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Localized modes in linear and nonlinear octagonal-diamond lattices with two flat bands
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We consider a two-dimensional octagonal-diamond network with a fine-tuned diagonal coupling inside the
diamond-shaped unit cell. Its linear spectrum exhibits coexistence of two dispersive bands (DBs) and two flat
bands (FBs), touching one of the DBs embedded between them. Analogous to the kagome lattice, one of the
FBs will constitute the ground state of the system for a proper sign choice of the Hamiltonian. The system is
characterized by two different flat-band fundamental octagonal compactons, originating from the destructive
interference of fully geometric nature. In the presence of a nonlinear amplitude (on-site) perturbation, the single-
octagon linear modes continue into one-parameter families of nonlinear compact modes with the same amplitude
and phase structure. However, numerical stability analysis indicates that all strictly compact nonlinear modes are
unstable, either purely exponentially or with oscillatory instabilities, for weak and intermediate nonlinearities
and sufficiently large system sizes. Stabilization may appear in certain ranges for finite systems and, for the
compacton originating from the band at the spectral edge, also in a regime of very large focusing nonlinearities.
In contrast to the kagome lattice, the latter compacton family will become unstable already for arbitrarily weak
defocusing nonlinearity for large enough systems. We show analytically the existence of a critical system size
consisting of 12 octagon rings, such that the ground state for weak defocusing nonlinearity is a stable single
compacton for smaller systems, and a continuation of a nontrivial, noncompact linear combination of single
compacton modes for larger systems. Investigating generally the different nonlinear localized (noncompact)
mode families in the semi-infinite gap bounded by this FB, we find that, for increasing (defocusing) nonlinearity
the stable ground state will continuously develop into an exponentially localized mode with two main peaks
in antiphase. At a critical nonlinearity strength a symmetry-breaking pitchfork bifurcation appears, so that the
stable ground state is single peaked for larger defocusing nonlinearities. We also investigate numerically the
mobility of localized modes in this regime and find that the considered modes are generally immobile both with
respect to axial and diagonal phase-gradient perturbations.

DOI: 10.1103/PhysRevA.102.023532

I. INTRODUCTION

For several decades, researchers have been interested in the
understanding and the experimental observation of transport
and localization of energy in various physical media. In
particular, solid-state physics uses an atom lattice as a main
framework to explore electronic conductivity and insulation
[1], which are the key properties for all current technologies.
However, the experimental study of those systems has been
performed quite indirectly due to the impossibility to image
the electronic wave function without affecting its properties.
Therefore, during the last decades, several groups have been
focused on studying new physical platforms where most of
the theoretical predictions could be directly demonstrated and
new technologies developed. Specifically flat-band (FB) lat-
tice systems have emerged as the key setups to study transport
and localization properties at the linear level [2,3]. A non-
diffracting flat band in the linear spectrum is formed by a set of

localized spatial states, which occupy a small number of unit
cells [4,5]. For about five years, this kind of system has been
extensively studied on several physical configurations [6–17],
with a clear evidence of predicted properties. This naturally
has stimulated interest from the theoretical and experimental
community and new studies have been conducted considering,
for example, distortion of the lattice by including defects
or disorder [18,19] and, very recently, extra linear-nonlinear
interactions [20] and parity-time symmetries [21].

Although it is possible to experimentally observe diffusion
and localization of wave packets on a FB linear lattice [22],
the coherent transport of a given localized FB linear state
is simply not possible. Therefore, it becomes important to
explore different FB models for the possibility of finding
coherent mobility through a given lattice, in order to dissem-
inate the energy in a controlled way [23]. Nonlinear effects
are a natural way to explore this due to the possibility of
localizing energy by using a balance between diffraction and
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self-focusing properties, which generates the so-called dis-
crete solitons [24–26]. Additionally, cubiclike nonlinearities
appear naturally when increasing the weight of the wave
function and are the common elements on current setups
[8,9,15,16,20]. Depending on the particular geometry of the
lattice, different stability considerations could emerge with
respect to fundamental single-site excitations and compacton-
like ring modes. In a FB system, due to a perfect cancellation
of diffraction though the lattice on a linear level, the addition
of nonlinearity may under certain conditions (e.g., amplitude
homogeneity [5,27,28] or tuning of coupling coefficients [29])
preserve the compactness of the mode and give a continuous
one-parameter family of exact compact nonlinear stationary
solutions. The absence of exponentially decaying tails (which
typically appear for discrete solitons) increases the difficulty
to coherently move a compact FB mode, as there is no tail
that could resonate with traveling waves. But, as it has been
shown only numerically up to now, it is possible to achieve
some control on localized nonlinear solutions on very specific
FB systems [27,30–32].

Here we investigate the light propagation through a nonlin-
ear two-dimensional (2D) octagonal-diamond lattice (ODL)
with a fine-tuned diagonal coupling constant inside the
diamond-shaped unit cells [33], which could be experimen-
tally fabricated by laser-inscribed waveguide arrays in trans-
parent glass [34]. With the diagonal coupling included, the
ODL has an eigenvalue spectrum containing two nondis-
persive bands, touching a dispersive band (DB) at opposite
band edges [33]. Therefore, we expect the nonlinear on-site
perturbation of the network to provide as well continuation
of the linear FB compact states into families of nonlinear
modes, as creation of new families of nonlinear localized
modes in the gaps inside the eigenspectrum and in the semi-
infinite gaps. The octagonal-diamond (also termed “square-
octagon”) geometry, without the diagonal coupling leading to
flat bands, was considered also in condensed-matter systems
in the framework of the topological phase transitions in the
Hubbard model [35,36], and those induced by spin-orbit
interaction and gauge fields [37]. There, it was related to
the appearance of nontrivial nearly FB states with particular
topological properties.

