use the total �eet as much as possible. This case also makes a link with the
existence of positive demand in both modes, c2 has to meet the conditions from Eqs. (3.42)
and (3.43). Eq. (3.42) creates an upper boundary for c2.

High frequency is concentrated during the uncongested period; if we compare our result
with the previous literature, it is possible to notice a similarity with the e�cient timetable
by Kraus (2003); who creates clusters that start at the desired arrival time with each cluster
using all the entire available �eet. The next cluster starts when the �eet is available again
(considering a �xed cycle time). Our optimization also creates clusters located during the
uncongested period using all the available �eet.

3.4 Numerical analyses

In this section we illustrate our analytical results using values for the parameters that may
represent an actual situation. The values for the numerical simulations are presented in Table
3.1. The parameters are the same are those used by Basso et al. (2019)11 in their numerical

11We consider z = 1 to have comparable results with Basso et al. (2019).
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analyses. It is important to remember that we consider that there is no (time-invariant)
congestion charge for cars, i.e. pc = 0. Therefore, we report below, directly, the bus fare (per
trip).

Table 3.1: Parameters for numerical examples
Parameter Units Value

c1 [US$/bus] 290
c2 [US$/hour] 130
T0 [hour] 0.33
N [Conmuters] 6000 to 13000
s [PCU/hour] 6000

∆r [US$/Pax] 2.0
α [US$/hour] 2.6
β [US$/hour] 1.95
γ [US$/hour] 3.9
k [Pax/bus] 80
α2 [US$/hour] 5.2
t∗ [hh:mm] 08:00
λ [PCU/bus] 3.5
z 1

In our numerical analysis, we optimize under mixed tra�c a model with two frequencies;
one during the uncongested period and other during the congested period. We also optimize
the fare for public transportation. Frequencies during each period are constant and there are
no road facilities for public transportation.

First, we compare our numerical results with one of the cases developed in Basso et al.
(2019), the optimization under mixed tra�c with a constant frequency. Our results use the
legend `Two-frequency' and results for Basso et al. (2019) use the legend `One frequency'. It
is important to point out that results are under mixed tra�c conditions in both cases.

The `One frequency' optimization is not e�cient for demands under 10,000 commuters;
therefore, for lower demand, public transportation is not provided. The `Two-frequency' opti-
mization provides public transportation when demand is around 7,500 commuters, and in all
cases the `One frequency' optimization provides lower frequencies than the `Two-frequency'
optimization. Analyzing panel (a) from Figure 3.2, the demand in which the two curves
separate, it indicates the moment when it is e�cient to provide public transportation for the
`Two-frequency' optimization. Also, the `Two-frequency' optimization generates an improve-
ment in the social cost, with a reduction up to 14% of the total cost (for 13,000 commuters).
This e�ciency comes from a signi�cant reduction of the user costs shown in panel (b) from
Figure 3.2.

For more clarity, we show in Table 3.2 the optimization results for a demand ofN = 11, 000
commuters. For the complete results, see Table B.1 from Appendix B.4.

The `Two-frequency' optimization attracts more demand for public transportation than
the `One frequency' optimization. Public transport demand for the mixed tra�c optimization
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Figure 3.2: `One frequency' versus `Two-frequency'

Table 3.2: Numerical Results for N = 11, 000 commuters
fj fu pb Nc Nb tsb tsc tec teb TC OC UC CC SDC QC

One frequency 10 0 2.00 9677 1323 6:55 6:55 8:32 8:32 48089 5534 42555 11601 11601 0

Two-Frequency 63 107 1.09 2690 8310 7:13 7:41 8:09 8:23 43409 23829 19581 1522 8159 4521

is NMT
c = 1, 323 commuters and for the `Two-frequency' is NTF

c = 8, 310 (∆N = 6, 987).
The rise of public transport demand implies an increase in operation cost (∆OC = 18, 295),
but total cost decreases in ∆TC = −4, 680, mostly explained by an important reduction in
users cost (∆UC = −22, 974). The reduction of user cost is directly related to the reduction
of rush-hour duration, starting 18 minutes later (from 6 : 55 to 7 : 13) and ending 9 minutes
early (from 8 : 32 to 8 : 23).

Focusing on Figure 3.3, panels (b) and (c) allow us to analyze the user costs reduction as
a reduction of the schedule delay cost and a decrease of the congestion cost. From panel (a)
is clear that congested period reduces quickly with the demand, consequently reducing the
congestion cost.

If we compare panels (e) and (f), the uncongested period frequency is higher than the
congested period frequency, which is consistent with the theoretical result from Proposition
3.2. The frequency increasing impacts on the operational cost. However, this impact is
restrained because the frequency during the uncongested period reduces the car's modal
split, thus reducing the total congestion, and this frequency does not require any additional
�eet.

Our �nal step is to compare how e�cient the `Two-frequency' optimization is in comparison
with an e�cient BRT system. The main idea of this point is to understand how e�cient an
infrastructure measure is in comparison with a management measure. The optimized BRT
system is divided into two types according to the results from Basso et al. (2019), one where
the road capacity is completely divisible (BRT-DC), making it is possible to reserve the exact
capacity for buses that public transportation needs, and a second case where the road capacity
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Figure 3.3: `One frequency' versus `Two-frequency'
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Figure 3.4: BRT versus `Two-frequency'

is indivisible (BRT-IC); hence we reserve a fraction of the road capacity. For example, with
one full lane, in all cases, the reserved capacity is enough to avoid road congestion for buses.

It is clear that an e�cient BRT system is more e�cient than the `Two-frequency' op-
timization. However, the di�erences in e�ciency are relatively small. In our analysis, the
best-case scenario pegs the total cost for the e�cient BRT-DC at less than 8% lower than the
`Two-frequency' optimization. If we compare the `Two-frequency' optimization versus the ef-
�cient BRT-IC, the total cost for the BRT-IC is less than 4% lower than the `Two-frequency'
optimization.

The di�erence between the total cost reported in Figure 3.4 is a consequence of the oper-
ational cost. If we analyze panel (a) from Figure 3.5, the operational cost di�erences come
from the uncongested period frequency. For a demand close to 10,000 commuters, the uncon-
gested period frequency for the `Two-frequency' optimization is higher than the optimal BRT
frequency (BRT-DC and BRT-IC). The congested period frequency is always lower than the
optimal BRT frequency.

3.5 Conclusions

In this paper we have analyzed the problem of �nding the optimal frequency whenthe rush
hour can be divided into two parts: one when there is no congestion (no cars on-road) and
one when there is congestion on the road. We use a dynamic congestion model in a mixed
tra�c environment (buses and cars share the road capacity) with inelastic total demand.
Modal split and temporal distribution of demand are endogenous to the model as part of
the full equilibrium. Rush-hour length, congested and uncongested periods, and cycle time
during the congested period are endogenous to the model.

We provide a microeconomic analysis of the rush-hour non-constant frequency optimiza-
tion, where queuing and congestion delays are endogenous as a result of individual schedules
of departures. The main di�erence with previous literature that researches bi-modal (car
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Figure 3.5: BRT versus `Two-frequency'
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and public transport) systems is that they consider that public transport vehicles are free of
road congestion and in those cases where they do model road congestion for buses, they do
not use more than one frequency during rush hour.

It is essential to keep in mind that in our paper we model only one type of commuter,
who can choose freely between car or bus, and as the system is in equilibrium, all users have
the same total cost. We show analytically and numerically that, under plausible conditions,
the optimal frequency during the congested period is lower than the frequency during the
uncongested period. Our results hold up in the reduction of users costs with a decrease in
congestion and schedule delay cost by moving people from cars to buses and scheduling those
buses during the uncongested period. Our numerical analysis shows that by only using a
non-constant frequency optimization, without any additional road facilities for public trans-
portation, we obtain a reduction of up to 14% in the social cost compared to the constant
frequency case. Moreover, if we extend our analysis and compare the two-frequency (man-
agement measure ) optimization against a BRT system (infrastructure measure), we �nd that
the gains of a BRT system are less than 8% of the total cost.

Regarding future research, we made assumptions that may be modi�ed to test our results.
To consider heterogeneous users and their e�ect on the optimal frequency, especially during
the uncongested period, it is plausible that the inclusion of captive demand for public trans-
port modi�es optimal frequency. We consider that focusing the research on these topics is
methodologically relevant and contributes to the development public policies.
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Chapter 4

Conclusions

We studied public transport optimization using a classic bottleneck model, considering second-
best policies. In Chapter 2 we provide a microeconomic analysis of BRTs, while Chapter 3
analyzes rush-hour non-constant frequency optimization.

Chapter 2 shows that even frequency and operational time are optimized. A BRT system
will generate queuing at the bus station, while fares cannot vary perfectly with time. With
a BRT, fares will be lower because the peak hours of operation of the system are shorter.
The car peak-period is also shorter, even though capacity was taken from private transport.
Importantly, this better-for-all situation features more boarding delays, that is to say, queues
at bus stops will be longer than under mixed-tra�c conditions.

In Chapter 3 we analyzed the problem of �nding the optimal frequency when we able to
divide the rush hour into two parts: one when there is no congestion (no cars on-road) and
one when there is congestion on the road. We use a dynamic congestion model in a mixed
tra�c environment (buses and cars share the road capacity) with inelastic total demand. We
show analytically and numerically that, under reasonable assumptions, the optimal frequency
during the congested period is lower than the frequency during the uncongested period.

Regarding future research, we made assumptions that may be modi�ed to test our results.
To name a few, inelastic demand, homogeneous users, full access to cars, no crowding costs,
and homogeneous users. We consider that focus the research on these topics is methodolog-
ically relevant and contributes to the development of public policies.
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Appendix A

A.1 Equilibrium with intermittent bus capacity

The analysis and exposition of the public transport modeling in this section closely follows
Kraus and Yoshida (2002) and Yoshida (2008). Literal excerpts are not marked as such, and
they are taken to be acknowledged by this sentence. The demand side of the model is the
same as in Section 2.2 except that instead of bus passengers experiencing boarding delays at
a unit time cost of α2, bus passengers arrive to the bus stop and might have to wait for the
bus. We denote the waiting unit time cost by α2 so that the models are analogous.

