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DYNAMIC PROBLEMS IN REVENUE MANAGEMENT: STRUCTURE AND
APPROXIMATION.

A pesar de que los orígenes del Revenue Management se remontan a su utilización por las
compañías aéreas en la era posterior a la desregulación en los Estados Unidos, hoy en día
es muy utilizada por diversas industrias como hoteles, empresas de alquiler de automóviles
y retailers. Desde entonces, la investigación en esta área creció y se convirtió en una de las
ramas más exitosas de la investigación operativa. Cuánto, a qué precio y cuándo vender
son las preguntas claves que el Revenue Management pretende responder para maximizar
los ingresos esperados de un vendedor. Diferentes supuestos llevan a diferentes modelos
y, en consecuencia, surgen nuevos desafíos tanto teóricos como algorítmicos. En esta tesis
abordamos algunos de ellos, estudiando desde enfoque teórico de un problema de determi-
nación de precios dinámicos hasta el estudio del gap de optimalidad de algunos problemas
de decisión online y la relación entre algunos de ellos.

En el primer capítulo, estudiamos el problema al que se enfrenta un vendedor dotado de
una sola unidad de producto para la venta en un horizonte in�nito con el �n de maximizar sus
ingresos esperados. La empresa se compromete previamente a la función de precio y el com-
prador es estratégico y tiene una valoración privada por el ítem. Nuestro objetivo es estudiar
la importancia, en términos de los ingresos esperados del vendedor, de observar el tiempo de
llegada del comprador. En ese sentido, nuestro principal resultado establece que el ingreso
esperado cuando el vendedor observa la llegada del comprador es a lo mas aproximadamente
4,91 veces el obtenido cuando el vendedor no observa la llegada del comprador.

En el segundo capítulo, mostramos que si tenemos un mecanismo posted price con una
cierta garantía de aproximación, podemos obtener prophet inequality (en el mismo escenario)
con la misma garantía de aproximación. Este resultado, junto con el trabajo de Chawla et
al. [41], implican que el problema de diseñar mecanismos de posted price es equivalente al
de encontrar reglas de parada para el problema de tiempo de parada óptimo.

Por último, en el tercer capítulo presentamos una clase general de problemas de de-
cisión online, llamado Dynamic Resource Constrained Reward Collection (DRCRC), que
comprende varios problemas estudiados por separado en la literatura. Debido a la di�cultad
de resolver el problema de forma óptima, es habitual desarrollar heurísticas fáciles de re-
solver y que sean una buena aproximación para el ingreso óptimo esperado. Así, estudiamos
la pérdida de ingresos bajo una heurística estudiada en la literatura, proporcionando una
única prueba de la pérdida de ingresos para los problemas incluidos en la clase DRCRC,
recuperando resultados existentes para algunos problemas y obteniendo nuevos para otros.
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Although the origins of Revenue Management date back to its use by airlines in the post-
deregulation era in the U.S., nowadays is heavily used by a variety of industries such as
hotels, car rental companies and retailers. Since then, research in this area grew and became
one of the most successful branches of operation research. How much, at what price and
when to sell are the key questions that Revenue Management aims to answer in order to
maximize the expected revenue of a seller. Di�erent assumptions carry to di�erent models
and consequently, new theoretical and algorithmic challenges arise. In this thesis, we address
some of them, going from a theoretical approach of a dynamic pricing problem to the study
of the optimality gap for some online decision problems and the relation between some of
them.

In the �rst chapter, we study the problem faced by a seller endowed with a single unit
for sale over an in�nite time horizon in order to maximize her expected revenue. The �rm
pre-commits to the price function and the buyer is strategic and has a private value for
the item. Our goal is to study the importance, in terms of seller's expected revenue, of
the observability of the buyer's time arrival. Our main result states that, in a very general
setting, the expected revenue when the seller observes the buyer's arrival is at most roughly
4.91 times the expected revenue when the seller does not know the time when the buyer
arrives.

In the second chapter, we show that if we have a posted price mechanism with a certain
approximation guarantee, this can be turned into a prophet inequality (in the same setting)
with the same approximation guarantee. This result, together with the work by Chawla et
al. [41], imply that the problem of designing posted price mechanisms is actually equivalent
to that of �nding stopping rules for a prophet.

Finally, in the third chapter we introduce a general class of online decision problems,
namely Dynamic Resource Constrained Reward Collection (DRCRC) that comprises sev-
eral problems studied separately in the literature. In particular, the class of DRCRC ad-
mits as special cases the classes of network revenue management problems, dynamic pricing
problems, online matching problems, to name a few. Due to the di�culty of solving the
decision-maker problem optimally, it is usual to develop heuristics to approximate the op-
timal expected revenue. Thus, we study the revenue loss under a well studied certainty
equivalent heuristic, providing a unifying proof for the revenue loss for DRCRC, recovering
some existing results for some problems and obtaining new ones for others.

iii



iv



�I was taught that the way of progress is neither swift nor easy.�
Marie Curie.
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Introduction

Revenue Management can be de�ned as the art of being e�cient in the allocation of goods
and services with limited inventory over a given selling horizon. Due to consumers in a
market are heterogeneous, and not all have the same willingness to pay for the product or
service the company o�ers, it may be optimal for the seller to o�er the product to di�erent
segments at di�erent prices. For instance, one way to do this is through discounts, o�ering
dynamic prices (i.e., prices changing over time), or simply o�ering higher quality service at
a higher price. This requires decisions to be made about how much product to sell to each
type of costumer and at what price to do so, which is the basis of revenue management.

Its origins date back to the seventies with a work by Littlewood, who was the �rst to
propose a solution method for the seat inventory control problem for a single leg �ight with
two fare classes. Basically, this problem from the airline industry states as follows: there are
a �nite number of seats of a single leg �ight to be allocate to customers who arrive over time.
Two fare classes are considered, with levels fl and fh, with fl < fh. Once a booking request
is received, the airline should decide whether to accept or reject it. The goal is to search for a
booking control policy maximizing the expected revenue for the whole selling horizon. Note
that in general it is not easy to �nd it because if the decision-maker rejects a lot of demand
of low fare class, there could be empty seats at the end of the selling horizon and therefore
the policy is sub-optimal; on the contrary, if he accepts too many requests for low fare class
at the beginning of the selling horizon, it may be that later high fare class demand must be
rejected due to lack of capacity, losing revenue. To solve this problem, Littlewood assumed
that demand for low fare class comes before demand for high fare class and his policy consists
on stop accepting the low fare booking requests once revenue from selling another low fare
seat is exceeded by the expected revenue of selling the same seat at the higher fare. That
is, demand for low fare class should be accepted as long as fl ≥ fhP(Dh > C), where Dh

represents the demand for high fare class and C is the inventory left. This leads to the well
known Littlewood's Rule that characterizes the optimal amount of inventory to be reserved
to satisfy demand from high fare class.

Few years later, as response to the deregulation of U.S. domestic and international
airlines�which led to the arrival of competition on the market� American Airlines im-
plemented the Littlewood Rule and pioneered the real application of revenue management
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in the world. Since then, the airline revenue management problem has received a lot of
attention throughout the years and continues to be of interest. Furthermore, nowadays rev-
enue management is one of the most successful areas of operations management, both for its
usage in practice by several industries and for its theory developments.

One of the cornerstones of the revenue management on which a large number of scientists
started working during the last few decades is dynamic pricing. Dynamic pricing aims at
maximizing pro�ts by dynamically changing o�er prices within the selling horizon in order
to optimally exploit changes in demand or competition-related conditions. Intertemporal
price discrimination, which is regarded as the basis of dynamic pricing, has been studied
since the seminal work of Coase [42]. He considers a monopolist who sells a durable good
to a large set of customers with di�erent valuations and analyzes how the seller has to
price the product in a way that at the beginning the price is high enough to capture high-
valuation customers and then sequentially reduce the price to capture customers with smaller
valuation. If this strategy works, it results in extracting a large fraction of the consumer
surplus. However, Coase argues that if high-valuation customers anticipate that prices will
decrease, they would wait for a lower fare. This, in equilibrium, will lead the seller to o�er
the product at marginal cost. This result does not hold when supply is in�nite or the good
is perishable because consumers may not have the incentive to wait for the lower price.

How to optimally adjust prices periodically is a question that can be studied under several
model variants, including number of items to sell (single vs. multiple), the relative position
of the seller in the market (monopolistic vs. oligopolistic), the degree of rationality of the
consumers, the seller's ability to change prices over time, and the length of the horizon (�nite
vs. in�nite). Despite the progress in studying di�erent settings of the problem, most existing
literature relies on the seller's ability to know the buyer's arrival to the market. When the
seller can observe the arrival of the buyer, she can make the price function contingent on the
buyer's arrival time, improving her pro�ts. However, it may not be realistic in some contexts,
such as online marketplaces, and this motivated us to think about what is the additional
rent that the seller can obtain by having the ability to observe the arrival of the customers.
To this end, in the �rst chapter we study how important is to observe the arrival time of
the buyer in terms of the seller's expected revenue in a simple model. More speci�cally, if
we de�ned the value of observability as the worst case ratio between the expected revenue of
the seller when she observes the buyer's arrival and that when she does not, our main states
that, in a very general setting, the value of observability is at most 4.911. To show that,
we fully characterize the observable setting and use this solution to construct a random and
periodic price function for the unobservable case.

Broadly speaking, the questions that are addressed in revenue management are also stud-
ied in the Mechanism Design literature, which aims to �nd the rules of a system so that,
in equilibrium, the desired objective of the decision-maker is optimized. One of the most
relevant mechanisms developed in the last decade is the Posted Price Mechanism (PPM).
In this setting, consumers are faced with take-it-or-leave-it o�ers, and therefore strategic
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behaviour of consumers simply vanishes. Each customer buys the o�ered item if and only if
his valuation is not lower than the observed price. Because the problem of computing the
price seems to be much simpler than optimal auctions, online sales have been moving from
an auction format to a posted price format, which has received signi�cant attention in the
last decade from researchers on computer science trying to understand the approximation
guarantees that can be obtained through this type of mechanism.

In that way, Hajiaghayi et al. [79] and later Chawla et al. [41] established a surprising
connection between sequential posted price mechanisms and prophet inequalities, an old
theory arising in optimal stopping. Implicitly they show that any prophet type inequality
can be turned into a posted price mechanism with the same approximation guarantee. As
a consequence, most follow up work in the �eld concentrated on prophet inequalities and
then applied the obtained results to sequential posted price mechanisms. A question that
remained unsolved is whether the converse also holds, that is, if we have a sequential posted
price mechanism with a certain approximation guarantee, can this be turned into a prophet
inequality (in the same setting) with the same approximation guarantee?

In the second chapter of the thesis we answer this question on the positive implying that
the problem of designing sequential posted price mechanisms is actually equivalent to that of
�nding stopping rules for a prophet. Our reduction is robust to multiple settings including
having matroid constraints and downward-closed feasibility constraints, or di�erent arrival
orderings such as deterministic, random, or worst case. The crux of our analysis is a new
Lemma in mechanism design� that we believe may �nd applications that go beyond the
scope of this thesis� stating that for any random variable X, there exists another random
variable Y whose ironed virtual valuation is distributed as X. As a consequence of our main
results we obtain improved lower bounds for the performance of sequential posted price
mechanisms in the bayesian single-parameter setting by carrying the lower bounds on i.i.d.
prophet inequalities of Hill and Kertz [81] to the pricing setting.

PPM is one of the problems studied in the literature of online optimization, which is
widely used to a�ord problems where the decision-maker has to choose a feasible action
immediately after an arrival and there is uncertainty� or there is no information� about
the future. Due to the complexity of computing the optimal policy, even for problems with
moderate size, researchers work to �nd heuristics that are easy to implement and have a good
revenue performance compared to the o�ine optimum, that is, with the optimum obtained
if the problem is solved with complete information.

These class of problems have received special interest in the last decades both in the
Revenue Management and in Computer Science community. One drawback of the most
existing literature is that they study each of the problems separately. However, it is possible
to de�ne a general model that allow us to think each of them as particular cases of it, and this
is part of the contributions of the third chapter of the thesis. Explicitly, we de�ne a class
of problems: dynamic resource constrained reward collection (DRCRC), which comprises a
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lot of the online decision problems studied in the literature, and thus the model involved
is more general. In words, a problem in DRCRC states as follows: opportunities arrive
over a �nite time horizon. Upon arrival, a decision-maker must choose an action by relying
only on present and past information, whereas future information is uncertain. Such actions
have associated some resources consumption� with �nite initial inventory� and a reward
collection. The goal of the decision-maker is to select actions maximizing his total expected
reward subject to the resource consumption constraints. We consider a certainty equivalent
heuristic and we study its performance for the DRCRC class of problems, yielding a unifying
proof to the perfomance of the heuristic for the studied problems that are special cases of
the class DRCRC.

Most of the material in this thesis has been or will be published. The �rst chapter is
based on joint work with José Correa and Gustavo Vulcano [47], whose results have recently
appeared in the proceedings of the 21st ACM Conference on Economics and Computation.
The material in Chapter 2 is based on joint work with José Correa, Patricio Foncea and
Victor Verdugo [45], results published in Operations Research Letters. Finally, the material
in Chapter 3 is based on a working paper with Omar Besbes and Santiago Balseiro [19].

Each chapter will be organized as follows: �rst we present an introduction to the problem
and the main contributions of the chapter. Then, we carry out a brief review of the most
relevant literature regarding our goals and after that we make a more precise de�nition of
the model/problem to be studied during the chapter. Finally, we present the results. In
order to facilitate the reading and understanding of the thesis, we refer the proofs in the
appendix of each chapter.
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Chapter 1

On the observability of the arrival time

of consumers in a dynamic pricing

problem1

1.1 Introduction

In recent years we have witnessed an enormous amount of work in dynamic pricing and
dynamic mechanism design. Driven by the increasingly important online marketplaces, the
area has been particularly active in Economics, Operations Management and Computer
Science. Although the borders are blurred, often research in operations management deals
with �nding optimal or approximately optimal dynamic pricing mechanisms (see, e.g., [26,
38, 69]), in economics the central interest is to �nd optimal dynamic mechanisms (see, e.g.,
[29, 114]) which may involve departing from basic pricing schemes, while in computer science
the interest is in designing simple mechanisms which are approximately optimal (see, e.g.,
[28, 41, 45]).

One drawback of part of the literature is the underlying assumption that the seller is in-
formed of the buyers' arrivals. This assumption allows the seller to update the pricing/mech-
anism when observing a new arrival. In some contexts, such as in online marketplaces, it may
be di�cult for the seller to distinguish interested buyers from other tra�c on the website
and therefore assuming that the seller observes the buyers' arrivals may not be realistic. The
extent to which this observational ability produces additional rents to the seller is the main
subject of this chapter.

Speci�cally, we consider a simple, yet fundamental, model in which one seller interacts
with a single buyer. The seller holds a single item whose value is normalized to zero, while

1This chapter of the thesis is based on joint paper with José Correa and Gustavo Vulcano [47]
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the buyer has a private random valuation for it. The buyer arrives according to an arbitrary
distribution over the nonnegative reals. As usual in the literature, both the buyer and the
seller discount the future but they do it at di�erent rates, the buyer being more impatient
than the seller. The goal of the seller is to set up a price function so as to maximize her
expected discounted revenue. On the buyer's side, upon arrival, he observes the price function
and decides to buy at the time that is most pro�table for him. The ability of the seller to
observe the buyer arrival (or not) determines two di�erent situations. In the observable case,
the seller observes the buyer arrival and thus the price function she sets may be dependent
on it. In the unobservable case this ability is absent and therefore the seller has to set a price
curve from the beginning of the selling horizon only knowing the arrival distribution. These
two scenarios naturally lead to de�ne the value of observability for a given instance of the
problem as the ratio between the revenue of the seller in the observable case and that in the
unobservable case. A particular instance of the problem is de�ned by the arrival distribution
of the buyers and their valuation distribution, and the discount rates for both the buyer and
the seller. Then, the more general value of observability (VO) is de�ned as the supremum
of the corresponding instance-speci�c VO taken over all possible distributions and discount
rates, which corresponds to the worst-case ratio between the revenue of the seller in the
observable and unobservable cases. The focus of our work is to bound this worst-case ratio.

There are two equivalent interpretations for this model that are worth highlighting. First,
on the demand side, the model with a single buyer could be equivalently interpreted as having
a continuum of buyers with total mass equal to 1. In the observable case, the in�nitesimal
mass of buyers is represented by the probability density function (pdf) of the buyer's private
valuation. This interpretation is extended by also accounting for the pdf of the buyers'
arrival distribution in the unobservable case. On the supply side, we assume a unit supply
which is in�nitesimally partitioned so that it can be taken as unlimited.

Second, our VO result can also be interpreted as the price of discrimination. To see this,
consider the in�nitesimal buyer view of our model just introduced, where the seller sets a
personalized price curve for each arriving buyer so that the total expected discounted revenue
she obtains is the same as that achieved in the observable case. On the other hand, if the
seller does not have this power, she should o�er the same pricing policy for all customers
since the beginning of the selling horizon. The latter problem is exactly the same as the
unobservable case described above. Therefore, if we de�ne the price of discrimination as
the additional rent the seller can obtain by tracking each buyer arrival time and posting a
personalized price curve, it becomes equivalent to the value of observability. Thus, we are
also providing a bound for the price of discrimination, i.e., for the additional rent the seller
can obtain by o�ering a personalized price curve for each customer.

The value of price discrimination is being studied by researchers in operations due to its
practical interest. Although most of them are focused on how to do price discrimination, a
recent work by Elmachtoub et al. [56] studies when doing price discrimination is worthwhile
and when it is not. Speci�cally, they provide lower and upper bounds on the ratio between the
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revenue achieved from charging each costumer his own valuation and the revenue obtained
through a single price strategy and they also compare the pro�t obtained when the seller
observes some information before �xing the pricing policy (but not the buyer valuation) with
the one earned by each of the two strategies described above.

Motivating Example

A key di�culty in evaluating the value of observability is that the unobservable case is
typically very hard to solve and standard approaches to tackle dynamic pricing or mechanism
design problems based on optimal control fail.

To better grasp this di�culty and the di�erence between the observable and unobservable
cases let us describe a quick example. Take a buyer with valuation uniformly distributed
in [0, 1] and arrival time distributed as an exponential with mean 1. Also assume the seller
discount rate is 1 while that of the buyer is extremely large (so that in the end the buyer
is myopic, he will buy as long as the price is below his valuation). Then, if the seller can
observe the buyer's arrival in our dynamic pricing setting, she will start pricing at 1 and
then decrease the price suddenly in a continuous fashion until hitting the customer valuation,
where the transaction is executed. In this way, she will be extracting all the consumer surplus,
with expected value 1/2. Thus, in expectation, the seller gets

∫∞
0

(e−t/2)e−tdt = 1/4 (here,
the �rst e−t represents the discounting and the second e−t represents the density of the
exponential).

On the other hand, in the unobservable case, if we assume that the seller needs to set
a decreasing price function then the problem is relatively easy to solve. Indeed, the seller
would need to maximize, over all decreasing functions p(·), the quantity

∫∞
0

(e−t(1− p(t))−
(1 − e−t)p′(t))e−tp(t)dt. Note that for a decreasing p(t), trade occurs between t and t + dt
if either the buyer arrived in that interval and his valuation is above p(t) (hence the term
e−t(1− p(t))), or the buyer arrived before t and his valuation is between p(t) and p(t + dt)
(hence the term −(1−e−t)p′(t)). In both cases the discounted revenue for the seller is e−tp(t).
The solution of this problem turns out to be p(t) = e−t, which results in an expected revenue
of 1/6. Overall the ratio of the revenues between the observable and non observable cases
is 3/2, and therefore this suggests that V O ≥ 3/2. However, the seller's strategy space is
richer than that of decreasing price functions. Suppose that she splits the time horizon into
short intervals of length ε and considers a periodic price function that sets price 1 for the
�rst ε− ε2 time units of each interval and a quickly decreasing price (from 1 to 0) in the last
ε2 time units of each interval. As the buyer is myopic he will buy at the �rst point in time
in which the price is below his valuation and since ε is very small the probability that the
buyer arrives when the price is 1 is close to 1. Thus, even in the unobservable case the seller
is able to obtain a revenue arbitrarily close to 1/4.

Furthermore, when the discount rate of the buyer is not too large strategic behavior
comes into play, which adds an additional layer of di�culty in formulating the problem, as
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we discuss in Section 1.4.2. It should be noted that if both the buyer and seller discount at
equal rates then the optimal pricing function is simply constant in both the observable and
unobservable cases, therefore strategic behavior vanishes, there is no delay on trade, and the
resulting expected revenues for the seller are equal. Thus we assume throughout that the
buyer's discount rate is strictly larger than that of the seller.

1.2 Contributions

We summarize contributions of Chapter 1 below.

Firstly, we revisit the observable case. Although this problem is far from new, we write the
seller's problem as an optimal control problem. Due to this problem is di�cult to solve, we
propose a relaxation by computing the �rst order condition of the equilibrium constraints.
In fact, we show that the problems are equivalent and we use Euler-Lagrange optimality
conditions to derive a characterization of the optimal pricing policy as the solution of an
ordinary di�erential equation. We also prove a key result (Lemma 1) establishing that in
the optimal pricing the seller extracts a constant fraction of the total revenue within a short
time, that solely depends on the seller's discount rate.

Secondly, we turn to study the unobservable case. Unfortunately, this problem is much
harder to analyze and obtaining an explicit solution seems hopeless. However, we described
and model the problem under some assumptions over the primitives of the problem. It is
worth mentioning that for the main purpose of the work it is enough to to exhibit a pricing
policy that can recover a constant fraction of the revenue of the optimal solution in the
observable case.

Finally, we prove that for arbitrary arrival and valuation distributions of the buyer and
arbitrary discount rates of both the seller and the buyer, the value of observability is bounded
above by a small constant. To this end, we search for a particular pricing policy for the
unobservable case that allows us to compare the seller's expected revenue under this policy
with the optimal expected revenue for the observable case. The main idea is to use the
solution of the observable case and try to repeat it over time to contract a periodic price
function. Of course this is not possible since already that solution takes in�nite amount of
time to implement. Thus the aforementioned key result comes into play and allows us to do
this repeated pricing within small time windows. The second obstacle is that we should be
careful with the buyer's strategic behavior. To avoid this issue, we simply introduce empty
space, say by using a very high price, before each application of the optimal observable
pricing so as to make a buyer, arriving within this empty space, behave as in the observable
case. Again, this comes at a loss of a constant fraction of the revenue. Finally, a di�culty
arises since the arrival distribution might now impose a lot of weight in regions where our
price is too low. To overcome this we apply a random shift to our price curve which allows
us to treat the buyer's arrival time as if it were uniform on a given interval. Ultimately, by
carefully dealing with these three obstacles we are able to show that the proposed pricing
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scheme obtains an expected revenue of at least a fraction 1/4.911 = 0.203 of the optimal
revenue in the observable case.

For the special and relevant case of valuation distributions having monotone hazard rate,
which includes several of the standard distributions, we show that the situation is much
simpler. Indeed it is enough to consider a �xed price curve (i.e., the price is constant over
the whole period) to recover a fraction 1/e of the revenue in the observable case. We further
note that �xed pricing cannot guarantee a constant in general.

This result is somewhat surprising because of several factors: (i) the generality of the
model; (ii) the bound is totally independent of the model primitives; and (iii) simple pricing
strategies, such as �xed pricing, fail to guarantee a constant bound. We also note that our
result is robust to the distribution of arrivals. Indeed, even if the arrival time of the buyer
was chosen by an adversary that knows the price function of the seller (but does not know
the realization of the random shift) then our bound on the VO still applies.

Let us highlight that we also provide a lower bound for the VO by solving, numerically,
the unobservable case for a particular tractable instance.

1.3 Related literature

Although the literature on dynamic pricing is extensive, next we present a brief review of the
literature, with more emphasis on those related to the problem considered in this chapter.
For further reading see [13, 15, 27, 65, 75, 124, 129, 136].

Typically, the literature studies a game between a seller and one or more buyers. The
seller owns an item or a set of items, and the buyers have private valuations for them. The
game takes place over a time interval since either the buyers arrive over time or since the
buyers and the seller discount the future di�erently, which implies that there is delay on
trade. Then, there are several features that characterize a pricing problem. For instance,
whether there is a single of multiple buyers and sellers, the inventory to sell, the information
about the valuation for the items, the length of the selling horizon, how buyers arrive to the
market, how do the decide when to buy and how do both buyers and sellers discount the
future, are some of them. In what follows, we make a small survey of the related literature
for some di�erent model variants.

Almost all papers consider a monopoly. By avoiding competition between multiple sellers,
the authors signi�cantly reduce the mathematical complexity of their models, which already
contain the interaction between customers and sellers and between customers themselves.
Some papers in which a monopoly is considered are [14, 48, 46, 92]. Like those, in this
chapter we also consider that there is only one seller. However, an oligopoly is generally
a more realistic setting. Liu and van Ryzin [100] consider an oligopoly and point out that
competition reduces the market power and therefore the pro�ts of each individual seller.
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Although Aviv and Pazgal [14] and Elmaghraby et al. [57] consider a monopoly, they examine
oligopolies with respect to their proposals for potential model extensions.

In relation to the type of consumers, it is usual to consider myopic (see, e.g., [6, 86,
101]), or strategic (see, e.g., [14, 31, 127]) consumers. Myopic consumers are those who
purchase at the �rst time they are able to achieve a positive surplus. Considering this kind
of consumers, future prices have no in�uence on purchasing decisions. On the other hand,
strategic consumers decide when to buy in order to maximize their surplus, even though that
may imply waiting to buy. That is, they take into account all future purchase opportunities
and delay making a purchase if necessary in order to achieve a higher surplus. It is worth
mentioning that some authors consider the presence of both myopic and strategic consumers
in their model (see, e.g., [92, 135]). Motivated by the presence of strategic consumers in the
market and the related recent literature, our model follows this trend, with a single strategic
consumer.

Regarding the arrival of consumers, some papers assume that it is simultaneous at the
beginning of the selling horizon. This is mainly because allows to model some applications,
as well as it makes the problem mathematically more tractable (see, e.g., [25, 64, 99, 48, 92]).
For instance, Gallego et al. [64] presents a model in which a monopolist wants to sell a �xed
inventory of a product to consumers arriving at the beginning of the two selling periods (the
market size is �xed) with a decreasing willingness to pay for the product. The seller commits
to a markdown price path for the two periods and, given that, each consumer determines
in which (if either) of the two period will purchase. They prove that, in equilibrium, a
single-price policy is optimal if all consumers are strategic and the seller knows the demand.
Without any of these conditions, it can be optimal to implement a two-price markdown
policy. On the contrary, other authors model a dynamic pricing problem with customers
arriving sequentially during the selling horizon. In this case, customers typically arrive
following a Poisson process (see, e.g., [14, 57, 31]). However, there are papers considering a
di�erent sequential arrival of consumers. For example, Su [127] considers customers being
in�nitesimally small and that they arrive continuously according to a deterministic �ow of
constant rate. Wu et al. [133] consider a market size as a random variable with a general
distribution, while Gershkov et al. [69] considers that the arrivals are described by a Markov
counting process. In particular, we consider that the buyer arrives according to a known
distribution.

About how to discount the future, some of the literature only considers discount factor
on the customer side. For instance, Correa et al. [31] and Kremer et al. [92] assume that
all strategic consumers have an identical discounting factor. That is, the buyer's surplus
is discounted by an identical rate for all buyers. The higher a discount factor is, the more
impatient the buyers are. On the other hand, Aviv and Pazgal [14] and Cachon and Swinney
[35] consider a model where only discount the valuation over time, thus resulting in minor
changes in the model and results. On the other hand, it is possible to include discounting
on the part of sellers and customers in their models. Instead of assuming that both seller
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and buyers have the same rate discount (see, e.g., [25, 68, 69]), we consider that buyer's
rate discount is grater than the seller's one, which means that the buyer is more impatient
than the seller. Regarding that, Osadchiy and Vulcano [112] �nd that the most bene�cial
scenarios occur when the seller's discount factor is lower than the customer's and therefore,
the seller can take advantage of the customer's impatience. Others papers in which both
seller and buyers have no the same rate discount are Mantin and Granot [105] and Correa
et al. [31]. It is worth mentioning that some authors model the impatience of buyers by
considering a deadline to make a decision of whether to buy or not and when, or an explicit
waiting cost (see, e.g., [107, 113, 127]).

Another key feature of our work, is that we study a pricing problem in a continuous time
setting. The literature considering continuous time pricing models is rather limited (see
[31, 67]), and most of the work is over discrete time, e.g. [26, 46, 48].

Despite the fact that there are a large number of recent scienti�c papers in dynamic
pricing, we are interested in studying the importance, in terms of seller's expected revenue,
of the observability of the buyer's time arrival to the market, which is a question that it has
not been studied yet. In particular, we bound the additional rent the seller can obtained
when she is able to observe the arrival time of the buyer before o�ering the price curve. To
this end, we de�ne what we called observable case�the seller observes the buyer's arrival
and then set a price curve maximizing her expected revenue�, and the unobservable case�
the seller is not able to observe the arrival and therefore she should �x the prices since the
beginning.

Regarding the observable case, this problem is far from new and indeed already Stokey
[126] notes that intertemporal price discrimination happens only due to the di�erence in
discount rates. Later, Landsberger and Meilijson [96] precisely show that this price discrimi-
nation through time is optimal, while Shneyerov [125] considers the situation in which there
are multiple units to sell. These both works studied the problem from a mechanism design
approach. The observable case has been studied also from a pricing approach by Wang [132].
As in the latter, we take a pricing approach (rather than a mechanism design) which, as usual
in this literature, allows us to write the seller's problem as an optimal control problem and
furthermore to fully characterize its solution. Although Shneyerov [125] considers a very
similar situation to ours, they characterize the optimal price function through the maximum
principle and, therefore, it involves a rather complicated hamiltonian. On the contrary, our
approach is simpler, and based on the Euler-Lagrange optimality conditions we can derive a
simpler ODE which we prove has a unique solution.

Although the unobservable case has not been studied in the literature in the context we
consider, some papers does not assume complete information about the arrival time. For
instance, Caldentey et al. [38] consider a setting where the buyers are characterized not
only by their valuation but also by their arrival time. However, their approach di�er from
ours because their goal is to characterize optimal price curves minimizing the worst-case
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regret of the seller. The setting they consider is also di�erent: both the buyer and the
seller�in fact they �rst consider only one buyer but then do the analysis for more buyers�
discount at the same rate. Furthermore, they consider a �nite horizon and both myopic and
strategic consumers�in the case of one buyer, they consider that he may be either myopic
or strategic. Another related paper is the one by Bergemann and Strack [21], who considers
a setting where the arrival time and the valuation is private information of each buyer and
unobservable to the seller. The main di�erence with our model is that they consider both
the seller and the buyers discount the future at the same rate, which is necessary to their
approach to work.

Organization

We start with the precise model description in Section 1.4, including describing the buyer's
problem and the seller's problem in Section 1.4.2. This latter section includes the formu-
lations of the standard observable case and the more challenging unobservable case. Both
cases are later analyzed in detail in Sections 1.5 and 1.6, respectively. Finally, the bounds
for the VO are established in Section 1.7.

1.4 Model description

We study the problem faced by a �rm (seller) endowed with a single unit for sale over an
in�nite time horizon. The value of the item for the seller is normalized to zero. We take a
revenue management (RM) point of view and assume that the seller cannot replenish this
unit throughout the selling horizon. On the demand side, a single consumer will arrive at a
time that follows a cumulative distribution function (cdf) G : [0,∞]→ [0, 1] and density g.
The buyer has a private valuation v for the item with cdf F : [0, v̄] → [0, 1] and density f .
Both G and F are common knowledge. As it is standard in the literature we can equivalently
think that the seller has unlimited supply, and that on the consumer side we have a mass of
consumers with arrivals distributed as G and valuation distributed as F .

The interaction between the seller and the buyer is formalized as a Stackelberg game in
which the seller is the leader and pre-commits to a price function p(t) over time in order to
maximize her expected revenue. The buyer is the follower and has to decide whether and
when to purchase the item, given the price function set up by the seller.

We discuss two possible variants of this problem. In the observable case, the seller is able
to track the buyer's arrival time τ and from that moment onwards she commits to a price
function p : [τ,∞] → [0, v̄]. In the unobservable case, the seller does not see the buyer's
arrival time (although she does know the arrival time distribution G) and since time 0 she
commits to a price function p : [0,∞]→ [0, v̄].

Even though for the ease of exposition the game between the seller and the buyer is
presented as if the seller were to announce the price function in a �rst stage, and the buyer
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were going to decide if and when to purchase in the second stage, strictly speaking, the
game can also be described as a simultaneous game with no need of precommitment since
the calculation of the price function and the timing of the buyer's purchase decision are
based on common knowledge information.

For technical reasons, in both cases we impose the mild condition that the price function p
is lower semi-continuous and di�erentiable almost everywhere2. In what follows, we introduce
the buyer's and the seller's problems, as well as some preliminary de�nitions and results.

