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IMPLIED CORRELATION AND OPTION RETURNS

La presente tesis estudia si la correlación es un factor de riesgo sistemático, analizando su
efecto en el mercado de opciones. Para este propósito, calculamos la correlación implícita,
como una medida de la correlación en todo el mercado, y probamos si hay un efecto signi-
ficativo en el time-series y en el cross-section de los retornos de la opción.

Mostramos que los períodos de alta correlación implícita son seguidos por una disminución en
el time-series de los retornos de opciones tipo Put. Al utilizar los retornos de la opción sobre
el índice S&P100 como variable dependiente, mostramos que nuestro índice de correlación
implícita tiene un gran poder predictivo tanto in-sample como out-of-sample del time-series.

Estudiamos el cross-section de los retornos de las opciones sobre acciones, clasificando estas
últimas en función de la sensibilidad a las innovaciones en la correlación implícita. Encon-
tramos que las acciones con más exposición tienen un rendimiento promedio alto de opciones
tipo Put. Una estrategia que consiste en una posición larga (corta) en la cartera con op-
ciones escritas en acciones más (menos) expuestas, produce un rendimiento mensual promedio
económico y estadísticamente significativo.

Creamos una estrategia innovadora utilizando un pronóstico mensual de la correlación im-
plícita y, por lo tanto, predecimos el comportamiento de los inversores en el mercado de op-
ciones. Esta estrategia produce un rendimiento mensual significativo desde el punto de vista
estadístico y económico, incluso incluyendo todo el bid-ask spread como costo de transacción.

Los resultados son sólidos para diferentes condiciones de mercado y diferentes períodos de
muestra, y no se explican por los modelos habituales de factores de riesgo.
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IMPLIED CORRELATION AND OPTION RETURNS

The current thesis studies whether the correlation is a systematic risk factor, analyzing its
effect on the options market. For this purpose, we calculate the implied correlation of the
market, as a measure of the marketwide correlation, and we test if there is a significant effect
on the time-series and the cross-section of the option returns.

We show that periods of high implied correlation are followed by a decrease in the time-
series of Put option returns. Using the option returns on the S&P100 index as a dependent
variable, we show that our implied correlation index has an impressive predictive power both
in-sample and out-of-sample in the time-series of returns.

We study the cross-section of stock option returns by sorting stocks on the sensitivities
to innovations in implied correlation. We find that stocks with more exposure have high
average Put options returns. A trading strategy that is long (short) in the portfolio with
options written on stocks more (less) exposed, produces an economically and statistically
significant average monthly return.

We create an innovative strategy using a monthly forecast of the implicit correlation, and
thus predict the behavior of investors in the options market. This strategy produces a
statistically and economically significant monthly return, even including the entire bid-ask
spread as transaction cost.

The results are robust to different market conditions and different sub-sample periods, and
are not explained by usual risk factor models.
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Introduction

Despite the growth in equity options research, the question of how marketwide correlation
affects the cross-section of expected options returns has received less attention. Most research
has focused on volatility as the main factor to explain the difference in options returns, while
very few on the marketwide correlation.

Correlation is one of the key concepts in financial markets, and it has been proved that
changes over time. When stock return correlations are high, the returns are low and the
market volatility increase, so the benefits of the diversification decline precisely when needed.
The investors would like to protect from this risk and keep a portfolio that could behave well
in periods of high correlation. One asset that hedge against downside risk are Put options.
Investors demand put options contracts to keep in their portfolios, and hence be prepared
for periods with high marketwide correlation. The greater the exposure, the greater the
demand for options contract on this stock. Thus, contracts with underlyings more sensitive
to correlation risk are expensive and earn low returns, because they offer a hedge against a
marketwide correlation increase, in contrast with contracts whose underlying is less sensitive
to correlation risk.