Suppose that there are R bus runs, i.e. R bus departures from the only bus stop where
passengers can board, with a departure every h minutes. Each train has a strict capacity of
k passengers, so that overloading is impossible. R is an integer but k is continuously-valued.
For simplicity, R and k are assumed to be such that the total capacity provided, R ·k, is just
enough to accommodate the demand of Nb bus passengers:

R · k = Nb (A.1)

We denote the times that the R runs depart from the bus stop by tsb,t2,...,tR−1,teb respec-
tively, from the �rst to the last run. These are known to commuters with certainty. A bus
user that departs at time t and arrives at time ta faces the following costs:

cb(t) = pb(t) + rb + α2 · Tq(t) + α · Tw (t+ Tq(t)) +

{
β · (t∗ − ta) if ta ≤ t∗

γ · (ta − t∗) if ta > t∗
(A.2)

which is the same expression as Eq. (2.2), but has to be interpreted di�erently. The di�erence
is that Tq(t) is the waiting time due to the fact that buses arrive intermittently at the stop.
If a bus rapid transit system is in place, then the costs of departing at t are given by Eq.
(A.2) but with Tw = 0. Also, following Kraus and Yoshida (2002) and Yoshida (2008), there
are no boarding delays.

We begin by studying the case in which buses do not interact with cars on the road, which
corresponds to the analysis in the presence of a BRT system. The focus of this section is
to prove that there is an equilibrium when bus service is intermittent and that as frequency
grows, it approaches the continuous approximation that we use in the main text.
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To prove that there is an equilibrium we need to prove that there is a departure rate
of bus and car users that satis�es the three equilibrium conditions: (i) all car drivers must
face the same total cost irrespective of their departure time; (ii) all bus users must also face
the same total cost irrespective of their departure time; and, (iii), a car driver and a bus
user departing at the same time must face the same total cost. The �rst two conditions are
dynamic equilibrium conditions. The third is the modal split equilibrium condition.

The existence of a departure pattern that satis�es the dynamic equilibrium condition for
bus users is derived in Yoshida (2008). We, therefore, explain the intuition and derive the
equilibrium costs, but do not prove its existence. The proofs of the equilibrium costs and its
underlying departure pattern are in Section 2 of Yoshida (2008)1. To satisfy the dynamic user
equilibrium condition for bus users, cost must be the same for all passengers on a particular
run. For this to happen, they must all arrive at the origin stop en masse, as otherwise
some would wait more than others. Also, they need to be the same for all runs. This can
only be possible if the sum of waiting cost and the schedule delay cost is the same for all
commuters. Thus, equilibrium requires that a commuter who incurs higher schedule delay
cost is compensated by lower waiting cost. The highest schedule delay cost is incurred by
either the passengers on the �rst run or the passengers on the last run. To minimize the
schedule delays, conditional on the number of runs, the planner sets the times such that the
�rst and last bus departure experience the same scheduling costs. This is:

β(t∗ − tsb) = γ(teb − t∗) (A.3)

Passengers in the �rst and last departure do not incur any waiting (they arrive en masse
just at tsb and teb). All other passengers incur waiting by arriving at the bus stop strictly
earlier than the departure times of the bus that they board, so that everyone has the same
user cost. Naturally, the passengers who arrive closer to t∗ must wait longer.

As R runs operate in the period teb− tsb at a constant headway of h, the following condition
provides a relationship between the number of runs, headway and the duration of the period
in which public transport services are provided:

teb − tsb = (R− 1) · h (A.4)

Combining Eqs. (A.3) and (A.4) we obtain the equilibrium user time costs of bus users,
UTCb:

UTCb = δ(R− 1) · h (A.5)

The equilibrium user time costs are the same as in Yoshida (2008). What is interesting
is the close relationship with our continuous approach. To see this, note that h = 1/f and
that R · k = Nb. Replacing R and h from these expressions into Eq. (A.5), we obtain:

UTCb = δ · Nb

k · f −
δ

f
(A.6)

1For more intuition on the departure pattern of bus users, see Section 4.1 of Kraus and Yoshida (2002).
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The �rst term on the right-hand side of Eq. (A.6) is exactly equal to the user time costs
of our continuous model (see Eq. (2.23)) so that the only di�erence is the second term
(δ/f) that decreases with frequency. Therefore, our continuous approach overestimates the
equilibrium costs for bus users, conditional on the frequency, capacity and demand, and this
overestimation decreases with frequency.

We now turn to the car dynamic equilibrium. As we model the BRT system as dedicating
a fraction φ of the capacity for buses and 1−φ for cars, the analysis for car users, given that
they have to go through a bottleneck of capacity (1−φ) ·s, does not change. The equilibrium
costs are the same as derived in Section 2.5 and the same as in any simple bottleneck model.
Denoting tsc and t

e
c the �rst and last departure by car users, the conditions that de�ne the

equilibrium are that the equalization of schedule delay costs for the �rst and last user and that
the length of the car peak must be such that the Nc car drivers pass through the bottleneck:

β(t∗ − tsc) = γ(tec − t∗) (A.7)

(tec − tsc) · (1− φ) · s = Nc (A.8)

Combining these two equations we can write the equilibrium user time costs, conditional
on Nc:

UTCc = δ · Nc

(1− φ) · s (A.9)

The remaining step is to obtain the equilibrium modal split and compare equilibrium total
user costs of this model with ours. The conditions that de�ne the modal split equilibrium
are equalization of costs across modes and that total demand is the sum of the demand of
each mode. Adding the prices (pm) and resource costs (rm) for each mode m, and using Eqs.
(A.6) and (A.9), the conditions can be written as:

pc + rc + δ · Nc

(1− φ) · s =pb + rb + δ · Nb

k · f −
δ

f
(A.10)

Nb +Nc =N (A.11)

Solving this system of equations, we obtain the equilibrium modal split:

Nb =
k · f · ((∆R + ∆p) · (1− φ) · s+ δ ·N) + δ · k · (1− φ) · s

δ · ((1− φ) · s+ k · f)
(A.12)

Nc = N −Nb (A.13)

To simplify the comparison with the continuous model and to make the exposition clearer,
we rewrite the modal splits to relate them with the equilibrium modal split of the contin-
uous model. Letting �int� be the index that denotes the intermittent model and �cont� the
continuous, and assuming that the same fraction φ of the capacity is dedicated to buses in
the continuous model, we obtain:

N int

b = N cont

b +
k · (1− φ) · s

(1− φ) · s+ k · f (A.14)

N int

c = N cont

c − k · (1− φ) · s
(1− φ) · s+ k · f (A.15)
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Using these expressions we can obtain the equilibrium total user cost in the intermittent
model, UCint = Nc · (UTCc + rc) +Nb · (UTCb + rb):

UCint = δ
k · (1− φ) s · (∆p+∆R)

δ
−N · k

k · f + (1− φ) s
+ δ

k · f · (1− φ) s · (∆p+∆R
δ

)2 +N2

k · f + (1− φ) s
(A.16)

+Rb ·N + ∆R ·
(
N cont

c − k · (1− φ) · s
(1− φ) · s+ k · f

)

Again the user equilibrium costs are closely related to the user equilibrium costs of the
continuous approximation. To see this, we substitute the equilibrium values of the modal split
in the continuous model, which can be obtained by solving Eq. (2.23), into the expression
for the total user cost of Eq. (2.24). This gives the following expression for the equilibrium
total user cost in the continuous model, UCcont:

UCcont = δ
N2 +

(
∆p+∆R

δ

)2
((1− φ) · s · k · f)

(1− φ) · sf + k · f + ∆R ·N cont

c +Rb ·N (A.17)

Combining Eqs. (A.17) and (A.16) we obtain an expression for the equilibrium total user
cost in the intermittent model as a function of UCcont:

UCint = UCcont +
k · (1− φ) s ·∆p−N · k · δ

(1− φ) s+ k · f (A.18)

These two expressions allows us to obtain the aggregate overestimation of user costs of
our continuous model as a percentage of the total user cost in the intermittent model, Ω ≡
UCcont−UCint

UCint
:

Ω =
δ · k · (δ ·N −∆p((1− φ) · sf))

∆p · k · ((1− φ) sf) · [f · (∆p+ ∆R) + δ] + δ ·N · [δ(N − k) + rc(s− λf) + rbfk]
(A.19)

While the expression is not very informative, what is important to note is that Ω ap-
proaches zero as the frequency increases2. Therefore, we have proven that when a BRT is in
place, there exists an equilibrium if the service is intermittent and that the equilibrium user
costs of our continuous model slightly overestimate this cost. This overestimation, using the
parameters of our numerical example, is between 0.2% and 0.6%.

We now turn to the case of mixed tra�c. We showed that the two approaches of modeling
public transport were very similar in terms of bus user's time cost. The same is true under
mixed tra�c as the waiting at bus stops occurs before buses and cars interact on the road,
and the potential di�erence is whether the equilibrium costs for car users are too di�erent
due to the intermittent nature of buses. We begin by proving that an equilibrium exists,
and then show that the intermittent model approaches our continuous model as frequency
increases.

2The numerator is a function of f and the denominator of f2.
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The conditions that are needed in equilibrium are the dynamic equilibrium conditions
for the departures of car and bus users and the modal split condition. In other words,
equalization of costs across departure times and modes. We assume that the departure rates
for car and bus users that are able to make the cost constant over departure times exist and
analyze the equilibrium costs. We show that the solution in mixed tra�c is analogous to the
solution derived above for a BRT system and then prove that the equilibrium rates exist.
Therefore, we conclude that also in the case of mixed tra�c the continuous approximation
slightly overestimates user costs and that the overestimation approaches zero as frequency
increases.

We focus on the relevant case of our analysis: when the condition in Proposition 1 holds,
i.e., 0 < ∆p + ∆R < δN/(kf), and, thus, there is a unique interior equilibrium in mixed
tra�c conditions in which both modes are used.