1.4.1 The buyer's problem.

When the buyer arrives, he observes the price function for all future times and decides
whether and when to buy in order to maximize his utility. We assume that the consumer
is forward-looking and sensitive to delay, and denote by U(t, v) the quasilinear discounted
utility function of a consumer with valuation v purchasing at time t. In particular, we
consider an exponentially discounted utility function: U(t, v) = e−µt(v − p(t)), where µ > 0
is the discount factor.3

Note that as t → ∞, U(t, v) → 0, so that the buyer eventually purchases the item as
long as v > p(t), for some t. Given a price function p(t), a forward-looking buyer arriving
at time τ with valuation v solves:

[BP ] max
t≥τ

U(t, v).

It may be possible that this problem has multiple solutions, and to avoid ambiguity we
will further assume for convenience that the buyer purchases the item at the earliest time
maximizing his utility. We de�ne the auxiliary function φ : [0,∞)→ [0, v] as:

φ(t) = inf{v : U(t, v) ≥ U(t′, v), ∀t′ ≥ t},
that represents the minimum valuation that the buyer must have in order to buy at time t
and not later, and it is de�ned irrespective of the buyer's arrival time τ ≤ t. In other words,
the function φ de�nes a threshold in the sense that if a buyer with valuation v buys at time t,
then a buyer with valuation v′ > v buys at the same time and not later4. Based on φ, we
are able to describe the equilibrium conditions for the buyer purchasing behavior and used
them to formulate the seller's problem.

2Due to this assumption the seller could potentially lose at most a negligible extra revenue and therefore
it does not a�ect our results. Moreover, the lower semi-continuity is necessary to ensure that the buyer's
problem can always be solved.

3This intertemporal utility function discounts the buyer's payo� from time zero, and it is without loss
of generality for the sake of characterizing an optimal policy. That is, if the buyer purchasing at time t
only incurs the disutility for waiting from his arrival time τ , then the utility function U(t, v) would only be
a�ected by a �xed constant: U(τ, t, v) = e−µ(t−τ)(v − p(t)) = e−µτU(t, v).

4To see this, knowing that v = φ(t), we have U(t, v) ≥ U(t′, v) ∀t′ ≥ t. Now, consider a buyer with
valuation v′ = v+ε, ε > 0. By simple algebra we have U(t, v′) = U(t, v)+εe−µt > U(t′, v)+εe−µt

′
= U(t′, v′),

i.e., U(t, v′) ≥ U(t′, v′),∀t′ ≥ t. Thus, the purchasing time of buyer v′ cannot be later than t.
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1.4.2 The seller's problem

The seller's problem is to select a price function to maximize her expected revenue, taking
into account the forward-looking behavior of the buyer.

Observable arrival case

In this situation the seller observes the arrival time τ of the buyer and therefore sets a price
function p de�ned over [τ,∞). For now, we will pretend that the buyer arrives at time zero,
i.e., we initially assume that τ = 0.

Given the threshold function φ induced by the price function p, a buyer with valuation v
will purchase at the �rst time t ≥ 0 satisfying v ≥ φ(t). In this observable case, the buyer's
purchasing behavior could be better represented by resorting to the auxiliary function ψ(t),
de�ned as

ψ(t) = min{φ(s) : s ≤ t}.
In other words, a customer arriving at time zero with valuation ψ(t) will buy at time t.
Due to the lower semi-continuity of p we have that φ is also lower semi-continuous and
therefore, ψ is well de�ned (see Proposition 10 in the Appendix A.1 for a proof). The
purchasing function ψ(t) is the unique non increasing function that supports φ(t) from below
(see Figure 1.1(a)). The instantaneous probability of selling at time t is given by d(1 −
F (ψ(t))). With this observation we may write the seller's problem conditioned on the event
that the buyer arrives at time 0:

[SPO0] maxp,ψ p(0)(1− F (ψ(0))) +

∞∫
0

e−δtp(t) d(1− F (ψ(t))).

s.t. t ∈ arg max
s≥0

U(s, ψ(t)) for all t ≥ 0.

The �rst term in the objective function stands for the event where the customer buys imme-
diately at time 0, and the second term accounts for his forward looking behavior. Following
the standard assumption in the literature, we assume that the seller is more patient than the
buyer and hence her discount factor δ veri�es δ < µ. The incentive compatible constraint
speci�es that a consumer arriving at time zero with valuation ψ(t) maximizes his utility at
time s = t.

Note that every p feasible solution of the problem [SPO0] must be non increasing. Other-
wise, there would exist t > s > 0 such that p(t) > p(s) > 0. Thus, ψ(t)− p(s) > ψ(t)− p(t)
and e−δs > e−δt > 0, and therefore, U(s, ψ(t)) > U(t, ψ(t)), which contradicts the de�nition
of t in the constraint of [SPO0].

We can now extend the seller's revenue optimization problem to the case when the buyer
arrives at time τ > 0. Let Rτ be the seller's maximum expected revenue conditioned on
the event that the buyer arrives at time τ . This corresponds to shifting the seller's revenue
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(a) Observable case. De�nition of the
function ψ(t). For a given function φ(t),
a customer with valuation ψ(t) arriving
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(b) Unobservable case. Characterization
of a buyer purchasing at time t1 including
the one arriving exactly at t1 with valua-
tion v ≥ v1, and those arriving between st1
and t1 with valuation v1.

Figure 1.1: Consumer purchasing behavior

from τ = 0 to τ > 0, i.e., Rτ = e−δτR0, with R0 being the objective function value of
problem [SPO0]. Finally, the ex-ante maximum expected revenue of the seller can be written
as R = R0

∫∞
0

e−δτg(τ)dτ , so that our assumption above on writing the seller's problem when
the customer arrives at time zero is without loss of generality in terms of characterizing the
seller's optimal pricing policy.

The formulation [SPO0] and the related R allows us to make a clear connection to the two
alternative interpretations of our model: (i) there is a continuum of buyers with mass d(1−
F (ψ(t))) who buy at time t, for a total mass of 1 over the in�nite horizon; and (ii) the seller
is able to keep track of each of these buyers and post a personalized price curve p(t).

Unobservable arrival case.

When the seller does not observe the buyer's arrival time, the price function that she has to
set can only depend on the arrival time distribution G.

Although it is possible to formulate the seller's problem without any assumption over the
threshold function φ, it is necessary to be careful on how to express her expected revenue
when φ is not continuous. Thus, just for simplicity and because it does not a�ect the analysis
in what follows, we describe the seller's problem under the assumption of φ being continuous.

De�ning the point of time st as the last time previous to t where φ takes the same value
as φ(t) (or st = 0 if such time does not exist, see Figure 1.1(b)), i.e.,

st = sup{l < t : φ(l) = φ(t)} ∨ 0,
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the seller's problem can be described as follows:

[SPN ] maxp,φ

∞∫
0

e−δtp(t)
[
(1− F (φ(t)))g(t) + 1{φ′(t)≤0}(G(t)−G(st))(1− F (φ(t)))′

]
dt.

s.t. t ∈ arg max
s≥t

U(s, φ(t)) for all t.

The term in brackets stands for the probability of purchasing at time t. Within it, the �rst
term (1−F (φ(t)))g(t) represents the probability of arriving at time t with valuation v ≥ φ(t)
and hence purchasing immediately. This corresponds to the points in the vertical line in
Figure 1.1(b); that is, we are accounting for a customer arriving in t1 with valuation v ≥ v1.

The second term, (G(t)−G(st))(1− F (φ(t)))′, is the probability of purchasing at time t
when arriving at any time between st and t with valuation φ(t), that is, the probability of
being in the line connecting φ(st1) and φ(t1) in Figure 1.1(b). Note that if the buyer has
arrived before t and is still present at t, he will not buy if φ is increasing at t, and thus the
latter term only holds at points where φ is decreasing.

The description of this optimization problem is included for completeness, but strictly
speaking we will not solve it in our forthcoming development, but rather we would focus in
a feasible pricing policy that would allow us to bound the ratio between the revenue from
[SPO0] and [SPN ].

We conclude this section by making the connection with the two alternative model inter-
pretations described in Section 1.1: (i) a model in which there is a continuum of in�nitesimal
buyers with point mass 1{φ′(t)≤0}(G(t)−G(st))(1−F (φ(t)))′+ (1−F (φ(t)))g(t), who buy at
time t (and who have arrived before or at t), and (ii) the model with no price discrimination
since all buyers face the same price curve posted at time zero.

1.5 Analysis of the model with an observable arrival

Given the argument stated in Section 1.4.2, to analyze the observable case it is su�cient to
focus on the solution of [SPO0], where the buyer arrives at time 0.

The problem [SPO0] is di�cult to solve because of its equilibrium constraint. Our ap-
proach will be to formulate a relaxed version of the problem by computing the �rst order
condition of the equilibrium constraint. Then, by applying the Euler-Lagrange equation we
will show that any solution of the relaxed problem also solves [SPO0]. Moreover, we pro-
vide a characterization of the optimal price function as a solution of an ordinary di�erential
equation, which turns out to have a unique solution for a large set of valuation distributions,
and furthermore, it can be solved explicitly for at least for F being a uniform distribution.

To begin with, consider the incentive compatible constraint in problem [SPO0]. If t∗ > 0
is in the interior of the feasible region, then it must satisfy the �rst order condition h(t) = 0,
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where h(s) = Us(s, ψ(t)), or equivalently, ψ(t) = p(t) − p′(t)
µ
. Now, consider the relaxed

formulation:

[SPOr
0] maxp,ψ

∞∫
0

e−δtp(t)(−ψ′(t))f(ψ(t)) dt+ p(0)(1− F (ψ(0)))

s.t. ψ(t) = p(t)− p′(t)

µ
∀t ≥ 0.

The feasible region of this constrained problem is larger than the one of [SPO0] and therefore,
the objective function value of [SPOr

0] provides an upper bound of [SPO0].

Note that the problem [SPOr
0] can be written as the following unconstrained maximization

problem on the price function p(t):

max
p

∞∫
0

e−δtp(t)

(
−p′(t) +

p′′(t)

µ

)
f

(
p(t)− p′(t)

µ

)
dt+ p(0)

(
1− F

(
p(0)− p′(0)

µ

))
.

(1.1)
Letting the integrand function be G(t, p(t), p′(t), p′′(t)) and the expected revenue at time
zero be r0, problem (1.1) is equivalent to:

max
p

∞∫
0

G(t, p(t), p′(t), p′′(t)) dt+ r0.

Focusing on the �rst term above, the associated Euler-Lagrange equation that must be
satis�ed by an optimal price function p(t) states that

d2

dt2
∂G

∂p′′
− d

dt

∂G

∂p′
+
∂G

∂p
= 0.

Such function p(t) is a stationary point of the functional

∞∫
0

G(t, p(t), p′(t), p′′(t)) dt.

After some algebra (detailed in Lemma 10 in the Appendix A.1) the Euler-Lagrange equation
becomes:

f ′ (ψ(t)) (ψ′(t)) (−δp(t) + p′(t)) + f (ψ(t)) [δ(δ − µ)p(t)− 2δp′(t) + 2p′′(t)] = 0, (1.2)

where ψ(t) = p(t) − p′(t)
µ
. Of course, this equation can be written as a system of two �rst

order di�erential equations by de�ning the auxiliary variable u(t) = p′(t). Thus, by standard
results on ODEs (see, e.g., Theorem 20.9 in [111]) we can show that there exists one and
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only one solution to the initial value problem given p(0) and p′(0) under mild continuity and
di�erentiability conditions. These conditions hold if we for instance assume that p(0) > 0
and p′(0) < 0. While the former is natural to assume, the latter makes sense in the context
of this observable case with price commitment, where a forward-looking consumer will never
buy within an ε-interval starting at zero if the price is non decreasing at zero. Therefore,
for a large set of valuation distributions, we have that the relaxed problem has exactly one
solution.

Let us highlight that though we know that in the observable case ψ(t) is non increasing
by construction -and indeed we use this fact to formulate the seller's problem- [SPOr

0] could
potentially have an optimal solution with a generic function ψ(t). However, the following
result establishes that this does not happen. In other words, if ψ(t) corresponds to an optimal
solution of the seller's relaxed problem, then it must be a non decreasing function. A proof
is provided in Appendix A.2.1

Proposition 1. Assume that the density function f is strictly positive. If the price func-
tion p(t) is a continuously di�erentiable optimal solution of the relaxed problem [SPOr

0], then

the optimal purchasing function ψ(t) = p(t)− p′(t)
µ

is non increasing.

Proposition 1, along with the upper bound de�ned by the solution to [SPOr
0], allow us to

show that any solution of [SPOr
0] also solves the seller's problem [SPO0], proof provided in

Appendix A.2.2.

Theorem 1 Any solution of the relaxed problem [SPOr
0] such that p is di�erentiable with

continuous derivative also solves the seller's problem [SPO0].

Theorem 1 allows to simplify the solution of the seller's problem [SPO0]. Furthermore,
we show that the solution of the relaxed problem is a solution of an autonomous system of
ordinary di�erential equations.

Thus, to solve the seller's problem [SPO0], �rst we formulate the Euler-Lagrange equa-
tion (1.2) and solve it. Its solution will depend on the initial values p(0) > 0 and p′(0) < 0.
Then, we replace that solution in problem (1.1) and solve it in terms of the scalar vari-
ables p(0) and p′(0). Finally, using these optimal initial values, we can recover the optimal
price function p(t) and purchasing function ψ(t) which are the optimal solutions of the
original seller's problem [SPO0].

To conclude this subsection, we present a following technical result that states that if
for a given parameter c ∈ (0, 1), we need to ensure that the seller earns a fraction 1 − c
of her expected revenue in problem [SPO0], it is enough to look at the problem until time
T = ln(1/c)/δ. A proof of the Lemma is provided in Appendix A.2.3.

Lemma 1. For a given parameter c ∈ (0, 1), up to time T = ln(1/c)/δ, the seller's expected
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revenue in the observable arrival case is at least (1− c)R0; i.e.,

T∫
0

e−δtp(t)d(1− F (ψ(t))) ≥ (1− c)R0,

where p(t) is the solution from (1.2) to the observable case problem.

For instance, if we want to reach at least half of R0 and we normalize the seller's rate
discount to 1, from this result we conclude that it is enough to consider the problem until
T = ln(2). This implies that the time needed to get a big fraction of R0 is relatively small
and, moreover, it does not depend on the valuation distribution.

Before moving on to the unobservable case, in the next section we will do the analysis of
the observable case for a particular instance of the problem. In particular, we will assume
the valuation distribution is uniformly distributed between 0 and 1.

1.5.1 Uniform valuation case

Assume that the buyer's valuation is Unif[0, 1]. Then, the problem [SPOr
0] becomes:

max
p

∞∫
0

G(t, p(t), p′(t), p′′(t))dt+ p(0)(1− ψ(0)), (1.3)

where G(t, p(t), p′(t), p′′(t)) = e−δtp(t)
(
−p′(t) + p′′(t)

µ

)
.

Formulating the Euler-Lagrange equation (1.2) in this case, we obtain

p′′(t)− δp′(t) +
δ2 − δµ

2
p(t) = 0,

which is a second order ordinary di�erential equation in the function p(t) with constant
coe�cients and thus, it can be solved explicitly. In fact, its solution is given by:

p(t) = c1e
1
2
t(δ−
√
−δ(δ−2µ)) + c2e

1
2
t(δ+
√
−δ(δ−2µ)),

where c1, c2 are constants to be determined.

Note that δ +
√
−δ(δ − 2µ) > 0 and δ −

√
−δ(δ − 2µ) < 0 due to µ > δ. Therefore,

the optimal pricing function is a sum of a negative exponential function and a positive
exponential function. Thus, p(t) could in principle go to in�nity when t goes to in�nity.
However, p(t) ∈ [0, 1] for all t, and therefore, it must be the case that c2 = 0. Thus, the
optimal price function is a negative exponential function of the form:

p(t) = p(0)e
1
2
t(δ−
√
−δ(δ−2µ)).
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In order to simplify the notation, de�ne the positive constant A = −δ +
√
−δ(δ − 2µ).

We are left with computing c1 = p(0). Replacing the function p(t) in the unconstrained
problem (1.1), we can rewrite it as a maximization problem over p(0) as follows:

max
p(0)

p2(0)

∞∫
0

e−(δ+A)t

(
A

2
+
A2

4µ

)
dt+ p(0)

(
1− p(0)− p(0)

A

2µ

)
.

Solving this problem, we obtain p(0) = 2µ(δ+A)
(A+2µ)(A+2δ)

. Noting that p′(t) = −1
2
Ap(0)e−

1
2
At, we

also obtain p′(0) = − Aµ(δ+A)
(A+2µ)(A+2δ)

.

Therefore, the pricing function that solves the Euler-Lagrange equation is given by

p(t) =
2µ(δ + A)

(A+ 2µ)(A+ 2δ)
e−

A
2
t,

with corresponding purchasing function

ψ(t) =
δ + A

A+ 2δ
e−

A
2
t.

In conclusion, we have that the negative exponential functions p(t) and ψ(t) are the solutions
of the seller's problem [SPO0] for a consumer's valuation Unif[0, 1], and moreover, we have
that the purchasing function is a positive multiplicative scaling the pricing function.

In what follows, we analyze the optimal curves obtained for some speci�c values of the
discount rates µ and δ, corresponding to di�erent levels of asymmetry in the patience of the
seller and the buyer. Without loss of generality, we normalize the discount rate of the seller
by setting δ = 1.

In Figure 1.2, the left panel captures the case where the buyer is �ve times more impatient
than the seller, whereas the right panel illustrates the scenario where he is only 50% more
impatient. In panel (a), when the buyer is noticeably more impatient, we can observe that
the optimal initial values of p(0) and p′(0) are greater than in panel (b), and that both
price and purchasing optimal functions decrease faster. These curves re�ect the fact that
when facing a more impatient consumer (panel (a)), the seller will price more aggressively
early in the horizon but will also drop the price quicker. Noting that the decreasing price
pattern plays the role of a valuation discovery mechanism, the wider span of the pricing
in (a) attempts to keep in the market a low valuation consumer by o�ering an attractive
enough price relatively soon. On the contrary, when the buyer is more patient (panel (b)),
the seller can o�er a slow decaying price curve so that a consumer with mid to low valuation
will buy later (compared to (a)) but at a higher price.

The fact that the seller takes advantage of the buyer's impatience is con�rmed when com-
puting the ex-ante expected revenue by solving [SPO0] in both cases, leading to values 0.3125
and 0.2574, respectively.
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(a) The buyer is very impatient. Case
δ = 1, µ = 5

(b) The buyer is slightly impatient. Case
δ = 1, µ = 1.5

Figure 1.2: Optimal purchasing and price functions for di�erent levels of asymmetry in the
patience of the seller and the buyer.

(a) The buyer is extremely impatient.
Case δ = 1, µ = 1000

(b) The buyer is very patient. Case δ =
1, µ→ δ

Figure 1.3: Optimal purchasing and price functions for limiting asymmetries in the patience
level of the seller and the buyer.

Figure 1.3 illustrates two limit scenarios for a normalized seller's discount rate δ = 1. In
panel (a) we consider the case in which the buyer is extremely impatient (with µ = 1000).
Here, the seller drops the price very quickly from 1 to 0, charging almost instantaneously
the valuation of the buyer and extracting his whole surplus.

In Figure 1.3(b) we present the case in which the buyer's rate tends to 1. The optimal
price and purchasing functions are the same and equal to 0.5 throughout the selling horizon.
In this case, we recover the optimal auction of Myerson [110], with reservation price 0.5 and
the buyer purchasing at time zero if and only if his valuation is at least 0.5. In this case, he
pays the reservation price for the item.

The seller's advantage revenue-wise is even more emphasized, with values 0.4016 and 0.25,
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respectively.

1.6 Analysis of the model with unobservable arrival

Consider now the problem stated in Section 1.4.2 where the seller is not able to observe the
arrival time of the buyer. Di�erent from the previous observable case, where the seller knows
the arrival time τ of the buyer and sets the price function p(t) over the horizon [τ,∞)�
even though, as explained before, the analysis was conducted without loss of generality by
assuming τ = 0�, in this case she commits to a price function at time zero.

This problem turns out to be very di�cult in the general case. To partially overcome, we
will focus on analyzing the seller's problem under a feasible pricing policy, with the objective
of bounding the value of observability ; that is, the ratio between the expected revenues under
the observable case [SPOτ ] and the unobservable case [SPN ].

Our main result states that under a general valuation distribution, the value of observ-
ability is upper bounded by 4.911. However, in the case where the valuation distribution is
monotone hazard rate, the bound is improved to e ≈ 2.718. To ease the exposition we �rst
prove the latter result.

1.6.1 Monotone hazard rate valuation distribution

The case of monotone hazard rate valuation distribution turns out to be quite simple. We
start this section by reviewing some basic concepts on the theory of optimal auctions intro-
duced in the seminal work of Myerson [110]. Recall that the virtual valuation of the random
variable v ∼ F is given by

J(v) := v − 1− F (v)

f(v)
= v − 1

ρ(v)
,

where ρ(v) = f(v)/(1−F (v)) is the hazard rate function associated with the distribution F .
The value J(v) represents the expected value of the revenue that the seller may intend to
collect from a bidder with valuation v, which naturally veri�es v > J(v). Alternatively, when
considering the static price optimization problem of a seller trying to maximize the revenue
function r(p) = p(1− F (p)), the �rst order condition states that J(p) = 0. In other words,
J(p) stands for the marginal revenue function. As a consequence, an optimal monopoly
reserve price p∗ is de�ned as p∗ = J−1(0).5

In what follows, we assume that the buyer's valuation is distributed according to a mono-
tone (increasing) hazard rate distribution F and prove that the value of observability is
upper bounded by e. Moreover, this bound is tight.

5More generally, the optimal reserve price is de�ned as p∗ = max{v : J(v) = 0}, and by convention,
p∗ =∞ if J(v) < 0 for all v.
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Indeed, we know from Section 1.4.2 that the optimal seller's expected revenue in the

observable case is given by R = R0

∞∫
0

e−δtg(t)dt, where R0 is the objective function value of

problem [SPO0] and therefore veri�es R0 ≤ E(v), the expected value of the valuation drawn
from F . Hence, the seller's expected revenue in the observable case is upper bounded by

E(v)

∞∫
0

e−δtg(t)dt.

For the unobservable case, consider the feasible, �xed pricing policy p(t) = p∗ for all t,
where p∗ = J−1(0) is the optimal monopoly price. Then, the seller's expected revenue is at
least

∞∫
0

e−δtp∗(1− F (p∗))g(t)dt = p∗(1− F (p∗))

∞∫
0

e−δtg(t)dt.

Finally, by Lemma 3.10 (p.325) of Dhangwatnotai et al. [50], it follows that p∗(1−F (p∗)) ≥
1
e
E(v), and this the claimed bound follows.

The bound is tight in the case of exponentially distributed valuation (F (v) = 1 − e−v)
and a myopic buyer (with µ = ∞), and when the seller does not discount revenues (i.e.,
δ = 0). In this setting, in the observable case, the seller will announce a price curve that
spans all the support [0, v̄] (e.g., p(t) = 1/t), and the consumer will buy immediately when
his valuation v = p(t). In this case, the ex-ante expected revenue is E(v) = 1. In order
to get the revenue for the unobservable case, the seller will o�er a �xed price p maximizing
p(1− F (p)) = pe−p. This function is maximized at p = 1 with optimal revenue e−1.

1.6.2 A feasible periodic price function

We start by noting that using �xed pricing does not work in general. For instance, consider
the game where the buyer's valuation is distributed according to a truncated Pareto distri-
bution with parameter 1, that is, with cdf F (x) = (1 − 1/x)M/(M − 1) for x ∈ [1,M ],
and again µ = ∞ and δ = 0. Here, we have that the expected value of the buyer's
valuation is M lnM/(M − 1) whereas p∗(1 − F (p∗)) = M/(M − 1), leading to the ratio
E(v)/p∗(1−F (p∗)) = lnM growing withM . Note then that the ratio grows arbitrarily large
independent on the arrival distribution.

Thus, to bound the value of observability in the general case we need to consider a pricing
policy that allows us to compare the expected revenue in the observable and unobservable
case. We de�ne it in Section 1.6.2 and present our main result in Section 1.6.3.

The feasible pricing policy p̂ we consider is periodic and depends on the optimal pricing
policy p of [SPO0]. The length of the period will be 2T where T is such that until time T
the seller's expected revenue in the observable case when the buyer arrives at time zero is
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p(t− (T + t0)) p(t− (2T + t0)

p̂(t)

t0

t

T + t0 3T + t0 4T + t02T + t0

p(0)

p(0) p(0)

p(T )

Figure 1.4: Periodic pricing policy p̂ after performing a random shift and setting the origin
at time t0

big enough. In particular, the price function we use to bound the seller's expected revenue
in the unobservable case is de�ned by

p̂(t) =

{
p(0) if t ∈ I2k−1, k ∈ N
p(t− (2k − 1)T ) if t ∈ I2k, k ∈ N (1.4)

where I2k−1 = (2(k − 1)T, (2k − 1)T ] and I2k = ((2k − 1)T, 2kT ] for k ∈ N, and where the
constant price p(0) comes from the solution of [SPO0]. Note that the function p̂ is continuous
at the points kT , for odd values of k.

Figure 1.4 shows the structure of the periodic pricing policy we will consider along the
rest of the section, with origin at a value t0 ≥ 0. The fact of having a time origin set at t0
is justi�ed as follows. One element that makes the unobservable arrival case particularly
challenging to analyze from a revenue computation perspective is the presence of the den-
sity g(t) in the formulation [SPN ]. In order to perform the analysis independently of the
speci�c function g, let us �rst observe that by doing a random shift on the price function we
can assume without loss of generality that the buyer's arrival time is uniformly distributed
within a period of length 2T .

More formally, suppose that we have a periodic function h with period 2T and consider
a random shift, that is, for a random variable t0 ∼ Unif[0, 2T ], consider the function ĥ(t) =
h(t+ t0). Then, given that the buyer arrives in the interval I2k−1∪ I2k of length 2T , for some
k ∈ N, and denoting by X the random variable arrival time, we have the following:

P(X ≤ t|X ∈ (I2k−1 ∪ I2k)) = P(X ≤ t|X ∈ (2(k − 1)T − t0, 2kT − t0])

= P(X ∈ (2(k − 1)T − t0, t]).

Letting s be the length of the interval [2(k − 1)T − t0, t], i.e., s = t − (2(k − 1)T − t0),
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the expression above veri�es

P(X ≤ t|X ∈ (2(k − 1)T − t0, 2kT − t0]) = P(X ∈ (2(k − 1)T − t0, 2(k − 1)T − t0 + s])

= P(2(k − 1)T −X < t0 ≤ 2(k − 1)T −X + s)

=
t− (2(k − 1)T − t0)

2T
,

which proves that X is uniformly distributed in I2k−1∪I2k. Therefore, by applying a random
shift over the function p to obtain p̂, we can assume that buyer's arrival, conditional on the
arrival interval, is Unif[0, 2T ], and that the function's new origin is t0; that is, t0 is the
starting point of a period of length 2T .

1.6.3 Revenue analysis

Along the rest of the chapter we will relabel the intervals of the function p̂ and denote by Ĩ2k−1

the range where p̂ is constant, and will denote by Ĩ2k the range where p̂ is a translation of
the function p after performing the random shift.

We start by providing a simple lower bound for the seller's revenue within a limited time
frame in the unobservable arrival case. Its proof is provided in Appendix A.3.1.

Lemma 2. If the buyer is present at time τ being the beginning of a period Ĩ2k for some k ∈
N, and has valuation v ≥ p(T ), then the seller's expected revenue by o�ering the price
function p̂ in the unobservable case is at least the expected revenue earned up to time 2kT+t0
in the observable case with arrival time (2k − 1)T + t0.

1.7 Bounding the value of observability

The value of observability V O(G,F, δ, µ) of an instance of the problem with arrival distri-
bution G, valuation distribution F , and discount rates δ and µ for the seller and the buyer,
respectively, is de�ned as the ratio between the revenues in the observable and the unob-
servable cases. Accordingly, the value of observability V O is de�ned as the supremum of
instance-speci�c values: V O = supG,F,δ,µ V O(G,F, δ, µ). In what follows, we provide upper
and lower bounds for this worst-case value.

1.7.1 An upper bound for the value of observability

We are now able to bound the value of observing arrivals by considering the particular pricing
policy p̂ in (1.4) to give a lower bound of the seller's expected revenue in the unobservable
case. To do so, we will only consider the buyer with valuation v ≥ p(T ) when he arrives
in an interval where the price is constant. We then obtain our main result which states
that the value of observing the arrival is at most roughly 4.91 and its proof is provided in
Appendix A.4.1.
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This bound can be written as a function of W−1, the negative branch of the well known
Lambert function6.

Theorem 2 For any valuation distribution and arrival time distribution, the value of ob-
servability is at most − 2W−1(−1/(2

√
e))+1

(eW−1(−1/(2
√
e))+1/2−1)

2 ≈ 4.911.

It is worth noting that our result is robust in the sense that it holds independently of
the arrival distribution. That is, even in the case where the buyer arrival is adversarial�the
worst possible for the seller�, we prove that the seller's expected revenue in the observable
case is at most 4.911 times the seller's expected revenue if she does not observe the buyer's
arrival.

1.7.2 A lower bound for the value of observability

Unfortunately, it is not straightforward to obtain a lower bound for the value of observability.
The di�culty stems from the complexity of solving the unobservable case, even numerically,
as discussed in Section 1.6. In order to partially overcome this di�culty, we consider a
particular problem instance that can be solved numerically via dynamic programming.

Suppose that the valuation of the buyer is distributed uniformly in [0, 1], and that he
arrives at one of two possible times. Speci�cally, we assume that the buyer arrives either
at time 0 with probability β, or at time T with probability 1 − β, for some predetermined
value T > 0. We de�ne the threshold valuation α as the value so that if the buyer arrives
at time 0 with valuation v ≥ α, then he would buy before time T . This implies that,
conditioned on that by time T the seller has not sold the item, the buyer's valuation is the
mixture of two uniforms: (i) a Unif[0, α] accounting for the mass of buyers who arrived at 0
and decided to wait for a good price to be o�ered after T , with weight β, and (ii) a Unif[0, 1]
distribution accounting for the buyer arriving at time T , with weight 1 − β. Assume also
that the seller's discount rate is normalized to δ = 1, and that the buyer discounts the future
at rate µ.

The general approach would be to decouple the problem in two independent subproblems
that occur sequentially over time, by resorting to dynamic programming. Assume for now
that the value of α is given. Then, we could solve the whole problem by backward induction.
If there are no purchasing deviations�in the sense that if the buyer arrives with valuation at
least α, he will not buy after T�, we can solve these two subproblems separately and then
link them through the threshold α occurring at time T . Furthermore, each subproblem, once
we condition on the information available at times 0 and T , corresponds to the observable

6The Lambert W function is de�ned as the multivalued function that satis�es z = W (z) exp(W (z)) for
any complex number z. If x is real then for 1/e ≤ x < 0 there are two possible real values of W (x).
We denote the branch satisfying −1 ≤ W (x) by W0(x)�namely, the principal branch�, and the branch
satisfying W (x) ≤ −1 by W−1(x)- referred to as the negative branch.
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Figure 1.5: Price and purchasing functions for the special unobservable arrival case with
Unif(0,1) valuation and two possible arrival times: 0 and T .

case (c.f. Section 1.5).

Starting from the second subproblem, de�ned over the interval [T,∞), we �rst guess
the time τ by which the buyer would have purchased the item if and only if his valuation
were above α, and then we can address the problem by solving two �observable� problems
assuming a uniform valuation distribution. More speci�cally, the problem in [τ,∞) is solved
exactly as in Section 1.5.1; and the problem in the interval (T, τ) is solved similarly but �xing
the value of the purchasing time function at time τ to be α. Finally, the problem in [0, T ] is
solved with the same method, �xing the value of the threshold function at time T to be α.
This whole procedure gives a price function and a purchasing time function that depend
on α and τ�see Figure 1.5�, which are then optimized to maximize the seller's revenue.
Note that as we have explicit solutions for the uniform valuation case (c.f. Section 1.5.1),
the numerical part of the optimization to solve the unobservable case is only over these two
parameters. Thus, putting all together, we can compute the value of observability for the
instance de�ned by speci�c values of T, β, and µ. Finally, to obtain the best possible lower
bound for this instance, we maximize the value obtained over these three parameters. This
leads to a lower bound on the value of observability of 1.0173, which is attained by taking
T = 0.83, β = 0.67 and µ = 3.9. In particular, the expected revenue in the unobservable
case is 0.2397 whereas the expected revenue in the observable case is 0.2439. Considering
the instance that yields the lower bound, the left panel in Figure 1.6 illustrates the optimal
pricing policy and threshold function for the unobservable case; whereas the right panel
illustrates the functions for the observable case.
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(a) Uobservable case. Optimal pricing policy and
purchasing function for the instance with T =
0.83, β = 0.67 and µ = 3.9.
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(b) Observable case. Optimal pricing policy and
purchasing function for the instance with T =
0.83, β = 0.67 and µ = 3.9. Plot for arrival at
time 0.

Figure 1.6: Optimal pricing policy and purchasing function for the instance attaining value
of observability 1.0173
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Chapter 2

Connection between posted price

mechanisms and prophet inequalities1

2.1 Introduction

In the last few years online sales (particularly in ebay) have been moving from an auction
format, to a posted price format [55] and the basic reason for this trend switch seems to be
that posted price mechanisms are much simpler than optimal auctions yet e�cient enough. In
addition, in recent years several companies have started to apply personalized pricing to sell
their products. Under this policy, companies set di�erent prices (or o�er di�erent discounts)
for di�erent consumers based on purchase history or other factors that may a�ect their
willingness to pay. Examples of such companies include Lexis-Nexis, Orbitz, and Safeway
(see, e.g.,[123, 106, 90]).