We compute an Implied Correlation metric as proxy for the marketwide correlation, using
index and individual options prices. Using this metric gives us some advantages: first, it has
been shown that the predictive power of implied measures are better than historical ones,
the former providing incremental information on future values not included in historical es-
timates. Second, using the prices of the options we obtain the expectations of the investors,
their sentiment about the market and the months ahead; since we will build strategies based
on investors’ decisions that are more sentiment-driven, this is a convenient measure. More-
over, as Buss and Vilkov [2012] point out, option prices update faster in response to new
market conditions, since historical data have some inertia incorporated in them. Finally,
when estimating risk-neutral expectations of higher moments using options, we do not face
the trade-off between using long time-series of data to obtain precise estimates and short
windows to produce conditional instead of unconditional estimates. Hence, we expect that
the implied correlation is a better predictor of future market returns compared to other
indicators relying on historical data.

Our empirical methodology splits in two: first we study if our metric of implied correlation has
a predictive power in the time-series of the option market returns, using S&P100 index option
contracts as dependent variable, and checking the in-sample and out-of-sample results; once
the predictive power is established, we look for a possible pricing correlation risk premium in

1



the cross-section of the option market, using the individual option contracts on the S&P100
constituents.

We show that aggregate implied correlation is significantly associated with a decrease in
subsequent option returns. The predictive power is stronger for closer periods, and robust to
the inclusion of predictors such as aggregate volatility factors, market-wide liquidity, variance
and correlation risk premiums. The economic importance of implied correlation is high: a
one standard deviation increase in implied correlation in a given month translates into a
22% decrease in the subsequent quarterly cumulative option return. We also verify that the
implied correlation has good out-of-sample performance. Specifically, using an out-of-sample
R2 and a F-statistic with critical values from a bootstrap procedure, we show that predictive
regressions relying on implied correlation deliver better out-of-sample forecasts than those
employing only the historical average of option returns.

Further, using the cross-section of stocks returns, we create portfolios of put options based
on the underlying sensitivity to innovations in implied correlation. Options written on un-
derlyings that behave poorly in periods of high correlation earn higher returns than options
contracts on shares that behave well. We show a significative difference between pricing of
extreme portfolios, that could be attributed to correlation risk. Further, using the autorre-
gressive feature of the implied correlation, we implement a trading strategy that consists in
taking long/short positions in the first/fifth portfolio, depending on a forecast of the next
month IC. If the prediction supposes an increase in implied correlation, we expect a growth
in the demand of options written on poorly behaved stocks, so we take a long position in
those options, taking advantage of the low price, and a short position in Put option contracts
on well-behaved stocks, waiting for a price rise due to lower demand. This strategy provides
a 10% monthly return.

In order to check if the returns of the strategies could be associated with any known risk
factor, we apply a series of control variables to the returns in a factor-model regression. We
test various specifications for the post-formation control regressions, and concluded that,
for both strategies, the return remains significant and cannot be attributed to these risk
premiums. As these are two investment strategies, we analyze the inclusion of transaction
costs in the purchase and sale of the option contracts, and find that the returns remains
at very reasonable estimates of effective spreads; in particular, our second strategy provides
significant returns even at considering the entire bid-ask effective spread. We also check the
robustness of the sample period, dividing our data in five, and examine the results for each
one. Our findings remain the same for every expansion sub-sample, and the returns of our
second strategy become negative in periods of contractions.

This thesis is part of a vast literature on the explanation of option returns. Previous studies
have shown that Put options have been historically too expensive. Bondarenko [2014] exhibits
that Put prices are too high to be compatible with canonical models. In the same way, Coval
and Shumway [2001] found that both Call and Put contracts earn exceedingly low returns.
To analyze this problem most work focuses on Black and Scholes [1973] and volatility related
option mispricing, such as Coval and Shumway [2001] using trading in index options, and
Goyal and Saretto [2009] using individual options. One of the first papers to analyze the
cross-sectional differences in option expected returns due to marketwide correlation risk was
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Driessen et al. [2009] through a trading strategy that involves selling index straddles and
buying individual straddles and stocks. Our approach is much simpler, only using individual
Put options, we analyze the most sensitive underlying in the stock market, and thus create
a difference in the options cross-section. This approach is very similar to that used by Ang
et al. [2006] who examine the pricing of aggregate volatility risk in the cross-section of stock
returns.