By Lemma 1, which holds in this case, the bus peak period starts earlier and ends later
than the car peak hour. This is, tsb < tsc < tec < teb. For car users, just as under a BRT, it
must be true that, conditional on Nc, the start and end of the car peak period are given by
equating the schedule delay costs for the �rst and last departure, as in equation (2.3). On
the other hand, the length of the car peak must be such that all car drivers pass through the
bottleneck, as in equation (2.4). Eq. (2.4) holds because when buses are intermittent the
bus frequency is assumed to be constant and all buses move with a �xed speed. Therefore,
the arrival frequency of buses to the road bottleneck equals f and, as each bus is λ PCU, the
capacity used by buses is λf . Therefore, conditional on Nc, equilibrium time costs for car
users are given by Eq. (2.11):

UTCc = δ
Nc

s− λ · f (A.20)

For bus users, the highest schedule delay cost is incurred by either the passengers on the
�rst run or the passengers on the last run. To minimize the schedule delays, conditional on
the number of runs, the planner sets the times such that the �rst and last bus departure
experience the same scheduling costs. This is:

β(t∗ − tsb) = γ(teb − t∗) (A.21)

Under mixed tra�c, by Lemma 1, the �rst and last bus user do not face road congestion,
so passengers in the �rst and last departure cannot incur any waiting in equilibrium. As
R runs operate in the period [tsb, t

e
b] at a constant headway of h = 1/f , the conditions in

Eqs. (A.4) and (A.5) hold and, therefore, bus user time cost, conditional on Nb, are given by
(A.6):

UTCb = δ · Nb

k · f −
δ

f
(A.22)

Thus, the modal split given by equating the full price of each mode, i.e., pc+ rc+UTCc =
pb + rb + UTCb is:

Nb =
k · f · ((∆R + ∆p) · (s− λf) + δ ·N) + δ · k · (s− λf)

δ · ((s− λf) + k · f)
(A.23)

Nc = N −Nb (A.24)
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Therefore, just as in our continuous approximation, conditional on f , ∆p and on dedicating
exactly the capacity buses need under a BRT (φ = λf), the modal split is the same under
mixed tra�c than under BRT (see the intuition of this result in Section 5). As a consequence,
the overestimation of our continuous approximation under mixed tra�c is the same as the
overestimation derived under a BRT system above. Ω ≡ UCcont−UCint

UCint
is given by Eq. (A.19),

which approaches zero as the frequency increases.

The only remaining step to prove that there exists an equilibrium under mixed tra�c with
intermittent bus operation is to prove that there exist departure rates for car and bus users
that can make time costs constant over departure times.

We �rst prove this for car users. As the bus frequency is assumed to be constant and all
buses move with a �xed speed, the arrival frequency of buses to the road bottleneck equals
f . Letting dc(t) be the departure rate from home of car users, a queue develops if dc(t) + λf
exceeds the bottleneck capacity s. Let t̂c denote the most recent time at which there was no
queue at the road bottleneck, then the queue length (in PCU) at time t, V (t), is:

V (t) =

∫ t

t̂c

(dc(x) + λf)dx− s · (t− t̂c) (A.25)

Note that this is the same as in Eq. (A.32) and also matches the mixed tra�c analysis of
Huang et al. (2007). As the cost of a departure by car is given by Eq. (2.1), the analysis in
Eqs. (A.31)-(A.33) hold and we obtain the same equilibrium departure rate for car users as
in Proposition 1 (Eq. (A.26)):

dc(t) =

{
αs
α−β − λf if t ≤ t̃c
αs
α+γ
− λf if t > t̃c

(A.26)

The result is intuitive and it is the same as in our continuous model: the sum of the
departure rates by cars, dc(t), and buses, λf , matches the departure rate of the classic
bottleneck model, which makes road congestion to exactly compensate changes in schedule
delay costs across departure times.

The �nal step is to derive the equilibrium departure rate for bus users. As the buses are
intermittent, to satisfy the dynamic user equilibrium condition, cost must be the same for
all passengers on a particular run. For this to happen, they must all arrive at the origin
stop en masse, as otherwise some would wait more than others. Also, they need to be the
same for all runs. This can only be possible if the sum of waiting cost, the schedule delay
cost and the road queuing costs is the same for all commuters. Passengers in the �rst and
last departure do not incur any waiting (they arrive en masse just at tsb and teb). All the
other passengers incur waiting by arriving at the bus stop strictly earlier than the departure
times of the bus that they board, so that everyone has the same user cost. The passengers
in the runs that face road congestion (i.e., arrive to the bottleneck between tsc and t

e
c) must

experience the same waiting cost as the sum of road congestion and schedule delay cost is
already constant over time (which is necessary for car users to be in equilibrium). For the
remaining passengers, who do not face road congestion and are not on the �rst and last run,
the waiting time has to be longer for those who arrive closer to t∗.
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In summary, the departures by bus users are also intermittent and such that: (i) passengers
on the �rst and last run do not face waiting costs, (ii) passengers in runs that do not face
road congestion depart such that the wait is longer the closer to t∗ they arrive, and, (iii)
passengers in runs that face road congestion arrive such that the waiting time is the same
for all those runs. This is analogous to our continuous approximation depicted in Figure 2.

We have proven that under mixed tra�c conditions, there exists an equilibrium if the
service is intermittent and that the equilibrium user costs of our continuous model slightly
overestimate this cost. This overestimation, given by Ω in Eq. (A.19), is between 0.2% and
0.3% according to our numerical examples.

A.2 Proof of Proposition 2.2

If pc + rc > pb + rb, by Lemma 2.1, the bus peak period starts earlier and ends later than the
car peak period.

We now prove that there is a unique equilibrium in which both modes are used by con-
tradiction. We �rst show that equilibria with all individuals traveling by either car or buses
do not exist, and then show that there exists only one interior equilibrium.

Suppose that there is an equilibrium in which all individuals travel by bus. As we model
public transport as a bottleneck of capacity kf , the usual equilibrium conditions hold: the
�rst and last departure face no queuing, their schedule delay cost must be the same, and the
period of operation must be such that all commuters can actually go through the bottleneck
at the bus stop. These conditions are given by Eqs. (2.5) and (2.6) but considering that
Nb = N . This implies that the user time cost in this candidate equilibrium is δN/(kf) and
the full price of a departure at any time is pb + rb + δN/(kf). Consider a deviation from
a bus user to departing by car at t∗. As the bus frequency f is not enough to create road
congestion, the time costs of the deviating user would be zero and she would experience a full
price of pc + rc. This is pro�table if and only if pc + rc < pb + rb + δN/(k · f), which is exactly
the condition stated in Proposition 2.2. Therefore, we have proven that an equilibrium with
no car trips does not exist when pc + rc < pb + rb + δN/(k · f).

We now prove that an equilibrium with no bus trips does not exist either. Consider now
that all users travel by car. This case is exactly the same regarding equilibrium time costs as
a simple bottleneck model with capacity s− λf . Therefore, for it to be an equilibrium, the
conditions in Eqs. (2.3) and (2.4) must hold for Nc = N . Thus, user time costs are in this
case equal to δN/(s−λf). Consider now a deviation from a car user that departs at time t to
departing by bus at the same time. As road congestion exists and buses share capacity with
cars, the bus user experiences exactly the same road congestion and schedule delay costs. But
as the time-invariant full price of a car is higher than of the bus (the condition pc+rc > pb+rb
in the Proposition), the deviation would be pro�table. Therefore, an equilibrium with all
users traveling by car does not exist when pc + rc > pb + rb.

The remaining step is to show that there exist a unique equilibrium in which both modes
are used. If there exists an equilibrium in which both modes are used, as we show in Section
2.2, it must satisfy conditions in Eqs. (2.3)-(2.12). The modal split that satis�es these
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equilibrium conditions is given by Eqs. (2.13) and (2.14). The solution is unique and the
only remaining step is to show that both Nc and Nb are positive. Recall from Eqs. (2.13)-
(2.14) that:

Nc = (s− λ · f) · N −
(pc+rc−pb−rb)·k·f

δ

s− λ · f + k · f (A.27)

Nb = k · f · N + (pc+rc−pb−rb)·(s−λ·f)
δ

s− λ · f + k · f (A.28)

It follows directly from Eqs. (A.27) and (A.28) that Nc is positive if and only if N −
(pc+rc−pb−rb)·k·f

δ
> 0 and Nb is positive if (pc + rc − pb − rb) > 0. As the conditions stated

in the Proposition are that 0 < pc + rc − pb − rb < δN/(k · f) it follows that there exists a
unique equilibrium in which both modes are used.

The last part of the proof is to prove that the equilibrium departing patterns are such
that:

(i) During the car peak hour, a queue at the bottleneck on the road begins to develop at
the moment of the �rst car departure and grows linearly for early arrivals and shrinks
linearly for late arrivals.

(ii) A queue at the bus stops starts to develop until the moment of departure of the �rst
bus user that faces road congestion. During the period in which buses and cars share
the road capacity and there is road congestion, the length of the queue at the bus stop
remains constant, and it begins to dissipate after the departure of the last bus user
that faces road congestion.

And that those patterns are as in Figure 2.2.