The basic setting is as follows. Suppose a seller has an item to sell through a (sequential)
posted price mechanism (PPM). In such a mechanism, consumers arrive one at a time and
the seller proposes to each consumer a take-it-or-leave-it o�er. The �rst consumer accepting
the o�er pays that price and takes the item. These type of mechanisms are very �exible
and adapt very well to di�erent scenarios [41]. Furthermore, their simplicity and the fact
that strategic behaviour vanishes make them very suitable for a number of applications. Of
course PPMs are suboptimal and therefore the study of their approximation guarantees has
been an extremely active area in the last decade.

The recent survey by Lucier [102] is an excellent starting point in the area, where many
variants of PPMs are described. In particular these can be: Anonymous (the o�ered price is
the same for all consumers); Static (the possibly di�erent prices to o�er do not evolve as the

1This chapter of the thesis is based on joint paper with Jose Correa, Patricio Foncea and Victor Verdugo
[45]
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mechanism progresses), Order-Oblivious (the order in which agents arrive can be chosen by
an adaptive adversary). Furthermore, we may even use PPMs when selling multiple objects
and even have constraints on the subsets of consumers that can be served. Typical side
constraints include selling multiple copies of an item, say we can serve at most k consumers,
or having matroid constraints, or even more general downward-closed family constraints.

In the last decade a lot of e�ort from the computer science community has been devoted
to understand the approximation guarantees that can be obtained through PPMs, where
the natural benckmark is that given by the optimal mechanism of Myerson [110]. In an
in�uential paper Chawla et al. [41] establish an interesting connection between (revenue
maximizing) PPMs and prophet inequalities, a problem arising in optimal stopping theory.
Here a gambler is faced to a sequence of random variables and has to pick a stopping time so
that the value he gets is as close as possible to the expectation of the maximum of all random
variables, interpreted as what a prophet, who knows the realizations in advance, could get.
They implicitly show that any prophet type inequality can be turned into a posted price
mechanism with the same approximation guarantee. This is obtained by noting that a PPM
for revenue maximization can be seen as (threshold) stopping rule for the gambler but on
the virtual values. As a consequence, the follow up work in the �eld concentrated on prophet
inequities and then applied the obtained results to sequential posted price mechanisms.

In this chapter we �ll a gap in this line of research by proving the converse of the latter
result, namely, that any posted price mechanism can be turned into a prophet type inequality
with the same approximation guarantee. The core of the result is a way to go back from
virtual values to arbitrary distributions which may �nd applications beyond the scope of
this thesis. This result amounts not only to apply approximation guarantees from prophet
inequalities to PPMs, but also to carry over the lower bounds. We observe that actually
though our reduction we can improve the best known lower bound for sequential PPMs (in
which the arrival order is either random or selected by the seller) in the single item case, the
k-uniform matroid case, the general matroid case, and the general downward-closed family
case.

2.2 Contributions

We summarize contributions of Chapter 1 below.

Firstly, we provide a simple proof of the reduction from prophet inequalities to posted
price mechanism, already studied by Chawla et al. [41]. The basic observation for obtaining
this reduction is that price-based revenue maximization can be seen as prophet inequalities
on the virtual values.

Secondly, we introduce a key result, namely Valuation Mapping Lemma, stating that for
any distribution F there is another distribution G whose virtual value distributes according
to F . That is, if we consider the operator that picks an arbitrary probability distribution over
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the nonnegative reals and returns the distribution of the ironed virtual valuation function,
the Valuation Mapping Lemma states that this operator is surjective (onto) over the space
of distributions. Interestingly, the lemma gives an explicit construction so we can easily
interpret the thresholds as prices for the sequential posted price problem. It is somewhat
surprising that this basic result was missing from the auction theory literature and we believe
it may prove useful in settings beyond PPMs.

Thirdly, we answer the natural question arising from the above mentioned result of Chawla
et al. [41] of whether the converse of their result also holds. In other words, we answer the
question: does the existence of a PPM with a certain approximation guarantee implies
the existence of a (threshold) prophet inequality with the same approximation guarantee?
The main result of this chapter is to answer this question on the positive. Speci�cally, we
prove that if we take an instance of the sequential posted price problem and there is a
PPM obtaining a revenue within a factor α of Myerson's optimal mechanism, then there is
a threshold stopping rule that obtains a fraction α of what a prophet could obtain. The
main di�culty on the proof of this result comes from taking an arbitrary distribution in the
prophet inequality problem and map it back to a sequential posted price problem. Here is
where the valuation mapping lemma, that holds for arbitrary distributions, comes into play
giving a way to go from virtual valuations to arbitrary distributions.

A remarkable feature of the Valuation Mapping Lemma is that when mapping a distri-
bution F into another distribution G whose virtual value distributes like F , we can actually
obtain a regular G (i.e., monotone non-decreasing virtual value). Of course, in principle
there are many G's that satisfy the statement of the lemma, however we can identify one
explicitly with this appealing property. Together with the reduction theorems, this implies
that the posted price problem can be reduced to a prophet inequality problem, which can in
turn be reduced to a posted price problem with regular valuation distributions. Therefore
designing PPMs in general is equally hard from an approximation perspective to designing
PPMs when the underlying valuations are regular.

It is worth mentioning that our result is very robust to di�erent settings: it works with
di�erent ordering such as random, adversarial, or best possible, as well when there are
multiple items and constraints on the allowed allocation sets.

Finally, we translate all known upper and lower bounds from PPMs into prophet inequali-
ties, and back. A particular case where this gives new results in the case of sequential posted
price mechanisms (SPM, [41]). Here the seller has to choose an order of the buyers and a
pick a price for each buyer so as to maximize revenue. The current best known lower bound
for this problem was obtained a decade ago by Blumrosen and Holenstein [28] and evaluates
to
√
π/2 ≈ 1.253. Moreover, this lower bound is the best known lower bound when the

feasibility constraint is a k-uniform matroid, a general matroid, and even the intersection of
two matroids. With our result we can improve the lower bound in these settings to 1.341 by
using the lower bound for the i.i.d. prophet inequality designed by Hill and Kertz [81] over
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three decades ago. On the other hand, we can also use our framework to derive a new simple
and purely probabilistic proof of the ex ante relaxation bound on the revenue of Myerson's
optimal mechanism [41, 7]. It is worth mentioning that, although our results are presented
in the context of single-parameter mechanism design, they also follow more generally for
multi-parameter domains by considering the reduction introduced by Chawla et al. [41].

2.3 Related literature

The connection between prophet inequalities and mechanism design was initiated by Haji-
aghayi et al. [79] and further developed by Chawla et al. [40]. The key idea behind this
connection was to implement prophet inequality's algorithms using thresholds that could
be identi�ed with prices. In particular, Chawla et al. [40] considers a pricing auction in
adversarial order and obtain an upper bound of 4 with respect to the optimal mechanism.
This was later improved by Chawla et al. [41] who gave several new approximation factors
for PPMs in multiparameter settings, for the case of adversarial order (order-oblivious posted
price) and when the designer was allowed to choose the order (sequential posted price). In the
former case, they gave tight approximations for uniform and partition matroids (a constant
factor of 2), and lower bounds for general matroids, intersection of matroids and downward-
closed systems. Studying the prophet inequality problem, Kleinberg and Weinberg [91] gave
improved upper bounds of 2 for general matroids and 4p− 2 for intersection of p matroids,
as well as a lower bound of O(p) for this second setting, while Babaio� et al.[18] and Ru-
binstein [119] presented a lower bound in downward-closed systems of log(n)/2 log(log(n)).
Rubinstein also found a new upper bound of O(log(r) log(n)) on downward-closed systems
(where r is the size of the largest feasible set) and a lower bound of O(n) if the system is not
downward-closed. In the case of sequential posted prices, Yan [134] used the correlation gap
to �nd upper bounds of e

e−1
for general matroids and p+ 1 for intersection of p-matroids.

During the last years several other variants of the problem have been studied, including
combinatorial prophet inequalities (see, e.g., [37, 120]), combinatorial auctions (see, e.g.,
[7, 61]), and polymatroids constraints for auctions (see, e.g., [54]). Attention has also been
payed to settings with limited information or prior-independent, where the designer must
learn the distribution in order to run the mechanism (see, e.g., [50, 43, 16, 73, 109, 17,
36]). Very recently, Dütting et al. [52] developed a general framework to obtain prophet
inequalities using the concept of balanced prices, which allowed them to match and improve
previous upper bounds in combinatorial auctions with sub-additive valuations and matroid
constraints.

In the more speci�c setting where only one item must be allocated, the sequential posted
price problem can be very simply stated as follows. Consider n > 1 buyers with valuation
distributions represented by non-negative, independent random variables Y1, . . . , Yn. If buyer
i is o�ered a price above his value then he takes the item and the seller obtains a gain equal
to the o�ered price, otherwise the buyer is discarded and the seller continues with buyer i+1.
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The goal is thus to �nd prices p1, . . . , pn maximizing the expected revenue of the seller. For
this problem, the performance of anonymous pricing (i.e., all prices have to be equal) was
considered by Alaei et al. [8] and Dütting et al. [53]. Chawla et al. [41] obtain upper bounds
of 2 and e

e−1
for order-oblivious and sequential posted price mechanism respectively. Later,

Esfandiari et al. [59] studied the prophet secretary setting were the arrival order is random,
and provided an approximation factor of e

e−1
and a lower bound of 1.33 when the algorithm's

prices may depend on the number of buyers that have rejected but not on their valuation
distributions. The same approximation factor was found by Correa et al. [44] in the random
order case, but where the algorithm's prices are static and had to be decided beforehand
only based on the underlying distributions. Furthermore in the case of i.i.d. distributions,
they found a 1.34 approximation factor which by the work of [81] is also tight. Abolhassani
et al. [2] considered a relaxation of the i.i.d. setting under a large market assumption and
showed that in both adversarial and random order a 1.36 approximation is possible.

Prophet-Inequalities

For �xed n > 1, let X1, . . . , Xn be non-negative, independent random variables and Tn
their set of stopping rules. A classic result of Krengel and Sucheston, and Gairing [93, 94]
asserts that E(max{X1, . . . , Xn}) ≤ 2 sup{E(Xt) : t ∈ Tn}, and that 2 is the best possible
bound. The study of this type of inequalities, known as prophet inequalities, was initiated
by Gilbert and Mosteller [70] and attracted a lot of attention in the eighties (see, e.g.,
[81, 89, 91, 122, 121]). In particular Samuel-Cahn [122] noted that rather than looking at
the set of all stopping rules one can (quite naturally) only look at threshold stopping rules
in which the decision to stop depends on wether the value of the currently observed random
variable is above a certain threshold (and possibly on the rest of the history). Two decades
later the problem was brought up to the attention of the computer science community by
the work of Chawla et al. [41] who noted a close connection between PPMs and prophet
inequalities. The basic observation of Chawla et al. is that a PPM reduces to a (threshold)
prophet inequality but applied to the virtual values [110]. The work of Chawla et al. was
in�uential in that most follow-up work is directly on the context of prophet inequalities and
then applies the implied results to PPMs.

The connection has also been useful to improve old results form prophet inequalities.
Indeed, an interesting special case which we mention since we will use it later on, occurs
when the random variables are also identically distributed. Here, the constant 2 can be
lowered. Indeed, Hill and Kertz [81] provided family of �bad" instances from which Kertz
[89] proved the best possible bound one could expect is β ≈ 1.341, the unique solution to∫ 1

0
1

y(1−ln(y))+(β−1)
dy = 1. Hill and Kertz also proved a bound of 1 + 1/(e− 1) ≈ 1.582 which

was very recently improved by Abolhassan et al. [2] to 1.355 and �nally Correa et al. [44]
proved that β is a tight value.
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Organization

In Section 2.4 we introduce formally the online selection problem and the auction problem.
We also introduce necessary notation and some useful remarks and results about distributions
and its virtual valuation. In Section 2.5 we show the reduction from prophet inequalities
to posted price mechanisms, result that is stated formally in Theorem 4. We remark that
this approach has been considered extensively in mechanism design, and we include it for
completeness, by showing a simple proof. In Section 2.6 we show our main result� stated
formally in Theorem 5�, that is, the reduction from posted price mechanisms to prophet
inequalities. Finally, in Section 2.7 we show some consequences of Theorem 5, including the
improved lower bound for SPMs in more detail.

2.4 Preliminaries

We start this section by giving a formal de�nition of an instance of the two problems we
study throughout this chapter: the online selection problem and the auction problem.

Online Selection Problem. An instance of this problem corresponds to a tuple (X,F , T ),
where X is the ground set of n elements and each set in T ⊆ 2X is called feasible selection.
For each element x ∈ X there is a random variable wx, called weight, distributed according to
Fx with support contained in R+ and �nite expectation, and F = {Fx : x ∈ X}. We assume
them to be independent. The random variables are presented in an order σ : [n]→ X, and
an algorithm for the problem has to decide whether to select or not an element of X when
arrived. An algorithm is correct if it outputs a feasible selection.

An algorithm is an α-approximation if the expected weight of the output selection is at
least α · E

(
maxA∈T

∑
x∈Awx

)
, that is, an α fraction of the expectation of the maximum

weight over feasible selections. In the latter, the expectation is taken over F and the (pos-
sibly) algorithm internal randomness.

Multi-Item Mechanism Design. Consider a single seller who provides a set of n items given
by I. For each item i ∈ I, there exists a buyer having a random valuation vi for that item.
We denote by Gi the distribution of the valuation vi, and we assume this to have a support
contained in R+ and that vi is integrable. We denote by G = {Gi : i ∈ I} the set of valuation
distributions. There exists a set of feasibility constraints for the seller, T ⊆ 2I , and every
set in T is called a feasible allocation. Therefore, an instance for this problem is given by a
tuple (I,G, T ).

This setting is known to be the single-parameter domain. We assume the valuation
distributions to be independent, an they are known by the seller. Buyers arrive in an
arbitrary order described by σ : [n]→ I.
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2.4.1 Myerson's optimal mechanism

In his seminal work, Myerson [110] characterizes the mechanism maximizing the revenue
for single-parameter domains. In order to analize the optimization problem, he introduces
a quantity called virtual valuation, that allows to solve the problem in an equivalent and
simpler maximization setting.

De�nition 1. Given a random variable v with distribution G and density g, the virtual
valuation of v corresponds to the function φG(t) = t − (1 − G(t))/g(t). We say that G is
regular if φG is monotone non-decreasing.

In the regular case, the optimal mechanism computes the virtual valuation for each buyer
and then it allocates to a subset of them maximizing its total virtual value. Recall that a
mechanism is called incentive-compatible if each player has a weakly dominant strategy of
truthful reporting.

Theorem 3 ([110]) If the distributions in G are regular, the expected revenue of any
incentive-compatible single-parameter mechanism M is equal to its expected virtual sur-
plus, given by E

(∑
x∈M φ+

x (vx)
)
, whereM is the allocation provided by the mechanism, and

φ+
x = max{0, φx}.

In particular, when the distributions are regular, the optimal mechanism by Myerson
is incentive-compatible and so it satis�es the above conditions in the theorem. When the
distributions are not regular, Myerson considered an ironed virtual valuation for its analysis
[110], denoted by φ̄G when the valuation distribution is G. More speci�cally, take Q(θ) =
θG−1(1− θ) and let R be the concave hull of Q, namely, R(θ) is given by

min
x,θ1,θ2∈[0,1]

{xQ(θ1) + (1− x)Q(θ2) : xθ1 + (1− x)θ2 = θ} .

The ironed virtual valuation is φ̄G(t) = R′(1 − G(t)). It is worth mentioning that, when
the valuation is regular, the ironed virtual valuation corresponds to the virtual valuation,
φ̄G = φG. If the context is clear, we omit the subscript on the notation for the (ironed)
virtual valuation.

2.4.2 Posted-price mechanisms

In this chapter, we will work with a particular set of mechanisms, called posted-price mech-
anism (PPM). It works as follows: once a buyer arrives, the seller o�ers a price in a take-it-
or-leave-it fashion, that is, if the valuation of the buyer for the item is greater than or equal
to the price, then the buyer accepts the o�er and purchases the item; it rejects otherwise.

The posted price mechanism,M, upon arrival of a buyer preferring item i ∈ I, computes
a price pi. This price is a function of the history at time t, which corresponds to the current
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allocation and to the set of buyers arrived up to this point and their valuations. For short,
we call the history Ht = (σt, At−1,Vt−1), where σt is the order in which the buyers arrived
up to time t, At−1 denotes the current allocation and Vt−1 = {vσ(j) : j ∈ {1, . . . , t − 1}} is
the set of valuation realizations for the buyers so far arrived. Note that buyer i gets the item
with probability (1−Gi(pi) and pays pi. Therefore, the expected revenue of the mechanism
is just E(

∑
i∈I pi(1−Gi(pi))).

We assume that the mechanism �xes a price equal to +∞ when by adding the item
preferred by the buyer yields to an infeasible allocation.

2.4.3 About probability distributions and the virtual valuation

We recall that F is a distribution if it is a right-continuous and non-decreasing function,
with limit equal to zero in −∞ and equal to one in +∞.

In general, F is not invertible but we work with its generalized inverse, given by F−1(y) =
inf{t ∈ R : F (t) ≥ y}.

We denote by ω0(F ) = inf{t ∈ R : F (t) > 0} and ω1(F ) = sup{t ∈ R : F (t) < 1}, and we
call the interval (ω0(F ), ω1(F )) the support of F . If ω0(F ) or ω1(F ) are �nite, we include
them in the support.

Below we present two useful technical results (see Chapter 2 in [87] for more details). We
provide a proof in Appendix B.1.1 and Appendix B.1.2, respectively.

Proposition 2. Let X be a real-valued random variable with distribution function F and
F−1 its generalized inverse. Then, F−1(u) ≤ x if and only if F (x) ≥ u.

Proposition 3. Let X be a real-valued random variable with distribution function F and let
U be uniformly distributed in [0, 1]. Then, F−1(U) has distribution F .

2.5 Reduction from prophets to pricing

In this section we provide a reduction from the problem of online selection to multi-item
auction problem by providing a PPM that calls a threshold based algorithm for the former.
The idea of constructing posted-price mechanisms from existing prophet inequalities has
been exploited extensively the last decade from the work of Chawla et al. [41]. In fact, this
reduction is between lines in their work, although is not written in a general context. For
the sake of completeness, we include a simple proof of this reduction in this section. The key
idea behind the reduction is to convert an auction instance (I,G, T ) into an online selection
one (I,Gφ, T ), where Gφ = {Gφ

i : i ∈ I} and Gφ is the distribution of the virtual valuation
φ+(v) where v ∼ G.
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We map thresholds in an online selection problem to prices in a posted price mechanism by
feeding an online selection algorithm with the virtual valuations of the multi-item auction
instance. In what follows, we denote by Gφ the distribution of the virtual values φ+(v)
where v ∼ G. Given an instance (I,G, T ) for the multi-item auction problem, we construct
an instance for online selection by picking one element for each item. The set of feasible
selections is given exactly by the feasibility constraints of the auction problem, and the
set of weight distributions are those given by the virtual valuation distributions, namely,
Gφ = {Gφ

i : i ∈ I}. The order in which the elements of the instance are presented to the
algorithm is the same order σ in which the buyers arrive. Given the instances above, we
go from thresholds in the online selection problem to prices in the PPM as follows: upon
the arrival of a buyer i, we run the online selection algorithm for the corresponding instance
and compute the threshold τi. Then, if the distribution Gφ

i is regular, we de�ne the price
pi as the generalized inverse of the virtual value φ+

i evaluated at the obtained threshold τi,
otherwise, the mechanism needs to randomize between two prices.

Below we provide a pseudocode implementation for this algorithm when valuation distri-
butions are regular. We denote by Alg both the set of elements chosen by the online selection
algorithm and the rule that de�nes its thresholds. On the other hand, Mech represents the
allocation provided by the resulting posted price mechanism.

Algorithm 1 From thresholds to prices.

Require: (I,G, T ) of the multi-item auction problem.
1: Initialize M0 ← ∅.
2: for t = 1 to n do
3: Let i = σ(t), and compute threshold τi = Alg(Ht−1,Gφ, i).
4: if vi ≥ (φ+

i )−1(τi) then select i, Mt ←Mt−1 ∪ {i}.
5: else reject i, Mt ←Mt−1.
6: Return Mech = Mn.

Before going to the main theorem of the section, we introduce a lemma that is used along
the reductions. Recall that we denote by φ̄ be the ironed virtual value function [110]. Its
proof is provided in Appendix B.2.1.

Lemma 3. Let v be a random variable with regular distribution G. Then, for any τ ≥ 0,

E(φ(v) | φ(v) ≥ τ) = G−1(1− q), with q = P(φ(v) ≥ τ).

If the distribution is non-regular, there exist q1, q2, x ∈ [0, 1] such that xq1 + (1 − x)q2 = q
and

E(φ̄(v) | φ̄(v) ≥ τ) =
xq1G

−1(1− q1) + (1− x)q2G
−1(1− q2)

q
.

Using Lemma 3 and the mechanism obtained from the algorithm described above, we can
make a reduction from any threshold rule in a prophet inequality setting to a posted price
guarantee, stated formally in the following theorem and proved in Appendix B.2.2.
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Theorem 4 ([41]) Suppose there exists an online selection algorithm based on thresholds
that is an α-approximation for (I,Gφ, T ) presented in order σ. Then, there exists a posted-
price mechanism that is an α-approximation for (I,G, T ) presented in order σ.

2.6 Reduction from pricing to prophets

2.6.1 Reduction overview

Consider an instance (X,F , T ) for the optimal stopping problem, and suppose we have access
to an PPM single-parameter mechanism M that provides a guarantee over the ground set
X and feasibility constraints T . If we were able to �nd valuation distributions G = {Gx :
x ∈ X} such that φ+

Gx
(vx) has distribution Fx, where vx has distribution Gx, then we could

feed the mechanismM with the instance (X,G, T ) of a multi-item auction problem, using
the same order σ in which the elements of the ground set X are provided in the optimal
stopping problem. We obtain prices {px : x ∈ X} for each element, and then we can decide
whether to select or not an element by mapping back to the domain of the online selection
problem.

In particular, since wx has the same distribution as φ+
Gx

(vx), and they are all independent,
by Theorem 3, the revenue of the mechanism on the instance (X,G, T ) is the same provided
by the weights of the elements selected, and so our online stopping algorithm provides a
prophet inequality that preserve the approximation given by the mechanismM in the multi-
item auction instance.

The rest of the section is devoted to prove that we can always �nd such set of valuations
(Lemma 4 in Section 2.6.2) and to prove that the approximation is preserved (Theorem 5 in
Section 2.6.3).

2.6.2 Valuation Mapping Lemma

In this section we introduce the key lemma that allows us to mapping from a weight dis-
tribution F to a valuation distribution G with virtual valuation distributed according to
F .

Formally, we prove the following lemma.

Lemma 4 (Valuation Mapping Lemma). Let w be an integrable random variable with dis-
tribution F . Then, there exists a distribution G, such that φ+

G(v) is distributed according to
F , where v is a random variable with distribution G.

The proof of the lemma (Appendix B.3.3)is constructive and we provide an explicit ex-
pression for the distribution G: we de�ne G to be the generalized inverse of the function H
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de�ned by

H(q) =
1

1− q

∫ 1

q

F−1(y)dy,

in the interval [0, 1), H ≡ 0 in (−∞, 0) and H ≡ 1 in [1,+∞). Observe that H(0) = E(w),
where w ∼ F , and therefore H might be discontinuous in 0. The proof of Lemma 4 follows
from a chain of propositions where we study the function H and we provide some useful
properties of G and its virtual valuation.

Proposition 4. The function H is continuous in (0, 1). Furthermore, there exists T ∈ [0, 1]
such that H is strictly increasing in the interval [0, T ), and it is constant in the interval
[T, 1).

A proof of the proposition is provided in Appendix B.3.1. In fact, we show that T = 1
if F is continuous by the left in t = ω1(F ). Otherwise, if F is discontinuous in t = ω1(F )
then T < 1. In particular, if ω1(F ) = +∞, T=1. This good behaviour of H in the interval
(0, 1) translates to G, in the sense that H is invertible in the whole (0, 1) except when T < 1
and so G has a discontinuity at t = ω1(F ). In other words, G is also strictly increasing and
continuous in (H(0), ω1(F )).

Note that if the support of F is compact, H is a distribution.

In the following proposition, proved in Appendix B.3.2, we include the properties of G
and its virtual valuation. In particular, it states that G is a regular distribution and we
characterize its virtual value.

Proposition 5. Let G be de�ned as above, extended it in the natural way: 0 in (−∞, 0) and
1 in [1,+∞). Therefore, the following holds:

1. The function G is a distribution and its support is [E(w), ω1(F )], where w is random
variable with distribution F .

2. For all t in the support of G, φG(t) = F−1(G(t)).

3. The virtual valuation φG is non-decreasing. In particular, φG is non-negative and
therefore φ+

G = φG.

Finally, we introduce one more concept in order to show a property that plays a key role
in the analysis of our algorithm in Section 2.6.3. Given non-decreasing functions η : [0, 1]→
[0, 1] and ν : [a, 1]→ [0, 1] for some a ∈ [0, 1], we say that ν is a non-linear stretching of η if
there exists ξ : [a, 1] → [0, 1] strictly increasing and continuous in [a, 1) such that ν = η ◦ ξ
in [a, 1). This type of transformation preserve some properties of the graph of the function
η. In particular, there is a one to one correspondence between the intervals where η and ν
are constant.
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Proposition 6. If ν is constant in the interval [c, r), then η is constant in the interval
[ξ(c), ξ(r)).

Proof. Suppose that η is not constant over the interval [ξ(c), ξ(r)), that is, there exists
s ∈ (ξ(c), ξ(r)) such that η(s) > η(ξ(r)). Since ξ is strictly increasing and continuous in (c, r),
there exists z ∈ (c, r) such that ξ(z) = s. Therefore, ν(z) = η(ξ(z)) = η(s) > η(ξ(r)) = ν(r),
which contradicts the fact that ν is constant in the interval [c, r).

Observe that since G is strictly increasing and continuous in [E(w), ω1(F )), it follows that
φG is a non-linear stretching of F−1. In other words, if φG is constant in an interval [c, r),
then F−1 is constant over [G(c), G(r)).

Examples

Let us compute H and G for some particular valuation distributions F of w.

Uniform distribution. Consider that the random variable w is distributed according to a
uniform distribution between zero and one, that is, w ∼ Unif[0, 1]. Let us compute H and
then G, represented in Figure 2.1.

Recall that

H(y) =


0 if y ∈ (−∞, 0),

1
1−y

∫ 1

y
F−1(s)ds if y ∈ [0, 1),

1 if y ∈ [1,+∞) .

Then, considering w ∼ Unif[0, 1] we have that

H(y) =


0 if y ∈ (−∞, 0),
1
2
(1 + y) if y ∈ [0, 1),

1 if y ∈ [1,+∞),

and computing its generalized inverse we obtain G and it is given by

G(t) =


0 if t ∈ (−∞, 1/2),

2t− 1 if t ∈ [1/2, 1),

1 if t ∈ [1,+∞).

Therefore, if w ∼ Unif[0, 1], v ∼ G is also uniform but between 1/2 and 1. Moreover, the
virtual value φG(v) is distributed according to F , i.e., Unif[0, 1].

Exponential distribution. We now consider a random variable without compact support. In
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F (t)

1

(a) F distribution

y

H(y)

1

(b) H distribution

t

G(t)

11/2

(c) G distribution

Figure 2.1: F,H and G functions for the uniform example

t

F (t)

(a) F distribution

y

H(y)

1

(b) H function

t

G(t)

(c) G distribution

Figure 2.2: F, G and H functions for exponential example.

particular, we consider w ∼ Exp(1). Note that F−1(y) = ln(1/1− y) for y ∈ [0, 1). Then,

H(y) =


0 if y ∈ (−∞, 0),

1− ln(1− y) if y ∈ [0, 1),

1 if y ∈ [1,+∞).

Computing the generalized inverse of H and extended it naturally, we obtain the distribution
G given by

G(t) =

{
0 if t ∈ (−∞, 1],

1− e1−t if t ∈ (1,∞).

Note that the virtual value associated to v ∼ G has distribution F , as is stated in Lemma
4. In Figure 2.2 are F,G and H representations.

2.6.3 From posted prices to online selection

As it was mentioned in Section 2.6.1, given an instance (X,F , T ) for the online selection
problem, the idea is to feed a single-parameter mechanism, M, by constructing a set of
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valuations G using the Valuation Mapping Lemma over F . Speci�cally, for each x ∈ X, we
apply Lemma 4 to Fx, obtaining a random variable (valuation) vx distributed according to
Gx and with φGx(vx) distributed according to Fx. To not overload notation, in what follows
we call φx the virtual valuation of Gx. We denote by G = {Gx : x ∈ X} the set of valuation
distributions and consider the instance for the PPM given by (X,G, T ).

Upon the arrival of an element (buyer) x ∈ X, we obtain a price px given by the mechanism
M. We then de�ne a threshold for an element to be selected, taking into account that φx is
guaranteed to have distribution Fx.

The idea of the algorithm is as follows. For an element x ∈ X, if φx is strictly increasing
in neighbourhood of px, then x is selected if and only if wx ≥ φx(px). Otherwise, φx is �at in
an interval containing px and this translates into a randomized tie-breaking for determining
the threshold stopping rule. More speci�cally, consider the boundary prices given by

p−x = inf{p ∈ R : φx(p) = φx(px)},
p+
x = sup{p ∈ R : φx(p) = φx(px)}.

In words, if px falls in an interval where φx is constant, p−x is the left-most price with the
same virtual valuation, and p+

x is the right-most value of that interval. Observe that φx(p+
x )

is not necessarily equal to φx(px).

If wx > φx(px), the algorithm selects x with probability 1. If wx = φx(px), the algorithm
selects x with probability

θx =
Gx(p

+
x )−Gx(px)

Gx(p+
x )−Gx(p−x )

,

and rejects it with probability 1 − θx. In any other case the element x is rejected. We
now provide the pseudocode of the algorithm for constructing the thresholds for the optimal
stopping problem described above. We assume the elements arrive following the order σ.
Then, we state formally the main theorem, which is proven in Appendix B.3.4.

Theorem 5 Let (X,F , T ) be an instance of the online selection problem, and (X,G, T ) the
instance of the multi-item auction obtained by the Valuation Mapping Lemma. Suppose the
mechanismM is an α-approximation for (X,G, T ) presented in order σ. Then, Algorithm
2 is an α-approximation for (X,F , T ) presented in order σ.

2.7 Implications of the reduction

A direct consequence of Theorem 5 and the Valuation Mapping Lemma is that we obtain
lower bounds for the guarantees of PPM's by considering lower bound instances of the on-
line selection problem. In particular, we improve the previous known lower bounds for SPM
when constraints are on the form of downward closed families, from log n/(3 log log n) to
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Algorithm 2 From posted prices to thresholds.

Require: (X,F , T ) of the online selection problem.
1: Initialize A0 ← ∅.
2: for t = 1 to n do
3: Let x = σ(t), and compute price px =M(Ht−1,G, x),
4: if p−x = p+

x and wx ≥ φx(px) then select x, At ← At−1 ∪ {x};
5: else if p−x < p+

x then

6: if wx > φx(px) then select x, At ← At−1 ∪ {x};
7: else if wx = φx(px) then select x with probability θx, At ← At−1 ∪ {x};
8: reject x with probability 1− θx, At ← At−1.
9: else reject x, At ← At−1.
10: Return Alg = An.

log n/(2 log log n) [41, 119], and in the k-uniform matroid setting from 1.253 to 1.341 [28, 81]
(actually, this lower bound also applies to general matroid constraints or even intersection
of matroids). Additionally, using the results from Göbel et al. [72], it is possible to de-
rive a new lower bound for PPM where the feasibility is given by stable sets in graphs, of
Ω(log n/ log2 log n). Finally, we also provide an alternative proof for the ex-ante relaxation
lemma �rst obtained by Chawla et al. [40].

2.7.1 Improved lower bounds for PPMs

Consider for instance the single item sequential posted price problem as de�ned by Chawla et
al. [41]. Here we have one seller and n buyers with valuations given by independent random
variables Y1, . . . , Yn. In a sequential posted price mechanism (SPM), the seller has to choose
an order of the buyers and pick a price for each buyer so as to maximize revenue. As usual,
buyers simply decide to either buy at the o�ered price (if their valuation is above the price)
or reject the o�er and get nothing. Despite the signi�cant amount of work in the area, the
current best known lower bound for this problem was obtained a decade ago by Blumrosen
and Holenstein [28]. The instance is quite simple; all buyers have i.i.d. valuations distributed
according to F (v) = 1 − 1/v2. Simple calculations show that the expected revenue of the
optimal mechanism is Γ(1/2)

√
n/2, while that of the optimal SPM is

√
n/2. Thus, the ratio

is Γ(1/2)/
√

2 =
√
π/2 ≈ 1.253. Rather surprisingly, this lower bound is the best known

lower bound when the feasibility constraint is a k-uniform matroid, a general matroid, and
even the intersection of two matroids.