The outline of the paper is as follows. In Sec. II the
main tools used to model and analyze the ODL system are
presented. The linear spectrum is described, with its compact
modes [33] as eigenvectors of the FB component manifolds.
The technique used for the stability analysis of nonlinear
modes, as well as quantities used to characterize their localiza-
tion and symmetry-breaking properties, are also presented in
Sec. II. In Sec. III the possibility for the existence of dynam-
ically stable nonlinear compact localized modes is studied,
and the effect of various types of instabilities is illustrated
numerically. Special effort is done to investigate the properties
of localized modes with frequencies in the semi-infinite gap
which in the linear ODL appears above the FB-DB-FB triplet,
and in particular the size-dependent nature of the ground
state in a regime of weak defocusing nonlinearity is analyzed.
Stability and mobility properties of general families of non-
compact, localized modes for increasing nonlinearity are also
numerically analyzed in Sec. III. Finally, Sec. IV concludes
the paper.
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FIG. 1. Schematic representation of an ODL. The unit cell m, n
is denoted by a square. The figure includes our physical proposal for
making possible that all couplings are considered as equal.

II. MODEL, LINEAR PROPERTIES,
AND NUMERICAL TOOLS

A. Model equations

A sketch of the uniform ODL that we consider in this work
is presented in Fig. 1. The primitive (unit) cell consists of
four sites (a, b, c, d ), linearly coupled with each other with the
same coupling constant, including two diagonal couplings.

Denoting the total number of unit cells in the x and y
directions with M and N , respectively, and considering direct
linear coupling (represented by lines in figures) and cubic
on-site nonlinear coefficients, the 2D ODL can be modeled
by a set of 4MN coupled differential equations, constituting a
discrete nonlinear Schrödinger-like system with four degrees
of freedom per unit cell:

−iȧm,n = V (bm,n + cm,n + dm,n + dm,n+1) + γ |am,n|2am,n,

−iḃm,n = V (am,n + dm,n + cm,n + cm−1,n) + γ |bm,n|2bm,n,

−iċm,n = V (am,n + dm,n + bm,n + bm+1,n) + γ |cm,n|2cm,n,

−iḋm,n = V (bm,n + cm,n + am,n + am,n−1) + γ |dm,n|2dm,n.

(1)

Here, ξ̇ ≡ ∂ξ/∂z (ξ = a, b, c, d) with z the normalized prop-
agation coordinate (which on occasions also is referred to as a
“time” coordinate below). am,n, bm,n, cm,n, and dm,n are the
mode amplitudes at sites a, b, c, and d at the m, n lattice
position, with m ∈ [1, M] and n ∈ [1, N] numbering the unit
cells. V is the coupling constant between sites, which we have
assumed as symmetric for directly connected neighbors. This
is possible by having in mind that experimental waveguides
are mostly elliptically oriented [34], so we can consider a
rotated distribution of them as sketched in Fig. 1. In this
way, long-distance (diagonal) coupling interactions can be
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balanced to have a magnitude equal to that of shorter-distance
ones. The effective nonlinear coefficient γ represents focusing
(γ /V > 0) or defocusing (γ /V < 0) Kerr nonlinearities.

Model (1) is characterized by two conserved quantities: the
total power (norm) P and the Hamiltonian H , defined as

P =
∑
m,n

(|am,n|2 + |bm,n|2 + |cm,n|2 + |dm,n|2), (2)

H = 1

2

{ ∑
m,n

1

2
γ (|am,n|4 + |bm,n|4 + |cm,n|4 + |dm,n|4)

+Vam,n(bm,n + cm,n + dm,n + dm,n+1)∗

+V bm,n(am,n + dm,n + cm,n + cm−1,n)∗

+V cm,n(am,n + dm,n + bm,n + bm+1,n)∗

+V dm,n(bm,n + cm,n + am,n + am,n−1)∗ + c.c.

}
. (3)

For the sake of simplicity and without loss of generality, we
normalize the coupling parameter to V = 1. Since the effec-
tive nonlinearity only depends on the product γ P, we may
either consider the nonlinear coefficient γ as a free parameter
while fixing the mode amplitudes, so that the mode power is
normalized to unity, or normalize the nonlinearity constant to
γ = ±1 and consider the power P > 0 and the sign of γ as
a free parameter. Depending on the context, both approaches
are used alternatively in the numerics below. Moreover, we
should stress that for the physical system studied here, the
overall sign of the Hamiltonian is arbitrary, since changing
the sign just amounts to a complex conjugation of the mode
amplitudes or, equivalently, an inversion of the longitudinal
coordinate z. We here chose a convention which allows one of
the linear FBs to be interpreted as ground state, as in Ref. [33].

B. Linear spectrum (γ = 0) and compact modes

For infinite systems or finite systems with periodic bound-
ary conditions on m and n, stationary solutions can be
expressed in a Bloch wave form: {am,n, bm,n, cm,n, dm,n} ∼
{A, B,C, D}ei(kxm+kyn)e−iβz, where β is the propagation con-
stant, and kx, ky are the components of the transversal 2D
Bloch wave vector �k. In the absence of nonlinearity (γ = 0),
we obtain the spectrum for linear solutions of this ODL,
given by

β1 = 0, β2 = 2, β3,4 = −1 ± √
5 + 2 cos kx + 2 cos ky.

(4)
Two bands (β1 and β2) are k independent and correspond
to fully degenerated dispersion-less FBs [33]. The other two
bands are dispersive and depend on kx, ky wave vectors. The
linear spectrum is shown in Fig. 2. The upper DB is connected
to the upper FB at β2 = 2, at the center of the Brillouin
zone (kx = ky = 0). The lower FB (β1 = 0) is also connected
to the upper DB, but at the borders of the Brillouin zone
(|kx| = |ky| = π ), as shown in Fig. 2.