Finally, it is interesting to note that some research have focus on trading strategies involving
short or long positions in index and in individual options simultaneously, to exploit some risk
premium. Our first strategy involves only individual option contracts, similarly to Goyal and
Saretto [2009], using the cross-section in the options market. And the second strategy requires
a prediction of our measure of marketwide correlation one month ahead, and depending on
whether the correlation will rise or fall, take a certain position in option contracts. To the
best of our knowledge, we are the first to implement such a strategy in options.

The rest of the paper proceeds as follows. Section 1 describe the data and the main estima-
tions. Section 2 presents the results for the time series estimation and prediction power of
the Implied Correlation in the option market. Section 3 presents the results of the portfolios
strategies and regressions, taking into account transaction costs and a check of robustness of
the sample. The final Section concludes.
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Chapter 1

Data

1.1 Implied Correlation

The instantaneous variance of the index at a given time t, σ2
It, is a function of the instan-

taneous variances of individual constituents, σ2
it, and the correlations between pairs of stock

returns, ρijt,

σ2
It =

N∑
i=1

w2
i σ

2
it +

N∑
i=1

∑
i6=j

wiwjσitσjtρijt (1.1)

where wit denotes the market weight of the ith component. From this equation, we can obtain
an expression for the expected integrated variance under the risk-neutral probability measure
Q over an interval of length T − t,

EQt
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t

σ2
Iτdτ

]
=

N∑
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w2
i E
Q
t
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σ2
iτdτ

]
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i=1

∑
i6=j

wiwjE
Q
t
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t

σiτσjτρijτdτ
]

(1.2)

By assuming equal pairwise implied correlations between all the pair stock returns, ρijτ = ρτ ,
and given that it is not possible to estimate the second term of the previous equation, we
can use the following approximation,

N∑
i=1

∑
i 6=j

wiwjE
Q
t

[∫ T

t

σiτσjτρijτdτ
]

≈
N∑

i=1

∑
i 6=j

wiwj

√
EQt

[∫ T

t

σ2
iτdτ

]√
EQt

[∫ T

t

σ2
jτdτ

]
EQt

[∫ T

t

ρτdτ
]

(1.3)
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Then, it is straight forward to derive the expression for aggregate implied correlation ICt =

EQt

[∫ T
t
ρτdτ

]
by rearranging the equations above,

ICt =

EQt

[∫ T
t
σ2
Iτdτ

]
−

N∑
i=1

w2
i E
Q
t

[∫ T

t

σ2
iτdτ

]
N∑

i=1

∑
i 6=j

wiwj

√
EQt

[∫ T

t

σ2
iτdτ

]√
EQt

[∫ T

t

σ2
jτdτ

] (1.4)

ICt represents the market’s expectation of future market-wide correlation, implied by the
option prices of the index and the prices of options on its components. It summarizes the
pairwise correlations among all the individual components. An increase in ICt is associated
with a deterioration of the market’s expectations of the portfolio diversification benefits.

1.2 Estimation of IC

To calculate the implied variance of the index and the implied variances of the index com-
ponents, we use the risk-neutral variance of simple returns, which can be estimated from the
strike of a simple variance swap. Specifically, we employ the strike on a simple variance swap
on the market and the strikes on simple variance swaps on the index constituents. Martin
[2011] introduces this financial contract with different properties to those of a standard vari-
ance swap. For instance, simple variance swaps can be hedged in the presence of jumps, and
they measure the risk-neutral variance of simple returns. According to Martin [2011], it also
provides a natural way to calculate implied correlations, since the decomposition of the index
variance given in equation 1.1 refers to simple returns, not log returns.