To see that the lower bound can be improved we consider the lower bound for the i.i.d.
prophet inequality designed by Hill and Kertz [81] over three decades ago. Hill and Kertz
considered the problem of �nding the best constant an such that for n i.i.d. random variables
the expected gambler's gains are within a factor an of that of the gambler. They were able
to characterize an through a recursion and also to �nd the instance that exactly achieves this
gap of an. In follow-up work, Kertz [89] proves that an converges to β ≈ 1.341, the unique
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solution to the integral equation
∫ 1

0
1/(y(1− ln(y)) + (β − 1))dy = 1.

With the Valuation Mapping Lemma we map back the distributions of the instances of Hill
and Kertz to distributions for the sequential posted price problem. Since the distributions
used in Hill and Kertz's instances are i.i.d., those for the sequential posted price problem will
also be i.i.d. and Theorem 5 guarantees that the gap of β ≈ 1.341 will be preserved. It is
important to note here that the instances of Hill and Kertz are discrete and therefore we need
to use the full power of the valuation mapping lemma for irregular, discrete, and piecewise
constant distributions. With the above discussion we conclude the following corollary.

Corollary 1. For 1-uniform matroid feasibility constraints (also k-uniform, general matroid,
or intersection of two matroids), there is no SPM with approximation guarantee better than
β ≈ 1.341, where β is the unique solution to the integral equation∫ 1

0

1

y(1− ln(y)) + (β − 1)
dy = 1.

There are other situations in which our main result gives improved lower bounds for
PPMs. This includes the case in which the feasibility set corresponds to stable sets in a
graph. Here the lower bounds of Göbel et al. [72] which, for example, state that even for
interval graphs one cannot hope to obtain an online algorithm with a performance guarantee
better than Ω(log n/ log2 log n), carry over to PPMs.

2.7.2 Bounding the revenue of Myerson's optimal mechanism

An important tool that has been widely used in the design of PPMs (and beyond) is the
so called Ex-ante relaxation which basically states that an upper bound of the revenue of
Myerson's optimal mechanism is obtained by bringing the ex-post allocation constraints to
ex-ante constraints which will be satis�ed in expectation. In the single item setting this
upper bound was obtained by Chawla et al. [41] and developed further by Alaei [7]. Here
we provide a simple and purely probabilistic proof of this result using the tools developed in
this chapter. Before formalizing the proof we need the following simple technical result (see
e.g. [44, Corollary 2.2]).

Lemma 5. Let Y1, . . . , Yn be non-negative random variables distributed accoring to F1, . . . , Fn
respectively. For each i ∈ {1, . . . , n}, set qi = P(Yi = maxj∈{1,...,n} Yj) and let αi be such that
1− Fi(αi) = qi. Then,

E
(
Yi

∣∣∣ Yi = max
j∈{1,...,n}

Yj

)
≤ E (Yi | Yi > αi) .

If F−1
i (1− qi) is empty for some i ∈ {1, . . . , n}, the result still holds via randomization.

Our proof, which we show only for the unit demand case, is very simple and uses only
probabilistic arguments. So consider a single-item auction instance, that is a set of buyers
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I, valuation distributions are G = {Gi : i ∈ I} and the feasibility constraints are T =
{∅} ∪ {{i} : i ∈ I}.

Lemma 6 ([41]). If the valuation distributions in G are regular, then the expected value of
Myerson's optimal auction is upper bounded by∑

i∈I

G−1
i (1− qi)qi ,

where qi is the probability that the optimal auction assigns the item to buyer i ∈ I. Fur-
thermore, for every i ∈ I (with regular or non-regular distribution) there exist two prices
pi and pi, with corresponding probabilities qi and qi, and a number 0 ≤ xi ≤ 1, such that
xiqi + (1−xi)qi = qi, and the expected revenue of Myerson's optimal auction is bounded from
above by ∑

i∈I

xipi qi + (1− xi)pi qi .

Proof. Recall that by Theorem 3 the expected revenue of optimal mechanism is given by the
expectation of the maximum over the virtual valuations. By conditioning and using Lemma
5, we can express the revenue of the optimal auction as

E
(

max
i∈I

φ+
i (vi)

)
=
∑
i∈I

E
(
φ+

i (vi) | φ+
i (vi) = max

j∈I
φ+
j (vj)

)
qi

≤
∑
i∈I

E(φ+
i (vi) | φ+

i (vi) > αi)qi,

where αi is a value for which P(φ+
i (vi) > αi) = qi. We recall Lemma 3 to conclude the upper

bound on the optimal mechanism, and the existence of such prices.
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Chapter 3

Dynamic optimization problems: a

unifying approach1

3.1 Introduction

Dynamic optimization problems with resources constraints arise across a variety of disparate
applications. For example, retailers engage in dynamic pricing with inventory constraints,
airlines and hotels engage in dynamic capacity allocation problems with limited seat or room
capacity, advertisers engage in real-time bidding campaigns with limited budget. Due to the
importance and centrality of these problems, various classes of dynamic optimization prob-
lems have received signi�cant attention in industry but also across academic communities in
Operations Research, Computer Science, and Economics. A signi�cant focus of the literature
has been on the development of e�cient algorithms to optimize performance.

While the literature on these problems is rich and extensive (we discuss the literature
in detail as we present our main results and associated corollaries), studies have focused on
speci�c applications, or classes of applications. As such, arguments are specialized for speci�c
settings and do not directly apply to other settings, typically requiring to re-develop, from
scratch, proofs when faced with a new type of dynamic optimization problems with resource
constraints. While, from a practical perspective, problems such as those mentioned above
can appear very di�erent, these problems do admit some common mathematical structure.
In the present work, we elucidate such common structure and derive important theoretical
implications of such commonalities.

1This chapter of the thesis is based on a working paper with Omar Besbes and Santiago Balseiro [19].
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3.2 Contributions

We summarize contributions of Chapter 3 below.

Firstly, we introduce and de�ne a general class of problems: dynamic resource constrained
reward collection (DRCRC) problems. This class admits as special cases a variety of prob-
lems studied completely separately in the literature. Broadly speaking, a DRCRC problem
is de�ned as follows. A decision-maker is endowed with some resources at time 0 and faces a
�nite (discrete) time horizon. At each period, the decision-maker is presented with a stochas-
tic opportunity (independent of other periods), and must select an action; the action leads
to some stochastic resource consumption and reward collection. The goal of the decision-
maker is to select a sequence of actions to maximize her total expected rewards subject to
the resource constraints. We assume that the decision-maker knows the distribution of the
various stochastic components, and, as such, this problem can be formulated as a discrete
and �nite time dynamic program, with the state given by the vector of resources available.

Notably, the DRCRC class of problems generalizes and brings under the same umbrella a
host of classical problems studied separately. In particular, we show how the proposed class
of DRCRC problems encompass the following classical problems: Network dynamic pricing
problems (see, e.g., [66]) Dynamic bidding in repeated auctions with budgets, (see, e.g., [20]),
Network revenue management problems (see, e.g., [129]), Choice-based revenue management
problems (see, e.g., [128]), Stochastic Depletion problems (see, e.g., [39]), Order ful�llment
problems (see, e.g., [3]), and Online matching problems (see, e.g., [5]).

Secondly, we provide a uni�ed analysis of a ��uid" certainty-equivalent control. Although
from a theoretical perspective, DRCRC problems can be formulated through a dynamic
program, one natural question is whether the DRCRC formulation lends itself to analysis
(beyond a generic analysis of a general dynamic program) that can applied to all special
cases, or whether problems should be specialized �rst to be able to derive properties of
interest. We indeed show that the general DRCRC formulation can lead to uni�ed analysis,
through the study of a central heuristic in the stochastic dynamic optimization literature.

Thus, our second layer of contribution is the analysis domain. In particular, we character-
ize the performance of a classical ��uid" certainty-equivalent control for the general DRCRC
class of problems.

In more detail, solving even a special case of a DRCRC problem to optimality is typically
impossible due to the curse of dimensionality; indeed the state space is driven by the number
of resources. This has brought forward the need for heuristics for such problems, and many
such heuristics have been developed for subsets of the problems above. A notable heuris-
tic for dynamic optimization problems is the so-called certainty-equivalent heuristic, which
involves solving a deterministic problem in each period by using proxies for random quanti-
ties, implementing the prescribed decisions for that period, and repeating the process over
time. Such certainty-equivalent heuristics have been shown to be near-optimal under some
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conditions in various special cases of DRCRC problems. A notable example of a certainty-
equivalent heuristic is the so-called ��uid" one, in which the random quantities are replaced
by their expectations. We will refer to this heuristic as CE. Such policies are sometimes
also referred to as �re-solving" or �model predictive control" in the various related streams
of literature. To analyze the performance of the heuristic, we measure the gap between the
optimal performance and that of the CE heuristic, and characterize the dependence of this
gap on the �scale� of the system.

More speci�cally, we establish two types of su�cient conditions for the CE heuristic to
lead to a �small" performance gap. The �rst set of su�cient conditions are stated in terms
of local smoothness of the initial deterministic proxy problem as a function of the resource
vector. The second, alternative, set of su�cient conditions are expressed in terms of the
dual Lagrangian function. In particular, the analysis leads to a dichotomy between two
fundamental cases: that when the set of actions is a continuum, and that when it is �nite.
For the former, the CE heuristic guarantees O(log T ) performance gap (where T is the length
of the horizon), whereas for the latter, it guarantees O(1) gap.

In essence, the analysis establishes that the classes of DRCRC problems, under said
su�cient conditions is �easy" in that the CE heuristic is extremely e�ective. Intuitively,
the CE heuristic enables the decision-maker to implement good decisions through the proxy
problem while controlling very closely the path of the resource constraints.

Thirdly, after developing our theoretical results and the dichotomy between �nite and
continuum of actions, we establish the mapping from a series of classical problems to a
DRCRC problem and state the corollaries that one obtains from the general analysis of the
CE heuristic. This allows to recover versions of various existing results but also to obtain such
results under weaker conditions (see, e.g., the case of dynamic pricing in Section 3.8.1), or to
obtain new results in the literature for the performance of the �uid CE heuristic (see, e.g.,
the case of dynamic bidding with budgets in Section 3.9.2 or the case of dynamic assortment
optimization in Section 3.8.2). We discuss the related literature in detail when we discuss
the various specialized problems.

Overall, this paper introduces a novel general formulation of dynamic optimization prob-
lems. We illustrated how this formulation lends itself to analysis through a uni�ed analysis of
the CE heuristic. As such, the DRCRC class o�ers a �useful� and powerful intermediate class
of problems between the specialized versions previously studied in the literature and a fully
general dynamic program, and this work opens up the possibility of further generalizations
of arguments developed for special cases of DRCRC problems.

3.3 Related literature

We left the description of the related literature to Section 3.8 and Section 3.9, where we
establish the mapping from a series of classical problems to a DRCRC problem.
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Organization

In Section 3.4 we describe the model for the class of DRCRC problems. In Section 3.5
we present the certainty equivalent heuristic (CE) we analyze along the work, whereas in
Section 3.6 we study its performance for the general class of DRCRC problems, providing an
explicit bound for the reward loss, formally stated in Theorem 6. In Section 3.7 we present
su�cient conditions for the guarantee of CE, depending on whether the set of actions is
�nite or not. Finally, in Sections 3.8 and 3.9 we review a set of special cases of the proposed
DRCRC class of problems. For each class, we �rst establish when and how it falls under a
special case of a DRCRC problem. In turn, we establish implications of Theorem 6. As we
will see, the result allows to recover some existing results in the literature as special cases,
but also have as a direct corollary new results for classes of problems studied in the literature.

3.4 Model

We consider a dynamic decision-making problem with a �nite time horizon T , over which
a decision-maker collects rewards subject to resource constraints. We refer to this problem
as the Dynamic Resource Constrained Reward Collection (DRCRC) problem. There are L
resources and the decision-maker is initially endowed with initial capacities C ∈ RL

+ for the
resources.

In each period t, an opportunity arises and each opportunity is characterized by a class
θ ∈ Θ, where Θ is a �nite set of types.2 Classes are drawn independently from a distribution
p ∈ ∆(Θ). Upon observing an opportunity, the decision-maker takes an action a ∈ A, where
A is the set of feasible actions. Upon taking an action a, the decision-maker collects a reward
that depends on the opportunity class θ, the action a, and an idiosyncratic shock ε. Shocks
lie in a space E and are drawn independently from a distribution f ∈ ∆(Θ).3 Shocks are
revealed to the decision-maker after an action is taken and are meant to capture exogenous
factors that are idiosyncratic to the opportunity. We denote by r : Θ × A × E → R, the
reward function, where r(θ, a, ε) denotes the reward when class is θ, the action is a, and the
shock is ε. Taking an action consumes resources and we assume that the amount of resources
consumed depends on the opportunity class θ and the value of the shock ε. We denote by
y : Θ×A×E → RL, the vector-valued resource consumption function. In particular yl(θ, a, ε)
represents the consumption of resource l if class θ arrived, the decision maker chose an action
a, and the shock was ε.

To ensure that the problem is feasible, we assume there is a null action a0 in A that
consumes no resources and generates no reward. That is, for every opportunity class θ and

2Here, we assume �niteness of the set of classes for expository purposes. Our results readily extend to
more general spaces.

3In the general model, to simplify notation, we make the probability distribution of ε independent of the
action and the class but any dependencies may be modeled by modifying reward and consumption functions,
and in some applications, it might be convenient to consider some dependence.
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idiosyncratic shock ε, we have r(θ, a0, ε) = 0 and yl(θ, a0, ε) = 0 for every resource l.

We denote the history up to time t − 1 as Ht−1 = {θs, as, εs}t−1
s=1. We let Π denote the

set of all non-anticipating policies, i.e., the set of policies such that the action at time t,
at, depends on the observed class of the opportunity in time t and the history up to (and
including) time t − 1. That is, for a policy π, at = aπt (θt,Ht−1)4. The decision maker's
objective is to choose a policy π ∈ Π that maximizes her expected rewards earned during the
horizon. Taking into account that the consumption's constraints must hold almost surely,
the stochastic optimization formulation of the decision-maker may be written as follows.

J∗(C, T ) = sup
π∈Π

E

(
T∑
t=1

r(θt, a
π
t , εt)

)

s.t
T∑
t=1

yl(θt, a
π
t , εt) ≤ Cl, ∀l ∈ [L] (a.s.) ,

(3.1)

where [L] denotes the set {1, . . . , L}.

Note that in general, this is a dynamic program with potentially a high number of dimen-
sions and the curse of dimensionality precludes solving this problem to optimality. Given
this, various heutistics can considered and their performance can be assessed through the
resulting optimality gap

J∗(C, T )− Jπ(C, T ),

where Jπ(C, T ) represents the expected reward obtained by the decision-maker if policy π
is implemented. We refer to the expression above as the reward loss of the heuristic given
by π.

3.5 Certainty Equivalent Heuristic

As it was mentioned in Section 1.4, the optimal solution of the stochastic formulation of the
DRCRC is not easy to compute. A common and central heuristic in the theory of dynamic
decision-making under uncertainty is based on the certainty equivalent principle: replace
quantities by their expected values and take the best actions given the current history.
Speci�cally, at each point of time t, we solve an optimization problem obtained by using the
history up to t−1 and replacing the random quantities in problem (3.1) by their expectations.

That is, if we denote by Φ the set of all class-dependent probability distributions φ :
Θ → ∆(A), and by ρ ∈ RL

+ a non-negative parameter representing the vector of available
inventory divided by the number of remaining periods, at time t we solve the following

4To simplify notation we will write aπt to refer to the action taken at time t given the policy π
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parametric programming problem for ρ = ρt, which we refer to as the deterministic problem:

J(ρ) = max
φ∈Φ

∑
θ∈Θ

pθ

∫
A

Eε (r(θ, a, ε)) dφθ(a)

s.t
∑
θ∈Θ

pθ

∫
A

Eε (yl(θ, a, ε)) dφθ(a) ≤ ρl, ∀l ∈ [L].

(3.2)

Because the distributions of classes and shocks are independent and identically distributed
(i.i.d.) and we allow for randomized actions, we can restrict attention without loss to static,
randomized controls in the deterministic problem. Fixing the parameter ρ, for each class
θ ∈ Θ and a set of actions A ∈ A, the decision variable φθ(A) gives the probability of
choosing an action a ∈ A given that the arrival belongs to class θ.

In what follows, we assume that problem (3.2) admits an optimal solution. We denote
by φ∗ρ an optimal solution when the parameter is ρ. We will provide su�cient conditions for
existence of an optimal solution in Section 3.7.5

The Certainty Equivalence Principle leads to a natural heuristic for the decision-maker: at
each point in time t, choose actions according to a solution φ∗ρt to (3.2) with ρt = ct/(T−t+1)
and ct the capacity remaining at beginning of time t. We call this heuristic the Certainty
Equivalent Heuristic (CE) and denote the corresponding policy by πCE. The heuristic is
formally presented in Algorithm 3.

The certainty equivalence heuristic has been extensively studied in the literature for spe-
ci�c applications. Our aim is to characterize its performance for the broader class of DRCRC
problems. Thus, as the family of DRCRC problems encompasses a large number of applica-
tions that have been studied in the literature separately, by analyzing the performance of the
CE heuristic, we shall recover some already known results and, in the process, obtain new
results for other applications, while highlighting very general su�cient conditions to ensure
�good" performance of the CE heuristic.

Remark. An alternative ��uid" heuristic involves solving the deterministic problem once
at the beginning of the horizon with ρ1 = C/T and then implementing the static control
ρ1 until capacity runs out. This static control is more computationally tractable as it does
not need to resolve the deterministic problem, but typically yields worse performance (see,
Appendix C.1.1 for further details).

5When an optimal solution does not exist, it su�ces for our purpose to work with a 1/T approximately
optimal solution.
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Algorithm 3 Certainty Equivalence Heuristic (CE)
1: Initialize c1 ← C,
2: for t = 1 to T do

3: ρt ← ct/(T − t+ 1)
4: φ∗ρt ← optimal solution of Problem 3.2 with ρ = ρt.
5: observe the opportunity class θt
6: draw an action at with probability φ∗ρt(θt, at)
7: if y(θt, at, ε) ≤ ct, ∀ε ∈ E , then
8: choose the action at
9: observe the shock εt
10: ct+1 ← ct − y(θt, at, εt)
11: else

12: choose the null action a0

13: ct+1 ← ct

3.6 Bound on the cumulative reward loss for DRCRC

problems

In this section we study the performance of the CE heuristic for the general class of DRCRC
problems. To this end, we �rst introduce some de�nitions and conditions on the primitives.

We will assume that the reward and consumption functions are bounded. For a vector
x ∈ Rn, we denote by ‖x‖ = (

∑n
i=1 xi)

1/2 its `2-norm and denoted by ‖x‖∞ = maxi |xi| its
`∞-norm.

Assumption 1. The following hold:

1. There exists r̄∞ ∈ R++ such that |r(θ, a, ε)| ≤ r̄∞ for all θ ∈ Θ, a ∈ A, and ε ∈ E.

2. There exist ȳ2, ȳ∞ ∈ R++ such that ‖y(θ, a, ε)‖ ≤ ȳ2 and ‖y(θ, a, ε)‖∞ ≤ ȳ∞ for all
θ ∈ Θ, a ∈ A, and ε ∈ E.

Recall that ρ1 is the vector of initial inventory divided by the amount of periods to
consider. We assume that, in the neighborhood of ρ1, the optimal objective value of the
deterministic problem J(ρ) is locally smooth as well as that the consumption constraints are
binding.

Assumption 2. There exist δ,K ∈ R++ with δ < minj∈[L](ρ1)j such that for every ρ with
‖ρ− ρ1‖ < δ, then it holds that:

1. The function J(ρ) satis�es J(ρ) ≥ J(ρ1) +∇J(ρ1)(ρ− ρ1)− K
2
‖ρ− ρ1‖2.

2. The optimal solution φ∗ρ satis�es Eθ∼p,a∼φ∗ρ,ε∼f (y(θ, a, ε)) = ρ.
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We will refer to inequality given in Assumption 2.1 as J(ρ) admitting aK-lower downward
quadratic (K-LDQ) envelope in N (ρ1, δ), where we denote by N (ρ1, δ) the ball of radius δ
centered at ρ1

6. See Figure 3.1 (a) for an example of a function admitting a K-LDQ envelope
and its envelope. This condition is a weaker and local notion of the K-strongly smooth
condition for concave functions, which requires the inequality in Assumption 2.1 to hold for
every pair of parameters ρ, ρ′. A su�cient condition for J(ρ) to admit a K-LDQ envelope is
that its gradient is locally K-Lipschitz continuous at ρ1 for all ρ ∈ N (ρ1, δ), that is,

‖∇J(ρ1)−∇J(ρ)‖ ≤ K‖ρ1 − ρ‖ .

See Lemma 3.4 in [33] for a proof of the previous fact.

We are now ready to state our performance bound of the CE heuristic under Assump-
tions 1 and 2. Speci�cally, in Theorem 6 we state that the reward loss of the heuristic given
by CE is on the order of log T , giving an explicitly expression for the bound.

Theorem 6 Let JCE be the expected performance of Algorithm 3. Then, under Assump-
tions 1 and 2, the reward loss satis�es

J∗ − JCE ≤ 1

2
ȳ2

2K log T +

[
Ψ + 14

ȳ2
∞
δ2

]
J(ρ1),

where Ψ = ȳ∞
ρ̄1−δ and ρ̄1 the smallest component of vector ρ1.

We note that the result above applies across all DRCRC problems, and only requires
Assumption 2. Consider a regime in which C and T are scaled proportionally, i.e., C =
ρ1T for some ρ1 ∈ RL

++. Theorem 6 implies that, in such a regime, the CE heuristic is
asymptotically optimal in the sense that JCE/J∗ → 1 as T →∞ because the reward collected
by the CE heuristic grows as T → ∞. Furthermore, the optimality gap is of order K log T
if K > 0 and of order 1 if K = 0. In other words, we already see appearing clear distinction
among DRCRC problems driven by the value of K in Assumption 2.

At a more detailed level, the dependency on the number of resources L enters our bound
indirectly via the constants ȳ2, ȳ∞, and K. Interestingly, when resource consumption is
uniformly bounded, i.e., ȳ∞ < ∞, the dependency on the number of resources is mostly
driven by ȳ2

2. While in the worst case we could have ȳ2
2 = Ω(L), in many settings of

interest, one will have ȳ2
2 = O(1) and obtain bounds that are independent of the number

of resources. This could happen, for example, if every opportunity consumes only a �nite
subset of resources.

The proof of the theorem can be found in Appendix C.2. The main idea of the proof
of Theorem 6 is to analyze the performance of the CE heuristic up to the stopping time τ ,

6More speci�cally, N (x, r) represents the set of all points at distance less or equal to r from x, where the
distance is the one induced by the `2−norm: N (x, r) = {y ∈ Rn : ‖x− y‖ ≤ r}.
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where τ is the �rst time that a resource is close to depletion or the ratio of capacity to time
remaining ρt leaves the ball N (ρ1, δ) de�ned in Assumption 2. Using that the deterministic
problem gives an upper bound on the optimal value of the stochastic problem, that is,
J∗ ≤ TJ(C/T ) (see, e.g., [66] for specialized argument), we can bound the reward loss as
follows

J∗ − JCE ≤ TJ(ρ1)− JCE ≤ E

(
τ∑
t=1

J(ρ1)−
τ∑
t=1

r(θt, a
πCE

t , εt)

)
− E

(
T∑

t=τ+1

J(ρ1)

)
, (3.3)

where aπ
CE

t denotes the action taken by the CE heuristic and the second inequality follows
because r(θt, aπ

CE

t , εt) ≥ 0 since the null action a0 is feasible. The second term of the right-
hand side can be written as E(T − τ)J(C/T ), which is on the order of O(1), as we establish
in Lemma 16. This follows because, under the CE heuristic, the ratio ρt behaves like a
martingale by Assumption 2.2 and, as result, the heuristic never runs out of resources nor ρt
leaves the ball N (ρ1, δ) too early. The �rst term is shown to be of order O(log T ). To see this,
note that up to time τ actions are not constrained by resources and the expected reward
at period t satis�es E

(
r(θt, a

πCE

t , εt) | ρt
)

= J(ρt) because the CE heuristic takes actions
according to φ∗ρt . Therefore, using Assumption 2.1 we can upper bound the �rst term by
∇J(ρ1)E (

∑τ
t=1(ρ1 − ρt))+K/2E (

∑τ
t=1 ‖ρ1 − ρt‖2). The �rst term is zero because ρt behaves

like a martingale, while the second term can be bounded using that martingale di�erences
are orthogonal. Putting everything together, we then conclude that J∗−JCE = O(K log T ).

In what follows, we analyze the reward loss depending on whether the set of actions is
�nite or not. Speci�cally, we provide su�cient conditions on the problem primitives for
Assumption 2 to be satis�ed. These conditions shall yield closed-form expressions for the
values of δ and K values. Though we have bounded the reward loss for those problems
included in DRCRC, we will show that for an important subfamily of problems, the result
is valid with K = 0 and, therefore, we recover a constant reward loss instead of order log T .

3.7 Dual problem and su�cient conditions for Assump-

tion 2

Before stating su�cient conditions for Assumption 2, we introduce a dual of Problem 3.2
in which we dualize the consumption constraints. To this end, let µ ∈ RL

+ be the vector
of Lagrange multipliers associated with the consumption constraints of Problem 3.2. Let
r̄ : Θ × A → R+ denote the expected reward function, i.e., r̄(θ, a) = Eε(r(θ, a, ε)). In the
same way, for each l ∈ [L], let ȳ : Θ × A → RL

+ denote the expected resource consumption
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function, i.e., ȳ(θ, a) = Eε(y(θ, a, ε)). Then, the Lagrangian function is given by

L(φ, µ) =
∑
θ∈Θ

pθ

∫
A

r̄(θ, a) dφθ(a) + µ>

ρ−∑
θ∈Θ

pθ

∫
A

ȳ(θ, a) dφθ(a)


=

∑
θ∈Θ

pθ

∫
A

(
r̄(θ, a)− µ>ȳ(θ, a)

)
dφθ(a) + µ>ρ.

De�ne, for each θ ∈ Θ, the function gθ : RL → R

gθ(µ) = sup
a∈A

{
r̄(θ, a)− µ>ȳ(θ, a)

}
. (3.4)

The Lagrange dual function, for �xed ρ ≥ 0, is given by

Ψρ(µ) = sup
φa∈∆(A)

L(φ, µ) = µ>ρ+
∑
θ∈Θ

pθ sup
a∈A

{
r̄(θ, a)− µ>ȳ(θ, a)

}
= µ>ρ+

∑
θ∈Θ

pθgθ(µ) ,

where the second equality follows from optimizing point-wise over actions. The dual problem
of Problem 3.2 is then given by

inf
µ∈RL+

Ψρ(µ) . (3.5)

In what follows, we will assume that the dual solution for ρ = ρ1, namely µ1, is interior;
that is, µ1 > 0. We introduce this assumption to guarantee that all resource constraints are
binding for ρ = ρ1, but we believe our results still hold without this assumption.

3.7.1 Continuum of actions

We �rst assume that the set of A is a continuum. In this case we will give a closed-form
expression for values K > 0 and δ for which Assumption 2 holds and we obtain, under
certain conditions that we explain below, a reward loss of the order of O(K log T ).

We now present a condition under gθ that is su�cient to ensure that the deterministic
problem has zero duality gap for every positive parameter ρ. Furthermore, we prove that the
problem admits an optimal, deterministic solution. The latter implies that when the set of
actions is a continuum, under assumption SC 1, randomization in the deterministic problem
is not needed.

SC 1. For each θ ∈ Θ, gθ(µ) is di�erentiable in µ, and for every µ ≥ 0, gθ(µ) is achieved
for an action a ∈ A.

Proposition 7. Under Assumptions 1 and SC 1, strong duality holds, i.e., J(ρ) = infµ∈RL+ Ψρ(µ)

for all ρ > 0. Furthermore, J(ρ) admits a deterministic optimal solution for all ρ.
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A proof is provided in Appendix C.3.1. In addition to condition SC 1, we need to make
another regularity assumption over the function gθ, stated below, to ensure Assumption 2
holds for this particular cases of DRCRC.

SC 2. There exists positive real numbers κ and ν ≤ µ with µ = minl∈[L] µ
1
l such that for all

θ ∈ Θ and µ ∈ N (µ1, ν), gθ(µ) satis�es

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) +

κ

2
‖µ− µ1‖2 . (3.6)

In what follows we will refer to property (3.6) as gθ admitting a κ-lower upward quadratic
(κ-LUQ) envelope in N (µ1, ν). See Figure 3.1 (b) for an example of a function admitting
a κ-LUQ and its envelope. Note that admitting a κ-LUQ envelope is a weaker and local
notion of the κ-strongly convex condition, which requires (3.6) to hold for every pair of dual
variables µ, µ′.

Lemma 7. Suppose that Assumptions SC 1 and SC 2 hold. If µ1 > 0, Assumption 2 holds
with K = 1/κ and δ = (νκ)/2.

A proof is provided in Appendix C.3.2. We obtain the following result as a corollary.

Corollary 2. Suppose that Assumptions 1, SC 1, and SC 2 hold and that µ1 > 0. Then the
reward loss of the certainty equivalent heuristic is of order O(κ−1 log T ) for DRCRC problems
with a continuum set of actions.

Geometric interpretation. The deterministic function J(ρ) can be easily shown to be
concave and non-decreasing. Assumption SC 2 states that the dual function admits a κ-LUQ
envelope in a neighborhood of the Lagrange multiplier µ1. In Figure 3.1 (b) we represent the
dual function for a one-resource problem. By duality, this allows us to prove the smoothness
condition on the deterministic function stated in the �rst statement of Assumption 2, which
is represented in Figure 3.1 (a) and consists of J(ρ) admitting a K-LDQ envelope.

Su�cient conditions on the primitives

The assumptions presented above are stated in terms of gθ(µ), which is a derived object,
and, in general, might not be easy to verify. We now present su�cient conditions on the
primitives of the problem for Assumptions SC 1 and SC 2 to hold, which, in turn, imply
Assumption 2 and allows us to recover a reward loss of order O(log T ) for DRCRC problems
with a continuum set of actions.

CA 1. For each θ ∈ Θ, r̄(θ, a) is upper-semicontinuous in a.

CA 2. For each θ ∈ Θ, ȳ(θ, a) is continuous in a.

CA 3. For each µ ≥ 0, the set A∗µ =
{
a∗ ∈ A : a∗ ∈ arg maxa{r̄(θ, a)− µ>ȳ(θ, a)}

}
is not
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ρ

J(ρ)

ρ1

(a) Deterministic proxy function in
blue. Its 0.9-LDQ envelope in red.

µ

Ψρ1(µ)

µ1

(b) Lagrangian dual function in blue.
Its 0.3-LUQ envelope in red.

Figure 3.1: Deterministic proxy J and its Lagrangian dual function, and their envelopes.

empty. Furthermore, the set {ȳ(θ, a∗) : a∗ ∈ A∗µ} is a singleton.

Proposition 8. If the set of actions A is compact and conditions CA 1, CA 2 and CA 3
hold, then condition SC 1 is ful�lled.

The proof of Proposition 8 follows directly from Corollary 4 in [108] and as omitted. It
follows from Proposition 8 that if A is compact and CA 1, CA 2 and CA 3 hold, then there
is a solution to the deterministic problem 3.2.

For each θ ∈ Θ, let us denote by a1
θ the feasible action that maximizes r̄(θ, a)−(µ1)>ȳ(θ, a).

We will assume the following extra conditions in order to bound the reward loss.

CA 4. For each θ ∈ Θ, the feasible action a1
θ is interior. That is, there exists a positive

number ϕ such that N (a1
θ, ϕ) ⊆ A for all θ in Θ.

CA 5. r̄(θ, ·) admits a κr-LDQ envelope in N (a1
θ, ϕ). That is, for all θ ∈ Θ,

r̄(θ, a) ≥ r̄(θ, a1
θ) +∇r̄(θ, a1

θ)
>(a− a1

θ)−
κr
2
‖a− a1

θ‖2 ∀a ∈ N (a1
θ, ϕ).

CA 6. There exists a positive vector κy such that for all θ ∈ Θ and a ∈ N (a1
θ, ϕ) the

consumption function ȳ(θ, ·) satis�es

ȳ(θ, a) ≤ ȳ(θ, a1
θ) +∇ȳ(θ, a1

θ)(a− a1
θ) +

κy
2
‖a− a1

θ‖2 , (3.7)

where ∇ȳ(θ, ·) represents the Jacobian matrix.

We will refer to property (3.7) as the consumption function ȳ(θ, ·) admitting a κy-upper
upward quadratic (κy-UUQ) envelope in N (a1

θ, ϕ). Note that the κy-UUQ envelope condition
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is a weaker and local notion of the κy-strongly smooth condition for concave functions, which
requires (3.7) to hold for every pair of action a, a′. Analogously to the relation made with
the lower downward quadratic envelope notion, a su�cient condition for Assumption 6 to
hold is that the gradient ∇ȳj(θ, ·) is locally Lipschitz continuous for every resource j ∈ [L].

Given a real-valued matrix A, we denote by ‖A‖ = σmax(A), where σmax(M) represents
the largest singular value of matrixM . Recall that given a real-valued matrix A, its singular
values are the square roots of the eigenvalues of matrix A>A. We are now ready to provide
su�cient conditions for Assumption SC 2 to hold.