To prove these two conditions consider the cost for a departure at time t for each mode
in Eq. (2.1) and (2.2) replacing the corresponding arrival times:

cc(t) = pc + rc + α · Tw(t) +

{
β · (t∗ − t− Tw(t)) if t+ Tw(t) ≤ t∗

γ · (t+ Tw(t)− t∗) if t+ Tw(t) > t∗
(A.29)

cb(t) = pb + rb + α2 · Tq(t) + α · Tw (t+ Tq(t)) +{
β · (t∗ − t− Tq(t)− Tw(t+ Tq(t))) if t+ Tq(t) + Tw(t+ Tq(t)) ≤ t∗

γ · (t+ Tq(t) + Tw(t+ Tq(t))− t∗) if t+ Tq(t) + Tw(t+ Tq(t)) > t∗
(A.30)

It must be true that the time-derivative of these two expressions is zero, so that costs are
constant over departure times. We begin deriving the equilibrium car departure rate and
prove (i). Denote t̃c the departure time for an on-time arrival by car. Di�erentiating Eq.
(A.29) and equating to zero we obtain:

∂Tw(t)

∂t
=

{
β

α−β if t ≤ t̃c
γ

α+γ
if t > t̃c

(A.31)
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which is the same result as in the classic bottleneck model of Arnott et al. (1993). It states
that queuing delays must exactly compensate the changes in schedule delay costs. The
di�erence lies in how a queue develops in our model of mixed tra�c. As the road bottleneck
capacity is shared by both modes, it is the combined arrival rate of cars and buses that
matters. Letting dc(t) be the departure rate from home of car users, a queue develops if
dc(t) + λf exceeds the bottleneck capacity s. Let t̂c denote the most recent time at which
there was no queue at the road bottleneck, then the queue length (in PCU) at time t, V (t),
is:

V (t) =

∫ t

t̂c

(dc(x) + λf)dx− s · (t− t̂c) (A.32)

Finally, an individual's queuing time is simply the length of the queue divided by the
capacity of the bottleneck:

Tw(t) =
V (t)

s
(A.33)

Combining Eqs. (A.31)-(A.33) we obtain the equilibrium departure rate for car users:

dc(t) =

{
αs
α−β − λf if t ≤ t̃c
αs
α+γ
− λf if t > t̃c

(A.34)

The result is intuitive: the sum of the departure rates by cars, dc(t), and buses, λf ,
matches the departure rate of the classic bottleneck model, which makes road congestion to
exactly compensate changes in schedule delay costs across departure times. The rate dc also
matches the result of Huang et al. (2007), who model mixed tra�c in a similar fashion as us
but with intermittent departures.

We now proceed analogously to prove (ii). Denote t̃b the departure time for an on-time
arrival by bus. Di�erentiating Eq. (A.30) and equating to zero we obtain:

∂Tq(t)

∂t
=



β − ∂Tw
∂t

(α− β)

α2 − β + ∂Tw
∂t

(α− β)
if t ≤ t̃b

−γ − ∂Tw
∂t

(α + γ)

α2 − β + ∂Tw
∂t

(α + γ)
if t > t̃b

(A.35)

This indicates that the delays at the bus stop must exactly compensate the changes in
schedule delay costs and road congestion delays. Note that if ∂Tw

∂t
is zero, then the rate is

analogous to a classic bottleneck model. Letting db(t) be the departure rate from home of
bus users, a queue develops at the bus stop if db(t) exceeds the capacity kf . Let t̂b denote
the most recent time at which there was no queue at the bus stop, then the queue length (in
passengers) at time t, Vb(t), is:

Vb(t) =

∫ t

t̂b

db(x)dx− kf · (t− t̂b) (A.36)

58



Finally, an individual's queuing time at the bus stop is simply the length of the queue divided
by the capacity of the bus stop:

Tq(t) =
Vb(t)

kf
(A.37)

which is analogous to the classic bottleneck model, but with capacity kf . Note that the the
equilibrium departure rate for bus users depends on the road congestion pattern. Denote
t̃sb the departure time for a bus user that arrives at tsc, so that she is the �rst to face road
congestion, and t̃eb the departure time for a bus user that arrives at tec, so that she is the last
to face road congestion.

Replacing Eqs. (A.36) and (A.37) into Eq. (A.35) we obtain the equilibrium departure
rate for bus users:

db(t) =


α2kf
α2−β if t ≤ t̃sb
kf if t̃sb < t ≤ t̃eb
α2kf
α2+γ

if t̃eb < t

(A.38)

The result is intuitive. At times when there is no road congestion and users arrive early,
the departure rates of bus users must be such that the queuing at bus stops grows such
that it compensates the reductions in schedule delay early. The same must be true for
late arrivals that do not face road congestion, bus stops delays must decrease as schedule
delay late increases. This is why the rates at t ≤ t̃sb and t > t̃eb are fully analogous to the
classic bottleneck model. On the other hand, at times when road congestion is compensating
the changes in schedule delay costs (a condition that is necessary for car users to be in
equilibrium), bus stops delays must be constant over time and the departure rate is exactly
equal to the capacity kf .

A.3 Proof of Propostion 2.3

To prove that when pc+rc < pb+rb there is a unique equilibrium in which all individuals travel
by car, we start by this candidate equilibrium and show that there is no gainful deviation.
Suppose then that Nc = N and that buses operate at frequency f . The candidate equilibrium
is analogous to the classic bottleneck model with equilibrium user time costs equal to δN/(s−
λf)3, and the equilibrium full price of traveling by car is therefore rc + pc + δN/(s− λf).

Consider a deviation to a departure at any time t by bus. As buses face the same congestion
as cars, if this departure occurs at a time in which there is road congestion, the deviating
user will face the same time costs. The result will be a full price of rb + pb + δN/(s−λf). As
pc + rc < pb + rb, the deviation increases the user costs. Consider now that the deviation is
to a time in which there is no queuing, i.e. before or after there is road congestion. As time
costs in the candidate equilibrium are constant and equal to the schedule delay cost of the
�rst and last departure, schedule delay costs before or after are higher than the candidate
equilibrium time costs. This, together with the fact that pc+rc < pb+rb, makes the deviation
not gainful and the candidate equilibrium to be the unique equilibrium.

3See Eqs. (2.3) and (2.4) and the discussion below those equations for the derivation of the equilibrium
costs. The derivation of the departure pattern is the same as the rate derived in Appendix A.2.
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A.4 Proof of Proposition 2.3

To prove that when the time-invariant full price of buses and cars are equal (i.e., pc + rc =
pb + rb) there are multiple equilibria, we consider a candidate equilibrium with an arbitrary
number of car users Nc and show that the candidate equilibrium is indeed an equilibrium for
multiple values of Nc. We begin by proving that Nc = 0 cannot be an equilibrium, we then
prove that Nc = N is an equilibrium and �nally that there is a threshold N̄c with 0 < N̄c < N
for which any Nc ∈ [N̄c, N ] is an equilibrium.

First, in the proof of Proposition 1 in Appendix A.2 we demonstrate that an equilibrium
in which all individuals travel by bus does not exist if pc + rc < pb + rb + δN/(kf). As
pc + rc = pb + rb, the inequality holds and Nc = 0 cannot be an equilibrium.

Now consider a candidate equilibrium in which all individuals travel by car, i.e. Nc = N .
In Appendix A.4 we showed that a deviation from this candidate is pro�table if and only if
pc + rc > pb + rb. Therefore, Nc = N is an equilibrium when pc + rc = pb + rb. The intuition
is simple and similar as the one provided for Proposition 2. When all individuals travel by
car and costs are constant over time, road congestion is such that it exactly compensates
changes in schedule delay costs. As car and buses face the same road congestion, a user that
switches mode and takes a bus cannot decrease its travel time costs. As the time-invariant full
prices are the same for both modes, the deviation leaves her indi�erent. Thus, all individual
traveling by car is a (weak) Nash equilibrium. This is also the intuition why there are multiple
equilibria as long as bus users do not face delays at bus stops. We formalize this argument
below.

Consider a candidate equilibrium in which both modes are used and denote Nc and Nb

the number of car and bus users respectively, with Nc + Nb = N . Denote tsc the time of
the �rst departure by car and tec the last. As shown in Section 2.2.2, for this candidate to
be an equilibrium, it must be true that the start and end of the car peak period are given
by equating the schedule delay costs for the �rst and last departure and that all Nc users
pass through the bottleneck in that period. This leads to user time costs for cars equal to
δNc/(s − λf). But time costs for car users can be constant over time only if there is road
congestion that compensates changes in schedule delay costs and, as shown, in Appendix
A.2, this can only occur when departure rates for car users are given by Eq. (A.34). Given
this road congestion pattern of the candidate equilibrium, together with pc + rc = pb + rb,
the time cost of a bus user that departs at t ∈ [tsc; t

e
c] is exactly the same as a car user that

departs at the same time if and only if she does not face delays at the bus stop. Furthermore,
a bus user that departs earlier than tsc or later than t

e
c, faces higher costs as schedule delay

costs at those times exceed the time costs in the period [tsc; t
e
c]. Therefore, as long as the

departure rate of bus users does not exceed the capacity kf , all departures in [tsc; t
e
c] face the

same costs regardless of the mode.

It is clear then that starting from the candidate equilibrium in which all individuals travel
by car, multiple equilibria exist in which a fraction of the users travel by bus at times in
which car users depart. This requires that bus users do not face bus stop queuing delays,
which can only occur if their departure rate is not higher than the capacity. It is also needed
that car users depart in such a way that the start and end of the car peak period are given
by equating the schedule delay costs for the �rst and last departure and that the departure
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rates of car users follow Eq. (A.34) such that the sum of road congestion and schedule delays
is constant over time.

The equilibrium with the highest share of bus users and, thus, lower share of car users is
given by a full utilization of the public transport capacity. This is, with a departure rate of
bus users equal to kf and the car and bus period exactly overlapping. Denote the number of
car and bus users of this case by N̄c and N̄b respectively. The equilibrium conditions are the
same as those in equations (2.3)�(2.6) but with the same start and end times for both modes.
The derivations are analogous and the equilibrium cost and modal share are the same but
evaluated at pc + rc = pb + rb:

N̄c = (s− λ · f) · N

s− λ · f + k · f (A.39)

N̄b = k · f · N

s− λ · f + k · f (A.40)

c = p+ δ
N

s− λ · f + k · f (A.41)

where p is the time-invariant full price of any mode (p = pc + rc = pb + rb). Note that in
this case, the period around t∗ is the shortest possible, and thus this equilibrium induces the
lower total schedule delay costs.