The strike of a simple variance swap is defined as

V (0, T ) ≡ 2exprT

F 2
T

(∫ FT

0

putT (K)dK +

∫ ∞
FT

callT (K)dK

)
, (1.5)

where FT denotes the underlying asset’s forward price to time T at time 0, putT (K) and
callT (K) are the put and call option prices with maturity date T and strike price K, respec-
tively, and r is the continuously compounded interest rate. The integral is defined over an
infinite set of strike prices. By assuming that the available strike prices of the put options
belong to the interval [KP

min, K
P
max] where 0 < KP

min < KP
max < +∞, we solve the integral

numerically using the trapezoidal method. Thus, the first term on the right-hand side of
equation 1.5 is approximated as follows:

2

F 2
T

(∫ KP
max

KP
min

putT (K)dK

)
≈
KP
max −KP

min

m

m∑
k=1

(
putT (Ki)

F 2
T

+
putT (Ki−1)

F 2
T

)
(1.6)
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In a similar manner, we numerically approximate the second term of the right-hand side of
equation 1.5 to finally obtain the estimates of the implied variance for the S&P100 index and
its individual stocks. Similarly to Martin [2011], we approximate the forward price to the
spot price. The implied variance is estimated for different maturities and, by interpolating,
we construct daily estimates with 30 days time- to-maturity. Monthly time-series are given by
the estimates at the end of each month. Once we have approximated the implied variances
for the index and its constituents, we can finally obtain the aggregate implied correlation
from equation 1.4.

1.3 Option Data and Variables

We use data from both the equity option and stock markets from the Ivy DB database
provided by OptionMetrics. We use daily data for S&P100 index options and for individual
options on all the stocks included in the S&P100 index from January 1996 to December
2014. For the option data we select the best bid and ask closing quotes, open interest,
trading volume, implied volatility and the option’s delta. For the underlyings we select the
best bid and ask closing quotes, shares outstanding, closing price, and trading volume. We
use the shares outstanding and the closing price to calculate the firm’s market capitalization
and thus obtain the value-weighted results of our portfolios in section 3.

We apply filters to the option data. We eliminate all the observations that violate arbitrage
bounds, such as K ≥ P ≥ max(0, Ke−rT − S) where P is the put option price, S is the
underlying stock price, K is the strike price, T is time to maturity, and r is the risk-free rate.
We remove observations with non positive bid price and for which the option open interest
is equal to zero, in order to eliminate options with no liquidity.

For the time series analysis and later post-formation regressions for the cross-section, we
utilize frequently used variables with predictive power and risk measures. The monthly
CBOE Volatility Index (VIX) from the CBOE database. We employ Amihud [2002] illiquidity
measure,

LIQt =
1

T

T∑
t

rt
$Vt

, (1.7)

where rt and Vt are the absolute stock market return and dollar volume on day t respectively,
and the time horizon T − t is 30 days, as a control variable in the in-sample regression in
section 2.1 and in the sorting process in section 3.1. We compute CRPt as the difference
between ICt, obtained from 1.4, and RC, the average realized correlation, calculated as the
sum of the value-weighted pairwise correlations,

RCt =
N∑

i=1

∑
i 6=j

witwjtρ̂ijt , (1.8)
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where ρ̂ijt is the sample correlation for each pair of constituents i and j of the S&P100 index,
each month, obtained as

ρ̂ijt =
σ̂ijt

σ̂itσ̂jt
, (1.9)

where σ̂it is the realized volatility of stock i and σ̂ijt is the covariance between stocks i and j.
We calculate the realized volatility for each constituent i and each month as the square root
of the realized variance of constituent i, where the latter is computed as

RVit =
T∑
t=1

(
(1 + rit)−

1

T

T∑
t=1

(1 + rit)

)2

, (1.10)

rit is the return on trading day d. In the same way as CRPt, the VRPt is computed as the
difference between the risk-neutral expectation and the physical expectation of the market
variance,

VRPt = EQt

[∫ T

t

σ2
τdτ
]
− EPt

[∫ T

t

σ2
τdτ
]

, (1.11)

where again the time horizon T − t is 30 days. The implied variance (IV) is estimated
by numerically solving the risk-neutral expectation of the simple return variance defined in
equation 1.5 using the trapezoidal rule described in equation 1.6. The physical expectation
of the market variance is approximated as the realized variation of the index from t to T
described in equation 1.10. We include vVRPi, calculating it as the value-weighted average
of the variance premia on all the index constituents.