Lemma 8. Suppose that Assumptions CA 1-CA 6 hold. Then, if A is compact, SC 2 holds
with ν = κϕ/σ and κ = κr + (ν + ‖µ1‖)‖κy‖ where σ = minθ∈Θ σθ, with σθ the minimum
singular value of ∇ȳ(θ, a1

θ).

A proof is provided in Appendix C.3.3. We obtain the following result as a corollary

Corollary 3. Suppose that Assumption 1 and Assumptions CA 1-CA 6 hold. If the set of
feasible actions A is compact and µ1 > 0, the reward loss of the certainty equivalent heuristic
is on the order of O(κ−1 log T ) for the DRCRC problems with a continuum set of actions.

3.7.2 Finite set of actions

When the set of actions A is �nite, we will show that, under condition SC 3 below, the
reward loss of the certainty equivalent heuristic is on the order of O(1).

SC 3. The dual problem 3.5 has a unique solution, µ1, for ρ = ρ1.

Note that Problem 3.2, in this special case, can be written as follows

J(ρ) = max
φθ∈∆(A)

∑
θ∈Θ

pθr̄θφθ

s.t
∑
θ∈Θ

pθȳθφθ ≤ ρ ,
(3.8)

where r̄θ = (r̄(θ, a))a∈A ∈ R|A|+ is the vector of expected rewards for the di�erent actions and
ȳθ = (ȳ(θ, a))a∈A ∈ RL×|A|

+ is the matrix of expected resource consumption. Problem (3.8)
is a �nite-dimensional linear programming problem. Furthermore, the feasible set is non
empty and compact, and therefore there exists an optimal solution. In this case, (3.5) can
be thought of as a �partial� dual problem in which we dualize the resource constraints but
not the simplex constraint

∑
a∈A φθ(a) ≤ 1. Then, it follows that if the set of actions is

�nite, the duality gap is zero and J(ρ) = infµ∈RL+ Ψρ(µ).

Note that by Assumption SC 3, there exists non-degenerate optimal solution of (3.8) for
ρ = ρ1. Denote such solution by φ∗ρ1 . Because the dual solution is interior, all resource con-
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straints are binding by complementary slackness and this solution satis�es
∑

θ∈Θ pθȳθ(φ
∗
ρ1

)θ =
ρ1.

Considering the standard form of Problem 3.8 (see Appendix C.1.2 for details), let
B ∈ R(L+|Θ|)×(L+|Θ|) be the corresponding optimal basis matrix and denote by B−1

ρ1
the

submatrix of B−1 associated to the resource constraints. In the following lemma, we show
that Assumption 2 holds under Assumption SC 3 whenever µ1 > 0.

Lemma 9. Suppose that Assumption SC 3 holds. Then, if µ1 > 0, Assumption 2 holds with
K = 0 and δ = φ∗min/‖B−1

ρ1
‖, where φ∗min = minθ∈Θ,a∈A{φ∗θ(a) : φ∗θ(a) > 0}.

The proof is provided in Appendix C.3.4. A direct result from Lemma 9 is that the reward
loss if the action space is �nite is on the order of O(1).

Corollary 4. Suppose that Assumptions 1 and SC 3 hold and that the dual solution is
interior. Then, the reward loss of the certainty equivalent heuristic is bounded by a constant
for DRCRC problems with �nite actions.

Geometric interpretation. Let us now provide a geometric interpretation for assumption
SC 3 as well as for the deterministic and dual functions for the case of �nite actions.

First, note that problem (3.8) is a LP and therefore the deterministic function J(ρ) is a
concave piece-wise linear function (see [24] for more details). Moreover, due to the nature
of the problem, it will be non-decreasing. In Figure 3.2 (a), the function J(ρ) is plotted
for a problem with one resource and two classes. Every optimal dual variables µ for Ψρ(µ)
gives a super-gradient to J(ρ). Therefore, the slope of each straight-line segment is equal
to the Lagrange multiplier associated to the consumption constraint, and the corresponding
interval gives the values of the right-hand side range for the consumption constraint ρ for
which the same dual variable is optimal.

Figure 3.2 (b) and (c) plot the dual function Ψρ(µ) as a function of µ for two di�erent
possible values of the parameter ρ. In Figure 3.2 (b), we take ρ = ρ1

1, a value where J(ρ)
has a kink. In this case, the dual problem has an in�nite solutions (blue segment in the
�gure) and every dual solution is a super-gradient of J(ρ1). Figure 3.2 (c), we plot the dual
function at ρ = ρ2

1, a value belonging to an interval where J(ρ) is smooth. There, the set of
super-gradients is a singleton and, as a result, the dual optimal solution is unique (red dot
in the �gure). Thus, Assumption SC 3 is equivalently asking that the parameters ρ1 lies in
the interior of an interval where the deterministic function J(ρ) is smooth.

Note that here, it is not necessary to assume that the dual function admits a κ-LUQ
envelope (condition SC 2). As we can see in Figure 3.2 (b), a lower upward quadratic
envelope is obtained for free when the optimal dual solution is unique and the action set is
�nite, because the dual problem is piece-wise linear.
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ρ

J(ρ)

ρ11 ρ21

(a) Function J(ρ)

µ

Ψρ11
(µ)

(b) Dual function at ρ11. Mul-
tiple optimal dual solutions.

µ

Ψρ21
(µ)

(c) Dual function at ρ21. Unique
optimal dual solution.

Figure 3.2: Function J and dual function Ψρ for two di�erent parameters.

In the following two sections, we review a set of special cases of the proposed DRCRC
class of problems. We divide them based on whether the set of actions is �nite or not. For
each problem, we show it can be modelled as a DRCRC problem, then provide problem-
speci�c su�cient conditions for our assumptions to hold, and conclude by establishing the
implications of Theorem 6. As we will see, our results allow to recover some existing results
in the literature as special cases, but also uncover new results as for other classes of problems
studied in the literature.

3.8 Notable applications with continuum of actions

In this section we present some applications studied in the literature that consider a continu-
ous space of actions. Speci�cally, we will describe the network dynamic pricing and dynamic
bidding in repeated auctions problems.

3.8.1 Network Dynamic Pricing Problem

The interest on dynamic pricing problems has grown during the last few decades. The design
of near-optimal pricing policies that are easy to implement has been studied under several
model variants and heuristic polices are widely used in practice by �rms. We refer the reader
to the review papers and textbook Bitran and Caldentey [27], Talluri and Van Ryzin [129],
Gallego et al. [65].

The problem is characterized by a �nite time selling horizon. At the beginning of each
period, a set of customers arrives, and a decision maker posts prices to maximize his expected
revenue. Demands are stochastic and inventories are �nite and without replenishment.
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Mapping to a DRCRC problem

In this setting, there is a set of N di�erent products to sell during a �nite, discrete horizon.
An arrival class θ ∈ Θ represents a customer class characterized by their valuation for the
products. The set of actions A = RN

+ consists of the set of all feasible price vectors to post
for the products.

For each customer class θ, the idiosyncratic shock ε represents some private information
on the consumer willingness to pay. Then, given θ, posted prices a ∈ A = RN

+ and a
realization of the shock ε, we denote by D(θ, a, ε) ∈ RN

+ the induced vector of demand.
The reward function is given by r(θ, a, ε) = a>D(θ, a, ε) and the consumption function is
y(θ, a, ε) = AθD(θ, a, ε). In the latter expression, Aθ ∈ RL×N is a matrix where Anlθ represents
the units of resource l needed to serve a customer class θ with a single unit of product n.

Su�cient Conditions for Assumption 2

Let D̄(θ, a) = Eε[D(θ, a, ε)] denote the expected demand and r̄(θ, a) = a>D̄(θ, a) the corre-
sponding expected reward function. The deterministic problem can be expressed as follows:

J(ρ) = max
φ∈Φ

∑
θ∈Θ

pθ

∫
A

r̄(θ, a)dφθ(a)

s.t
∑
θ∈Θ

pθ

∫
A

AθD̄(θ, a)dφθ(a) ≤ ρ.

(3.9)

We map conditions CA 1-CA 6 to su�cient conditions for this particular problem. The
following conditions together with µ1 > 0 and compactness of the set of actions A are
su�cient for Lemma 8 to hold.

� The expected demand function D̄(θ, a) is continuous in a.

� The expected resource consumption AθD̄(θ, a) at a maximizer of (a−Aθµ)>D̄(θ, a) is
unique.

� For each θ ∈ Θ, the price vector maximizing (a−A>θ µ)>D̄(θ, a), namely a1
θ, is interior.

That is, there exists a positive number ϕ such that N (a1
θ, ϕ) ⊆ A for all θ in Θ.

� The expected revenue function r̄(θ, ·) admits a κr-LDQ envelope in N (a1
θ, ϕ).

� There exists a positive vector κy such that the expected demand function D̄(θ, ·) admits
a κy-UUQ envelope in N (a1

θ, ϕ).

In particular, under the conditions above, from Lemma 7, Assumption 2 holds with K =
1/κ and δ = (νκ)/2, where κ = κr + (ν + ‖µ1‖)‖κy‖, ν = κϕ/σ, and σ is a lower bound on
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the minimum singular value of Aθ∇D̄(θ, a1
θ). Therefore, by Corollary 2, the revenue loss of

the certainty equivalent heuristic is on the order of O(log T ) for the network dynamic pricing
problem with a continuum set of feasible prices. Another implication of our result is that
the optimal pricing policy associated with the deterministic proxy is deterministic and the
decision maker does not need to randomize over posted prices.

It is worth mentioning that in the literature this problem is typically analyzed in the
demand space, i.e., for each class θ, the decision variables are the expected demands λ =
D̄(θ, a) instead of the prices a (see, e.g., Jasin [82]). In many cases, this leads to a more
tractable problem because constraints become linear and, under additional conditions, the
objective becomes concave. The issue, however, is that restrictive assumptions are needed
for this reformulation of the problem to go through. For example, it is typically assumed that
the reward function is concave in the demand space and the demand function is invertible.
Our result yield similar performance guarantees for the CE heuristic and only requires local
smoothness properties of the revenue function, which typically leads to weaker assumptions.
This is an important departure from previous work, even when specializing the analysis.

Finally, note that, if we consider a �nite set of feasible prices, the proxy deterministic
problem problems reduces to a linear program and therefore it is enough to assume the
dual solution for ρ = ρ1 is unique and interior to obtain a constant revenue loss for the CE
heuristic.

Connection with literature

Several papers study heuristics for the network dynamic pricing problem. For example, Kun-
numkal and Topaloglu [95] and Erdelyi and Topaloglu [58] consider a dynamic programming
formulation. Both papers consider an airline network in which prices a�ect the probability
of the arrival request. In the former, the authors propose a stochastic approximation algo-
rithm for choosing prices dynamically and prove its convergence. In the latter, they develop
two methods for making pricing decisions based on a decomposition of the original dynamic
program.

Closer to the specialization of our results are Maglaras and Meissner [103] and Jasin
[82]. The former established that a CE heuristic for the pricing problem will always yield
an asymptotic weak decrease in the revenue loss compared to a static control. Jasin [82]
considers a single customer class and present a certainty equivalent heuristic akin to the
CE one. Our general result recovers his bound on the logarithmic revenue loss but our
su�cient conditions are weaker than his. Interestingly, Jasin [82] also proves that resolving
less frequently yield a revenue loss of the same order and proposes another heuristic that
involves solving only a single optimization at the beginning of the selling horizon.
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3.8.2 Dynamic Bidding in Repeated Auctions

A special case of a DRCRC problem is the problem faced by a bidder participating in a
sequence of repeated auctions to buy opportunities. The bidder has a budget constraint
that limits his total expenditure over the horizon and aims to maximize his cumulative
utility. This model is mainly motivated by internet advertising markets in which advertisers
buy opportunities to display advertisements�an event referred to as an impression� via
repeated auctions subject to budget constraints.

Mapping to a DRCRC problem

In this setting, the decision maker is an advertiser. The advertiser is present in the market
for T periods and one impression is auctioned per period. Upon the arrival of an impression
at time t, the advertiser determines a real-valued valuation θt ∈ Θ ⊂ (0,Θmax] for the
impression, which is distributed according to p ∈ ∆(Θ), and chooses an action at ∈ A =
[0,Θmax] representing his bid in the auction. We denote by C the budget of the advertiser.
The shock ε captures all exogenous uncertainty in the auction, such as the bids of the
competitors and any potential randomization of the auction. For simplicity, we assume that
ε is independent of the buyer's valuation θ but our model can be easily be modi�ed to
account for correlation. The auction is characterized an allocation rule q : A × E → [0, 1]
together with a payment rule m : A × E → R, which determine the probability that the
impression is allocated to the advertiser and his expected payment as a function of his bid
and the exogenous shock, respectively.

The reward earned by the advertiser and his budget consumption, given a, ε and θ can
be expressed as r(θ, a, ε) = (θq(a, ε)−m(a, ε)) and y(θ, a, ε) = m(a, ε), respectively. Given
an action a, we introduce the interim allocation and interim payment variables de�ned as
follows: q̄(a) = Eε[q(a, ε)], m̄(a) = Eε[m(a, ε)].

Su�cient Conditions for Assumption 2

For the particular setting described above, the deterministic problem (3.2) is equivalent to
the following problem:

J(ρ) = max
φ∈Φ

∑
θ∈Θ

pθ

∫
A

(θq̄(a)− m̄(a)) dφθ(a)

s.t
∑
θ∈Θ

pθ

∫
A

m̄(a) dφθ(a) ≤ ρ .

(3.10)

For each θ ∈ Θ, let gθ(µ) = maxa∈A {θq̄(a)− (µ+ 1)m̄(a)}. Assumption SC 1 requires
that gθ(µ) is di�erentiable and that gθ(µ) is achieved by an action. Under these conditions,
Proposition 7 implies that strong duality holds and the Problem (3.10) admits a deterministic
optimal solution. In this application, we can characterize an optimal bidding strategy in
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terms of an optimal bidding function for the static auction without budget constraints,
which we denote by β : Θ → A. That is, given an advertiser with valuation θ, the optimal
bidding strategy for the static auction (ignoring budget constraints) satis�es

β(θ) ∈ arg max
a∈A
{θq̄(a)− m̄(a))} .

We have the following result. A proof is provided in Appendix C.4.1.

Proposition 9. Under Assumption SC 1, an optimal solution of (3.10) is to bid β(θ/(1 +
µ∗)) when the value is θ, where µ∗ is the optimal solution of the dual problem of (3.10).

If in addition Assumption SC 2 holds, from Lemma 7 we obtain that if µ1 > 0, Assump-
tion 2 holds with K = 1/κ and δ = (νκ)/2.

Below, we study the particular cases of second-price auction and �rst-price auction.
Speci�cally, we provide su�cient conditions on the primitives of the problem for conditions
SC 1 and SC 2 to be satis�ed.

Second-price auctions

In a second-price auction, the bidder with the highest bid wins the auction and pays the
second-highest bid. In this case, we reduce the de�nition of ε to a random variable capturing
the maximum bid of the competitors and take E = R+. Again, we assume ε is distributed
according to f , with density function f ′. We assume that ties are broken in favor of the
decision maker. The allocation and payment functions are given by q(a, ε) = 1{a≥ε} and
m(a, ε) = ε1{a≥ε}, respectively.

Suppose that the following conditions hold:

� The distribution of the maximum competing bid f is absolutely continuous and strictly
increasing.

� The density f ′ is locally ξ-Lipschitz continuous with respect to a1
θ in N (a1

θ, ϕ).

If µ1 > 0, it is possible to show�see Lemma 12 in Appendix C.1.3�that these conditions
are su�cient to apply Proposition 8 and Lemma 8 and, in turn, Corollary 3 holds. This
leads to a revenue loss of O(log T ).

First-price auctions

In a �rst-price auction, the winner is the highest bidder but pays his bid. Again, we reduce
the de�nition of ε to a random variable capturing the maximum bid of the competitors. We
assume ε is distributed according to f , with density function f ′. The allocation and payment
functions are given by q(a, ε) = 1{a≥ε} and m(a, ε) = a1{a≥ε}, respectively.

Suppose the following conditions hold:
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� The distribution of the maximum competing bid f absolutely continuous.

� The function M(a) = a+ f(a)/f ′(a) is strictly increasing.

� The bid a1
θ maximizing θq̄(a)− (1 +µ1)m̄(a) is interior. That is, there exists a positive

number ϕ such that N (a1
θ, ϕ) ⊂ A for all θ ∈ Θ.

� The density f ′ is locally ξ−Lipschitz continuous with respect to a1
θ in N (a1

θ, ϕ).

Moreover, if we have µ1 > 0, then it can be proved�see Lemma 13 in Appendix C.1.3�that
assumptions CA 1-CA 6 hold and, therefore, by Corollary 3 we obtain an O(log T ) revenue
loss.

Connection with literature

While the problem of bidding in repeated auctions with budgets has been studied in the past,
to the best of our knowledge, this is the �rst paper that studies the revenue loss of a certainty
equivalent heuristic with resolving for the advertiser's decision problem. The assumption that
budgets are large relative to the average price paid in an auction is reasonable for internet
advertising markets as bidders participate in a large number of auctions. Many papers
consider deterministic �uid approximations and static bidding policies.

Abhishek and Hosanagar [1] study this problem, where the goal is to compute optimal
bids for multiple keywords in an advertiser's portfolio. To this end, they propose two bidding
policies: one ignores the interaction between keywords, and another that incorporate inter-
action between keywords, and the paper's focus is the deterministic proxy as opposed to the
dynamic program (or the relation between the two). Motivated by ad exchanges, Balseiro
et al. [20] introduce a �uid mean-�eld equilibrium (FMFE) notion to study the strategic
outcome of advertisers competing in repeated second-price auctions. They characterize the
optimal bidding strategy for an advertiser by using the optimal solution of the static problem
with budget constraint and prove that FMFE strategies approximate the rational behavior
of the advertisers in large markets. Their analysis, however, is restricted to static policies
which attain a revenue loss of order O(T 1/2) in this setting. Gummadi et al. [77] characterize
optimal bidding strategies for bidding in general, repeated auctions under a �uid regime and
de�ne a related notion of equilibrium to Balseiro et al. [20].

Fernandez-Tapia et al. [62] study the problem of bidding in repeated auctins when the
arrival of requests is a Poisson process and characterize the optimal bidding strategy via its
Hamilton-Jacobi-Bellman equation. They show that the optimal bidding strategy can be
obtained in almost closed-form by using a �uid limit approximation.
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3.9 Notable applications with �nite set of actions

In what follows we present some known problems with �nite actions that are particular cases
of the problem studied in Section 3.7.2. Then, Assumption SC 3 together with the condition
µ1 > 0 are su�cient for Assumption 2 to hold. Furthermore, Lemma 9 and Corollary 4
applied to these particular problems, yield a constant bound to the revenue loss for the
certainty equivalent heuristic.

3.9.1 Network Revenue Management Problem

A �rst notable special case of the DRCRC class with �nite set of actions is a classical class of
problems in the Revenue Management literature: the Network Revenue Management (NRM)
problem. It has been extensively studied in the literature (see, e.g., Talluri and Van Ryzin
[129], Gallego et al. [65]) and have also been the basis for various industry solutions.

In the NRM problem, the decision-maker is a �rm who is trying to dynamically allocate
a limited amount of resources over a �nite horizon. Resources are sold to heterogeneous
consumers who arrive sequentially over time and belong to di�erent classes depending on their
consumption of resources and the �xed fare they pay. The distribution of customer classes
is stationary. Upon a customer's arrival, the �rm has to decide whether to accept or reject
the customer's request. If the customer is accepted and there is enough remaining inventory
to satisfy its request, she consumes the resources requested and pays the corresponding fare.
Otherwise, no revenue is collected and no resource is used. The decision maker's objective
is to maximize the expected revenue earned during the selling horizon.

Mapping to a DRCRC problem

In a NRM problem, a customer class can be captured by θ ∈ Θ and is characterized by
their usage of resources and a �xed price they pay for the service. We let fθ denote the fare
associated with class θ. The decision-maker's feasible actions has two values, A = {0, 1},
where we represent the action �accept� by 1 and �reject� by 0. In this problem the set
of idiosyncratic shocks is empty. The reward if the customer belongs to class θ and the
decision-maker chooses an action a is r(θ, a) = fθa. If we denote by Aθ = (Alθ)l ∈ RL

the consumption vector, where Alθ is the amount of resource l required to serve a class
θ customer, the consumption given that the decision-maker chooses an action a and the
customer class is θ is given by y(θ, a) = Aθa.

The above leads directly to a special case of our general formulation. In particular,
Problem (3.8), in this special case, can be written as follows

J(ρ) = max
φθ(1)∈[0,1]

∑
θ∈Θ

pθ fθ φθ(1)

s.t
∑
θ∈Θ

pθ Aθ φθ(1) ≤ ρ .
(3.11)
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Because the set of action consists of A = {0, 1}, it is enough to consider decision variables
φθ(1) for all θ ∈ Θ because φθ(0) = 1− φθ(1). Then, for the de�nition of φ∗min involved in δ,
we now need to take into account both the non-negative variables and those that are strictly
smaller than one. That is, φ∗min = minθ∈Θ{φ∗θ(1) : φ∗θ(1) > 0}∧minθ∈Θ{1−φ∗θ(1) : φ∗θ(1) < 1},
where x ∧ y denotes the minimum between x and y. Furthermore, if we denote by A the
matrix whose θth column consists of the vector pθAθ, Bρ1 represents the submatrix of A
in which we only consider the columns associated to variables 0 < φθ

∗(1) < 1, and we set
Aρ1 = Bρ1 . Then, under Assumption SC 3, if µ1 > 0, Assumption 2 holds with K = 0 and
δ = φ∗min/‖A−1

ρ1
‖, where φ∗min = minθ∈Θ{φ∗θ(1) : φ∗θ(1) > 0} ∧minθ∈Θ{1− φ∗θ(1) : φ∗θ(1) < 1}.

Connection with literature

As mentioned earlier, the NRM problem has a long history. It was originally proposed in
D'Sylva [51], Glover et al. [71] and Wang [131]. The question of approximating optimal
performance through simple policies has also received signi�cant attention.

Jasin and Kumar [84] studies a NRM problem with one resource and with arrivals following
a Poisson process in continuous time. Discretizing the selling horizon, their model �ts a
special of the above NRM model. In addition, it is worth noting that their assumptions
implies SC 3 and µ1 > 0, and therefore we recover the main result in Jasin and Kumar [84],
in a discrete-time setting, as a special case of Theorem 6.

A series of recent papers, which we review below, study variants of the NRM model.
While the problems studied in these papers can be mapped out to be special cases of the
DRCRC class of problems, the results developed are of a di�erent nature. The objective
is to develop heuristic that depart from the plain CE heuristic and that do not require an
assumption akin to Assumption 2 to ensure �good" performance.

Discretizing the time horizon, the setting considered in Reiman and Wang [116] would
�t to the one described in this section. In particular, they consider that customers' arrival
processes satisfying two conditions: on one hand, they assume that the functional central
limit theorem holds for a properly centered and scaled sequence of the arrival processes, and
on the other, they make a technical assumption that holds, for example, for an independent
renewal processes. They propose a heuristic that resolves the deterministic problem once
and they obtain that under their policy the revenue loss is o(

√
T ). In a related setting,

Bumpensanti and Wang [34] assume that arrivals follow a Poisson process and show that
the CE heuristic has a Θ(

√
T ) revenue loss in the general case (without the nondegeneracy

assumption). They also propose a heuristic that has a O(1) revenue loss. The idea is to only
re-solve the deterministic problem a few selected times, using the approach of Reiman and
Wang [116] recursively. More recently, in Vera and Banerjee [130] the authors consider the
NRM problem for arrival processes satisfying some quadratic tail bound and they propose
an algorithm based on thresholds that allows them to obtain a constant upper bound for the
expected revenue loss.
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An interesting direction is to explore whether the ideas developed in these papers can be
leveraged for the more general DRCRC class of problems.

3.9.2 Choice-Based Network Revenue Management Problems

This problem bears many similarities to the network revenue management problem. In
this setting, a �rm is trying to dynamically allocate a limited amount of products which
are sold to heterogeneous consumers who arrive sequentially and belong to di�erent classes
characterized by their product preferences. The key di�erence with the NRM class is that,
upon a customer's arrival, the �rm makes an o�er and depending on the o�er and on the
customer's preferences, the consumer selects a single product to buy.

Mapping to a DRCRC problem

In this setting we consider a set of N products, each of them consisting of a set of resources.
Product n is priced at mn. Given a customer class θ and a product n, we denote by Anlθ the
amount of resource l needed to serve product n to customer θ. The action set is given by
A = 2{1,...,N}, where an action a ∈ A represents a set of products to be o�ered to a consumer.

For each action a and customer class θ, we de�ne the shock random vector εθa ∈ E =
{
ε ∈

{0, 1}N :
∑

n∈[N ] ε
n ≤ 1

}
, where its nth component εnθa is 1 if and only if the customer selects

product n from the o�er a. Then, εθa ∼ Multinomial(1, gθa) where gnθa
7 is the probability of

the consumer choosing product n given that his class is θ and the action taken is a.

Given the consumer class θ, the action a, and the shock realization εθa, the reward func-
tion is given by r(θ, a, ε) =

∑
n∈[N ] mnε

n and the consumption function by y(θ, a, ε) =∑
n∈[N ] A

n
θ ε. Note that, conditional on the shock ε, the resource consumption does not de-

pend on the action. However, the action a�ects the distribution of ε.

In the present setting, the deterministic problem can be expressed as

J(ρ) = max
φ∈Φ

∑
θ∈Θ

∑
a∈A

φθ(a)pθ
∑
n∈[N ]

mng
n
θa

s.t
∑
θ∈Θ

∑
a∈A

φθ(a)pθ
∑
n∈[N ]

Anθ g
n
θa ≤ ρ.

(3.12)

We can de�ne the vector of variables and the associated matrix involved in the constraints
of problem (3.12) by setting each column to pθ

∑
n∈[N ]A

n
θ g

n
θa. Then, under assumption SC 3,

if the optimal dual solution of (3.12) for ρ = ρ1 is interior, we can apply Lemma 9 and
Assumption 2 holds for K = 0 and δ de�ned as in the statement of the lemma. Therefore,

7Without loss of generality, we can apply suitable transformations to the reward and consumption func-
tions to obtain a distribution of ε that is independent of the class and the action.
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we obtain a constant bound on the revenue loss of the CE heuristic for the choice-based
network revenue management problem.

Connection with literature

The class of choice-based network revenue management problems has appeared under two
streams: one corresponds to the called choice-based problem, where an o�er is a network
(each product is a combination of one or more resources), and the other corresponds to a
dynamic assortment optimization problem under constraints, where there is a one-to-one
mapping between products and resources.

In the �rst stream, the single-leg case was introduced by Talluri and Van Ryzin [128] who
provided an analysis of the optimal control policy under a general discrete choice model of
demand.

Regarding a network setting, Gallego et al. [63] was the �rst to study a choice-based NRM
problem. They consider �exible products in a continuous time horizon and with arrivals fol-
lowing independent Poisson processes. A �exible product consists of a set of alternative prod-
ucts serving a customer class. That is, if a �exible product F is o�ered by the decision-maker
and accepted by the consumer, then the decision-maker assigns him one of the products in
F . They present a dynamic programming formulation of the problem and proved that it can
be approximated by using an appropriate deterministic control problem. Furthermore, they
showed that the latter problem can be solved e�ciently by a column generation algorithm
for a broad class of consumer choice models (that includes both independent demands and
the multinomial logit model).

Liu and Van Ryzin [100] considered a choice-based network RM problem in which each
consumer belongs to a market segment (customer type) characterized by a set of products
(di�erents for each segment) in which the consumer is interested and the decision-maker has
to decide a set of products to o�er in each selling period. Liu and Van Ryzin [100] introduced
linear programming formulation of the problem and they show that the revenue obtained
under this deterministic program converges to the optimal revenue under the exact dynamic
formulation. Their work is based in the deterministic formulation introduced by Gallego et
al. [63] but without considering �exible products.

Bront et al. [32] consider the same problems as Liu and Van Ryzin [100] but they allow
customer classes to overlap. They compute the consumer behaviour by using an MNL choice
model and developed a column generation algorithm to solve the deterministic LP for large-
size networks. The associated subproblem is NP-complete and, therefore, they propose a
heuristic that is shown to work well on a set of computational examples.

In the other stream, Bernstein et al. [22] consider a dynamic assortment problem in
continuous time. In the problem they consider, all products have the same price and for
each customer class they compute the probability that a customer belonging to that class
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chooses a product from the o�er according to a MNL model. In the particular case with two
customer types and two di�erent products, they characterize the optimal policy and show
that the optimal dynamic program may withhold products with low remaining inventory for
future customers that are more interested in them. They then propose a threshold-based
heuristic for the general problem.

Our formulation shows that a certainty equivalent heuristic admits strong performance
guarantees under Assumption SC 3 and also assuming µ1 > 0. Corollary 4 leads, to the best
of our knowledge, to the �rst such result for this subclass of dynamic assortment optimization
problems.

Golrezaei et al. [74] also formulate a related dynamic assortment optimization problem.
Their formulation is di�erent in that it focuses on arbitrary, possibly adversarial, sequences
of customer arrivals.

3.9.3 Stochastic Depletion Problems

This problem, introduced by Chan and Farias [39], is similar to the Choice-based NRM
problem but now the consumption matrix is a random variable and the reward function
depends on the realized amount of resource consumed. More speci�cally, after a customer
arrives, the seller chooses an o�er and then an amount of each resource is consumed. The
revenue earned by the seller depends on the resource consumption.

Mapping to a DRCRC problem

Arrival classes corresponds to customer classes, which encode the consumers' preferences.
The set of actions is a set of o�ers, each of them consisting on a collection of products.
After a customer class θ arrives the seller chooses an o�er a from the actions set A and
then yl(θ, a, ε) units of resource l are consumed. The reward earned for presenting o�er a to
customer class θ when the shock is ε is r(θ, a, ε) = g(y(θ, a, ε)) where g : RL

+ → R+.

The deterministic problem is given by

J(ρ) = max
φ∈Φ

∑
θ

pθ
∑
a∈A

φθ(a)Eε (g(y(θ, a, ε)))

s.t
∑
θ

pθ
∑
a∈A

φθ(a)Eε (y(θ, a, ε)) ≤ ρ.
(3.13)

Under the conditions that the optimal dual solution of problem (3.13) for ρ = ρ1 is unique
and interior, by applying the results of Section 3.7.2, we obtain that the revenue loss for the
certainty equivalent heuristic is bounded by a constant for the stochastic depletion problem.
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Connection with literature

While this problem was studied in Chan and Farias [39], the focus there is di�erent. In their
work, they prove that under some conditions, a myopic policy yields a constant factor of the
expected revenue obtained by the optimal policy.

Discretizing the selling horizon, Jasin and Kumar [83] formulate a stochastic depletion
problem that �ts a a special case of a stochastic depletion problem. In particular, our
result directly implies their result of an O(1) revenue loss by considering a frequent resolving
heuristic.

3.9.4 Online Matching

Another closely related class of problems is that of online matching. This problem is closely
related to the NRM class, but now, opportunities correspond to sets of resources and the
decision-maker has to choose any option from the set to maximize her expected revenue
earned during the horizon.

Mapping to a DRCRC problem

We have a bipartite graph with resources in one side and classes on the other side. An
opportunity of class θ arrives with probability pθ and the decision-maker need to decide
which resource to assign. Calling L to the set of resources, each class θ has a fare vector
fθ ∈ RL

+ and a resource consumption Aθ ∈ RL
+. The action set is A = L ∪ {0}, where the

action 0 represents rejecting the request. Given an arrival θ and an action a, the reward is
given by r(θ, a) = fθa1{a6=0} and the consumption is y(θ, a) = Aθa1{a6=0}. We assume that
the bipartite graph is complete. Incomplete graphs can be modelled by setting fθj = −∞ if
assigning class θ to resource j is not feasible.

In this case, the deterministic problem is given by

J(ρ) = max
φ∈Φ

∑
θ∈Θ

∑
a∈L

φθ(a)pθfθa

s.t
∑
θ∈Θ

pθφ
>
θ Aθ ≤ ρ,

(3.14)

where φ>θ = (φθ(1), . . . , φθ(L)).

Here, as in the network revenue management problem, we can de�ne the matrix A ∈ RL×L

where the θth column is the vector pθAθ and denote Aρ1 the submatrix of A corresponding
to the columns associated to the basic variables. Then, if the dual optimal solution of
problem (3.14) for ρ = ρ1 is unique and interior, Assumption 2 holds with K = 0 and
δ = φ∗min/‖A−1

ρ1
‖, where φ∗min = minθ∈Θ,a∈A{φ∗θ(a) : φ∗θ(a) > 0}, and the constant bound for

the revenue loss is obtained.
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Connection with literature

There are several papers on online matching in the literature with the goal to design an
algorithm that maximizes the competitive ratio.

The bipartite online matching was introduced by Karp et al. [88] where they consider the
case with arrivals in arbitrary order and with the goal of maximizing the total number of
matches. To this end, they presented an online algorithm with a competitive ratio of 1−1/e
and they show that it is the best possible ratio in that setting. This was generalized to vertex-
weighted matchings in Aggarwal et al. [5], presenting a (1 − 1/e)-competitive randomized
algorithm for general vertex weights. They also show that the same competitive ratio is
obtained considering the problem with capacities.