In a finite lattice with MN unit cells and periodic boundary
conditions, the degree of degeneracy of each FB is MN . Each
of the FB eigenbases can be spanned by a corresponding set of
compact, but not necessarily orthogonal, localized eigenstates
(the FB compactons) [33], illustrated in Figs. 3(a) and 3(b).
The reason for nonorthogonality is that each fundamental

FIG. 2. Band-gap diagram (frequency spectrum) of the linear
ODL. β1, β2, β3 and β4 are shown in orange (flat, β = 0), blue
(flat, β = 2), green (upper dispersive), and red (lower dispersive),
respectively.

compacton is an eight-site octagonal structure which is shared
by four unit cells. In other words, the compactons belong to
the class U = 4 as defined in Ref. [4]. They originate from the
geometrically ensured destructive interference effect outside
of the compacton sites. Two types of fundamental homoge-
neous compactons, which are composed of eight sites each,
having either dimeric (+ + − − + + −−) or monomeric
(+ − + − + − +−) staggered phase structure are associated
to the β = 0 and β = 2 FBs, respectively. In the following we
use the abbreviations C1 and C2, respectively, for these two
types of compactons, as described in Fig. 3. Thus, compactons
of types C1 and C2 are orthogonal to compactons of the same
type only if they are not sharing a unit cell (i.e., if they are not
localized on neighboring octagon rings), while compactons

(a) (b)

+ =

(c)

FIG. 3. Amplitude distribution of compacton solutions for
(a) β1 = 0 (C1) and (b) β2 = 2 (C2). Yellow (black) corresponds
to a positive (negative) amplitude, while light blue represents an
empty site. (c) Linear combination of C1 and C2 shows an oscillating
dynamics.
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of different types are always orthogonal since they belong to
different bands.

We note also that any finite linear combination of com-
pactons is also a compact solution of the linear system, which
is stationary if all compactons are of the same type [22].
However, the linear combination of compactons will show
amplitude oscillations, with frequency |β2 − β1| = 2, if over-
lapping compactons of different type are excited, as sketched
in Fig. 3(c). This oscillation could be used as a precise “FB
clock,” which will show a precise frequency with a well-
defined oscillating intensity pattern. In addition, this intensity
oscillation could be used as a time-periodic mechanism for the
application of energy at specific regions of a given lattice in
order to, for example, excite a given interaction or reaction at
well-defined positions.

C. Numerical tools for analysis of stability
and localization properties

The stability properties of nonlinear stationary solutions
are numerically studied by applying a standard linear stability
analysis (LSA) [38] and checked by direct numerical sim-
ulations of model (1). Both of them are based on studying
the evolution of initially small perturbations which are added
to the stationary solutions. The LSA is applied by adding
a small perturbation to the specific nonlinear mode whose
stability properties are being investigated. Schematically, it
can be written as follows:

�m,n(z) = ψm,n exp (−iμz)[1 + δψm,n(z)], (5)

where μ is the nonlinear propagation constant, and δψm,n a
small perturbation.

By substituting Eq. (5) into the model equation and lin-
earizing it with respect to small perturbations, the set of
linear equations for the propagation of small perturbations
can be derived. It can be solved as the eigenproblem of small
perturbations, resulting in a set of eigenvalues (EVs) named
instability EVs. They directly indicate the initial tendency
of the mode evolution in the presence of small perturba-
tions. Note that the LSA gives a sufficient but not necessary
condition for the mode instability, and the real part of the
EVs indicates the initial exponential growth rate of a small
perturbation and the type of instability (pure real or complex,
the latter resulting in oscillatory instability).

To characterize the instability of a given nonlinear solution,
we define a stability index G as the maximum real part among
all eigenvalues, indicating the distance (time) where this mode
will become unstable (z ∼ 1/G). Therefore, in our analysis,
stable solutions are represented by G = 0, while unstable ones
show a value G > 0.

To confirm the LSA findings and obtain a more explicit
presentation of the perturbed mode evolution, we perform
direct numerical simulations of the model equation (1). Ini-
tially, the localized mode is injected into the system and its
whole evolution is then governed by the effects modeled by
the equations. We add initially a uniform random perturbation
to the injected mode. The basic numerical procedure at this
stage is the Runge-Kutta procedure of the sixth order. Here
we confirm the long time mode stability by observing the time

evolution of the participation number R, defined as

R = P2∑
m,n(|am,n|4 + |bm,n|4 + |cm,n|4 + |dm,n|4)

, (6)

and mode imbalance IB,

IB =
∑n

i=n−1(|am−1,i|2 + |bm−1,i|2 + |cm−1,i|2 + |dm−1,i|2)∑n
i=n−1(|am,i|2 + |bm,i|2 + |cm,i|2 + |dm,i|2)

.

(7)
R is a measure of the number of sites where the mode has
its main localization (for a compact mode with homogeneous
amplitude it gives exactly the number of sites on which the
mode is localized), while IB as defined above indicates the
breaking of the internal mode symmetry in the x direction for a
mode with main localization on the four unit cells (m − 1, n −
1), (m − 1, n), (m, n − 1), and (m, n) containing an octagon
ring (IB = 1 for a perfectly symmetric mode), with an obvious
analogous definition for symmetry breaking in the y direction.

III. NONLINEAR LOCALIZED MODES

A. Instabilities of compact localized modes

On-site nonlinearity allows to analytically continue single
linear compact localized modes of type C1 and C2, initially
originated at FBs, towards the gap or into the linear spectrum
for increasing |γ |P. This results in continuous one-parameter
families of compactons with preserved shape, in the sense that
only the amplitude at each compacton site is equally modified
for increasing power (nonlinearity strength), while the phase
differences among sites are preserved. For these families of
exact compactons, the nonlinear propagation constant μ is
easily seen to be shifted from the linear β by an amount
exactly proportional to the power (nonlinearity strength), as

μ = β − γ P

8
. (8)

In other words, the homogeneous compacton solutions
continue to exist in the presence of an on-site cubic
nonlinearity [5] with a participation number R = 8, being
affected by nonlinearity only via the amplitude of equally
populated sites. However, these compact nonlinear localized
modes are not necessarily stable and a stability analysis is
required [28]. Compact localized modes are highly sensitive
to the presence of any kind of perturbation which does not
follow the internal symmetry of the compacton.