Further, we obtain the daily and monthly Fama and French [1993] factor returns: Market
(MKT-Rf), Size (SMB), Value (HML), and the Carhart [1997] momentum factor (Mom)
from Kenneth French’s data library and use the T-bill rate as the risk-free rate.

1.4 Option Returns

We follow Broadie et al. [2009] to get a continuous series of hold-to-maturity options returns.
We construct portfolios of options and their underlying, based on the information available
on the first trading day following the third friday of the month. We select options that
mature the next month and the contracts which are closest to ATM (moneyness between
0.95 and 1.05). We take the mean of the best bid and ask as the initial price, then we hold
the portfolio one month, and at the expiration date (usually the third friday of the month)
we use the payoff of exercise (or not) as the final value.

Thus, the hold-to-maturity return of put options are
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rPt,T =
(K − St+T )+

Pt,T (K,St)
− 1 (1.12)

where x+ ≡ max(x, 0), and Pt,T (K,St) is the price at t, of a put option on the underlying St,
with strike price K, and maturity T .

After the expiration, for the next month, we select a new pair of call and put contracts, the
closest ones to ATM, that have one month to expiration. Thus, for each stock, we form a
time-series of monthly options returns.

Also we require some volatility control variables in options for both in-sample analysis and
strategies post-formation regressions. We use the Coval and Shumway [2001] zero-beta strad-
dle factor (ZBStraddle) and the Goyal and Saretto [2009] delta-hedged call factor (DHCall)
as aggregate volatility factors constructed by ourselves following the procedure described in
the papers. The zero-beta straddle factor is the excess return of a zero-beta S&P100 index
ATM straddle, calculated as

rZBS =
−CβC + S

PβC − CβC + S
rC +

PβC
PβC − CβC + S

rP . (1.13)

rZBS, rC , rP are the returns of the straddle, call and put, respectively, and βC is the market
beta of the Call:

βC =
S

C
∆C , (1.14)

where ∆C is the delta of the option. The delta-hedged call factor is the delta-hedged S&P100
index call, a strategy consisting in a long position in the option contract and a short position
in delta shares of the underlying, return calculated as

rCDH =
max(ST −K, 0)− |∆C |ST

C − |∆C |S0

− 1 (1.15)

1.5 Descriptive Analysis

We compute the summary statistics of the time-series of our correlation estimates. Table
1.1 reports a monthly mean of 0.49, with values ranging from 0.06 to 0.81 and a standard
deviation of 0.16 for ICt. The mean of the realized correlation is 0.34, which indicates a
positive average correlation risk premium of approximately 14% for the sample period. In
Figure 1.1, we plot the implied and realized correlation estimates from January 1996 to
December 2014. Visual inspection indicates that the implied correlation index is highly
serially correlated with a first order autocorrelation coefficient of 0.75. Hence, we employ
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daily innovations in implied correlation, as the first difference in ICt (∆ICt), in the cross-
section analysis, displayed in the last row of Table 1.1. ∆ICt has a mean of zero, a standard
deviation of 0.08, and a first order autocorrelation coefficient of -0.39.