Note that the adwords problem is a particular case of the problem we describe where
Aθ = fθ. Devanur et al. [49] consider such a problem and provide a reinterpretation of the
algorithm on Karp et al. [88] as a randomized primal-dual algorithm. Their analysis also
extends to the algorithm presented on Aggarwal et al. [5].

Also the display allocation problem can formulated as an online matching problem, where
the initial capacities give the number of impressions each advertiser request and Aθa = 1
because each impression consumes one unit. Feldman et al. [60] studied an stochastic version
of this problem assuming that arrivals are i.i.d samples from a known distribution and
that the expected number of impressions is integer. They present an algorithm with a
approximation factor higher than 1−1/e. This result was improved by Manshadi et al. [104],
who also consider a stochastic setting but they provide a bound for the competitive ratio
that holds without having integrality of expectations.

A constant bound for the reward loss was recently obtained by Vera and Banerjee [130]
for a di�erent heuristic.

3.9.5 Order Ful�llment Problem

In this section we study a class of problem faced by a retailer who needs to ful�ll the orders
they receive from di�erent facilities. Speci�cally, in this problem an order arrives sequentially
and a decision-maker has to construct a ful�llment policy to decide from which facility each
of the items in the arriving order should be ful�lled.

Mapping to a DRCRC problem

We consider the setting where there are L di�erent items (resources in the general formu-
lation) that could be served from K di�erent facilities. Each facility k is endowed with an
inventory Ck ∈ RL

+, with Ckl representing the initial capacity of item l in facility k, and we
consider that facility K is �ctitious with in�nite initial capacity of all items.
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Arrival θ occurs with probability pθ and corresponds to a request belonging to Θ =
2{1,...,L}. We assume one order includes at most one unit of each item. Then, θl = 1 if and
only if item l is included on the o�er θ and 0, otherwise.

The decision-maker has to construct a ful�llment policy to decide from which facility
k ∈ K each of the items in θ should be ful�lled in order to maximize his expected revenue.
That is, the action set is given by A = {1, . . . , K}L, where given l ∈ L, al = k means that
item l is served from facility k. Furthermore, serving item l from facility k has an associated
fare denoted by flk.

Given that the order is θ and the decision-maker chooses action a, the consumption of item
l in the facility k is ylk(θ, a) = 1{al=k}, and the reward is given by r(θ, a) =

∑
l∈θ,k∈K flk1{al=k}.

For the particular setting described above, the deterministic problem can be expressed as
follows

J(ρ) = max
φ∈Φ

∑
θ∈Θ

∑
a∈A

pθφθ(a)
∑
l∈θ

∑
k∈K

flk1{al=k}

s.t
∑
θ∈Θ

∑
a∈A

pθφθ(a)1{al=k} ≤ ρlk.
(3.15)

In this case, as in the previous ones, we can write the constraints of problem (3.15) in
matrix form and, thus, obtain an expression for δ involved in the assumption. We do not give
an explicit formula for δ to avoid introducing more notation. Moreover, if the dual optimal
solution of problem (3.15) for ρ = ρ1 is unique and interior, Assumption 2 holds with K = 0
and we recover a constant revenue loss bound for the order ful�llment problem.

Connection with literature

Many di�erent variants of this DRCRC problem have been studied in the literature. For ex-
ample, papers have considered di�erent objectives to optimize, whether if the model requires
a demand forecast of not, multi or single-item approach, among others. We refer the reader
Acimovic and Farias [3] for an overview of order ful�llment problems.

Acimovic and Graves [4] modeled the problem as a dynamic program that minimizes the
shipping cost plus the expected future costs and they propose an algorithm to approximate
it based on the dual variables of the o�ine deterministic linear programming approximation.
They demonstrate that the heuristic works well in practice.

Another paper considering a ful�llment problem is Andrews et al. [9]. The main di�erence
with the model proposed by Acimovic and Graves [4] is that the former allow demand to
be adversarial. They propose a primal-dual based algorithm to approximate the dynamic
programming value function. They give a bound for the competitive ratio achieved by the
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algorithm and establish that no online algorithm can achieve a better competitive ratio.

Jasin and Sinha [85] considered the multi-item order ful�llment problem and study the
performance of two heuristics derived from the solution of the deterministic linear program
where the objective is to minimize the total shipping cost. They investigated the competitive
ratio of both heuristics and provide numerical examples showing that one of the algorithms
performs very close to optimal.

Some works in the existing literature consider extra constraints related, for instance, to
the set of feasible facilities (or resources) from which is it possible to serve an order. Asadpour
et al. [12] consider an online allocation problem with equal numbers of types of resources and
types of requests with the restriction that a request of type i can be served only by resources
of type i and type i+1. If both resources have zero inventory left, then the sale is lost. Their
objective is to provide an upper bound on the di�erence between the performance with and
without the above described restriction on ful�llment.

It is worth mentioning that some works consider the order ful�llment problem jointly with
the pricing problem (see, e.g., [80], [97]) or jointly with both pricing and display problems
(see, e.g., [98]).

3.9.6 Other applications

Although we have mentioned several problems that are special cases of the DRCRC class,
there are some other problems in the literature that also belongs to DRCRC class.

For instance, the dynamic knapsack problem and the multisecretary problem, which are
both closely related to the NRM problem exposed, are special cases of DRCRC problems.
Arlotto and Xie [11] consider the dynamic knapsack problem, which is closely related to the
NRM problem exposed. In this case, arrivals correspond to items to allocate, the knapsack
can be seen as the resource, and the resource consumption is given by an item's weight.
Arlotto and Gurvich [10] consider the multisecretary problem. This problem is a particular
case of the our NRM problem in which the arrivals are the candidates, there is one resource
with initial capacity equal to the number of secretaries needed, and the reward associated
to a candidate is his ability.

It is worth mentioning that it is also possible to consider a combination some of the
particular classes of DRCRC problems mentioned (see, e.g., [80],[97],[98]).
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Conclusion

Throughout the chapters of this thesis, we address di�erent problems arising mainly from
revenue management. However, the problems considered are also of interest in the areas
of computer science and economics, and we then make contributions to all these research
communities.

Firstly, we introduced the notion of value of observability for a dynamic pricing problem,
which is de�ned as the ratio between the expected revenue of the seller in the settings where
she is able to observes the arrival of the customer before o�ering the price curve and the
expected revenue of the seller when she has not have this power. The main contribution is
that we provide a constant upper bound for this value, that is independent of all parameters
of the problem. This result is robust and surprising, and the main di�culty of the problem
arises from the di�culty of solving the unobservable case. In fact, to obtain this bound we use
the optimal solution of the observable case and we construct a feasible pricing policy for the
unobservable case that allowed us to extract a constant portion of the expected revenue in the
observable case. This leads us to think that, although the bound we found is an interesting
contribution, a question for future work is whether this bound could be improved. We have
also studied lower bounds for the value of observability, but this problem is di�cult due
to the impossibility of solving, and even modeling, the unobservable case in general. Thus,
using dynamic programming for a particular instance, we obtained a lower bound but we
believe that another challenge for future work is to be able to improve it. Since the notion
of the value of observability is novel, there are also open questions related to whether if
the value of observability could be also uniformly bounded for more general settings (e.g.,
considering more than one buyer), as well as relating this notion to others already studied
in the literature, such as the price of discrimination.

Secondly, we proved that the problem of designing posted price mechanisms is equivalent
to that of �nding stopping rules for optimal stopping problems. More speci�cally, we showed
that if we have a sequential posted price mechanism with a certain approximation guarantee,
it can be turned out into a prophet inequality with the same approximation guarantee. To
this end, we proved a key technical result of auction theory- that it may be useful also
in settings beyond this thesis- that states that for any distribution there is another whose
virtual value distributes according to the former distribution. As a corollary of our result,
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it is possible to translate all known lower bounds from PPMs into prophet inequalities, and
back and therefore our contribution is for both auction and optimal stopping theory.

Finally, we introduced a novel general formulation of dynamic optimization problems,
that we call dynamic resource constraint reward collection. In particular, we have seen
how this class of problems comprises several problems studied separately in the literature.
Furthermore, we considered a certainty equivalent heuristic and we studied its performance
for the class DRCRC. In particular, this implies that the performance of the heuristic can
be proved in a single result for all the known problems that are special cases of a DRCRC
problem, recovering the known performance for some problems and providing new results
for others. Although it is important how good the heuristic is, it is also important to study
the su�cient conditions needed to ensure that good performance. In this way, the thesis
introduced an important contribution, stating that some local smooth conditions on a dual
function are su�cient to recover the bounds. We also analyzed, not only the geometric
interpretation of the conditions, but also some su�cient conditions on the primitives of the
model for each of the particular problem exposed. This work opens up the possibility of
further generalizations of arguments developed for special cases of DRCRC problems.
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Appendix A

Appendix to Chapter 1

A.1 Technical results

Proposition 10. The function φ(t) is lower semi-continuous.

Proof. We need to show that for all t0 ≥ 0, it holds that

lim inf
t→t0

φ(t) ≥ φ(t0). (A.1)

First, note that from the de�nition of φ(t), we are looking for a value v to set φ(t) = v, i.e.,
v must be the smallest valuation verifying: U(t, v) ≥ U(t′, v), for all t′ > t�the inequality
holds for all v setting t′ = t and therefore we can restrict the condition for t′ strictly greater
than t�, or equivalently,

e−µt(v − p(t)) ≥ e−µt
′
(v − p(t′)),

where by isolating v we get

v ≥ p(t)− e−µ(t′−t)p(t′)

1− e−µ(t′−t) .

Observe that due to the lower semi-continuity of p(t), the de�nition of the threshold
function φ is equivalent to

φ(t) = sup
t′>t

{
p(t)− e−µ(t′−t)p(t′)

1− e−µ(t′−t)

}
. (A.2)

To prove that φ is lower semi-continuous we need the following auxiliary result, whose
proof follows from the de�nition of liminf for functions.
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Auxiliary lemma. If f and g are functions such that for all y ≥ x it holds that f(x) ≥ g(x, y),
then lim infx→x0 f(x) ≥ lim infx→x0 g(x, y), for all y ≥ x0.

From (A.2) we have φ(t) ≥ p(t)−e−µ(t
′−t)p(t′)

1−e−µ(t′−t)
for all t′ ≥ t, and using the auxiliary lemma it

follows that, for all t′ ≥ t0,

lim inf
t→t0

φ(t) ≥ lim inf
t→t0

p(t)− e−µ(t′−t)p(t′)

1− e−µ(t′−t) .

Due to the lower semi-continuity of p(t) and the continuity of the exponential function, and

in view of (A.1), the right side of this inequality is at least p(t0)−e−µ(t
′−t0)p(t′)

1−e−µ(t
′−t0)

, and therefore,

lim inf
t→t0

φ(t) ≥ p(t0)− e−µ(t′−t0)p(t′)

1− e−µ(t′−t0)
∀t′ ≥ t0.

Then, lim inft→t0 φ(t) is at least the maximum, over all t′ ≥ t0, of
p(t0)−e−µ(t

′−t0)p(t′)

1−e−µ(t
′−t0)

, which is
equal to φ(t0). Thus, φ is lower semi-continuous in R+

0 .

Lemma 10. The Euler-Lagrange equation associated to the problem

max
p

+∞∫
0

G(t, p(t), p′(t), p′′(t))dt

is given by

f ′
(
p(t)− p′(t)

µ

)(
−p
′′(t)

µ
+ p′(t)

)
(−δp(t)+p′(t))+f

(
p(t)− p′(t)

µ

)[
δ(δ − µ)p(t)− 2δp′(t) + 2p′′(t)

]
= 0.

(A.3)

Proof. Recall thatG(t, p(t), p′(t), p′′(t)) = e−δtp(t)
(
−p′(t) + p′′(t)

µ

)
f
(
p(t)− p′(t)

µ

)
. We have

to check that
d2

dt2
∂G

∂p′′
− d

dt

∂G

∂p′ +
∂G

∂p
= 0 (A.4)

is equivalent to equation (A.3).

The �rst term of the RHS of (A.4) is given by

d2

dt2
∂G

∂p′′
=

e−δt

µ
f

(
p(t)− p′(t)

µ

)(
p′′(t)− 2δp′(t) + δ2p(t)

)
+

e−δt

µ
f ′
(
p(t)− p′(t)

µ

)[
2(p′(t)− δp(t))

(
p′(t)− p′′(t)

µ

)
+ p(t)

(
p′′(t)− p′′′(t)

µ

)]
+

e−δt

µ
f ′′
(
p(t)− p′(t)

µ

)
p(t)

(
p′(t)− p′′(t)

µ

)2

.
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On the other hand, computing the second term we obtain

d

dt

∂G

∂p′
=

e−δt

µ
f

(
p(t)− p′(t)

µ

)
(δp(t)− p′(t)) +

e−δt

µ
f ′
(
p(t)− p′(t)

µ

)[(
p′′(t)

µ
− p′(t)

)(
δp(t)− p′(t)

µ
+ p(t)

)
+
p(t)

µ

(
p′′(t)− p′′′(t)

µ

)]
+

e−δt

µ
f ′′
(
p(t)− p′(t)

µ

)
p(t)

(
p′′(t)

µ
− p(t)

)2

.

Finally, the partial derivative of G with respect to p is the following

∂G

∂p
= e−δt

(
p′′(t)

µ
− p′(t)

)(
f

(
p(t)− p′(t)

µ

)
+ p(t)f ′

(
p(t)− p′(t)

µ

))
.

Thus, (A.3) comes from using the expressions above and equalizing the LHS of (A.4) to
zero.

A.2 Proofs for Section 1.5

A.2.1 Proof of Proposition 1

Let p(t) be an optimal solution of the relaxed problem [SPOr
0] and suppose that there exists t

such that ψ(t) is an inner local maximum. Then, it must hold that

ψ′(t) = p′(t)− p′′(t)

µ
= 0. (A.5)

Recalling that the valuation density f is positive, observe that, at t, the Euler-Lagrange
equation (1.2) becomes

δ(δ − µ)p(t)− 2δp′(t) + 2p′′(t) = 0,

and therefore, together with (A.5), p′(t) = δp(t)
2
, and thus, p′(t)− δp(t) < 0.

Let ε > 0 and ρ > 0 be such that t1 = t − ε and t2 = t + ρ satisfying ψ(t1) = ψ(t2) and
p′(ti)− δp(ti) < 0 for i = 1, 2. Furthermore, since ψ has a maximum at t, it must hold that
ψ′(t1) > 0 and ψ′(t2) < 0.

Let us �rst suppose that f ′(ψ(t1)) = f ′(ψ(t2)) ≥ 0. In this case, considering the �rst term
in (1.2),

f ′
(
p(t2)− p′(t2)

µ

)
︸ ︷︷ ︸

f ′(ψ(t2))≥0

(
−p
′′(t2)

µ
+ p′(t2)

)
︸ ︷︷ ︸

ψ′(t2)<0

(−δp(t2) + p′(t2))︸ ︷︷ ︸
<0

≥ 0,
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and therefore, since p(t) satis�es the Euler-Lagrange equation (1.2) for all t�and, in partic-
ular, for t2�, we must have

δ(δ − µ)p(t2)− 2δp′(t2) + 2p′′(t2) ≤ 0. (A.6)

Since by construction p′(t2) − δp(t2) < 0, we have p′(t2)
δ

< p(t2), and bounding from below
the �rst term in the LHS of (A.6), we obtain

− (δ + µ)p′(t2) + 2p′′(t2) < 0. (A.7)

Recalling that t2 = t + ρ, taking the liminf in the LHS of (A.7) when ρ → 0, by the lower
semi-continuity of the price function p(t), we obtain

−(δ + µ)p′(t) + 2p′′(t) ≤ 0,

which is equivalent to 2p′′(t) ≤ (δ + µ)p′(t). But from (A.5), µp′(t) = p′′(t), so 2µp′(t) ≤
(δ + µ)p′(t) and therefore µ ≤ δ (because p′(t) = δp(t)

2
> 0), which is a contradiction.

Now, consider the case where f ′(ψ(t1)) = f ′(ψ(t2)) < 0. Then, it must hold that

f ′
(
p(t1)− p′(t1)

µ

)
︸ ︷︷ ︸

f ′(ψ(t1))<0

(
−p
′′(t1)

µ
+ p′(t1)

)
︸ ︷︷ ︸

ψ′(t1)>0

(−δp(t1) + p′(t1))︸ ︷︷ ︸
<0

> 0

and now we can proceed analogously to the argument above.

Therefore ψ(t) cannot have an inner local maximum, and with a similar argument, neither
an inner local minimum. Hence, ψ(t) has to be monotone.

We are now left with showing that the function ψ(t) is indeed non increasing. By con-
tradiction, suppose that ψ is increasing. We will see that if so we could improve the ex-
pected revenue, contradicting that ψ corresponds to the optimal solution of the relaxed
problem [SPOr

0]. To this end, let us consider the constant function p̂(t) = p(0) for all t.
Then, ψ̂(t) = p(0) and therefore the value of the objective function of [SPOr

0] by considering
the feasible pricing policy p̂ is given by

p̂(0)(1− F (ψ̂(0))) +

∞∫
0

e−δtp̂(t)(−ψ̂(t))f(ψ̂(t))dt = p(0)(1− F (p(0))).

On the other hand, the expected revenue of the seller under the pricing policy p can be
computed as

p(0)(1− F (ψ(0))) +

∞∫
0

e−δtp(t)(−ψ(t))f(ψ(t)) dt.
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Note that the second term is negative and therefore the expression above is upper bounded
by the expected revenue obtained by selling at time 0. That is,

p(0)(1− F (ψ(0))) +

∞∫
0

e−δtp(t)(−ψ(t))f(ψ(t)) dt < p(0)(1− F (ψ(0))).

Note that 1−F (ψ(0)) > 1−F (p(0)), and therefore the expected revenue under the price
function p̂ is greater than the expected revenue under the price function p, which contradicts
the optimality of p. Thus, we can conclude that ψ is a non increasing function.

�

A.2.2 Proof of Theorem 1

Given a pair (p(t), ψ(t)) solution of [SPOr
0], with ψ(t) = p(t)− p′(t)

µ
for all t, we must show

that it meets the equilibrium constraint of [SPO0], that is:

t ∈ arg max
s≥0

e−µs(ψ(t)− p(s)) ∀t. (A.8)

Let h(s) = e−µs(ψ(t)− p(s)), leading to

h′(s) = e−µs(−µ(ψ(t)− p(s))− p′(s)),

and
h′′(s) = −µe−µs(−µ(ψ(t)− p(s))− p′(s)) + e−µs(µp′(s)− p′′(s)).

Given an interior solution t of (A.8), it must verify h′(t) = 0 and

h′′(t) = µe−µt
(
p′(t)− p′′(t)

µ

)
.

Since (p(t), ψ(t)) is solution of [SPOr
0], then from Proposition 1 we know that ψ′(t) ≤ 0,

and therefore, h′′(t) ≤ 0. Hence, t ∈ arg maxs≥0 e−µs(ψ(t)− p(s)), for any pair of functions
(p(t), ψ(t)) solution of [SPOr

0]. Recalling that the solution of [SPOr
0] de�nes an upper bound

of [SPO0], we have that such pair (p(t), ψ(t)) indeed de�nes a solution to [SPO0].

�

A.2.3 Proof of Lemma 1

By contradiction, suppose that for T = ln(1/c)/δ, we have that:

∞∫
T

e−δtp(t)d(1− F (ψ(t))) > c

p(0)(1− F (ψ(0))) +

∞∫
0

e−δtp(t)d(1− F (ψ(t)))

 . (A.9)
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Consider the price function p̂(t) = p(t+T ) and its associated purchasing function ψ̂. The
seller's expected revenue can be computed as:

Rp̂ = p̂(0)(1− F (ψ̂(0))) +

∞∫
0

e−δtp̂(t)d(1− F (ψ̂(t))).

By the de�nition of p̂ and doing the change of variable u = t+ T , it follows that the seller's
expected revenue is given by:

Rp̂ = p(T )(1− F (ψ(T ))) + eδT
∞∫
T

p(t)e−δtd(1− F (ψ(t))).

Applying (A.9), it follows that this expression veri�es

Rp̂ > p(T )(1− F (ψ(T ))) + eδT c

p(0)(1− F (ψ(0))) +

∞∫
0

e−δtp(t)d(1− F (ψ(t)))

 .
Note that p(T )(1 − F (ψ(T ))) is non negative, and that T = ln(1/c)/δ implies eδT c = 1.
Thus, the seller's expected revenue for the pricing policy p̂ is bigger than the seller's expected
revenue for the pricing policy p, which contradicts the optimality of the price function p.

�

A.3 Proof for Section 1.6

A.3.1 Proof of Lemma 2

Without loss of generality let us suppose that k = 1, that is, the buyer arrives at time t0 + t
belonging to Ĩ1 with valuation v ≥ p(T ), and further assume that he will not purchase before
time T + t0.

To prove the lemma we analyze the consumer behaviour in the unobservable case under
the pricing policy p̂ depending on his valuation. More speci�cally we will prove the followings
three statements:

1. If v ∈ [p(T ), ψ(T )), then the buyer buys at time 2T + t0.

2. If v ∈ [ψ(T ), ψ(0)), then the buyer waits and buys at time τ ∈ (T+t0, 2T+t0] satisfying
ψ(τ) = v.

3. If v ≥ ψ(0) the buyer purchases at time t0 + T .

93



First, consider a buyer with valuation v ∈ [p(T ), ψ(T )). Knowing that he will purchase to
gain some positive utility (eventually at time 2T+t0), if he decides to buy at time τ < 2T+t0,
then by the monotonicity of the purchasing function ψ in the observable case, we have that
ψ(τ − (T + t0)) > ψ(2T + t0 − (T + t0)) = ψ(T ) and it means that the buyer must have
valuation greater than ψ(T ) to be optimum to purchase at time τ , which is not the case. We
then conclude that in this case he will buy at time 2T + t0.

Secondly, if the buyer has valuation v ∈ [ψ(T ), ψ(0)), then by using the calculation of the
purchasing function for the observable arrival cas�conducted under the assumption that
the buyer arrives at time 0�, we have that for some t ∈ [0, T ], it holds that v = ψ(t), i.e.,

t ∈ arg max
s≥0

U(s, ψ(t)),

which means that
e−µt(ψ(t)− p(t)) ≥ e−µs(ψ(t)− p(s)), ∀s ≥ 0.

This is equivalent to

e−µ(T+t0)e−µt(ψ(t)− p(t)) ≥ e−µ(T+t0)e−µs(ψ(t)− p(s)), ∀s ≥ 0.

Hence, the buyer will buy at time τ = T + t0 + t satisfying ψ(t) = v.

Finally, the third statement follows directly from the de�nition of the threshold function ψ.

The lemma follows by observing that if the buyer has valuation at least ψ(T ), the seller's
revenue is the same as in the observable case with the buyer arriving at time T + t0 and
accumulating revenue up to time 2T + t0 (cases (2) and (3)). But if the buyer has valuation
between p(T ) and ψ(T ) (case (1)), then he will buy before time 2T + t0 in the unobservable
setting under the price function p̂ but he will buy after that time in the observable case with
arrival time T + t0.

Therefore, we conclude that, conditioned on the event that the buyer with valuation
greater than p(T ) arrives at time T + t0�which is equivalent to looking at the problem in
the interval [T + t0, 2T + t0] in the observable case�, the seller's expected revenue under the
policy p̂ in the unobservable case is at least the expected revenue earned up to time 2T + t0
in the observable case with arrival time T + t0.

A.4 Proof for Section 1.7.1

A.4.1 Proof of Theorem 2

We will compute a lower bound of the seller's expected revenue for the unobservable case.
For that purpose, consider the pricing policy p̂ described in Figure 1.4 and �x the buyer
arrival time τ . Recall that t0 is the uniform random variable involved in the random shift
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applied over the original price function p to get p̂. By de�ning T = ln(1/c)/δ, the price
function has period 2T .

Suppose, without loss of generality, that the buyer arrives during the �rst period; i.e.,
τ ∈ [t0, t0 + 2T ]. Thus, t0 ∼ Unif[τ − 2T, τ ]. In order to have intervals de�ned around t0, we
denote Ĩ1 := [τ − T, τ ] and Ĩ2 := [τ − 2T, τ − T ]. With this de�nition, we have that τ ∈ Ĩi

if and only if t0 ∈ Ĩi, for i = 1, 2.

Let us denote by Ruo
τ the seller's revenue in the unobservable case if the arrival time is

τ . We only consider the buyer's arrival if it belongs to the interval Ĩ1, otherwise, we simply
bound the revenue by 0.

Note that if τ ∈ Ĩ1, we can lower bound the expected value of Ruo
τ by the expected revenue

obtained by considering that the buyer has valuation at least p(T ) and that he purchases
after time t0 + T . This is because the buyer does not purchase if v < p(T ), and by waiting
up to t0 + T to buy when he could buy would hurt the seller's revenue given her discount
factor.

Then, by Lemma 2, E(Ruo
τ ) is at least the expected revenue earned up to time 2T+t0 in the

observable case with arrival time T +t0. Applying Lemma 1, we have E(Ruo
τ ) ≥ (1−c)Rt0+T ,

where Rt0+T denotes the expected revenue in the observable case if the buyer arrives at
time t0 + T .

We now use the analysis above to compute a bound for the expected value of the seller's
revenue in the unobservable case conditioned on the event that the buyer arrives at time τ .

E(Ruo
τ ) = Et0(E(Ruo

τ | t0))

= E(Ruo
τ | t0 ∈ I1)P(t0 ∈ I1) + E(Ruo

τ | t0 ∈ I2)P(t0 ∈ I2)

=
1

2
E(Ruo

τ | t0 ∈ I1) +
1

2
E(Ruo

τ | t0 ∈ I2)

≥ 1

2
(1− c)Et0(Rt0+T | t0 ∈ I1),

where the last equality holds because t0 ∼ Unif[τ−2T, τ ] and the inequality follows from the
analysis above. Note that Rt0+T = ce−δ(t0−τ)Rτ , with e−δT = c, and therefore it is enough to
compute Et0

(
e−δ(t0−τ) | t0 ∈ I1

)
. In fact,

Et0
(
e−δ(t0−τ) | t0 ∈ I1

)
=

∫ τ

τ−T
e−δ(t0−τ) 1

T
dt0

=
eδT − 1

δT
.

By the de�nition of T , we know that Tδ = ln(1/c) and eδT = 1/c, and therefore we have

Et0
(
e−δ(t0−τ) | t0 ∈ I1

)
=

1− c
c ln(1/c)

.
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We then obtain the following lower bound for the expectation of the seller's revenue in the
unobservable case that depends on c:

E(Ruo
τ ) ≥ (1− c)2

2 ln(1/c)
Rτ .

Noting that Rτ is the expected value of the seller's revenue in the observable case with
buyer's time arrival τ , follows that for each time arrival τ , the ratio between the expected
revenue in the observable and the unobservable case is at most

E(Rev. Obs | τ)

E(Rev. Unobs | τ)
≤ 2 ln(1/c)

(1− c)2
.

The latter expression is minimized at c = eW−1(−1/(2
√

e))+1/2 ≈ 0.284 and the minimum is
− 2W−1(−1/(2

√
e))+1

(eW−1(−1/(2
√

e))+1/2−1)
2 , which is roughly 4.911.

�
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Appendix B

Appendix to Chapter 2

B.1 Proofs for Section 2.4

B.1.1 Proof of Proposition 2

Let us �rst show that F (x) ≥ u implies F−1(u) ≤ x. In fact, if F (x) ≥ u then F−1(u) =
inf{w : F (w) ≥ u} ≤ x, and we obtain the desire inequality.

It remains to prove that F−1(u) ≤ x implies F (x) ≥ u. If F−1(u) ≤ x, then x ≥
F−1(u) = inf A = x0, where A = {w : F (w) ≥ u}. We divide the rest of the proof in two
cases depending on whether x0 belongs to A or not.

Case 1: x0 ∈ A. In this case, F (x0) ≥ u and from the monotonicity of F together with
x ≥ x0, follows that F (x) ≥ u.

Case 2: x0 6∈ A. In this case, there exists a sequence {xn}n ⊂ A such that xn → x0

and xi > x0 ∀i. F is a distribution and by its right-continuity we have that F (x0) =
limn→∞ F (xi) ≥ u. Again, from the monotonicity of F together with x ≥ x0, we conclude
that F (x) ≥ F (x0) ≥ u, and we conclude the proof.

�

B.1.2 Proof of Proposition 3

Let us callW to the random variable F−1(U). We will prove thatW is distributed according
to F . In e�ect,

P(W ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x),
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where the �rst equality follows from the de�nition of W , the second equality holds due
to Proposition 2, and the last one because U is uniformly distributed. We conclude that
F−1(U) ∼ F . �

B.2 Proof for Section 2.5

B.2.1 Proof of Lemma 3

Let us �rst assume that G is non-regular. Recall from [110] that φ̄ is constructed trough
ironing of the virtual valuation function as follows. Take Q(θ) = θG−1(1− θ) and R(·) the
concave hull of Q(·), i.e.,

R(θ) = min {xQ(θ1) + (1− x)Q(θ2) : xθ1 + (1− x)θ2 = θ and x, θ1, θ2 ∈ [0, 1]} .

That is, R is the smallest concave function on [0, 1] that is above Q. We now de�ne the
ironed virtual value as φ̄(v) = R′(1 − G(v)) and we denote by φ̄−1 its generalized inverse.
Thus,

E(φ̄(v) | φ̄(v) ≥ τ)P(φ̄(v) ≥ τ) =

∫ ∞
φ̄−1(τ)

φ̄(u)dG(u) =

∫ q

0

R′(θ)dθ = R(q),

where the second equality follows by the de�nition of φ̄ and q together from performing
the change of variable θ = 1 − G(u). Then, calling q1, q2 and x to the values such that
R(q) = xQ(q1) + (1− x)Q(q2) and using that Q(θ) = θG−1(1− θ), we obtain

R(q) = xq1G
−1(1− q1) + (1− x)q2G

−1(1− q2),

and the second part of the lemma follows.

If the distribution is regular, φ is non-decreasing implying that Q is already a concave
function. Therefore, R = Q and the result follows.

�

B.2.2 Proof of Theorem 4

We denote by Pt−1 the probability distribution conditional on the history Ht−1, and the
notation extends to the expectation.

We will prove prove that, given an instance for the multi-item auction problem, there exists
an α-approximation mechanism. To this end, we de�ne the algorithm and �rst compute its
expected revenue. Then, we use that the elements selected by the auction are the same as
the ones selected by the online selection algorithm over the instances taken. And �nally,
by Theorem 3 together with the approximation factor for the online selection algorithm, we
obtain the result.
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Note that the expected revenue of the mechanism is given by the sum, over the elements,
of the price times the probability of selling the item.

To simplify the proof, assume �rst that the valuations are regular. In that case, we
consider the mechanism given by Algorithm 1. Then, the prices obtained are

(
φ+

i

)−1
(τi),

where τi is the threshold given by the online selection algorithm, and the expected revenue
of the mechanism is given by

n∑
t=1

(
φ+
σ(t)

)−1

(τσ(t))Pt−1

(
vσ(t) ≥

(
φ+
σ(t)

)−1

(τσ(t))

)
.

By Lemma 3 we have that the above summation equals to

n∑
t=1

Et−1

(
φ+
σ(t)

∣∣∣φ+
σ(t) ≥ τσ(t)

)
Pt−1

(
φ+
σ(t)(vσ(t)) ≥ τσ(t)

)
.

Let χt be the indicator function of the event σ(t) ∈ Alg, that is, χt = 1 whenever σ(t) is
selected by the algorithm Alg. We can rewrite the expression above as

E

(
n∑
t=1

φ+
σ(t)(vσ(t))χt

)
= E

( ∑
i∈Mech

φ+
i (vi).

)

Observe that since vi ≥ (φ+
i )−1(τi) if and only if φ+

i (vi) ≥ τi for all i ∈ I, Mech selects the
same elements Alg does over the instance (I,Gφ, T ). Therefore, as Alg is an α-approximation,
it follows that

E

( ∑
i∈Mech

φ+
i (vi)

)
≥ α · E

(
max
S∈T

∑
i∈S

φ+
i (vi)

)
.

By Theorem 3, the latter is equal to the expected revenue of the optimal mechanism. We
conclude that mechanism 1 is an α-approximation.

If a distribution is not regular, the posted price mechanism needs to randomize between
two prices. Speci�cally, given qi = P(φ+

i (v) ≤ τi) we consider the values x, q1
i , q

2
i ∈ [0, 1]

obtained from Lemma 3, and de�ne prices p1
i = G−1

i (1−p1
i ) and p2

i = G−1
i (1−p2

i ). Then the
mechanism set price p1

i with probability xq1
i /qi and price p2

i with probability xq2
i /qi. Then,

the expected price is
xq1

i G
−1
i (1− q1

i ) + (1− x)q2
i G
−1
i (1− q2

i )

qi

,

and the rest of the proof is analogous to the previous case by using Lemma 3.

�
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B.3 Proofs for Section 2.6

B.3.1 Proof of Proposition 4

Let us �rst show the continuity of the function H. For q ∈ [0, 1), H(q) = I(q)/L(q),

where I(q) =
1∫
q

F−1(y)dy and L(q) = 1 − q. In the interval (0, 1), the function I(q) =∫ 1

q
F−1(y)dy is di�erentiable due to the calculus fundamental theorem and L(q) = 1 − q is

clearly di�erentiable and non-zero. Therefore, H is di�erentiable on (0, 1), and in particular
continuous.