Therefore for any Nc ∈ [N̄c;N ] there is an equilibrium. The �rst and last departure by
car are such that the following holds:

β(t∗ − tsc) = γ(tec − t∗) (A.42)

(tec − tsc) · (s− λ · f) = Nc (A.43)

the departure rates are the ones in Eq. (A.34) and the remaining Nb = N − Nc bus users
depart in the period [tsc; t

e
c] at a rate lower than kf such that there are no bus stop queuing

delays.

A.5 Calculations and results for Section 2.5

A.5.1 Proof of Proposition 2.5

As we show in Section 5, conditional on Nc and Nb, for a given frequency and time-invariant
prices the equilibrium costs for each mode are those in Eq. (2.23):

cc = pc + rc + δ
Nc

s− λ · f (A.44)

cb = pb + rb + δ
Nb

k · f (A.45)

By equating the costs and using that Nc + Nb = N , we obtain the equilibrium demand

61



for each mode:

Nb =
k · f · ((∆R + ∆p) · (s− λf) + δ ·N)

δ · ((s− λf) + k · f)
(A.46)

Nc =
(s− λf) · (δ ·N − k · f · ((∆R + ∆p))

δ · ((s− λf) + k · f)
(A.47)

where ∆R = rc − rb and ∆p = pc − pb. From these expressions it follows that:

Nb > 0⇐⇒ ∆R + ∆p >
−δ ·N
s− λf (A.48)

Nc > 0⇐⇒ ∆R + ∆p <
δ ·N
k · f (A.49)

which proves that when −δN/(s− λ · f) < pc + rc − pb − rb < δN/(k · f), there is a unique
equilibrium in which both modes are used.

The departure patterns, as in the classic bottleneck of Arnott et al. (1993), must be such
that the queue length evolves over the peak period such that the sum of schedule delay costs
and queuing delay costs are constant over time. As schedule delay costs decrease linearly
for early arrivals and increase linearly for late arrivals, queuing delays for each mode must
increase for early arrivals and decrease for late arrivals. Thus, only the �rst and las user to
depart do not face queuing delays. This proves that queuing delays at bus stops occur for
the whole duration of the operation of the BRT system, while road congestion delays for cars
occur for the whole duration of their peak period.

We now prove turn to prove results (i)�(iii) in Proposition 2.5. Let tsb and t
s
c the time of

the �rst departure by bus and car, respectively. As both individuals face only schedule delay
costs, the full prices of each departure are:

cc(t
s
c) = pc + rc + β(t∗ − tsc) (A.50)

cb(t
s
b) = pb + rb + β(t∗ − tsb) (A.51)

In equilibrium, the two full prices should be equal, so pc+rc+β(t∗−tsc) = pb+rb+β(t∗−tsb)
holds. From this we can write an expression for tsc − tsb:

tsc − tsb =
pc + rc − pb − rb

β
(A.52)

Analogously, for the last arrival of each mode we obtain:

cc(t
e
c) = pc + rc + γ(tec − t∗) (A.53)

cb(t
e
b) = pb + rb + γ(teb − t∗) (A.54)

And as also these two full prices should be equal, pc + rc + γ(t∗− tsc) = pb + rb + β(t∗− tsb)
holds and we can write an expression for teb − tec:

teb − tec =
pc + rc − pb − rb

γ
(A.55)

It follows directly from Eqs. (A.52) and (A.55) that:
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(i) if 0 < pc + rc − pb − rb, the bus peak period starts earlier and ends later than the car
peak period.

(ii) if pc + rc − pb − rb = 0, the peak period of both modes are the same.
(iii) if pc + rc − pb − rb < 0, the bus peak period starts later and ends earlier than the car

peak period.

A.5.2 Calculations for the optimal price di�erence and frequency
with perfectly divisible capacity (BRT-DC)

The social cost function (SC) is given by the sum of operators costs (OC) and users costs
(UC). Substituting the equilibrium values of Nc and Nb in (2.24) we obtain these costs as a
function of the frequency and the price di�erence:

UC =
δ
(
k·f ·(∆p+∆R)2·(s−λ·f)

δ2 +N2
)

s− λ · f + k · f +
∆R · (s− fλ)

(
N − k·f ·(∆p+∆R)

δ

)
(1− φ) sf + k · f +N ·Rb (A.56)

OC = c1 · f · T0 + c2 · f

(
(∆R+∆p)(s−fλ)

δ
+N

)
s− λ · f + k · f (A.57)

SC = UC +OC (A.58)

The �rst order condition with respect to the price di�erence, ∂SC/∂∆P , results in:

f · ((1− φ) sf) (c2 + k(∆R + 2∆p))

δ · (s− λ · f + k · f)
= 0 (A.59)

which yields the optimal price di�erence of Eq. (2.26):

∆p∗ = −c2 + k ·∆R
2 · k (A.60)

The �rst order condition with respect to frequency ∂SC/∂f , evaluated at the optimal
price di�erence, gives the expression for the optimal frequency:

k (4 · δ · a (c1 · T0 · (s− λ · f + k · f)2 + δN2(λ− k)))

4 · δ · k · (s− λ · f + k · f)2

+

(
∆R2 · k · (λ · f 2(k − λ) + 2 · λ · f · s− s2)

)
4 · δ · k · (s− λ · f + k · f)2

− (4δ∆Rk2Ns)− c2
2 (λ · f 2 · (λ− k)− 2 · λ · f · s+ s2)

4 · δ · k · (s− λ · f + k · f)2

+
2c2k (∆R (λ · f 2 · (λ− k)− 2 · λ · fs+ s2) + 2δ ·N · s)

4 · δ · k · (s− λ · f + k · f)2
= 0 (A.61)

As Eq. (A.61) is quadratic, there are two possible solutions. They can be written as
follows:

f ∗1 =
A−
√
B

D
(A.62)

f ∗2 =
A+
√
B

D
(A.63)
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with:

A = −4 · c1 · δ · k · s · T 0 · (k − λ)− λ · s(c2 −∆R · k)2 (A.64)

B = k ·
(
4c1 · δ · k · T 0 · (k − λ) + λ · (c2 −∆Rk)2

)
(c2 · s−∆R · k · s+ 2δ ·N · (λ− k))2

(A.65)

D = (k − λ)
(
4c1 · δ · k · T 0 · (k − λ) + λ · (c2 −∆R · k)2

)
(A.66)

It is straightforward to show that D > 0 and A < 0 hold, so the only positive solution is
f ∗2 of Eq. (A.63). Moreover, it follows that the optimal frequency depends linearly on N , as
the last term in parenthesis on the right-hand side of the expression for B is quadratic and
depends linearly on N . As frequency depends on

√
B, and this is the only dependency on

N , f ∗2 is linear in N .

A.5.3 Calculations for the optimal period of operation for buses
with perfectly divisible capacity (BRT-DC)

The period of operation for buses is de�ned by:

Nb/(k · f) (A.67)

Substituting the optimal price di�erence of Eq. (A.60) and the optimal frequency of Eq.
(A.63) in the expression for Nb of Eq. (2.14), we obtain:

Nb(f
∗
2 ,∆p

∗)/(k · f ∗2 ) =
λ · c2 −∆R · k · λ+

√
k · (4c1 · δ · k · T0(k − λ) + λ · (c2 −∆R · k)2)

2 · δ · k · (k − λ)
(A.68)

Which does not depend on the total demand. This proves that the length of the bus
operations hours does not depend on N .

A.5.4 Calculations for the case of indivisible capacity (BRT-IC)

For the calculations of the indivisible capacity case (BRT-IC) we follow the exact same steps
as above, but assuming that the capacity for cars is s1 < s− λf . The costs become:

UC =
δ
(
k·f ·(∆p+∆R)2·s1

δ2 +N2
)

s1 + k · f +
∆R · s1

(
N − k·f ·(∆p+∆R)

δ

)
s1

+N ·Rb (A.69)

OC = c1 · f · T0 + c2 · f

(
(∆R+∆p)(s−fλ)

δ
+N

)
s1 + k · f (A.70)

and the �rst order condition with respect to the price di�erence yields:

∆p∗ = −c2 + k ·∆R
2 · k (A.71)
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The �rst order condition for the frequency, evaluated at the optimal price di�erence, gives
one positive root:

f ∗ =
−2c1k

2s1T0δ + (−c2s1 + k∆Rs1 + 2kNδ)
√
c1k3T0δ

2c1k3T0δ
(A.72)

Substituting these optimal values in the demand for cars and buses we obtain:

Nc =
s1

(
c2 · k − k2 ·∆R + 2

√
c1 · k3 · T0 · δ

)
2k2 · δ (A.73)

Nb = N − s1

(
c2 · k − k2 ·∆R + 2

√
c1 · k3 · T0 · δ

)
2k2 · δ (A.74)

which imply the following car and bus peak duration:

Nc/s1 =

(
c2 · k − k2 ·∆R + 2

√
c1 · k3 · T0 · δ

)
2k2 · δ (A.75)

Nb/(k · f ∗) =

√
c1 · k · T0

δ
(A.76)

Both expressions do not two depend on the total number of passengers N . Therefore, we
have proven that the length of the bus operations hours also does not depend on N in the
case of imperfect indivisibility of capacity.
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Appendix B

B.1 Proof of Proposition 3.1

If pc + rc > pb + rb, by Basso et al. (2019), the bus peak period starts earlier and ends later
than the car peak period.

We now prove by contradiction that there is a unique equilibrium in which both modes
are used. First, we show that equilibria with all individuals traveling either by car or bus do
not exist, and then show that there exists only one interior equilibrium.

Let us suppose that there is an equilibrium in which all individuals travel by bus. As we
model public transport as a bottleneck of capacity k · fu, the usual equilibrium conditions
hold: the �rst and last departures face no queuing, their schedule delay cost must be the
same, and the period of operation must be such that all commuters can actually go through
the bottleneck at the bus stop. These conditions are given by:

β(t∗ − tsb) = γ(teb − t∗) (B.1)

(teb − tsb) · k · fu = N (B.2)

This implies that the user time cost in this candidate equilibrium is δN/(k · fu) and the
full price of a departure at any time is pb + rb + δN/(k · fu). Consider a deviation from a
bus user to departing by car at t∗. As the bus frequency fu is not enough to create road
congestion, the time costs of the deviating user would be zero and they would experience a
full price of pc + rc. This is pro�table if and only if pc + rc < pb + rb + δN/(k · fu), which is
exactly the condition stated in Proposition 1. Therefore, we have proven that an equilibrium
with no car journeys does not exist when pc + rc < pb + rb + δN/(kf).