Table 1.1: Summary statistics

Mean Median St. Dev. Max Min

ICt 0.486 0.498 0.156 0.811 0.059
RCt 0.343 0.319 0.145 0.801 0.045

∆ICt 0 −0.001 0.079 0.327 −0.249

Figure 1.1 shows that the implied correlation is higher than the realized correlation for most
of the sample period, which indicates a positive correlation risk premium. Consistent with
other studies (see for instance Cosemans et al. [2011]; Driessen et al. [2013]), the figure also
reveals that correlation increases at times of stress or during periods of market uncertainty.
We observe that some of the peaks for both measures of correlation take place at the same
time as events such as the Long Term Capital Management default and the Russian crisis
in 1998, the Iraq war in 2003, the 2008 Global Financial Crisis, and the European debt
crisis. During the times of these events, we also observe that the difference between these
two measures decreases, making the correlation risk premium negative in some periods.

9



Figure 1.1: Monthly IC and RC estimates
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Chapter 2

Time Series Analysis

We study the predictive power of the implied correlation in the options market. The empirical
methodology relies on a standard regression model of the market risk premium on the lagged
implied correlation, and standard control predictors for different return horizons h:

rot+h = αh + βhICt + γhXt + εt,

We examine forecasts of the cumulative option returns1. Hence, rot+h = 1
h

∑h
i=1 r

o
t+i, is the

(scaled by the horizon h) cumulative option market return from t + 1 to t + h, where rt+i

is the hold-to-maturity naked put return of the S&P100 contract at time t + i calculated
as 1.12. Since the returns are monthly hold-to-maturity, there are no overlapping days
when calculating the accumulated return. The implied correlation is our main independent
variable. The coefficient of interest, βh, is expected to be negative. This is consistent with risk
averse investors perceiving states of high marketwide correlation as an increase in aggregate
risk, which induces a search for hedge strategies, such as options, rising contract prices and
dropping future returns. Finally, Xt is a set of control predictors including: implied variance
and volatility factors, variance risk premium, correlation risk premium, and volatility factors
in options such as delta hedged call and zero beta straddle.

To help with the interpretation of the estimated coefficients, all the explanatory variables
are standardized to have mean zero and unit variance. Since we take cumulative returns, the
regression involves overlapping observations, which induces serial correlation in the residuals.
We adjust the calculation of standard errors using the Hodrick and Prescott [1997] procedure.
In the same way, the variation of the dependent variable explained by ICt must be interpreted
carefully, as Boudoukh et al. [2008] and Cochrane [2005] argue, since the adjusted R2 when
using overlapping observations tends to increase with the return horizon.

1We also examine predictions of the monthly option returns h months in the future.
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2.1 In-Sample Results

Table 2.1 presents the simple regression results for the cumulative returns from one month
(1) up to six months (6) in the future, regressed on the lagged ICt. We find that the implied
correlation is significant at 1%, decreasing at larger forecast horizons, therefore the effect
of the ICt is immediately incorporated into the Put prices. The economic importance is
high; a one standard deviation increase in ICt translates into a 22% decrease when predicting
cumulative returns three months ahead.

Table 2.1: Simple Regression

Cumulative Naked Put Returns

(1) (2) (3) (4) (5) (6)

IC −0.222∗∗∗ −0.226∗∗∗ −0.220∗∗ −0.206∗∗ −0.207∗∗ −0.198∗
(0.078) (0.166) (0.273) (0.375) (0.494) (0.616)

Constant −0.243∗∗ −0.244∗∗ −0.242∗∗ −0.240∗∗ −0.240∗∗ −0.242∗∗
(0.101) (0.203) (0.306) (0.407) (0.511) (0.617)

Adjusted R2 0.017 0.039 0.056 0.062 0.080 0.084

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results show statistical and economic significance between ICt and future option returns.
Table 2.2 shows the results for quarterly cumulative returns when ICt is included along with
different control variables. We present different combinations, including ICt and typical risk
factors as regressors, such as volatility, variance risk premium, implied volatility, correlation
risk premium. Furthermore, if the implied correlation reflects liquidity effects, then part of
the predictive power of ICt could be due to this liquidity component. Hence, we also include
the illiquidity measure for the stock market LIQt.
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Table 2.2: Quarterly Regressions

Cumulative Naked Put Returns

(1) (2) (3) (4) (5) (6)