To study the monotonicity of H let us compute the �rst derivative of H and analyze its
sign. Observe that

H ′(q) =
−F−1(q)(1− q) +

∫ 1

q
F−1(y)dy

(1− q)2
=

1

(1− q)2

1∫
q

(F−1(y)− F−1(q))dy,

and F−1(y) − F−1(q) ≥ 0, since F−1 is non-decreasing, and y is at least q. Therefore,
H ′(q) = 0 if and only if F−1 equals F−1(q) almost everywhere in [q, 1], which in turn happens
if and only if lim

s→F−1(q)−
F (s) = q and F (F−1(q)) = 1. Taking T = q the proof follows.

�

B.3.2 Proof of Proposition 5

1. Note that G is non-decreasing and right-continuous due to Proposition 4. Furthermore,
from the de�nition follows that limt→−∞G(t) = 0 and limt→∞G(t) = 1, and thus G is a
distribution. The support of G comes from the fact that H(0) =

∫ 1

0
F−1(y)dy = E(w),

H−1(1) = ω1(F ), and G is strictly increasing in the interior of the interval.

2. Let t be in [E(w), ω1(F )). By Proposition 4, G is strictly increasing and continuous
on this interval, and therefore invertible. It is then su�cient to show that φG(H(q)) =
F−1(q) where H(q) = t. In particular, q ∈ [0, T ), with T as in the statement of
Proposition 4. Since G is also di�erentiable and G−1 = H in this interval, it follows
that

φG(H(q)) = H(q)− 1− q
G′(H(q))

= H(q)− (1− q)H ′(q).

On the other hand, from the de�nition of H we have that

H ′(q) =
−F−1(q)(1− q) +

∫ 1

q
F−1(y)dy

(1− q)2
=
−F−1(q) +H(q)

1− q ,

and therefore H(q)− (1− q)H ′(q) = F−1(q), which completes the proof.
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3. It follows directly from (2) that φG is non-decreasing, as both F−1 and G are non-
decreasing. Since φG(E(w)) = F−1(0) = 0, it holds that φG is non-negative which in
turn implies that φ+

G = φG.

B.3.3 Proof of Lemma 4

Recall that w is a random variable distributed according to F . Let U be a random variable
uniformly distributed between 0 and 1, and de�ne the random variable v as v = G−1(U),
where G is given by the distribution described above. Applying Proposition 3 holds that v
has distribution G and by Proposition 5 (3), φ+

G = φG and therefore it remains to study the
distribution of φG. By Proposition 5 (2), we observe that for t < ω1(F ),

P(φG(v) ≤ t) = P(F−1(G(v)) ≤ t) = P(v ≤ G−1(F (t))) = G(G−1(F (t))) = F (t),

where the second equality follows from Proposition 2, the third holds because v ∼ G, and
the last equality follows since by Proposition 4, G is invertible in [E(w), ω1(F )) and thus
G ◦G−1 = I.

�

B.3.4 Proof of Theorem 5

Let Qt be the event that item σ(t) is selected by Algorithm 2. Recall that we denote by Pt−1

the probability distribution conditional on the history Ht−1, and the notation extends to the
expectation. We denote by 1Qt the indicator function of the event Qt. By conditioning on
the history, we have that

E

(∑
x∈Alg

wx

)
=

n∑
t=1

E
(
wσ(t)1Qt

)
=

n∑
t=1

E
(
Et−1

(
wσ(t)1Qt

))
.

For t ∈ [n], let x = σ(t) and px = M(Ht−1,G, x) be the price computed byM. Setting
R(t) = t(1−Gx(t)), where Gx is the distribution of vx, we claim that Algorithm 2 satis�es
that

Et−1 (wx1Qt) = R(px).

Before proving this, we see how to conclude the theorem using the equality above. Since
M is an α-approximation and using Theorem 3, we have that

∑
x∈X

px(1−G(px)) ≥ α · E
(

max
A∈T

∑
x∈A

φ+
x (vx)

)
= α · E

(
max
A∈T

∑
x∈A

wx

)
,

where in the last equality we used the fact that the valuations are obtained from the Valuation
Mapping Lemma, and that the distributions in F are independent. We remark that for the
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last equality to be true it is su�cient that the distributions in F are independent, and that
φ+
x (vx) ∼ Fx for all x ∈ X. In general, if we remove the independence assumption then the

equality does not hold. This proves that Algorithm 2 is an α-approximation.

It remains to prove the equality Et−1 (wx1Qt) = px(1−Gx(px)). To this end, we condition
on whether we are in line 4 or line 5 of Algorithm 2. If the condition in line 4 holds, then
φx(vx) > φx(px) if and only if vx > px. In particular, Pt−1 (Qt) = Pt−1(φx(vx) > φx(px)) =
Pt−1(vx > px) = 1−Gx(px). By Lemma 3 and Proposition 5,

Et−1

(
wσ(t)|Qt

)
= Et−1(φx(vx)|φx(vx) > φx(px)) = px ,

and putting all together we conclude that

Et−1

(
wσ(t)1Qt

)
= Et−1

(
wσ(t)|Qt

)
Pt−1 (Qt) = px(1−Gx(px)) = R(px).

Suppose now that the condition of line 5 is satis�ed. By Proposition 6, the function F−1

is constant in the interval [G(p−x ), G(p+
x )). In fact, we can �nd an explicit expression for Gx

in the interval [p−x , p
+
x ).

Given q ∈ [Gx(p
−
x ), Gx(p

+
x )], note that we have

H(q) =
1

1− q

∫ 1

q

F−1(y)dy =
1

1− q

[∫ Gx(p+x )

q

F−1(y)dy +

∫ 1

Gx(p+x )

F−1(y)dy

]

=
Gx(p

+
x )− q

1− q φx(px) +
1

1− q

∫ 1

Gx(p+x )

F−1(y)dy,

where the last equality follows from F−1 being equal to φx(px) in the interval [Gx(p
−
x ), Gx(p

+
x )).

Then, for every p ∈ [p−x , p
+
x ), we have that

Gx(p) =
p− φx(p+

x )Gx(p
+
x )−

∫ 1

G(p+x )
F−1(y)dy

p− φx(p+
x )

.

Using the expression of Gx shown above, it follows that

R(p) = φG(p+
x )[Gx(p

+
x )−Gx(p)] +

∫ 1

Gx(p+x )

F−1(y)dy.

By the de�nition of θx, Gx(p) = θxGx(p
−
x ) + (1− θx)Gx(p

+
x ) and therefore R(p) = θxR(p−x ) +

(1− θx)R(p+
x ). By conditioning on whether line 6 or line 7 holds, we have

Et−1

(
wσ(t)χ(Qt)

)
= θxEt−1(φx(vx)|φx(vx) ≥ φx(px))Pt−1(φx(vx) ≥ φx(px))

+ (1− θx)Et−1(φx(vx)|φx(vx) > φx(px))Pt−1(φx(vx) > φx(px)).
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Note that φx(vx) ≥ φx(px) if and only if vx ≥ p−x . On the contrary, φx(vx) > φx(px) if and
only if vx ≥ p+

x . Thus, the expression above is equivalent to

θxEt−1(φx(vx)|vx ≥ p−x )Pt−1(vx ≥ p−x ) + (1− θx)Et−1(φx(vx)|vx > p+
x )Pt−1(vx > p+

x ).

Using Lemma 3 together with the de�nition of R, we conclude that

Et−1

(
wσ(t)1Qt

)
= θxp

−
x (1−Gx(p

−
x )) + (1− θx)p+

x (1−Gx(p
+
x ))

= θxR(p−x ) + (1− θx)R(p+
x ) = R(px).

�
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Appendix C

Appendix to Chapter 3

C.1 Additional material

C.1.1 Static Probabilistic Control Heuristic

The static probabilistic control heuristic consists on setting the policy πt = φ∗1 for all t until
stock is out, where φ∗1 is an optimal solution of (3.2) taking ρ = C/T . This heuristic is
described in Algorithm 4 and gave us a feasible solution of problem (3.1), namely JS.

This heuristic was already studied in the revenue management literature (see e.g. [116],
[34]) and its well know that the policy obtained from the SPC heuristic has a revenue loss
of O(

√
T ) for di�erent online section problems. For completeness, we give a proof of this

result, for the class of DRCRC problems, stated in the following lemma.

Lemma 11. If we call JS the value of the feasible solution of Problem (3.1) given by the
SPC heuristic described above, the revenue loss is O(

√
T ), that is,

J∗ − JS ≤ O(
√
T ).

Proof. Note that taken an optimal solution of (3.2) for ρ = C/T , namely φ∗, we have that

J(C/T ) =
∑
θ∈Θ

pθ

∫
A

Eε
(
r(θ, aφ

∗
, ε)
)

dφ∗θ(a).

The value of the objective function of problem (3.1) by considering the policy π that at
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each time period applies the optimal solution φ∗ is given by

T∑
t=1

Eεt

∑
θt∈Θ

pθt

∫
A

r(θt, a
π
t , εt) dφ∗θ(a)

 = TJ(C/T ). (C.1)

Since π might not be feasible, to get JS we have to subtract from (C.1) the revenue
associated to customers who are not served because of the lack of capacity, which is upper
bounded by

L∑
l=1

rlmaxE

( T∑
t=1

yl(θt, a
π
t , εt)− Cl

)+
 ,

where rlmax is the largest extra revenue gain by increasing the capacity of resource l by one
unit.

Thus,

J∗ − JS ≤
L∑
l=1

rlmaxE

( T∑
t=1

yl(θt, a
π
t , εt)− Cl

)+


and in the rest of the proof we will bound right hand side in the inequality above.

In what follows, we will write yt,l to refer to yl(θt, aπt , εt).

Due to φ∗ is an optimal solution of (3.2) for ρ = C/T , if the associated resource con-
sumption for each resource l is given by yl, we have that

T
∑
θ∈Θ

∫
A

Eε(yl) dφ∗θ(a) ≤ Cl,

and therefore

E

( T∑
t=1

yt,l(θt, a
π
t , εt)− Cl

)+
 ≤ E

( T∑
t=1

yt,l − TE(yl)

)+


≤ E

(∣∣∣∣∣
T∑
t=1

yt,l − TE(yl)

∣∣∣∣∣
)
,

where the last inequality follows because the positive part of a real value is always upper
bounded by its absolute value.
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Furthermore, the square root function is concave and applying Jensen's inequality together
with the independence of variables {yt,l}t and that E

(∑T
t=1 yt,l

)
= TE(yl), we obtain

E

(∣∣∣∣∣
T∑
t=1

yt,l − TE(yl)

∣∣∣∣∣
)
≤

√√√√√E

( T∑
t=1

yt,l − TE (yl)

)2


=

√√√√Var

(
T∑
t=1

yt,l

)

=

√√√√ T∑
t=1

Var (yt,l) .

Note that Var(yt,l) ≤ E
(
y2
t,l

)
, and by assumption made at the beginning of Section 3.6

we obtain √√√√ T∑
t=1

Var (yt,l) ≤
√
T ȳ∞ .

Putting all together, we conclude that

J∗ − JS ≤
√
T ȳ∞

∑
l

rlmax ,

and the result follows.

Algorithm 4 Static Probabilistic Control Heuristic (SPC)
1: Initialize c1 ← C,
2: φ∗1 ← an optimal solution of Problem 3.2 with ρ = C/T
3: for t = 1 to T do observe the opportunity class θt
4: draw an action at with probability φ∗ρt(θt, at)
5: if y(θt, at, ε) ≤ ct, ∀ε ∈ E , then choose the action at
6: observe the shock εt
7: ct+1 ← ct − y(θt, at, εt)
8: else choose action a0.

C.1.2 Finite set of actions

Problem 3.8 is a linear program. In particular, introducing the set of slack variables
{x1 . . . xL}, the standard form is given by

106



J(ρ) = max
Θ∑
θ=1

pθ r̄θφθ

s.t
∑
θ∈Θ

pθ ȳlθ φθ + xl = ρl ∀l ∈ [L]∑
a∈A

φθ(a) = 1 ∀θ ∈ Θ

φθ(a) ≥ 0 ∀θ ∈ Θ, ∀a ∈ A
xi ≥ 0 ∀i ∈ [L].

(C.2)

C.1.3 Dynamic bidding in repeated auctions

Second-price auctions

Lemma 12. If f absolutely continuous and strictly increasing and f ′ is locally ξ-Lipschitz
continuous in N (a1

θ, ϕ), then conditions CA 1- CA 6 hold.

Proof. Let us see that conditions CA 1- CA 6 hold.

� Conditions CA 1 and CA 2: By hypothesis f is absolutely continuous and therefore
both q̄ and m̄ are continuous.

� Condition CA 3: For each θ ∈ Θ, tet us de�ne the function Gθ : A → R by Gθ(a) =
θf(a)−

∫ a
0
x df(x). Note that G′θ(a) = (θ − a)f ′(a) and θ > 0, then lima↘0G

′
θ(a) > 0

and β(θ) 6= 0. If θ 6= Θmax, we also have lima→0G
′
θ(a) < 0, and therefore β(θ) ∈

arg maxaGθ(a) is interior. Assume then �rst that θ 6= Θmax. In this case, we can
compute the �rst order condition, obtaining that β(θ) satis�es the equation

(θ − β(θ))f ′(β(θ)) = 0.

Therefore, as the cumulative distribution function f is strictly increasing, the unique
optimum is to bid truthfully, as it is known in the literature.

Otherwise, if θ = Θmax, Gθ is strictly increasing for all a ∈ A and therefore β(θ) =
Θmax.

We then conclude that CA 3 holds.

� Condition CA 4: Due to the truthfulness property of the second price auction, from
Proposition 9, it follows that a1

θ = θ/(1 +µ1) which belongs to (0,Θmax) due to the bid
is positive, and thus condition CA 4 holds.

� Conditions CA 5 and CA 6: Note �rst that r̄(θ, a) = θf(a)− m̄(θ, a) and ȳ(θ, a) =
m̄(a), because f absolutely continuous. Then, it is enough to show the conditions
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hold for h(θ, ·) = θf(·) and m̄(a) =
∫ a

0
x df(x). Speci�cally, we will show that if the

density function f ′ is locally ξ-Lipschitz continuous in N (a1
θ, ϕ), then the gradient of

h(θ, ·) = θf(·) is locally (ξΘmax)-Lipschitz continuous in N (a1
θ, ϕ) and m̄′(a) = af ′(a)

is locally ((ϕ+ Θmax/(µ
1 + 1))ξ + η)−Lipschitz continuous in N (a1

θ, ϕ).

To see the former note that

‖∇ah(θ, a)−∇ah(θ, a1
θ)‖ = θ|f ′(a)− f ′(a1

θ)| ≤ Θmaxξ|a− a1
θ|,

where the equality follows from the gradient of h and the inequality holds due to the
locally ξ−Lipschitz continuity of f ′ and because θ ≤ Θmax.

For the latter, we �rst show that f ′(a1
θ) ≤ η with η = 1/ϕ + ξϕ. Because the density

f ′ is locally ξ-Lipschitz continuous in N (a1
θ, ϕ), we have that f ′(a1

θ) ≤ f ′(x) + ξϕ for
all x ∈∈ [a1

θ, a
1
θ +ϕ]. Integrating over x ∈ [a1

θ, a
1
θ +ϕ] we obtain that f ′(a1

θ)ϕ ≤ 1 + ξϕ2

because f ′ integrates to at most one. The result follows by dividing by ϕ. We now
show that m̄′(a) is locally Lipschitz continuous:

|m̄′(a)− m̄′(a1
θ)| = |af(a)− a1

θf(a1
θ)|

= |a
[
f ′(a)− f ′(a1

θ)
]

+ f ′(a1
θ)(a− a1

θ)|
≤ a|f ′(a)− f ′(a1

θ)|+ f ′(a1
θ)|a− a1

θ|

≤
((

ϕ+
Θmax

µ1 + 1

)
ξ + η

)
|a− a1

θ|,

where the �rst inequality holds applying triangle inequality and the last follows from
the bound of f ′(a1

θ), together with the locally ξ−Lipschitz continuity of f ′, the equality
a1
θ = θ/(1 + µ1) and the bound a1

θ ≤ Θmax. The proof is completed.

First-price auctions

Lemma 13. If f absolutely continuous, M(a) = a+f(a)/f ′(a) strictly increasing, the bid a1
θ

maximizing θq̄(a)−(µ1+1)m̄(a) is interior, and the density function f ′ is locally ξ−Lipschitz
in N (a1

θ, ϕ), and f ′(a1
θ) is upper bounded by η, conditions CA 1- CA 6 hold.

Proof. As in the lemma for second-price auctions, conditions CA 1 and CA 2 holds because
f is absolutely continuous. On the other hand, the bidder's problem in the static �rst price
auction without budget constraints is to �nd a bid function β(θ) maximizing (θ − a)f(a).
Note that arg max θf(a) − af(a) = arg max θ′f(a) − (µ1 + 1)af(a), where θ′ = θ/(µ1 + 1),
is interior by hypothesis and then, computing the �rst order condition, we obtain that β(θ)
should satisfy

f ′(β(θ))θ − f(β(θ))− β(θ)f ′(β(θ)) = 0. (C.3)

Then, we have θ = β(θ) + f(β(θ))/f ′(β(θ)) = M(β(θ)) and by hypothesis we can compute
the inverse of M and therefore β(θ) = M−1(θ). Thus, payments at the optimal solution are
unique and assumption CA 3 holds.
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Note that condition CA 4 is directly assumed in the statement of the lemma, and therefore
it holds.

It remains to see smoothness of both the expected reward r̄(θ, a) = (θ − a)f(a) and
expected payment ȳ(a) = af(a) functions, but it is enough to show that the gradient of
ȳ(θ, a) is locally Lipschitz continuous. To this end, note that

|∇aȳ(θ, a)| = |f(a) + af(a)− f(a1
θ)− a1

θf(a1
θ)| ≤ |f(a)− f(a1

θ)|+ |af(a)− a1
θf
′(a1

θ)|,

where the last expression in the inequality can be bound by using the local Lipschitz conti-
nuity of f ′ together with the upper bound for f ′ (as in the case of the second-price action,
we have that f ′(a1

θ) is bounded) by using the mean value theorem. The remaining algebra
is similar to the second-price case and the proof is completed.

C.2 Proof Theorem 6

The goal of this section is to proof Theorem 6, which is our mean result regarding the
performance of the heuristic CE for the set of DRCRC problems. To do that, we assume
that Assumption 1 and Assumption 2 hold and we �rst introduce some processes and random
variables, as well as technical results, that will be useful to obtain the desire result.

In what follows we will denote by yt the resource consumption at time t if the decision
maker follows the policy πCE. That is, yt = y(θt, a

πCE

t , εt).

Let us consider the process {Mt}t≥1 up to time T consisting in, at each time period,
the accumulated di�erence between the resource vector consumption and its expectation,
divided the remaining horizon. More speci�cally, for each t ∈ [T ],

Mt =
t∑

s=1

E (ys|ρs)− ys
T − s .

Let us de�ne the stopping time τ. To this end, we need to introduce two random variables.
On one hand, we de�ne τδ to be the �rst time t such that Mt has `2-norm greater or equal
than δ, where δ is got form Assumption 2. That is,

τδ = min
t∈[T ]
{t : ‖Mt‖ ≥ δ}.

If ‖Mt‖ is at most δ for all t ∈ [T ], we set τδ =∞.

On the other hand, we de�ne τ− as the �rst time at which there exists a resource such
that its consumption under the policy φ∗ρt is over capacity. That is,

τ− = min
t∈[T ]
{t : ∃ l ∈ [L] s.t. ct,l − yl(θt, aφ

∗
ρt , εt) < 0}.
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As above, if ct,l − yl(θt, aφ
∗
ρt , εt) is greater or equal to 0 for all t ∈ [T ] and l ∈ [L], we set

τ− =∞.

Then, we de�ne the random variable τ as the minimum between τδ and τ−, and the
number of periods T , i.e., τ = min{τδ, τ−, T}.

Note that both τδ and τ− are stopping times with respect to the �ltration {Ft}t≥1, with
Ft = σ(θ1, . . . , θt, a1, . . . , at, ε1, . . . , εt), the history up to the end of period t, and thus we
obtain that τ is also a stopping time with respect to the same �ltration {Ft}t≥1.

Furthermore, the process {Mt}t≥1 is a martingale with respect to the �ltration {Ft}t≥1.
In fact, for each t, from Assumption 1.2 follows that E(yt|ρt)− yt ≤ ȳ∞ <∞, and therefore
E(‖Mt‖) <∞ for all t. On the other hand, for each t holds that

Mt+1 −Mt =
E(yt+1|ρt)− yt+1

T − t− 1

and
E (E(yt+1|ρt)− yt+1|Ft) = 0,

concluding that
E(Mt+1 −Mt|Ft) = 0 ∀t ≥ 1.

Since {Mt}t≥1 is a martingale and τ an stopping time, it turns out that the stopped
process {Mt∧τ}t≥1 is also a martingale with respect to the �ltration {Ft}t≥1.

We are now ready to present some properties for the process and the stopping time de�ned
above, that will be needed to prove the bound for the reward loss. The �rst of them states
that up to time τδ, the random variable Mt can be expressed as the di�erence between ρt+1

and ρ1 and that ρt belongs to the ball centered at ρ1 with radius δ.

Lemma 14. Under Assumption 2, if t is at most τδ, it holds that:

1. ρt+1 − ρ1 = Mt

2. ‖ρt − ρ1‖ < δ.

Proof. We will proceed by induction on t, dividing the proof into two steps, the �rst corre-
sponds to prove the base case and the other the induction step.

Step 1. Note that for t = 1, the statement 2 of the lemma follows trivially and we are then
under the hypothesis of Assumption 2, obtaining E(y1|ρ1) = ρ1. Therefore, we can express
M1 as follows:

M1 =
E(y1|ρ1)− y1

T − 1
=
ρ1 − y1

T − 1
. (C.4)
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From the de�nition of ρ1 and ρ2, we have that y1 = ρ1T − ρ2(T − 1) and replacing in
(C.4) follows that

M1 =
ρ1 − ρ1T + ρ2(T − 1)

T − 1
= ρ2 − ρ1,

obtaining the �rst statement of the lemma and completes the step 1.

Step 2. Now, assume that Lemma 14 holds for all s smaller or equal than a �xed t < τδ
and let us prove that both statements also hold for t+ 1.

As in the base case, we will �rst prove the statement 2 and we then use it to prove
statement 1. That is, let us show that ‖ρt+1 − ρ1‖ < δ. Applying the induction hypothesis
to t, it holds that ‖ρt+1 − ρ1‖ = ‖Mt‖. On the other hand, t < τδ and thus ‖ρt+1 − ρ1‖ < δ,
concluding that ‖Mt‖ < δ, and the second statement follows.

In the remainder of the proof, we show that ρt+2 − ρ1 = Mt+1.

Note that

ρt+2 − ρ1 =
t+1∑
s=1

ρs+1 − ρs =
t+1∑
s=1

ρs(T − s+ 1)− ys
T − s − ys =

t+1∑
s=1

ρs − ys
T − s ,

where the �rst equality is obtained by using a telescoping sum and the second holds because
ρs+1 = cs+1/(T − s), cs = ρs(T − s+ 1) and cs+1 = cs − ys.

By the induction hypothesis, together with the statement 2 we already proved for s = t+1,
it holds that ‖ρs − ρ1‖ < δ for all s ≤ t + 1. Therefore we can apply Assumption 2 to the
expression above obtaining that

ρt+2 − ρ1 =
t+1∑
s=1

E(ys|ρs)− ys
T − s = Mt+1,

and the lemma follows.

Since {Mt∧τ}t≥1 is a zero mean martingale with respect to the �ltration {Ft}t≥1, a direct
consequence of Lemma 14 is that also the stopped process {ρt∧τ}t≥1 is a martingale with
respect to the same �ltration.

The following lemma is a technical result we need to prove that the expected value of
the remaining periods after the stopping time τ is bounded by a constant�result stated in
Lemma 16. Speci�cally, it gives us su�cient conditions on t to be a lower bound for the
stopping time τ−.
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Lemma 15. Let assume that Assumption 1 and 2 hold, and de�ne Ψ = ȳ∞
ρ̄1−δ , where ρ̄1 is

the smallest component of vector ρ1, and T
− = T +1−Ψ. If t ≤ T−, and t < τδ then t < τ−.

Proof. Due to the de�nition of the stopping time τ−, we have to show that for all s ≤ t, the
consumption is at most the available capacity, i.e., y(θs, a

φ∗ρs , εs) ≤ cs.

Take s ≤ t. By hypothesis, s < τδ and by Lemma 14 it holds that ‖ρs − ρ1‖ < δ. In
particular, |(ρs − ρ1)l| < δ ∀l ∈ [L], obtaining

ρs > ρ1 − 1δ , (C.5)

where 1 denotes the vector of ones of size L. On the other hand, note that

cs > (T − s+ 1)(ρ1 − 1δ) ≥
ȳ∞

ρ̄1 − δ
(ρ1 − 1δ) ≥ 1ȳ∞ ≥ y(θs, a

φ∗ρs , εs),

where the strict inequality follows from the de�nition of ρs, together with inequality (C.5);
the second inequality holds because t ≤ T− and ρ̄1 > δ, together with Assumption 1.2; and
the third and the last due to the de�nition of ρ̄1 and ȳ∞, respectively.

We then conclude that τ− is greater than t and the proof is completed.

Below we prove a result stating that the expected value of the remaining periods after
the stopping time τ is upper bounded by a constant that does not depend on T , which is a
key result to obtain the main theorem.

Lemma 16. If Assumptions 1 and 2 hold, there exists a constant µ such that E(T − τ) ≤ µ.
More speci�cally,

E(T − τ) < Ψ + 14
ȳ2
∞
δ2
.

Proof. We will prove the result by bounding the expected value of τ , which is equivalent
to the expression

∑∞
t=1 P(τ ≥ t) because τ is a non-negative random variable. From the

de�nition of τ , the probability of τ being greater than T is zero and the probability of being
at least one is one, and then,

E(τ) = 1+
T∑
t=2

P(τδ∧τ− ≥ t) = 1+
T−−1∑
t=2

P(τδ∧τ− ≥ t)+
T∑

t=T−

P(τδ∧τ− ≥ t) ≥ 1+
T−−1∑
t=2

P(τδ∧τ− ≥ t)

(C.6)
where the last equality follows just splitting the horizon and the inequality holds because
P(τδ ∧ τ− ≥ t) ≥ 0.
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On the other hand,

T−−1∑
t=2

P(τδ ∧ τ− ≥ t) =
T−−1∑
t=2

P
(

min
s∈[T ]
{s : ‖Ms‖ ≥ δ} ≥ t

)

=
T−−1∑
t=2

P (‖Ms‖ < δ ∀s ∈ [t])

= T− − 2−
T−−1∑
t=2

P
(

max
s∈[t]
‖Ms‖ ≥ δ

)
,

where the �rst equality is obtained by Lemma 15 (since t < T−, τδ ∧ τ− = τδ) and the last
one because P(‖Ms‖ < δ ∀s ∈ [t]) = 1− P(maxs∈[t] ‖Ms‖ ≥ δ).

Then, using the equality above in (C.6) it holds that

E(τ) ≥ T− − 1−
T−−1∑
t=2

P
(

max
s∈[t]
‖Ms‖ ≥ δ

)
.

In the remainder of the proof we will upper bound
T−−1∑
t=2

P
(
maxs∈[t] ‖Ms‖ ≥ δ

)
, and we pro-

ceed by applying Theorem 3.5 in [115]. To this end, note �rst that (RL, ‖ · ‖) is a separable
Banach space, and since ‖x + y‖ + ‖x − y‖ ≤ 2‖x‖2 + 2‖y‖2 holds for all x, y ∈ R+, it
is (2, 1)-smooth. De�ne, for each t, the Martingale {Mt∧s}s≥1. From the de�nition of Ms

follows that

Ms −Ms−1 =
E(ys|ρs)− ys

T − s ,

and therefore
∞∑
s=1

‖Ms −Ms−1‖2
∞ =

t∑
s=1

‖Ms −Ms−1‖2
∞

=
t∑

s=1

∥∥∥∥E(ys|ρs)− ys
T − s

∥∥∥∥2

∞

≤ (2ȳ∞)2 1

T − t ,

where the inequality follows from Assumption 1.2, and using that
∑t

s=1 1/(T − s)2 ≤∫ t
0

1/(T − s)2 < 1/(T − t).

Then, we are under the hypothesis of the theorem mentioned above, and applying it
together with the inequality P

(
maxs∈[t] ‖Ms‖ ≥ δ

)
≤ 1, we obtain

P
(

max
s∈[t]
‖Ms‖ ≥ δ

)
≤ 1 ∧ 2 exp

(
−δ

2(T − t)
8ȳ2
∞

)
.
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Summing on t and using the bound obtained above, we have

T−−1∑
t=2

P
(

max
s∈[t]
‖Ms‖ ≥ δ

)
≤

T∑
t=2

(
2 exp

(
−δ

2(T − t)
8ȳ2
∞

)
∧ 1

)

≤
T∫

0

(
2 exp

(
−δ

2(T − t)
8ȳ2
∞

)
∧ 1

)
dt

≤ 8ȳ2
∞
δ2

(log 2 + 1) ,

where the second inequality follows from bounding the summation by the integration and
the last inequality from Lemma 17.

Putting all together and bounding 8(log 2 + 1) by 14 we conclude

E(T − τ) < T − T− + 1 + 14
ȳ2
∞
δ2

= Ψ + 14
ȳ2
∞
δ2
,

and the desire result is obtained.

We are now ready to prove Theorem 6 by combining the technical results already pre-
sented.

Proof of Theorem 6. We have to bound J∗−JCE, which is upper bounded by TJ(ρ1)−JCE

because J∗ ≤ TJ(C/T ) (see, e.g., [66]). Thus, it is enough to bound TJ(ρ1)− JCE.

By dividing the horizon from 1 to τ and from τ to T , we obtain

TJ(ρ1)− JCE ≤ E

(
τ∑
t=1

J(ρ1)−
τ∑
t=1

r(θt, a
CE
t , εt)

)
︸ ︷︷ ︸

(A)

+E

(
T∑

t=τ+1

J(ρ1)

)
︸ ︷︷ ︸

(B)

, (C.7)

and we then have to bound (A) and (B), which will be done in Part 1 and Part 2 separately,
respectively.

Part 1. We will prove that (A) ≤ K/2ȳ2
2 log T, and we divide the proof into three steps.

First, we show that the expected reward earned up to time τ considering the policy given
by the CE heuristic equals the expected reward until time τ of the deterministic problem for
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ρ = ρt at time t. Using that, applying Assumption 2- the hypothesis is ful�lled because t ≤ τ
and then by Lemma 14 we have ‖ρt − ρ1‖ < δ-, summing over t and taking expectation, we
obtain

(A) = E

(
τ∑
t=1

(J(ρ1)− J(ρt))

)
≤ E

(
τ∑
t=1

−∇J(ρ1)(ρt − ρ1)

)
︸ ︷︷ ︸

(A1)

+E

(
τ∑
t=1

K

2
‖ρt − ρ1‖2

)
︸ ︷︷ ︸

(A2)

.

In the second step we bound (A1) and in step 3 we bound (A2).

Step 1. Let us prove that

E

(
τ∑
t=1

r(θt, a
CE
t , εt)

)
= E

(
τ∑
t=1

J(ρt)

)
. (C.8)

To this end, consider the sequence of zero mean, i.i.d. random variables {Xt}t≥1 given by

Xt = r(θt, a
CE
t , εt)− Eθ,ε

(
r(θt, a

CE
t , εt)|ρt

)
.

Then, it is well known (see e.g. [118] page 296) that de�ning Ns =
∑s

t=1Xt, holds that
{Ns}s≥1 is a martingale relative to the �ltration {Ft}t≥1 previously de�ned. Therefore, due
to τ is an stopping time with respect to the same �ltration, we can apply the Martingale
Stopping Theorem ([118], Theorem 6.6.2), which in turns implies that

E (Nτ ) = E (N1) = 0. (C.9)

On the other hand, by the de�nition of the deterministic problem, we have that

Eθ,ε
(
r(θt, a

CE, εt)|ρt
)

= J(ρt) ∀t ∈ [T ]. (C.10)

Then, (C.8) follows easily from (C.9) and (C.10).

Step 2. We want to bound (A1). In fact, we will prove that it is equal to zero. From the
linearity of the expectation, (A1) is equivalent to

τ∑
t=1

−∇J(ρ1)E (ρt − ρ1) .

Furthermore, note that E (ρt − ρ1) is zero because {ρt∧τ}t≥1 is a martingale, and the term
(A1) vanishes in the bound, obtaining (A) ≤ (A2).
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Step 3. Regarding (A2), by linearity of the expectation, it is enough to bound the expression
E (||ρt − ρ1||2), for t ≤ τ. Using telescoping sum and the orthogonality of the martingale's
increments (see e.g. [78], Chapter 10 Lemma 4.1) we have

E
(
‖ρt − ρ1‖2

)
= E

∥∥∥∥∥
t∑

s=2

(ρs − ρs−1)

∥∥∥∥∥
2

=
t∑

s=2

E‖ρs − ρs−1‖2, (C.11)

and therefore in the remainder of this step we bound ‖ρs − ρs−1‖2. Note that

‖ρs − ρs−1‖2 =

∥∥∥∥ρs−1(T − s+ 2)− ys−1

T − s+ 1
− ρs−1

∥∥∥∥2

=

∥∥∥∥ρs−1 − ys−1

T − s+ 1

∥∥∥∥2

=

∥∥∥∥E(ys−1|ρs−1)− ys−1

T − s+ 1

∥∥∥∥2

,

where the �rst equality follows from the de�nitions ρs = cs
T−s+1

, ρs−1 = cs−1

T−s+2
and cs =

cs−1 − ys−1; and the last equality follows from Assumption 2.