Since the modes are compact and the LSA (5) is performed
in the frame rotating with μ, the eigenvalue spectrum lin-
earized around a single compacton mode in an infinite lattice
will always contain purely imaginary eigenvalues given by the
original linear spectrum (4), but shifted with γ P

8 according to
Eq. (8). Moreover, due to the symplectic properties, the nega-
tive, as well as the complex conjugate of each eigenvalue, will
also belong to the linearized spectrum, as will the eigenvalue
zero corresponding to a pure phase rotation of the compacton.
Finally, additional eigenvalues will appear due to localized
eigenmodes, originating either from internal-mode oscilla-
tions or exponential instabilities inside the octagon ring, or
from local oscillations at nonexcited sites neighboring the
excited compacton, thereby inducing a nonlinearity-provoked
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(a) (b)

(c) (d)

FIG. 4. Real parts of EVs for C1 and C2 compactons, for (a),
(b) 7 × 7 and (c), (d) 15 × 15 ODLs, respectively. Pure real EVs are
marked with red (thicker) symbols and real parts of complex EVs
with black (thinner) symbols. Green dashed vertical lines in (a) and
(b) correspond to simulations in Figs. 5 and 7, respectively.

interaction between the localized compact mode and the rest
of the lattice. Resonances between eigenvalues of different
origin typically yield instabilities. For a finite system, also the
DBs will consist of discrete eigenvalues, yielding visible size
effects for small system as shown below.

The LSA results for the nonlinear compact modes of
the ODL with 49 (7 × 7) and 125 (15 × 15) unit cells are
summarized in Fig. 4, for regimes of moderate focusing
and defocusing nonlinearities (here and in the rest of this
section, P = 1 unless otherwise stated). Regimes of very
weak and very strong nonlinearities are discussed separately
below. Qualitatively the same feature, i.e., the presence of
stability (weak instability) windows for both compactons with
focusing nonlinearity and for the C1 compacton also for
defocusing, is found for lattices having from 25 (5 × 5) to
400 (20 × 20) unit cells. We observe that an increment in the
number of unit cells shrinks or closes the stability windows,
with a slight reduction of the maximum values of real parts
of EVs. The observed property is associated with finite-size
effects [39,40], typically appearing when internal-mode os-
cillations of the excited compacton resonate with frequencies
from the linear dispersive bands. As the number of unit cells
increases, the latter will approach a continuous spectrum,
resulting in a remaining weak oscillatory instability with
a smooth parameter dependence for the instability growth
rate.

1. Compacton C1 (dimeric phase structure)

The propagation constant for this compacton is shifted by
nonlinearity to μ = −γ P/8, and thus the linearized spec-
trum will contain imaginary eigenvalues corresponding to
the original spectrum (2) but shifted downwards (upwards)

for defocusing (focusing) nonlinearities, as well as their
complex conjugates (sign reversed). Thus, for not too large
defocusing nonlinearity (NL; γ < 0) the upper dispersive
band will overlap at zero and generally yield instabilities cor-
responding to resonances between internal compacton modes
and the dispersive band, and result in spreading and decay of
the compacton in larger lattices. For smaller lattices, stable
windows may appear as discussed above, due to the discrete-
ness of the dispersive band.

On the other hand, for focusing NL (γ > 0) the linear
spectrum will be shifted upwards, and since the upper DB
moves away from β = 0 and the lower DB is gapped, no
resonances with dispersive modes should be expected until
the nonlinearity is large enough to overcome the gap to the
lower DB. Still this compacton is found to be unstable with
purely real eigenvalue for any γ P > 0. The explanation for
this instability is connected to the internal phase dynamics
of the compact octagon ring, containing neighboring pairs
of excited sites with identical phases. As discussed, e.g., in
Refs. [41,42], such phase interactions generically yield insta-
bilities for focusing and large enough nonlinearities; in the
terminology of Refs. [41,42], the C1 octagon ring corresponds
to a finite part of a standing wave of “type E” with wave vector
Q = π/2, consisting of a periodic repetition of the pattern
(+ + −−). For the pure octagon ring, this instability appears
for γ P/V � 5.6 (the analogous instability for the fundamental
four-site pattern was seen in Ref. [43]; the threshold decreases
with increasing ring size and goes to zero in the limit of
an infinite chain [42]). However, this amplitude pattern also
has an additional neutral eigenvalue, from the degeneracy
corresponding to an arbitrary rotation of the relative phase
between odd and even sites (thus termed “π − π states” in
Ref. [44] and “phase states” in Ref. [45]). The presence
of the surrounding zero-amplitude sites in the ODL breaks
this degeneracy and turns the neutral mode into an unstable
eigenmode with a purely real eigenvalue, as seen in Figs. 4(a)
and 4(c).

In the limit of very strong nonlinearities (|γ |P/V → ∞,
equivalent to the weak-coupling, “anticontinuous” limit V →
0), the linear band structure becomes irrelevant and only
phase interactions within the compacton ring determine its
stability. Considering in this limit only the octagon as a one-
dimensional chain, the defocusing case becomes equivalent to
the focusing case by sign reversals of the amplitude at every
second site (“staggering transformation”), and since this sign
reversal results in an octagon with the same phase structure
(only shifted one lattice site), the above argument [41,42]
proves instability in the large-nonlinearity regime also for the
defocusing case.