IC −0.220∗∗ −0.238∗∗ −0.234∗∗ −0.202∗∗ −0.258∗∗ −0.202∗∗
(0.273) (0.354) (0.343) (0.282) (0.323) (0.278)

VIX 0.033
(0.285)

IV 0.028
(0.259)

LIQ −0.061
(0.294)

VRP −0.078
(0.464)

vVRPi 0.015
(0.494)

CRP 0.070
(0.340)

dhCall −0.261∗∗
(0.340)

zbStraddle −0.261∗
(0.411)

Constant −0.242∗∗ −0.243∗∗ −0.243∗∗ −0.243∗∗ −0.243∗∗ −0.243∗∗
(0.306) (0.306) (0.306) (0.305) (0.306) (0.306)

Adjusted R2 0.056 0.052 0.052 0.061 0.048 0.064

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.2 Out-of-Sample Results

The main findings indicate that the implied correlation has strong in-sample predictive power
on the return of Put options. We want to extend this result to an out-of-sample analysis.
In this section we explore whether implied correlation also exhibits out-of-sample forecasting
power, in the sense of beating the historical average return.

We split the data, into an estimation window and a testing window. With the data from the
estimation window we adjust our model, to further estimate the error terms of the model (ε1)
and a benchmark model (ε2) using the data from the testing window. We use the historical
average as our benchmark model.

ε1,t+h = rxmt+h − r̂xmt+h,
ε2,t+h = rxmt+h − rxmt ,

Then we calculate the average of the errors of each of the models: MSE1 =
∑Ttest

t=1 ε2
1,t+h

and MSE2 =
∑Ttest

t=1 ε2
2,t+h. We evaluate the predictive performance by employing the out-of-

sample R2, following Campbell and Thompson [2008]; and MSE-F, that is McCracken [2007]
F-statistic.

R2
out = 1− MSE1

MSE2

MSE-F = (T − h+ 1) x
(
MSE2 −MSE1

MSE1

)

A positive out-of-sample R2 indicates that the predictive regression displays a lower average
mean squared error than the historical average return. In addition, due to small samples,
we obtain critical values from a bootstrap procedure, to provide statistical significance. The
bootstrap follows Kilian [1999] and imposes the NULL of no predictability for calculating
the critical values. The data generating process is assumed to be

yt+1 = α + u1t+1

xt+1 = µ+ ρ · xt + u2t+1

and the bootstrap for calculating power assumes the data generating process is

yt+1 = α + β · xt + u1t+1

xt+1 = µ+ ρ · xt + u2t+1

14



and both coefficients, β and ρ, are estimated by OLS using the full sample of observations,
with the residuals stored for sampling. We then generate 1000 bootstrapped time series by
drawing with replacement from the residuals. And from this time series we obtain the critical
values to compare with.

Table 2.3 presents the results for our out-of-sample analysis. The first two rows show our
findings when the forecast horizon is quarterly, whereas the last two rows show the results for
semi-annual return horizons. Consistent with the in-sample results, we find that the implied
correlation delivers positive out-of-sample R2s for both forecast horizons. The mean of the
difference in the squared errors is always positive, which indicates that predictions using
historical average returns present a higher prediction error than those employing implied
correlation. The difference is statistically significant at a 1% level when the prediction horizon
is six months ahead. The last column show the results for a specification that includes the
interest rate, and achieve a much higher explanatory power. This finding could lead to future
new research involving the term structure. Taking into account the short sample period used
to perform out-of-sample experiments, this finding provides weak evidence of option returns
predictability at a quarterly and semi-annual forecast horizon.