We now prove that an equilibrium with no bus journeys also does not exist either. Consider
now that all users travel by car. This case is exactly the same regarding equilibrium time costs
as a simple bottleneck model with capacity s− λ · fj. Therefore, for it to be an equilibrium,
the conditions are:

β(t∗ − tsc) = γ(tec − t∗) (B.3)

(tec − tsc) · (s− λ · fj) = Nc (B.4)

Consider now a deviation from a car user that departs at time t to departing by bus at
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the same time. As road congestion exists and buses share capacity with cars, the bus user
experiences exactly the same road congestion and schedule delay costs. But as the time-
invariant full price of a car is higher than of the bus (the condition pc + rc > pb + rb in
the Proposition), the deviation would be pro�table. Therefore, an equilibrium with all users
traveling by car does not exist when pc + rc > pb + rb.

The remaining step is to show that there exists a unique equilibrium in which both modes
are used. If an equilibrium exists in which both modes are used, as we show in Section
3.2, it must satisfy the conditions in Eqs. (3.8)-(3.20). The modal split that satis�es these
equilibrium conditions is given by Eqs. (3.21) and (3.22). The solution is unique and the only
remaining step is to show that both Nc and Nb are positive. Recall from Eqs. (3.21)-(3.22)
that:

Nc =
(s− λ · fj) (δ ·N − k · fu · ((pc + rc)− (pb − rb)))

δ(s− λ · fj + k · fj)
(B.5)

Nb = k
δ · fj ·N + fu · ((pc + rc)− (pb + rb)) (s− λ · fj)

δ(s− λ · fj + k · fj)
(B.6)

Following directly from Eqs. (B.5) and (B.6) that Nc is positive if and only if N −
(pc+rc−pb−rb)·k·fu

δ
> 0 and Nb is positive if (pc + rc − pb − rb) > 0. As the conditions stated in

the Proposition are that 0 < pc + rc − pb − rb < δN/(k · fu), as a consequence there exists a
unique equilibrium in which both modes are used.

The last part is to prove that the equilibrium departing patterns are such that:

(i) During the car peak hour, a queue at the bottleneck on the road begins to develop at
the moment of the �rst car departure and grows linearly for early arrivals and shrinks
linearly for late arrivals.

(ii) A queue at the bus stops starts to up until the moment of departure of the �rst bus
user that faces road congestion. During the period in which buses and cars share the
road capacity and there is road congestion, the length of the queue at the bus stop
remains constant and begins to dissipate after the departure of the last bus user that
faces road congestion.

To prove these two conditions consider the cost for a departure at time t for each mode
in Eq. (3.1) and (3.2) replacing the corresponding arrival times:

cc(t) = pc + rc + α · Tw(t) +

{
β · (t∗ − t− Tw(t)) if t+ Tw(t) ≤ t∗

γ · (t+ Tw(t)− t∗) if t+ Tw(t) > t∗
(B.7)

cb(t) = pb + rb + α2 · Tq(t) + α · Tw (t+ Tq(t)) +{
β · (t∗ − t− Tq(t)− Tw(t+ Tq(t))) if t+ Tq(t) + Tw(t+ Tq(t)) ≤ t∗

γ · (t+ Tq(t) + Tw(t+ Tq(t))− t∗) if t+ Tq(t) + Tw(t+ Tq(t)) > t∗
(B.8)

It must be true that the time-derivative of these two expressions is zero, so that costs are
constant over departure times. We begin deriving the equilibrium car departure rate and
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prove (i). Denote t̃c the departure time for an on-time arrival by car. Di�erentiating Eq.
(B.7) and equating to zero we obtain:

∂Tw(t)

∂t
=

{
β

α−β if t ≤ t̃c
γ

α+γ
if t > t̃c

(B.9)

which is the same result as in the classic bottleneck model of Arnott et al. (1993). It states
that queuing delays must exactly compensate the changes in schedule delay costs. The
di�erence lies in how a queue develops in our model of mixed tra�c. As the road bottleneck
capacity is shared by both modes, it is the combined arrival rate of cars and buses that
matters. Letting dc(t) be the departure rate from home of car users, a queue develops if
dc(t) + λf exceeds the bottleneck capacity s. Let t̂c denote the most recent time at which
there was no queue at the road bottleneck, then the queue length (in PCU) at time t, V (t),
is:

V (t) =

∫ t

t̂c

(dc(x) + λ · f(x))dx− s · (t− t̂c) (B.10)

as x ∈ [tsc, t
e
c] we know that f(x) = fj.

Finally, an individual's queuing time is simply the length of the queue divided by the
capacity of the bottleneck:

Tw(t) =
V (t)

s
(B.11)

Combining Eqs. (B.9)-(B.11) we obtain the equilibrium departure rate for car users:

dc(t) =

{
αs
α−β − λ · fj if t ≤ t̃c
αs
α+γ
− λ · fj if t > t̃c

(B.12)

The result is intuitive: the sum of the departure rates by cars, dc(t), and buses, λf ,
matches the departure rate of the classic bottleneck model, which makes road congestion to
exactly compensate changes in schedule delay costs across departure times. The rate dc also
matches the result of Huang et al. (2007), who model mixed tra�c in a similar approach as
us, but with intermittent departures.

We now proceed analogously to prove (ii). Denote t̃b the departure time for an on-time
arrival by bus. Di�erentiating Eq. (B.8) and equating to zero we obtain:

∂Tq(t)

∂t
=



β − ∂Tw
∂t

(α− β)

α2 − β + ∂Tw
∂t

(α− β)
if t ≤ t̃b

−γ − ∂Tw
∂t

(α + γ)

α2 − β + ∂Tw
∂t

(α + γ)
if t > t̃b

(B.13)

This indicates that the delays at the bus stop must exactly compensate the changes in
schedule delay costs and road congestion delays. Note that if ∂Tw

∂t
is zero, then the rate is
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analogous to a classic bottleneck model. Letting db(t) be the departure rate from home of
bus users, a queue develops at the bus stop if db(t) exceeds the capacity k · fj or k · fu. Let
t̂b denote the most recent time at which there was no queue at the bus stop, then the queue
length (in passengers) at time t, Vb(t), is:

Vb(t) =

∫ t

t̂b

(db(x)− k · f(t)) dx) (B.14)

where f(t) is de�ned in Eq. (3.3).

Finally, an individual's queuing time at the bus stop is simply the length of the queue
divided by the capacity of the bus stop:

Tq(t) =
Vb(t)

k · f(t)
(B.15)

which is analogous to the classic bottleneck model, but with capacity k · f(t). Note that the
equilibrium departure rate for bus users depends on the road congestion pattern. Denote t̃sb
the departure time for a bus user that arrives at tsc, so that they are the �rst to face road
congestion, and t̃eb the departure time for a bus user that arrives at tec, so that she is the last
to face road congestion.

By replacing Eqs. (B.14) and (B.15) with Eq. (B.13) we obtain the equilibrium departure
rate for bus users:

db(t) =


α2·k·f(t)
α2−β if t ≤ t̃sb
k · f(t) if t̃sb < t ≤ t̃eb
α2·k·f(t)
α2+γ

if t̃eb < t

(B.16)

The result described in Eq. (B.16) can be rewritten using the de�nition of f(t).

db(t) =


α2·k·fu
α2−β if t ≤ t̃sb
k · fj if t̃sb < t ≤ t̃eb
α2·k·fu
α2+γ

if t̃eb < t

(B.17)

The result is intuitive. At times when there is no road congestion and users arrive early,
the departure rates of bus users must be such that queuing at bus stops increases in such
a way that it compensates the reductions in early schedule delay. The same must be true
for late arrivals that do not face road congestion, bus stops delays must decrease as late
schedule delay increases. This is why the rates at t ≤ t̃sb and t > t̃eb are fully analogous to the
classic bottleneck model. On the other hand, at times when road congestion is compensating
the changes in schedule delay costs (a condition that is necessary for car users to be in
equilibrium), bus stop delays must be constant over time and the departure rate is exactly
equal to the capacity k · fj.
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B.2 Proof of Propositions 3.2

We de�ne the social cost (SC) directly as the sum of the total user cost (equation (3.31))
and public transport system expenditure (equations (3.35) and (3.36)).

UC =
δ ·N2

s− λ · fj + k · fj
+
k · (∆p+ ∆r)

(
(∆p+∆r)·(s−λ·fj)·fu

δ
+ (fj − fu) ·N

)
s− λ · fj + k · fj

+ rb ·Nb + rc ·Nc

(B.18)

where Nc and Nb are equilibrium values from equations (3.21) and (3.22).

Public transport expenditure is as follows

E = E1 + E2 (B.19)

where:

E1 = c1 ·max

{
fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
; fu · T 0

}
(B.20)

E2 = c2 ·
(

∆p+ ∆r

δ
· fu +

(δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)
· fj
)

(B.21)

We consider that both modes have positive demand. It is su�cient that c1 and c2 satis�es:

c2 < max

{
k · δ ·N

s
− c1 ·

T 0

Tu
− k ·∆p; δ ·N

s
· (k − λ)− k ·∆p

}
(B.22)

c1 >
N · δ · λ

s
· Tu
T 0

(B.23)

We proceed to de�ne the �rst-order condition for the minimization problem, due to the
non-di�erentiability of the social cost function. In order to solve the optimization problem,
it is necessary to consider two cases:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≥ fu · T 0 (B.24)

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≤ fu · T 0 (B.25)

We have to assume one of the two above conditions. First,we assume that Eq. (B.24)
holds and we calculate and analyze how fu a�ects SC.