The above conclusions from the LSA are illustrated by
direct numerical simulations in Figs. 5 and 6 (left part). In
Fig. 5 the evolution of the participation number (R) (6) and
the imbalance (IB) (7) is plotted for certain values of the
NL parameter, which belong to different instability regions
in the ODL with 49 cells. These values are marked by
vertical dashed lines on the corresponding EV diagram in
Fig. 4(a). As can be seen, for negative nonlinearity there is
an approximately simultaneous increase in R and decrease in
IB, indicating an instability that simultaneously breaks the
symmetry of the compacton and causes it to spread in the
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(a)

(b)

γ = 1.5γ = −1.25γ = −2.5

FIG. 5. (a) Participation number and (b) imbalance for C1 in
ODL with 49 (7 × 7) cells. The selected values of γ are shown by
vertical lines in the EV diagram, Fig. 4(a).

lattice, consistent with the LSA results of internal compacton
modes resonating with DB.

On the other hand, for positive γ there is a rapid decrease
of IB to very small numbers, indicating a strong symmetry
breaking of the compacton, and only weak oscillations in
R developing on larger time scales. Also this is consistent
with LSA results of an unstable internal mode without direct
resonance with the linear DBs, allowing for a well-localized
(although nonstationary and noncompact) mode to survive for
long distances.

Another illustration of the compacton stability properties
is shown in Fig. 6, where we present the mode amplitude
distribution over the cells at the initial time, and a certain time
instant during the propagation through the relatively small
lattice with 7 × 7 unit cells. The left column corresponds
to the case with an initially launched C1 solution in the
central part of the lattice. The values of the NL parameter are
γ = −1, 1, and 2, respectively. The first plot illustrates the
behavior of the nonlinear compact localized mode (γ = −1)
(note the logarithmic scale) which is on the border of the
stability window in Fig. 4(a) caused by the finite size of the
system. There the mode appears as essentially stable over long
time scales; only weak background fluctuations have been
detected. The other two cases, γ = 1 and γ = 2, correspond
to the unstable mode with a real eigenvalue, associated with
an internal symmetry breaking of the octagonal compacton

FIG. 6. Amplitude profiles at sites a, b, c, and d during the
evolution. Solid symbols denote the initial stage, while the open
symbols and solid lines are time snapshots during the evolution.
The selected are values of the NL parameter from characteristic
instability regions for C1 and C2. Abbreviations in boxes A, B, C, and
D denote the corresponding sites, while p = m + (n − 1)N , where
m, n = 1, . . . , N (N = 7) indexes cells (ODL of 7 × 7 = 49 cells is
considered).

together with a leaking of energy mainly towards the neigh-
boring cells in the lattice.

2. Compacton C2 (monomeric phase structure)

Here, μ = 2 − γ P/8, and thus the original spectrum (2)
appears in the imaginary part of the linearized spectrum as
Im(EV ) = β − 2 + γ P/8. Thus, for not too large focusing
NL (γ > 0) the upper dispersive band will overlap at zero,
and instabilities corresponding to resonances between internal
compacton modes and the dispersive band appear, resulting in
spreading and decay of the compacton in larger lattices and
stable windows for smaller systems, similarly as for the C1
compacton with defocusing nonlinearity.

In the case with defocusing (γ < 0) NL, the propaga-
tion constant μ enters the semi-infinite gap (SIG) region
above β = 2, and thus no resonances with extended modes
appear in the LSA for the C2 compacton, for any defo-
cusing nonlinearity. Thus, due to the similarity of this part
of the band structure with that of the kagome lattice, one
might here a priori expect similar stability properties also
for the corresponding compact mode. The compacton in the
kagome lattice remains as a stable ground state (minimizer
of Hamiltonian for fixed norm) of the system for a regime of
weak nonlinearity, but destabilizes due to internal symmetry
breaking with respect to a single-site peaked mode for larger
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(b)

(a)

FIG. 7. (a) Participation number and (b) imbalance for C2 in
ODL with 49 (7 × 7) cells. The selected value of γ is shown by a
dashed vertical line in the EV diagram, Fig. 4(b).

nonlinearities [27]. However, the scenario for the ODL C2
compacton turns out to be different. In fact, for a sufficiently
large system size, it destabilizes with a purely real eigenvalue
for any arbitrarily weak defocusing nonlinearity [Figs. 4(b)
and 4(d)]. The reason for this destabilization is explored in
more detail in the following section, where we find that as
soon as the nonlinearity becomes nonzero, the ground state of
a sufficiently large system is not a single C2 compacton but a
nontrivial linear combination of C2 compactons positioned at
different octagon rings.

Examples from direct numerical simulations of the out-
come of instabilities of the C2 compacton are shown in Figs. 7
and 6 (right part). For the defocusing nonlinearity, we see from
Fig. 7 that R is decreasing, indicating a transition into a more
localized structure, and that IB decreases to small numbers,
indicating a strong symmetry breaking of the octagon ring.
Thus, this is consistent with a generic self-trapping mecha-
nism governing the localization properties, with the injected
energy being redistributed into new structures with nonzero
but decaying tails (see example in upper right of Fig. 6).
For positive γ , the scenario is qualitatively similar as for the
C1 compacton with defocusing nonlinearity: inside the stable
windows for small systems the compacton remains largely
unaffected (see example for γ = 1 in middle right of Fig. 6),
while in the regimes of resonance with the DB (example for
γ = 2 in lower right of Fig. 6) a strong spreading in the lattice
is seen.