Furthermore, by de�nition of `2-norm, holds that

‖E(ys−1|ρs−1])− ys−1‖2 =
∑
l∈[L]

(E(ys−1,l|ρs−1)− ys−1,l)
2 ,

and taking expectation follows that

E
(
‖E(ys−1|ρs−1)− ys−1‖2

)
=
∑
l∈[L]

E
(
(E(ys−1,l|ρs−1)− ys−1,l)

2) =
∑
l∈[L]

Var(ys−1,l).

Using that Var(ys−1,l) = E ((ys−1,l)
2)−E (ys−1,l)

2 ≤ E ((ys−1,l)
2) , together with the linearity

of the expectation we have

∑
l∈[L]

Var(ys−1,l) ≤
∑
l∈[L]

E
(
(ys−1,l)

2
)

= E

∑
l∈[L]

(ys−1,l)
2

 ≤ ȳ2
2 ,

where the last inequality follows from Assumption 1.2.

Getting back to expression (C.11), we �nally obtain

E
(
‖ρt − ρ1‖2

)
≤

t∑
s=2

ȳ2
2

(T − s+ 1)2
≤ ȳ2

2

t∫
2

1

(T − s+ 1)2
ds ≤ ȳ2

2

T − t+ 1
,
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and therefore by doing the suitable computations we obtain (A2) ≤ K/2ȳ2
2 log T, concluding

the proof of Step 3.

Putting all together we get

E

(
τ∑
t=1

(J(ρ1)− J(ρt))

)
≤ K

2
ȳ2

2 log T , (C.12)

and the proof of Part 1 is complete.

Part 2. It only remains to bound the second term in (C.7). Note that

E

(
T∑

t=τ+1

J(ρ1)

)
= E(T − τ)J(C/T ),

and applying Lemma 16 we obtain

E

(
T∑

t=τ+1

J(ρ1)

)
≤
[
Ψ + 14

ȳ2
∞
δ2

]
J(C/T ). (C.13)

Using (C.12) together with (C.13) in (C.7) we get

J∗ − JCE ≤ ȳ2
2K log T +

[
Ψ + 14

ȳ2
∞
δ2

]
J(C/T ),

and the result follows.

C.3 Proofs for Section 3.7

C.3.1 Proof of Proposition 7

We divide the proof into two steps. First, we prove that an optimal solution to the dual
problem exists, namely µ∗. Then, we de�ne φ∗ properly and we apply Proposition 5.1.5 in
[23] to prove that φ∗ is primal solution and µ∗ is in fact a Lagrangian multiplier and that
therefore there is no duality gap, obtaining the desire result.

Step 1. Note that for each θ ∈ Θ, gθ is convex because it is de�ned as the supremum of a
family of linear functions and therefore the dual problem is a convex problem.

To prove the existence of optimal dual solution µ∗, we �rst prove Ψρ is di�erentiable (and
thus continuous) and then we argue that the domain of the dual problem can be restricted to
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a compact set, achieving the result applying the extreme value theorem. For the former, it
is enough to note that gθ(µ) is di�erentiable by Assumption SC 1, and in particular we have
that Ψρ is continuous. On the other hand, we can prove that we can restrict the domain
of the dual problem to the hypercube [0, µ̄ρ]

L, for µ̄ρ = r̄∞/ρ̄, where ρ̄ = minl∈[L] ρl and
r̄∞ is the positive real number provided by Assumption1.1. We have that µ̄ρ < ∞ because
ρ > 0. Let us check that every µ 6∈ [0, µ̄ρ]

L is suboptimal. Take µ 6∈ [0, µ̄ρ]
L, and de�ne

L1 = {l ∈ [L] : µl > µ̄ρ} the components of µ greater than µ̄ρ. Then, we have

Ψρ(µ) ≥ ρ>µ ≥
∑
l∈L1

ρlµ̄l =
∑
l∈L1

r̄∞
ρl
ρ̄
≥ r̄∞ ≥ Ψρ(0),

where the �rst inequality holds because r̄(θ, a0) = ȳ(θ, a0) = 0, for all θ ∈ Θ and therefore
gθ(µ) ≥ 0; the second follows from the non-negativity of vectors µ and ρ, the third inequality
holds because L1 contains at least one element and ρl ≥ ρ̄, and the last one follows because
Ψρ(0) =

∑
θ∈Θ pθ maxa∈A r̄(θ, a) and r̄∞ ≥ r̄(θ, a) for all θ ∈ Θ, and a ∈ A. Then, we have

Ψρ(0) ≤ Ψρ(µ) and together with the extreme value theorem we conclude that for each ρ > 0
there exist µ∗ optimal dual solution satisfying µ∗ ∈ [0, µ̄ρ]

L.

Step 2. Given ρ > 0, take µ∗ an optimal dual solution and, for each θ ∈ Θ, de�ne φ∗θ a
distribution that assigns probability one to an action a∗θ ∈ arg maxa∈A

{
r̄(θ, a)− µ∗>ȳ(θ, a)

}
.

Such actions are guaranteed to exist by Assumption SC 1. Let us now show that (φ∗, µ∗)
is an optimal solution-Lagrange multiplier pair. We will proceed by using Proposition 5.1.5
in [23]. That is, we need to check primal and dual feasibility, Lagrangian optimality and
complementary slackness.

1. Primal and dual feasibility. Dual feasibility follows because µ∗ ≥ 0. For primal fea-
sibility, note that from the envelope theorem applied to gθ (see, e.g., Theorem 1 in
[108]), the gradient of Ψρ evaluated at µ∗ is given by

∇Ψρ(µ
∗) = ρ+

∑
θ∈Θ

pθ∇gθ(µ∗) = ρ−
∑
θ∈Θ

pθȳ(θ, a∗θ) , (C.14)

where we used that by SC 1 the value function gθ(µ) is di�erentiable and achieved for
an action a∗θ, and that the gradient of r̄(θ, a)− µ>ȳ(θ, a) with respect to µ exists and
is given by ȳ(θ, a). Because µ∗ is an optimal dual solution and the constraint set is
convex, by Proposition 2.1.2 in [23], the �rst-order conditions are given by

∇Ψρ(µ
∗)>(µ− µ∗) ≥ 0, ∀µ ∈ RL

+ . (C.15)

Letting µl →∞, we obtain that∇Ψρ(µ
∗) ≥ 0, which, in turn, implies that

∑
θ∈Θ pθȳ(θ, a∗θ) ≤

ρ by (C.14). Primal feasibility follows.

2. Complementary slackness. If µ∗l = 0, we trivially have (∇Ψρ(µ
∗))lµ

∗
l = 0 and com-

plementary slackness follows. If µ∗l > 0, we can take ν > 0 with µ∗l + ν and µ∗l − ν
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belonging to R+. Using (C.15), we obtain that (∇Ψρ(µ
∗))lν ≥ 0 and (∇Ψρ(µ

∗))lν ≤ 0.
Thus, it holds that (∇Ψρ(µ

∗))l = 0 and complementary slackness follows.

3. Lagrangian optimality. Note that

arg max
φ∈Φ
L(φ, µ∗) = arg max

φ∈Φ

µ∗ρ+
∑
θ∈Θ

pθ

∫
A

(
r̄(θ, a)− µ∗>ȳ(θ, a)

)
dφθ(a)


=

arg max
φθ∈∆(A)

∫
A

(
r̄(θ, a)− µ∗>ȳ(θ, a)

)
dφθ(a)


θ∈Θ

=

{
arg max

a∈A
gθ(µ

∗)

}
θ∈Θ

,

where the second equality holds because we can separate the problem for each θ. But
note that gθ(µ∗) is maximized at a∗θ and thus we have Lagrangian optimality.

Therefore, the four conditions hold and the proof is complete.

�

C.3.2 Proof of Lemma 7

We have to show that if ρ ∈ N (ρ1, δ), with δ = (νκ)/2 then it holds that

1. J(ρ) ≥ J(ρ1) +∇J(ρ1)(ρ− ρ1)− 1
2κ
‖ρ− ρ1‖2,

2.
∑

θ∈Θ pθ
∫
a
ȳ(θ, a) dφ∗θ(a) = ρ.

Part 1. We �rst extend the strong convexity lower bound of gθ to the entire domain. Given
θ ∈ Θ, by SC 2, gθ admits a κ-LUQ envelope in Iν = N (µ1, ν). Then, for all µ ∈ Iν .

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) +

κ

2
‖µ− µ1‖2 . (C.16)

We next extend the lower bound to every feasible dual variable. Consider µ ≥ 0 with µ 6∈ Iν .
Take α such that αµ+ (1−α)µ1 = µ̂ where µ̂ is in the boundary of the ball Iν , i.e., µ̂ ∈ ∂Iν .
The latter is possible because µ 6∈ Iν . Note that µ̂ − µ1 = α(µ − µ1). Taking `2-norm in
both sides, we get that α = ‖µ̂− µ1‖/‖µ− µ1‖. Moreover, α ∈ (0, 1) because µ1 is interior
since ν > 0 and µ 6∈ Iν . Because gθ is convex, we have

αgθ(µ) + (1− α)gθ(µ
1) ≥ gθ(αµ+ (1− α)µ1) = gθ(µ̂) ,

119



which can be reordered to give

gθ(µ) ≥ 1

α
gθ(µ̂)− 1− α

α
gθ(µ

1)

≥ 1

α
gθ(µ

1) +
1

α
∇gθ(µ1)>(µ̂− µ1) +

κ

2α
‖µ̂− µ1‖2 − 1− α

α
gθ(µ

1)

= gθ(µ
1) +

1

α
∇gθ(µ1)>(µ̂− µ1) +

κ

2α
‖µ̂− µ1‖2 ,

= gθ(µ
1) +∇gθ(µ1)>(µ− µ1) +

κν

2
‖µ− µ1‖ ,

where the second inequality follows by (C.16) with µ = µ̂ and the second equality from
µ̂ − µ1 = α(µ − µ1) together with ‖µ̂ − µ1‖2 = α‖µ − µ1‖‖µ̂ − µ1‖ = αν‖µ − µ1‖ since
‖µ̂−µ1‖ = ν because µ̂ lies at the boundary of the ball Iν . Combining both cases we obtain
that

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) + κ`(µ− µ1) , (C.17)

where

`(z) =

{
1
2
‖z‖2 if ‖z‖ ≤ ν
ν
2
‖z‖ otherwise.

The function ` : RL → R is, unfortunately, not convex. We restore convexity while preserving
the lower bound by shrinking the radius of ball in half and shifting down the cone outside
the ball. In particular, consider the function f ∗ : RL → R given by

f ∗(z) =

{
1
2
‖z‖2 if ‖z‖ ≤ ν

2
ν
2
‖z‖ − 1

8
ν2 otherwise.

The function is easily shown to be convex and satis�es `(z) ≥ f ∗(z) for all z ∈ RL. (Actually,
f ∗(z) is the largest convex function satisfying `(z) ≥ f ∗(z).) Putting everything together we
obtain that

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) + κf ∗(µ− µ1) . (C.18)

Part 2. Let us prove the �rst statement. Using this lower bound on gθ to bound J(ρ) we
have

J(ρ) ≥ min
µ≥0

{
ρ>µ+

∑
θ∈Θ

pθ
(
gθ(µ

1) +∇gθ(µ1)>(µ− µ1) + κf ∗(µ− µ1)
)}

= ρ>1 µ
1 +

∑
θ∈Θ

pθgθ(µ
1) + (µ1)>(ρ− ρ1) + min

µ≥0

{
(ρ− ρ1)>(µ− µ1) + κf ∗(µ− µ1)

}
= J(ρ1) +∇J(ρ1)>(ρ− ρ1) + min

z≥µ1

{
(ρ− ρ1)>z + κf ∗(z)

}
︸ ︷︷ ︸

(E)

,
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where the �rst equality holds because the dual solution is interior, i.e., µ1 > 0, and then
the �rst order conditions for the dual problem imply that ρ1 +

∑
θ∈Θ pθ∇gθ(µ1) = 0 and

the last equality follows from performing the change of variables µ − µ1 = z and because
J(ρ1) = ρ>1 µ

1 +
∑

θ∈Θ pθgθ(µ
1) together with ∇J(ρ1) = µ1 from the envelope theorem. Note

that envelope theorem applies to J because both gθ and J�in a neighborhood of ρ1�are
continuously di�erentiable (it follows from Assumption SC 1, and from the concavity of J
and Theorem 25.5 in [117], respectively).

In the remainder of the proof we lower bound the error term (E). We have that

(E) ≥ min
z∈RL

{
(ρ− ρ1)>z + κf ∗(z)

}
= −κmax

z∈RL

{(
ρ1 − ρ
κ

)>
z − f ∗(z)

}
= −κf ∗∗

(
ρ1 − ρ
κ

)
,

where the �rst inequality follows from relaxing the constraint that z ≥ −µ1, the �rst equality
from factoring κ > 0 and changing the direction of the optimization, and the last one by
denoting f ∗∗(x) = maxz∈RL{x>z − f ∗(z)} to be the convex conjugate of f ∗(z). Invoking
Lemma 18 with ϕ = ν/2, we obtain that f ∗∗(x) = f(x) with f(x) = 1

2
‖x‖2 if ‖x‖ ≤ ν/2

and f(x) = ∞ otherwise because the function f(x) is proper (because ν > 0), closed, and
convex (because every squared norm is convex). Therefore, if ‖ρ− ρ1‖ ≤ νκ/2, we have

(E) ≥ −κf
(
ρ1 − ρ
κ

)
= − 1

2κ
‖ρ− ρ1‖2 .

Putting it all together, we conclude that for ρ such that ‖ρ− ρ1‖ ≤ (νκ)/2,

J(ρ) ≥ J(ρ1) +∇J(ρ1)>(ρ− ρ1)− 1

2κ
‖ρ− ρ1‖2.

Part 3. Let us now see the second statement. More speci�cally, we will show that if
||ρ1 − ρ|| ≤ δ then ∑

θ∈Θ

pθ

∫
a∈A

ȳ(θ, a) dφ∗θ(a) = ρ,

where φ∗ is an optimal solution of the deterministic problem when the resource vector is ρ.

Note that by complementary slackness we know that for all i ∈ [L]

µi

(
ρ−

∑
θ∈Θ

pθ

∫
a∈A

ȳ(θ, a) dφ∗θ(a)

)
i

= 0,

where µ is the optimal solution of (3.5). That is,

µ ∈ arg min
µ∈RL+

Ψρ(µ),
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with Ψρ(µ) = ρ>µ +
∑

θ∈Θ pθgθ(µ) the Lagrange dual function. We prove the result by
showing that µi > 0 ∀i ∈ [L] for every optimal solution when the resource vector ρ satis�es
‖ρ− ρ1‖ < δ.

For all µ ≥ 0, we have from (C.17) that

Ψρ(µ) ≥ ρ>µ+
∑
θ∈Θ

pθ
(
gθ(µ

1) +∇gθ(µ1)>(µ− µ1) + κ`(µ− µ1)
)

= ρ>µ+
∑
θ∈Θ

pθgθ(µ
1) + (µ1 − µ)>ρ1 + κ`(µ− µ1)

= Ψρ(µ
1) + κ`(µ− µ1) + (µ1 − µ)>(ρ1 − ρ).

Let us de�ne U0 =
{
µ ∈ RL

+ : µj = 0 for some j ∈ [L]
}
the set of dual feasible solutions with

some zero component. We will prove that if ρ is suitably chosen, then minµ∈U0 Ψρ(µ) >
Ψρ(µ

1) and therefore the optimal solution of the dual problem satis�es µi > 0 for all i ∈ [L]
since all dual solutions in the boundary U0 are strictly dominated by µ1. To this end, it is
su�cient to show that

(I) = min
µ∈U0

{
κ`(µ− µ1) + (µ1 − µ)>(ρ1 − ρ)

}
> 0 .

Suppose that ‖µ − µ1‖ ≤ ν. In this case, `(z) = 1
2
‖z‖2. Before proceeding we note that

minµ∈U0 ‖µ − µ1‖ ≥ µ. In fact, if µ ∈ U0 there exist j ∈ [L] such that µj = 0 and therefore
(µ−µ1)j = −µ1

j , obtaining that ‖µ−µ1‖ ≥ µ1
j ≥ µ. Then, using Cauchy-Schwartz we obtain

that

(I) ≥ min
µ∈U0

{κ
2
‖µ− µ1‖2 − ‖ρ1 − ρ‖‖µ− µ1‖

}
= min

µ∈U0

‖µ− µ1‖
(κ

2
‖µ1 − µ‖ − ‖ρ1 − ρ‖

)
≥ min

µ∈U0

‖µ− µ1‖
(κµ

2
− ‖ρ1 − ρ‖

)
≥ µ

(κµ
2
− ‖ρ1 − ρ‖

)
> 0 ,

where the second inequality follows because minµ∈U0 ‖µ − µ1‖ ≥ µ, the third and fourth
inequalities because ‖ρ1 − ρ‖ < (νκ)/2 ≤ (µκ)/2 because ν ≤ µ.

Suppose that ‖µ−µ1‖ > ν. In this case, `(z) = ν‖z‖/2 and using again Cauchy-Schwartz
we obtain

(I) ≥ min
µ∈U0

(κν
2
− ‖ρ1 − ρ‖

)
‖µ− µ1‖ ≥

(κν
2
− ‖ρ1 − ρ‖

)
ν > 0 ,

where the third inequality follows because ‖ρ− ρ1‖ < (κν)/2. The result follows.

�
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C.3.3 Proof of Lemma 8

We will show that under assumptions CA 1-CA 6, gθ(µ) admits a κ-LUQ envelope in
N (µ1, ν) for ν = κϕ/σ and κ = κr + (ν + ‖µ1‖)‖κy‖.

From CA 5, r̄(θ, ·) admits a κr-LDQ envelope in N (a1
θ, ϕ). That is, for all θ ∈ Θ,

r̄(θ, a) ≥ r̄(θ, a1
θ) +∇r̄(θ, a1

θ)
>(a− a1

θ)−
κr
2
‖a− a1

θ‖2 ∀a ∈ N (a1
θ, ϕ).

On the other hand, from CA 6, ȳ(θ, ·) admits a κy-UUQ in N (a1
θ, ϕ). That is, for all θ ∈ Θ,

ȳ(θ, a) ≤ ȳ(θ, a1
θ) +∇ȳ(θ, a1

θ)(a− a1
θ) +

κy
2
‖a− a1

θ‖2 ∀a ∈ N (a1
θ, ϕ).

Combining these two inequalities we obtain that, for a ∈ N (a1
θ, ϕ), we have

r̄(θ, a)− µ>ȳ(θ, a)

≥ r̄(θ, a1
θ)− µ>ȳ(θ, a1

θ) + (∇r̄(θ, a1
θ)−∇ȳ(θ, a1

θ)
>µ)>(a− a1

θ)−
κr + µ>κy

2
‖a− a1

θ‖2

≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) + (∇ȳ(θ, a1

θ)
>(µ1 − µ))>(a− a1

θ)−
κr + µ>κy

2
‖a− a1

θ‖2,

(C.19)

where the equality follows because gθ(µ1) = r̄(θ, a1
θ) − (µ1)>ȳ(θ, a1

θ), because ∇r̄(θ, a1
θ) =

∇ȳ(θ, a1
θ)
>µ1 from the �rst order condition of gθ (by assumption CA 4, a1

θ is interior), and
because ∇gθ(µ1) = −ȳ(θ, a1

θ) from the envelope theorem applied to gθ (using compactness
of A and Assumptions CA 1-CA 3 we can apply Corollary 4 in [108]).

We now proceed to bound gθ(µ). Fix µ ∈ N (µ1, ν). We have

gθ(µ) = max
a∈A

{
r̄(θ, a)− µ>ȳ(θ, a)

}
≥ max
{a:‖a−a1θ‖≤ϕ}

{
r̄(θ, a)− µ>ȳ(θ, a)

}
≥ gθ(µ

1) +∇gθ(µ1)>(µ− µ1) + max
{x:‖x‖≤ϕ}

{(
∇ȳ(θ, a1

θ)
>(µ1 − µ)

)>
x− κ

2
‖x‖2

}
= gθ(µ

1) +∇gθ(µ1)>(µ− µ1) + h
(
∇ȳ(θ, a1

θ)
>(µ1 − µ)

)
,

where the �rst inequality follows from restricting the optimization to a ∈ A such that
‖a− a1

θ‖ ≤ ϕ; the second from (C.19), using Cauchy-Schwartz and the triangle inequality to
bound µ>κy ≤ ‖µ‖‖κy‖ ≤ (‖µ − µ1‖ + ‖µ1‖)‖κy‖ ≤ (ν + ‖µ1‖)‖κy‖, setting κ = κr + (ν +
‖µ1‖)‖κy‖, and making the change of variables x = a− a1

θ; the second equality follows from
setting h(z) = max{x:‖x‖≤ϕ}

{
z>x− κ

2
‖x‖2

}
.

Note that h(z) is the convex conjugate of κf(x) with f(x) de�ned in the statement
of Lemma 18. Using that the convex conjugate of the scaled function κf(x) is given by
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κf ∗(z/κ) (see, e.g., [30, Section 3.3.2]) together with Lemma 18 and that the dual norm to
the Euclidean norm is the Euclidean norm, we obtain that

h(z) =

{
1

2κ
‖z‖2 if ‖z‖ ≤ κϕ

ϕ‖z‖ − 1
2
κϕ2 otherwise.

Given that σ is a lower bound on the smallest singular value of ∇ȳ(θ, a1
θ), it holds that

‖∇ȳ(θ, a1
θ)
>z‖ ≥ σ‖z‖ for all z (see [76], Lemma 3.3). We can equivalently write h(z) =

1
κ

min(κϕ, ‖z‖) · ‖z‖− 1
2κ

min(κϕ, ‖z‖)2, which implies that h(z̃) ≥ h(z) whenever ‖z̃‖ ≥ ‖z‖
since h is increasing in ‖z‖. This yields that h(∇ȳ(θ, a1

θ)
>z) ≥ h(σz) for all z ∈ RL.

Therefore, if µ ∈ N (µ1, ν), we have that ‖µ − µ1‖ ≤ ν = κϕ/σ, in which case h(σz) =
(σ2/2κ)‖z‖2, which yields

gθ(µ) ≥ gθ(µ
1) +∇gθ(µ1)>(µ− µ1) +

σ2

2κ
‖µ− µ1‖2,

and the result follows.

�

C.3.4 Proof of Lemma 9

Let us prove that the �rst statement of Assumption 2 holds by showing that the function
J(·) is linear over the set N (ρ1, δ) = {ρ : ‖ρ− ρ1‖ ≤ δ} with δ given in the statement of this
result.

Take ρ ∈ N (ρ1, δ). That is, ρ = ρ1 + εv for some v unitary vector and ε a positive real
number smaller than δ. Let ξ> = (ρ1,1) be the corresponding right hand side of problem
(C.2) for ρ = ρ1 and u> = (v,0), where 1 and 0 denote a vector of ones and zeros, with
a proper size, respectively. Note that in this case, B−1u = B−1

ρ1
v because the last |Θ|

components of u are zero and thus ‖B−1u‖ = ‖B−1
ρ1
v‖ ≤ ‖B−1

ρ1
‖ where the last equality hold

because v is an unitary vector. Then, by Lemma 19 we have that if 0 ≤ ε ≤ φ∗min

‖B−1
ρ1
‖ , B is

an optimal basis for the standard problem with right hand side ξ + εu and therefore the
optimal basic variable vector, namely φB, can be computed as B−1(ξ + εu). Let us de�ne
c the objective function coe�cient vector of problem (C.2). That is, ci = pir̄i if i ∈ Θ and
0 otherwise. Thus, calling cB to the coe�cient vector associated to the basic variables, it
holds that

J(ρ) = c>BB
−1(ξ + εu)

= c>BB
−1ξ + εc>BB

−1u

= c>BB
−1ξ + c>BB

−1
ρ1

(εv)

= J(ρ1) +∇J(ρ1)(ρ− ρ1) ,
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where the last equality follows because B is optimal basis of problem (C.2) and εv = ρ− ρ1.
We then have that J(·) is linear over N (ρ1, δ) and the �rst statement holds with K = 0.

Note that the second statement follows directly because, by hypothesis, the constraints are
binding for ρ1 and taking ρ ∈ N (ρ1, δ), by Lemma 19- applied to ξ+εu with ε ≤ δ, u> = (v,0)
and ‖v‖ = 1- holds that the optimal basis does not change.

Therefore, we conclude that Assumption 2 holds for δ =
φ∗min

‖B−1
ρ1
‖ , and K = 0.

�

C.4 Proofs for Section 3.8

C.4.1 Proof of Proposition 9

Recall that there exist µ∗ optimal dual solution satisfying µ∗ ∈ [0, µ̄] (see Step 1 in the proof

of Proposition 7). Thus, it is enough to show that
(
β
(

θ
1+µ∗

)
, µ∗
)
is an optimal solution-

Lagrange multiplier pair. We will proceed by using Proposition 5.1.5 in [23]. That is, we need
to check primal and dual feasibility, Lagrangian optimality and complementary slackness.

1. Dual feasibility. It follows directly because we take µ∗ optimal dual solution.

2. Primal feasibility and complementary slackness. To check primal feasibility and com-
plementary slackness we will apply Proposition 2.1.2 in [23], which gives us that, as µ∗

is optimal dual solution, we have that

Ψ′ρ(µ
∗)(µ− µ∗) ≥ 0, ∀µ ∈ [0, µ̄],

where the derivative of Ψρ is given by

Ψ′ρ(µ) = ρ+
∑
θ∈Θ

pθg
′
θ(µ) = ρ−

∑
θ∈Θ

pθm̄

(
β

(
θ

1 + µ

))
. (C.20)

If µ∗ = 0,Ψ′ρ(0)µ ≥ 0 and therefore Ψ′ρ(0) ≥ 0. Note that we also have Ψρ(µ
∗)µ∗ = 0,

and then primal feasibility and complementary slackness follows by (C.20) because∑
θ∈Θ pθm̄

(
β
(

θ
1+µ∗

))
is the expected payment under the optimal bidding strategy.

If µ∗ > 0, there exists ν > 0 such that µ∗ + ν and µ∗ − ν belongs to [0, µ̄]. Therefore
both Ψ′ρ(µ

∗)ν and Ψ′ρ(µ
∗)(−ν) and non-negative, obtaining Ψ′ρ(µ

∗) = 0, and primal
feasibility and complementary slackness hold.
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3. Lagrangian optimality. Note that

arg max
φ∈Φ
L(φ, µ∗) = arg max

φ∈Φ

µ∗ρ+
∑
θ∈Θ

pθ

∫
A

(θq̄(a)− (1 + µ∗)m̄(a)) dφθ(a)


=

arg max
φθ∈∆(A)

∫
A

(θq̄(a)− (1 + µ∗)m̄(a)) dφθ(a)


θ∈Θ

=

{
arg max

a∈A
gθ(a, µ

∗)

}
θ∈Θ

,

where the second equality holds because we can separate the problem for each θ. But
note that gθ(a, µ∗) is maximized at a = β(θ/µ∗ + 1) and thus we have Lagrangian
optimality.

Therefore, the four conditions holds and the proof is completed. �

C.5 Auxiliary Results

The following lemma is a technical result we need to prove Lemma 16.

Lemma 17. For every a, b ∈ R+

T∫
0

a exp(−b(T − t)) ∧ 1 dt ≤ 1

b
(log(a) + 1).

Proof. Let T̃ be the real number such that a exp(−b(T − T̃ )) = 1. Then, by doing some
math we obtain

T∫
0

a exp(−b(T − t)) ∧ 1 dt =

T̃∫
0

a exp(−b(T − t)) dt+ T − T̃

=
a

b
exp(−b(T − t))

∣∣∣T̃
0

+ T − T̃

=
1

b
a exp(−b(T − T̃ ))− a

b
exp(−bT ) + T − T̃

≤ 1

b
+ T − T̃ .

On the other hand, as exp(−b(T − T̃ )) = 1 we have that T − T̃ = log a
b
, and therefore we

conclude that
T∫

0

a exp(−b(T − t)) ∧ 1 dt ≤ 1

b
(log a+ 1).
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Lemma 18. Let ‖x‖ be a norm in the Euclidean space and let ‖z‖∗ = max‖x‖≤1{z>x} be
its dual norm. Let f(x) = 1

2
‖x‖2 if ‖x‖ ≤ ϕ and f(x) = ∞ otherwise. Then, its convex

conjugate f ∗(z) = maxx
{
z>x− f(x)

}
= maxx:‖x‖≤ϕ

{
z>x− 1

2
‖x‖2

}
is given by

f ∗(z) =

{
1
2
‖z‖2

∗ if ‖z‖∗ ≤ ϕ

ϕ‖z‖∗ − 1
2
ϕ2 otherwise.

Proof. Note that the convex conjugate can be more compactly written as min(ϕ, ‖z‖∗) ·
‖z‖∗ − 1

2
min(ϕ, ‖z‖∗)2. We �rst show that the latter expression provides an upper bound

and then show that the upper can be attained by choosing a suitable feasible solution.

For the upper bound, use Cauchy-Schwartz inequality to obtain that

f ∗(z) ≤ max
x:‖x‖≤ϕ

{
‖z‖∗‖x‖ −

1

2
‖x‖2

}
= max

`∈R:0≤`≤ϕ

{
‖z‖∗`−

1

2
`2

}
,

where the equality follows because we can equivalently optimize over the attainable norm
values in [0, ϕ]. The objective value of the latter problem is a downward parabola with
maximum at ` = ‖z‖∗. The claim follows because the optimal solution is ` = min(ϕ, ‖z‖∗).

For the lower bound, �x z and let x̃ = arg max‖x‖≤1{z>x}, i.e., a vector satisfying ‖z‖∗ =
z>x̃. Such a vector exists because the dual norm always admits an optimal solution by
Weierstrass theorem (the objective is continuous and the feasible set is compact). Consider
the solution x = min(ϕ, ‖z‖∗)x̃. This solution is feasible because ‖x‖ = min(ϕ, ‖z‖∗)‖x̃‖ ≤ ϕ
since ‖x̃‖ ≤ 1. Therefore,

f ∗(z) ≥ z>x− 1

2
‖x‖2 = z>x̃ ·min(ϕ, ‖z‖∗)−

1

2
‖x̃‖2 ·min(ϕ, ‖z‖∗)2

≥ min(ϕ, ‖z‖∗) · ‖z‖∗ −
1

2
min(ϕ, ‖z‖∗)2 ,

where the last inequality follows because ‖z‖∗ = z>x̃ and x̃ ≤ 1. The result follows.

Lemma 19. Consider the general linear program problem

max
x

c>x

s.t Ax = ξ + εu , (C.21)

x ≥ 0 ,

where c, x,0,1 ∈ Rn, ξ, u ∈ Rm, A ∈ Rm×n matrix of rank m and ε a real parameter. De�ne
x∗min = min{x∗i : x∗i > 0}, where x∗ denotes a non-degenerate optimal solution of problem
(C.21) for ε = 0, and denote by AB ∈ Rm×m its associated basis matrix. If δ = x∗min/‖A−1

B u‖,
then AB remains optimal for problem (C.21) for all 0 ≤ ε ≤ δ.
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Proof. By permuting its columns, matrix A can be written as A = (AB|AN) , where
AB ∈ Rm×m is the submatrix containing the columns associated to the basic variables of
x∗ and AN ∈ Rm×(n−m) is the submatrix corresponding to the non-basic variables of x∗.
Furthermore, we can write x∗ = (x∗B,0), where x∗B = A−1

B ξ ∈ Rm is the subvector of basic
variables and 0 ∈ Rn−m. Note that non-degeneracy of x∗ implies that x∗B > 0.

Note that δ > 0 is well de�ned because {x∗i : x∗i > 0} is not empty due to the non-
degeneracy condition on x∗. Take ε ≤ δ. We will prove that AB is an optimal basis for
(C.21), that is, x = (xB,0) with xB = A−1

B (ξ+εu) is an optimal solution for Problem (C.21).
Changing the right-hand side of the equality constraints does not change the reduced cost
vector and, therefore, it is enough to show that xB is non-negative.

To this end, take j ∈ {1, . . . ,m} such that (A−1
B u)j < 0. Note that if does not exist such j,

the desired inequality follows trivially because x∗j = (A−1
B ξ)j > 0 since x∗ is non-degenerate.

Otherwise, we have that

(xB)j =
(
A−1
B (ξ + εu)

)
j

= (x∗B)j + ε
(
A−1
B u
)
j
≥ x∗min − ε‖A−1

B u‖ ≥ x∗min − δ‖A−1
B u‖ = 0 ,

where the �rst equation follows from the de�nition of xB, the second because (x∗B)j is a basic
variable, the �rst inequality from the de�nition of x∗min together with |xj| ≤ ‖x‖ for every
xj ∈ Rm, the second inequality because ε ≤ δ, and the last from the de�nition of δ. The
proof is completed.
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