∂SC

∂fu
=

(∆p+ ∆r)(α · c2(s− λ · fp)− k(z · c1 · δ · fj + α ·∆p · fj · λ− α ·∆p · s+ α · δ ·N))

α · δ · (s− λ · fj + k · fj)
(B.26)
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We assume that both modes have positive demand, then k ·fu ·(∆p+∆r)/δ < N , otherwise
all demand would be satis�ed during the un-congested period, contradicting that both modes
have positive demand. SC is decreasing on fu if condition (B.27) is satis�ed.

c2 · (s− λ · fj) ≤ z · kc1 · fj · δ
α

+ k · (δ ·N −∆p · (s− λ · fj)) (B.27)

It is not hard to probe that the right hand of Cond. (B.22) implies Cond. (B.27). Then,
TC is decreasing on fu, then:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
= fu · T 0 (B.28)

Now we have to analyze the case where Eq. (B.25) holds. For this, we calculate the
�rst-order condition for fj.

∂SC

∂fj
= −((∆p+ ∆r) · k · fu − δ ·N) · (c2 · s+ ∆p · k · s− δ ·N · (k − λ))

δ · (s− λ · fj + k · fj)2
(B.29)

It is clear that ∂SC
∂fj

does not change its sign, then the optimal solution will be a corner
solution. As both modes have positive demand, we know that k · fu · (∆p+ ∆r)/δ < N , and
it is our hypothesis that: c2 · s+ ∆p · k · s− δ ·N · (k− λ) < 0, hence ∂SC

∂fj
< 0 implying that,

TC is decreasing on fj. Then, the optimal condition is:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
= fu · T 0 (B.30)

A necessary condition, for having positive demand in both modes is that fu has an upper
boundary. It is necessary that ∂SC/∂fu > 0.

∂SC

∂fu
=

(∆p+ ∆r) · (c2 · (s− λ · fj) + k ·∆p · (s− λ · fj)− δ · k ·N)

δ(s− λ · fj + k · fj)
+ c1 · T 0 (B.31)

Eq. (B.31) depends on fj, then we study the shape of ∂SC/∂fu > 0 over fj. It easy to
show using Eq. (B.22) that ∂2SC/∂fu∂fj > 0.

∂2SC

∂fu∂fj
=− k · (∆p+ ∆r) (c2 · s+ k · s∆p− δ ·N · (k − λ))

δ(s− λ · fj + k · fj)2
(B.32)

As ∂2SC/∂fu∂fj > 0 then ∂SC/∂fu is an increasing function over fj, it means that if
∂SC/∂fu evaluated in fj = 0 is positive, then the function will be positive for all fj > 0.

∂SC

∂fu
|fj=0 =

c1 · δ · s · T 0 + (∆p+ ∆r)(c2 · s+ ∆p · k · s− δ · k ·N)

δ · s (B.33)

Considering Eqs. (B.22) and (B.23), Eq. (B.33) is positive. This directly implies a
necessary condition for the parameters, otherwise, fu would be enough higher to satisfy all
demand during the uncongested period contradicting the hypothesis that both modes have
positive demand.
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B.3 Proposition B.2

Proposition B.1 If the �eet and dispatch costs satisfy the following condition

c2 < k · δ ·N
s
− c1 ·

T 0

Tu
− k ·∆p (B.34)

c1 <
N · δ · λ

s
· Tu
T 0

(B.35)

then, all demand is satis�ed by public transportation.

proof. We de�ne the social cost (SC) directly as Eq. (3.37).

SC =N · (pc + rc) · (s− λ · fj + k · fj)− fu · k · (∆p+ ∆r) + δ ·N
s− λ · fj + k · fj

− pc ·
(s− λ · fj) (δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)

− pb · k ·
δ · fj ·N + fu · ((∆p+ ∆r)) (s− λ · fj)

δ(s− λ · fj + k · fj)

+ c1 ·max

{
fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
; fu · T 0

}

+ c2 ·
(

∆p+ ∆r

δ
· fu +

(δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)
· fj
)

(B.36)

Due to the non-di�erentiability of the social cost function, it is necessary to consider two
cases to solve the optimization problem:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≥ fu · T 0 (B.37)

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≤ fu · T 0 (B.38)

We have to assume one of the two conditions above. First,we assume that Eq. (B.37)
holds and we calculate and analyze how fu a�ects SC.

∂SC

∂fu
=

(∆p+ ∆r)(c2(s− λ · fj)− k(z · c1 · δ · fj/α + ∆p · fj · λ−∆p · s+ δ ·N))

δ · (s− λ · fj + k · fj)
(B.39)

∂2SC

∂fu∂fj
= −(∆p+ ∆r) · k · (c2 · s+ ∆p · k · s+ δ · c1 · s/α− δ ·N · (k − λ))

δ · (s− λ · fj + k · fj)
(B.40)

If c2 also satis�es that:

c2 <
δ ·N
s
· (k − λ)− k ·∆p (B.41)
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then, it is easy to probe that ∂SC/∂fu < 0 then fu is the maximum possible.

On the other hand if c2 satis�es

δ ·N
s
· (k − λ)− k ·∆p < c2 < k · δ ·N

s
− c1 ·

T 0

Tu
− k ·∆p (B.42)

It is easy to show that ∂2SC/∂fu∂fj < 0, we calculate

∂SC

∂fu
(0, fu) =

(∆p+ ∆r)(c2 · s+ ∆p · k · s− δ · k ·N)

δ · s (B.43)

As c2 < k · δ·N
s
− c1 · T

0

Tu
− k ·∆p < k · δ·N

s
− k ·∆p, then c2 · s+ ∆p · k · s− δ · k ·N < 0 it

implies that:

∂SC

∂fu
(0, fu) =

(∆p+ ∆r)(c2 · s+ ∆p · k · s− δ · k ·N)

δ · s < 0 (B.44)

As ∂2SC/∂fu∂fj < 0 then Eq. (B.44) implies that fu is the maximum possible. If we
assume that

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≥ fu · T 0

then it is necessary that:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
= fu · T 0

Now, we assume that Eq. (B.38) holds. We calculate ∂SC/∂fu

∂SC

∂fu
=

(∆p+ ∆r) · (c2 · (s− λ · fj) + k ·∆p · (s− λ · fj)− δ · k ·N) + c1 · T 0 · δ · (s− λ · fj + k · fj)
δ · (s− λ · fj + k · fj)

(B.45)

A = c2 · (s− λ · fj) + k ·∆p · (s− λ · fj)− δ · k ·N +
c1 · T 0 · (s− λ · fj + k · fj)

Tu
(B.46)

Reordering the terms we have

A = (c2 + k ·∆p+ c1 ·
T 0

Tu
) · (s− λ · fj)− δ · k ·N + c1 ·

T 0

Tu
· k · fj (B.47)

First, we assume that

c1 · T 0

Tu
<
N · δ · λ

s
(B.48)
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Using Eq. (B.34) we modify the condition

A < k · δ ·N
s
· (s− λ · fj)− δ · k ·N + c1 ·

T 0

Tu
· k · fj = fj · k ·

(
c1 · T 0

Tu
− N · δ · λ

s

)
(B.49)

We conclude that ∂SC/∂fu < 0 then fu does not have an upper boundary.

Proposition B.2 If the �eet and dispatch costs satisfy

c2 > max

{
δ ·N
s
· (k − λ)− k ·∆p; k · δ ·N

s
− c1 ·

T 0

Tu
− k ·∆p

}
(B.50)

then, the provision of public transport is not socially e�cient and all demand is met by
cars.

proof. We de�ne the social cost (SC) directly as Eq. (3.37).

SC =N · (pc + rc) · (s− λ · fj + k · fj)− fu · k · (∆p+ ∆r) + δ ·N
s− λ · fj + k · fj

− pc ·
(s− λ · fj) (δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)

− pb · k ·
δ · fj ·N + fu · ((∆p+ ∆r)) (s− λ · fj)

δ(s− λ · fj + k · fj)

+ c1 ·max

{
fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
; fu · T 0

}

+ c2 ·
(

∆p+ ∆r

δ
· fu +

(δ ·N − k · fu · (∆p+ ∆r))

δ(s− λ · fj + k · fj)
· fj
)

(B.51)

Due to the non-di�erentiability of the social cost function, to solve the optimization prob-
lem, it is necessary to consider two cases:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≥ fu · T 0 (B.52)

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
≤ fu · T 0 (B.53)

We assume that k · fu · (∆p+ ∆r)/δ < N , because we suppose that fu is not large enough
to satisfy all demand. At the end we check that our assumption is correct.

74



We analyze the �rst-order condition assuming that Eq. (B.52) holds. Considering that
k · fu · (∆p+ ∆r)/δ < N , then we calculate fj using the �rst-order condition.

fj =√
·c1 · δ · T 0 · (k · fu · (∆p+ ∆r)− δ ·N)(c1 · δ · s · z/α + c2 · s+ ∆p · k · s− δ · N · (k − λ))

α · c1 · δ · T 0(k − λ)
− s

(B.54)

Eq. (B.54) requires for a real solution that:

A = c1 · δ · s · z/α + c2 · s+ ∆p · k · s− δ · N · (k − λ) < 0 (B.55)

As Condition (B.50) holds and c1 · δ · s · z/α > 0, it is easy to show that A > 0, as there
exists no real solution for the �rst-order condition, then optimal the solution is fj = 0 or fj
that satis�es:

fj ·
(
T 0 + z · δ

α

N − (∆p+∆r)·k·fu
δ

s− λ · fj + k · fj

)
= fu · T 0

On the other hand, we calculate:

∂2SC

∂f 2
j

= 2
((∆p+ ∆r) · k · fu − δ ·N) · (k − λ) · (c2 · s · α + ∆p · k · s · α− δ ·N(k − λ) + δ · c1 · s)

α · δ · (s− λ · fj + k · fj)3

(B.56)

∂2SC

∂fj∂fu
= −(∆p+ ∆r) · k · (c2 · s · α + ∆p · k · s · α− δ ·N(k − λ) + δ · c1 · s)

α · δ · (s− λ · fj + k · fj)2
(B.57)

It is not di�cult to notice that ∂2SC/∂fj∂fu < 0 and ∂2SC/∂f 2
j < 0. If we evaluate

∂SC/∂fj in (fj = 0, fu = 0) and (fj = 0, fu = δ ·N/(k · (∆p+ ∆r))) we get:

∂SC

∂fj
(fj = 0, fu = 0) = c1 ·

(
z · δ ·N

α · s + T 0

)
+
c2 ·N
s

+
∆p · k ·N

s
+N ·

(
δ · λ ·N
s2

− δ · k ·N
s2

)
(B.58)

∂SC

∂fj

(
fj = 0, fu =

δ ·N
k · (∆p+ ∆r)

)
= c1 · T 0 (B.59)

As ∂2SC/∂f 2
j < 0 and ∂SC/∂fj > 0, we conclude that f ∗j = 0

We obtain the expression for the �rst-order condition for fu and use that f ∗j = 0.