In the large-nonlinearity regime of the C2 compacton,
|γ |P/V 	 1, the essential dynamics is governed by the in-
ternal dynamics of the excited octagon ring, and the rest
of the lattice can be considered as a weak perturbation. In
the defocusing case (γ /V < 0), the staggered-phase structure
in the octagon then always breaks up due to modulational
instability, and spreading to the rest of the lattice only appears
to higher order in the small parameter V/|γ |P. On the other
hand, for focusing nonlinearity (γ /V > 0) the staggered-
phase structure in itself is stable (ground state of the single

FIG. 8. Maximum instability growth rate G vs power P for
compactons in the ODL with 64 (8 × 8) cells. Thick gray line, C1
compacton γ = −1; thin gray line, C1 compacton, γ = 1; thin black
line, C2 compacton, γ = −1; thick black line, C2 compacton γ = 1.

octagon ring), and instabilities may only appear at some small
but nonzero threshold of V/γ P through coupling to zero-
amplitude lattice sites outside the ring. The stabilization of the
C2 compacton at large values of γ P/V 	 1 is also confirmed
numerically (see Fig. 8 where also a comparison with the
most unstable eigenvalues for the C1 compacton is shown).
The stable regime for the focusing C2 compacton is thus seen
to be approximately γ P/V � 160 (for a large enough system
where finite-size effects can be neglected). The mechanism
for destabilization is analogous to that of, e.g., discrete dark
solitons [40], as both appear due to the coupling of a staggered
mode to additional zero-amplitude sites. However, the power
necessary for stabilization is considerably larger for the C2
compacton, as there is more than one zero-amplitude site
connecting to the same pair of antiphased compacton sites [see
Fig. 3(b)].

B. Noncompact localized modes in the semi-infinite gap μ > 2

1. Numerical continuation versus power

Here, we investigate a variety of localized patterns existing
in the SIG above the linear FB at β = 2 in the presence of a
defocusing nonlinearity. For the numerics in this section, we
put γ = −1, V = 1 and consider the power P as a nonlinearity
parameter.

A summarizing picture of the considered mode families
is illustrated by their amplitude profiles in the high-power
(anticontinuous) limit and the power vs μ dependencies (see
Fig. 9). These curves are obtained by numerical continuation
of the shown patterns in the direction of decreasing μ by
implementing a multidimensional Newton-Raphson method.
Except for the C2 compacton ring mode (light gray dashed
line), whose exact (linear) P(μ) dependence follows from
Eq. (8), the power depends nontrivially on the propagation
constant, reflecting the fact that these modes generally show
exponentially decaying tails and in that sense are “standard”
discrete solitons.

As expected, several of these modes disappear in bifur-
cations with other modes (not shown in the picture) be-
fore reaching the linear band limit β = 2, but we identify
four qualitatively different modes (with different symmetry
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FIG. 9. P vs μ diagram of different families of nonlinear lo-
calized modes for γ = −1. Representative mode profiles, in the
large-power (anticontinuous) limit, are shown in insets and indicate
their respective line type. For all modes, yellow (light gray) and black
correspond to a positive and negative amplitude, respectively, while
blue (gray) represents an empty site. (Abbreviations IP and OP stand
for in-phase and out-of-phase, respectively.)

properties) that may be continued all the way to the zero-
power limit at β = 2. This is more clearly seen in Fig. 10,
where the participation number (R), Hamiltonian (H), and
maximum instability growth rate (G) are plotted vs mode
power (P). For large nonlinearities, a single-peaked solution
(black curves) always constitutes the stable ground state, as
for the ordinary square DNLS lattice. However, the single-
peaked modes only exist for P � 2.4, where they bifurcate
through a pitchfork bifurcation from a solution (dark gray
solid line) with two out-of-phase (OP) peaks placed hori-
zontally (or, equivalently, vertically due to fourfold rotation
symmetry of the ODL). For all weaker nonlinearities, this
family of two-peaked localized modes will remain as the
stable ground state, and as is seen from Fig. 10(a), it will also
be the most localized state in the sense of having the smallest
participation number. Note in particular that the two-peaked
mode always has smaller H , and smaller R, than the C2
compacton ring mode (light gray dashed line), and thus the
latter will always be prone to symmetry-breaking instabilities
as seen in the previous section. The other two solutions that
continue to the linear limit are a similar antiphased two-peak
solution (thick light gray solid line) but with the peaks placed
“diagonally” (i.e., on two neighboring sites in the same unit
cell), and a solution with all four sites in a unit cell excited
in antiphase (dashed gray line). However, these modes are
generally unstable [see Fig. 10(c)], although it is interesting
to note that also the diagonal two-peaked mode has a smaller
value of H than the C2 compacton in the small-power regime
[inset in Fig. 10(b)].

(b)

(c)

(a)

FIG. 10. (a) Participation number R, (b) Hamiltonian H , and
(c) instability rate G vs power P, for all modes shown in Fig. 9
and using the same line types. Inset in (b) shows the difference 
H ,
compared to H for the C2 compacton (
H = 0), for solutions which
continue to β = 2.

Note also from Fig. 10 that, although the ground state
is unique (modulo lattice translations), several other linearly
stable stationary modes may exist for the same power in
regimes of larger nonlinearities. Thus, for suitably chosen ini-
tial conditions also these modes should be expected to survive
for long propagation distances under realistic experimental
conditions.

2. Size dependence of ground state for weak nonlinearity

In the linear limit (γ = 0), any linear combination of C2
compacton ring modes is an exact stationary solution with
Hamiltonian H = −2P, and thus all such solutions are part
of a highly degenerated ground state. However, not all these
solutions remain stationary as nonlinearity is turned on. In
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general only those linear combinations that extremalize H
within a given symmetry class are expected to survive. Since
it follows directly from the definition of the participation
number that H can be expressed as [46]

H = −μP − γ P2

2R
, (9)

the condition to extremalize H in the linear limit μ = 2
becomes equivalent to extremalize R for fixed P, and in partic-
ular we should expect the ground state at weak nonlinearity to
be the linear combination which minimizes the participation
number, i.e., the most strongly localized mode.

Comparing with the analogous scenario for the kagome
lattice [27], one might a priori expect that the two primary
candidates for the weak-nonlinearity ground state would be
the single-ring mode with R = 8 and a mode with two neigh-
boring (horizontal or vertical) rings excited in antiphase, so
to create a structure with two main antiphased peaks in the
center, as indicated in Fig. 9 (dark gray solid line). However,
a straightforward calculation for the latter mode yields R =
100/11 = 9.09 > 8, so a pure two-ring mode would have
larger H than the single ring for weak nonlinearity, and thus
it could not be the ground state. Even if we attach two
additional rings to constitute a linear segment of four rings, a
straightforward optimization procedure yields a minimal R ≈
8.70 for such a linear combination, and thus the single-ring
mode would still constitute the ground state for a small system
consisting only of these four rings. On the other hand, it is
clear from the numerical continuation in Fig. 10 that for a
large enough system, the ground state is not a single ring but
a two-peaked mode with R < 8 as P → 0. Thus, there should
be a critical system size where the weakly nonlinear ground
state changes from being a single compact ring to a nontrivial
linear combination of ring modes.

In order to determine this critical system size, guided by
our numerical results, we make an ansatz consisting of a linear
combination of 14 compacton rings as follows:

ψ = x(R0,0 − R0,1) + y(R0,−1 − R0,2) + z(R0,−2 − R0,3)

+ u(R1,0 − R1,1 + R−1,0 − R−1,1)

+ v(R1,−1 − R1,2 + R−1,−1 − R−1,2). (10)

Here, Ri, j denotes a C2 compacton ring mode with unit
amplitude at lattice position (i, j), and x, y, z, u, and v are
positive coefficients to be determined from the condition to
minimize R. The structure is sketched in Fig. 11, using a
scaled profile in order to visualize this composed profile.

As shown in the Appendix, this minimizing solution indeed
has a participation number R ≈ 7.79 < 8, and so it should
constitute the weak-nonlinearity ground state for a system
consisting only of these 14 rings. Moreover, also a slightly
smaller system with 12 rings (4 central rings in each row in
Fig. 11) has R < 8, but for any system containing less than
12 rings the minimum value of R is larger than 8 (see the
Appendix). Thus, the weak-nonlinearity ground state should
be a two-peaked mode for all systems containing 12 rings or
more, and a single-ring mode for smaller systems.

To see how this transition of the ground state reflects itself
in the dynamics, we first illustrate in Fig. 12 the stability
index versus power for the single C2 compacton put in

R0,−1 R0,0 R0,1 R0,2 R0,3R0,−2

R1,0 R1,1

R−1,1R−1,0R−1,−1

R1,−1 R1,2

R−1,2

FIG. 11.
√|ψ | of the numerically obtained ground state in the

weak-power limit (P ≈ 5 × 10−6). The 14 rings used in the ansatz
(10) are 6 in the central row (i = 0, −2 � j � 3) and 4 in each of the
top and bottom rows (i = ±1, −1 � j � 2). Color code indicates an
increasing amplitude going from black to yellow.

small systems consisting only of the indicated number of
complete rings (i.e., not complete four-site unit cells) with
fixed boundary conditions. As can be seen, for the four-ring
system where the single compacton is the weak-nonlinearity
ground state, it is, as expected, stable in a considerable regime
of small power, P � 0.55. When the system size is increased
to 12, 14, and 18 rings, where the compacton is no longer
a ground state, the instability threshold decreases drastically.
However, it should be noted that, even for these system
sizes, there is a tiny regime of stability for small power,
decreasing with system size. Thus, even if the compacton is
not the ground state for these systems, it is apparently (at least
linearly) metastable. As another check, we also performed
direct numerical simulations for small systems consisting of
complete four-site unit cells, using initial conditions close to
those obtained by minimizing R for the ansatz (10), for the
largest number of complete rings contained in the system (see
the Appendix for exact numbers). Thus, we confirmed that
for system sizes (3 × 2), (5 × 2), and (7 × 2) unit cells the
average participation number remains larger than 8, while
for systems with (5 × 4) and (7 × 4) unit cells it remains
smaller than 8, for large times, weak nonlinearity, and small
random perturbation. Thus, the critical system size of 12
rings for transition of the weak-nonlinearity ground state from

FIG. 12. Stability index G vs power P for a single C2 compacton
put into small systems consisting only of the sites indicated in the
respective insets (γ = −1, V = 1, fixed boundary conditions).
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(b)

(a)

FIG. 13. Dynamical examples of small-power C2 compactons
for γ = −1, V = 1. We kick them in the vertical direction only
(kx = 0) for {ky, P}: (a) {−0.1, 0.005} and (b) {−0.001, 0.1}. Main
figures show the vertical Y cm (orange) and horizontal Xcm (blue)
center of mass vs z. Insets show intensity distributions at distances
indicated by arrows. Fixed boundary conditions were used on a
lattice of 256 sites.

single-ring to multiring mode is seen even if the system is not
a pure 12-ring system but a (5 × 4) unit cell system.

As we increase the system size, more rings are added to the
linear combination (10), but with coefficients decreasing with
distance to the center. Thus, we find numerically, e.g., that the
participation number for the ground state in the small-power
limit decreases to R ≈ 7.48, 7.37, and 7.34 for a system with
256 (8 × 8), 576 (12 × 12), and 784 (14 × 14) sites (unit
cells), respectively. But the qualitative nature of the weak-
nonlinearity ground state with two main antiphased central
peaks remains the same for all systems containing 12 rings
or more.