∂TC

∂fu
(f ∗j = 0, fu) = c1T

0 + (∆p+ ∆r)

(
(c2 + ∆p · k)

δ
− k ·N

s

)
(B.60)

Using Eq. (B.50), we conclude that ∂TC
∂fu

(f ∗j = 0, fu) > 0, implying that f ∗u = 0.
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Now we analyze the �rst-order condition assuming that Eq. (B.53) holds. Considering
that k · fu · (∆p+ ∆r)/δ < N , then we calculate the �rst-order condition for fj.

∂SC

∂fj
= −(∆p+ ∆r) · fu · k − δ ·N) · (c2 · s+ ∆p · k · s− δ ·N(k − λ))

δ · (s− λ · fj + k · fj)
(B.61)

Using Condition (B.50), we show that ∂SC/∂fj > 0, then the optimal solution is fj = 0.
Now we calculate ∂SC∂fu considering that fj = 0.

∂SC

∂fu
(fj = 0, fu) =

c1 · δ · s · T 0 + (∆p+ ∆r)(c2 · s+ ∆p · k · s− δ · k ·N)

δ · s (B.62)

Using Eq. (B.50) we conclude that ∂SC∂fu > 0, then fj = 0. Then the optimal frequen-
cies are f ∗j = f ∗u = 0.

B.4 Numerical analysis results
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Table B.1: Numerical Analysis
N fj fu pb Nc Nb tsb tsc tec teb TC OC UC CC SDC QC

M
ix
ed

tr
a�

c
6000 0 0 - 6000 0 - 7:20 8:20 - 19800 0 19800 3900 3900 0
6500 0 0 - 6500 0 - 7:16 8:21 - 22154 0 22154 4577 4577 0
7000 0 0 - 7000 0 - 7:13 8:23 - 24617 0 24617 5308 5308 0
7500 0 0 - 7500 0 - 7:10 8:25 - 27188 0 27188 6094 6094 0
8000 0 0 - 8000 0 - 7:06 8:26 - 29867 0 29867 6933 6933 0
8500 0 0 - 8500 0 - 7:03 8:28 - 32654 0 32654 7827 7827 0
9000 0 0 - 9000 0 - 7:00 8:30 - 35550 0 35550 8775 8775 0
9500 0 0 - 9500 0 - 6:56 8:31 - 38554 0 38554 9777 9777 0
10000 0 0 - 10000 0 - 6:53 8:33 - 41667 0 41667 10833 10833 0
10500 5 5 1.75 9797 703 6:46 6:54 8:32 8:36 44867 2748 42120 11099 11262 164
11000 10 0 2.00 9677 1323 6:55 6:55 8:32 8:32 48089 5534 42555 11601 11601 0
11500 18 0 2.00 9296 2204 6:57 6:57 8:31 8:31 51272 9279 41994 11701 11701 0
12000 25 0 2.00 8976 3024 6:59 6:59 8:30 8:30 54436 12803 41632 11840 11840 0
12500 32 0 2.00 8702 3798 7:00 7:00 8:29 8:29 57583 16161 41422 12009 12009 0
13000 39 0 2.00 8464 4536 7:02 7:02 8:28 8:28 60716 19387 41329 12200 12200 0

B
R
T
-
D
C

6000 13 0 1.81 4975 1025 7:20 7:26 8:16 8:19 19589 2929 16660 2298 2951 1460
6500 20 0 1.81 4956 1544 7:20 7:26 8:16 8:19 21675 4413 17262 2127 3110 2114
7000 26 0 1.81 4937 2063 7:20 7:26 8:16 8:19 23762 5898 17864 1977 3291 2723
7500 33 0 1.81 4917 2583 7:20 7:26 8:16 8:19 25848 7382 18465 1844 3489 3297
8000 40 0 1.81 4898 3102 7:20 7:26 8:16 8:19 27934 8867 19067 1727 3703 3842
8500 46 0 1.81 4878 3622 7:20 7:26 8:16 8:19 30020 10351 19669 1622 3929 4361
9000 53 0 1.81 4859 4141 7:20 7:26 8:16 8:19 32107 11836 20271 1528 4166 4859
9500 59 0 1.81 4840 4660 7:20 7:26 8:16 8:19 34193 13320 20872 1443 4411 5339
10000 66 0 1.81 4820 5180 7:20 7:26 8:16 8:19 36279 14805 21474 1366 4665 5803
10500 73 0 1.81 4801 5699 7:20 7:26 8:16 8:19 38365 16289 22076 1296 4925 6253
11000 79 0 1.81 4781 6219 7:20 7:26 8:16 8:19 40452 17774 22678 1231 5192 6692
11500 86 0 1.81 4762 6738 7:20 7:26 8:16 8:19 42538 19258 23280 1172 5463 7120
12000 93 0 1.81 4743 7257 7:20 7:26 8:16 8:19 44624 20743 23881 1118 5740 7539
12500 99 0 1.81 4723 7777 7:20 7:26 8:16 8:19 46710 22227 24483 1067 6020 7949
13000 106 0 1.81 4704 8296 7:20 7:26 8:16 8:19 48797 23712 25085 1020 6304 8353

B
R
T
-
IC

6000 35 0 1.81 3279 2721 7:21 7:27 8:16 8:19 21295 7831 13464 1748 3453 1705
6500 42 0 1.81 3279 3221 7:21 7:27 8:16 8:19 23360 9270 14091 1748 3766 2018
7000 48 0 1.81 3279 3721 7:21 7:27 8:16 8:19 25426 10709 14717 1748 4079 2332
7500 55 0 1.81 3279 4221 7:21 7:27 8:16 8:19 27492 12148 15344 1748 4393 2645
8000 61 0 1.81 3279 4721 7:21 7:27 8:16 8:19 29558 13587 15971 1748 4706 2958
8500 68 0 1.81 3279 5221 7:21 7:27 8:16 8:19 31624 15026 16597 1748 5019 3272
9000 74 0 1.81 3279 5721 7:21 7:27 8:16 8:19 33690 16466 17224 1748 5333 3585
9500 81 0 1.81 3279 6221 7:21 7:27 8:16 8:19 35755 17905 17851 1748 5646 3898
10000 87 0 1.81 3279 6721 7:21 7:27 8:16 8:19 37821 19344 18477 1748 5959 4212
10500 94 0 1.81 3279 7221 7:21 7:27 8:16 8:19 39887 20783 19104 1748 6273 4525
11000 100 0 1.81 3279 7721 7:21 7:27 8:16 8:19 41953 22222 19731 1748 6586 4838
11500 107 0 1.81 3279 8221 7:21 7:27 8:16 8:19 44019 23661 20357 1748 6899 5152
12000 113 0 1.81 3279 8721 7:21 7:27 8:16 8:19 46085 25101 20984 1748 7213 5465
12500 120 0 1.81 3279 9221 7:21 7:27 8:16 8:19 48150 26540 21611 1748 7526 5778
13000 126 0 1.81 3279 9721 7:21 7:27 8:16 8:19 50216 27979 22237 1748 7839 6092

T
w
o-
F
re
qu
nc
y

6000 0 0 - 6000 0 - 7:20 8:20 - 19800 0 19800 3900 3900 0
6500 0 0 - 6500 0 - 7:16 8:21 - 22154 0 22154 4577 4577 0
7000 0 0 - 7000 0 - 7:13 8:23 - 24617 0 24617 5308 5308 0
7500 2 7 1.28 6986 514 6:51 7:13 8:23 8:34 27181 1472 25709 5464 6010 263
8000 12 30 1.24 5654 2346 6:58 7:22 8:18 8:30 29679 6719 22960 4070 6356 1226
8500 22 48 1.21 4768 3732 7:03 7:27 8:16 8:28 32080 10690 21390 3225 6650 1978
9000 30 62 1.18 4129 4871 7:06 7:31 8:14 8:26 34418 13956 20462 2658 6938 2607
9500 39 75 1.15 3643 5857 7:09 7:35 8:12 8:25 36710 16784 19926 2253 7230 3156
10000 47 87 1.13 3260 6740 7:10 7:37 8:11 8:24 38968 19320 19648 1948 7531 3649
10500 55 97 1.11 2948 7552 7:12 7:39 8:10 8:23 41199 21650 19549 1711 7841 4101
11000 63 107 1.09 2690 8310 7:13 7:41 8:09 8:23 43409 23829 19581 1522 8159 4521
11500 71 116 1.08 2471 9029 7:14 7:42 8:08 8:22 45603 25893 19710 1367 8483 4918
12000 78 125 1.06 2283 9717 7:15 7:44 8:07 8:22 47782 27868 19914 1238 8815 5294
12500 86 134 1.05 2121 10379 7:15 7:45 8:07 8:22 49950 29772 20177 1130 9151 5655
13000 93 142 1.03 1978 11022 7:16 7:46 8:06 8:21 52107 31619 20488 1037 9492 6002
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