3. Numerical investigation of mobility

Owing to the similarity of the band structure around β = 2
to that of the kagome lattice, where good mobility of strongly
localized modes was found in the vicinity of the FB-SIG bor-
der [27], additional effort was done to identify possible mobile
modes also for the ODL in this regime. Two typical examples
are illustrated in Fig. 13, where an initial C2 compacton (Rm,n)
in the vicinity of the lower SIG border has been transversely
perturbed by a phase kick: ψm,n(0) = Rm,n exp[i(�k · �r)], where
�r defines the positions of compacton lattice sites across the
lattice and �k = {kx, ky}, according to standard procedure to

study mobility (see, e.g., Ref. [27]). As can be seen, no proper
mobility appears, but rather the mode ends up oscillating back
and forward in the effective Peierls-Nabarro potential well
[47–49] created around the neighboring two-peaked ground
state. A larger phase gradient does not facilitate for the mode
to “jump over” the Peierls-Nabarro barrier to the next ring
position, but instead excites more internal modes and radia-
tion. Heuristically, we may interpret this as a consequence of
the stable weak-nonlinearity ground state being the nontrivial
linear combination of many ring modes. It is in contrast to
the simple two-ring mode playing the corresponding part for
the mobility in the kagome lattice. As the initial ODL ring
mode translates towards the stable two-peaked mode, many
additional ring modes get excited, which may not easily be
reassembled again to a pure single, translated ring mode.

We also investigated the possibility of mobility of a ring
mode in diagonal directions, which could be anticipated as
that there exist stationary diagonal two-peak as well as four-
peak stationary solutions (thick light gray solid and dashed
gray lines, respectively, in Figs. 9 and 10) that could constitute
intermediate paths in a diagonal movement. However, the out-
come turns out to be similar with those in axial movement: the
mode does not translate but initially oscillates in the diagonal
direction, and as an additional symmetry-breaking instability
develops, its center of mass begins to perform independent
oscillations in the horizontal and vertical directions (figure not
shown). Thus, it appears that there is no translational mobility
in any direction for the localized modes close to the upper flat
band.

IV. CONCLUSIONS

The octagonal-diamond lattice is known to have some
interesting theoretical properties, in particular for the case
where the diagonal coupling inside unit cells is fine tuned to
be identical to the nearest-neighbor couplings. This results in
a linear dispersion relation with two exactly flat bands and
two orthogonal flat-band octagonal compactons with iden-
tical amplitude distributions but different phase structures.
We proposed a way to experimentally realize such a lattice
with elliptical waveguides and analyzed the properties of its
localized modes in the linear and Kerr nonlinear regimes.
We found that FB localized states exist as nonlinear compact
solutions in the presence of nonlinearity. However, for large
systems they typically become unstable if we switch on the
nonlinearity, excepting the C2 compacton at high power for
focusing nonlinearity. The instability can, however, be weak
in certain areas of the parameter space (γ , μ, P) and although
strict compactness will be dynamically destroyed, strong lo-
calization may still persist.

Therefore, from the point of view of the applications, the
ODL could be of interest mostly in the use of its linear
properties. With two orthogonal flat bands, a FB oscillation
could be implemented to effectively disseminate a controlled
amount of energy on a given lattice region, and with a very
well-defined frequency. In addition, as this lattice possesses
a full set of linear compact C1 and C2 states, the amount of
possible combinations of compact states goes as 2Ring (in- and
out-of-phase excitations) [6,50]. This codification could be
increased as well by exciting simultaneously both FBs, which
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would generate an oscillating pattern [Fig. 3(c)] and give an
extra degree of freedom to increase the possible incoherent
superpositions on different lattice regions. This is certainly
an important goal nowadays in optical communication sys-
tems, where different forms of codification are required for
efficiently encrypting a huge amount of digital data.

The nonlinear ODL also exhibits intriguing finite-size ef-
fects which to our knowledge has not been seen in earlier stud-
ied flat-band models. We showed that the weak-nonlinearity
ground state in the defocusing regime switches from being a
single compacton to a nontrivial combination of compactons
at a critical system size consisting of 12 compacton rings.
Another interesting effect for defocusing nonlinearity is the
existence of a critical nonlinearity strength (or, equivalently,
critical power) where the ground state (for large systems)
switches from being double peaked to single peaked, through
a symmetry-breaking pitchfork bifurcation.

The diversity of localized modes induced by the nonlin-
earity in the FB ODL also directs to investigations of funda-
mental processes responsible for dynamical pattern formation
in such geometries, which is an important topic for future
research.
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APPENDIX: EXPLICIT FORMULAS FOR
WEAK-NONLINEARITY GROUND STATE IN

SMALL SYSTEMS

With the 14-ring ansatz (10) for a ground state with two
antiphased central peaks, minimizing R as defined in Eq. (6)
becomes equivalent to finding the maximum of the function
f (x, y, z, u, v) = 32x4 + 4(x − y)4 + 4(y − z)4 + 12z4 +
8(x − u)4 + 8(y − v)4 + 72u4 + 8(u − v)4 + 16v4 under
the condition that g(x, y, z, u, v) = 8x2 + 4(x − y)2 + 4(y −
z)2 + 12z2 + 8(x − u)2 + 8(y − v)2 + 24u2 + 8(u − v)2 +
16v2 = 1. With help of MATHEMATICA, the following solution
is obtained: x ≈ 0.242999, y ≈ 0.0693781, z ≈ 0.0170956,
u ≈ 0.0427998, v ≈ 0.0279854, which minimizes the
participation number to R ≈ 7.79016 < 8, and thus yields the
ground state for the 14-ring system.

From the above expressions for f and g for the 14-
ring ansatz, we may directly obtain results also for smaller
systems. Putting z = u = v = 0 we obtain the 4-ring mode
with minimum R ≈ 8.70176 > 8, u = v = 0 yields the 6-ring
mode with minimum R ≈ 8.66596 > 8, z = v = 0 yields the
8-ring mode with minimum R ≈ 8.12148 > 8, v = 0 yields
the 10-ring mode with minimum R ≈ 8.08559 > 8, and z = 0
yields the 12-ring mode with minimum R ≈ 7.85557 < 8.
Thus, we conclude that a two-peaked mode should constitute
the weak-nonlinearity ground state for systems consisting
of 12 rings or more, while the single-ring mode should be
the ground state for systems containing less than 12 rings.
The coefficients for the 12-ring mode are x ≈ 0.242178, y ≈
0.0631006, u ≈ 0.042197, v ≈ 0.0262899.
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