Table 2.3: Out-of-Sample Results

Naked Put
IC IC + IRrel

h=3

MSE-F 0.75∗∗∗ 42.35∗∗∗
R2 0.4% 8%

h=6

MSE-F 7.71∗∗∗ 76.29∗∗∗
R2 4% 9%

In summary, these findings document evidence consistent with the in-sample results. The
implied correlation exhibits better out-of-sample performance than the historical average
market excess returns, supported by a positive out-of-sample R2 and a MSE-F statistic
higher than the critical values obtained by bootstrapping. For robustness of our findings,
we also check the MSE-T statistic, the Diebold and Mariano [1995] t-statistic modified by
Harvey et al. [1997], calculated as

MSE-T =
√
T + 1− 2 · h+ h · (h− 1)/T · MSE2 −MSE1

ŜE(MSE2 −MSE1)

and we get the same results.

15



Chapter 3

Cross Section Analysis

3.1 Portfolio Strategies

To examine how aggregate implied correlation affects the cross section of put option re-
turns, we sort equity returns based on their sensitivities to the aggregate implied correlation
innovation factor using the following multifactor model:

ri
t = αi

t + βi
∆IC∆ICt +Xt + εi

t, (3.1)

where ∆IC represents the innovations in the aggregate implied correlation factor and βi
∆IC are

the loadings on aggregate implied correlation innovations. Xt represents other risk factors.
We include the three factors of Fama and French [1993] and Amihud [2002] liquidity factor
calculated for the stock market.

ri
t corresponds to the equity return of the S&P100 constituent i at time t. At the end of each
month, we sort stocks into quintiles, based on their past loadings βi

∆IC . Past loadings are
obtained by running the regression over the previous 3 months 1 consistent with our findings
in 2.1. Hence, portfolio 1 contains the firms with the lowest βi

∆IC loadings, whereas portfolio
5 is composed by the companies with the highest βi

∆IC loadings. Then, we construct equal
weighted portfolios using put option returns written on those firms.

Table 3.1 reports summary statistics for the time-series option returns of quintile portfolios.
The first two rows report the mean and standard deviation of monthly total simply returns.
The last column reports the statistics for the spread in monthly returns between portfolio
5 and portfolio 1. We also exhibit the maximum and minimum return obtained by each
portfolio during the period studied. Consistent with our intuition, the mean returns of the
portfolios show a monotonic increasing from the first portfolio, which contains the lowest β
of the regression 3.1, with a -15% monthly average, to last portfolio, which contains the firms
with the highest β, with a monthly average of -5%. The extreme portfolios present a mean
difference of 10% significant at the 1%. The last row shows the β of each portfolio, increasing
monotonically (by construction) from -0.07 to 0.12.

1We check the robustness of our findings by employing 6 and 9 months of estimation window.
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Table 3.1: Portfolios Summary Statistics

Statistic 1 2 3 4 5 5− 1

Mean −0.15 −0.13 −0.11 −0.10 −0.05 0.10
St. Dev. 0.88 0.90 0.90 0.82 0.92 0.52
Max 4.23 4.05 4.01 3.34 3.72 2.52
Min −1.00 −1.00 −1.00 −0.98 −1.00 −1.65
β −0.07 0 0.02 0.05 0.12

Hence, a trading strategy based on selling put option contracts in portfolio 1 and buying
put option contracts in portfolio 5 every month, reports a 13% monthly return. Also this
return is less volatile than the portfolios, with a 0.52 standard deviation, below the range of
the portfolios between 0.82 and 0.92. Likewise, since the strategy involves two positions, the
minimum monthly return obtained is less than that of portfolios, with -165%, however the
maximum is less, with a 252% compared to an average 387% of 5 portfolios. In the appendix
we exhibit the value-weighted portfolios and their summary statistics. The difference between
the extreme portfolios is 13% in average, significant at 1%, and with a 0.76 standard deviation.

We further explore a second strategy, which we called an implied correlation timing strategy,
where investors change the long-short position depending on their forecast of implied corre-
lation the next period. If an investor forecast an increase in implied correlation then she goes
long on portfolio 5 and short on portfolio 1. On the contrary, if she forecasts a decrease in
implied correlation, then she follows exactly the opposite strategy and goes long on portfolio
1 and short on portfolio 5.

If an investor forecasts an increase in implied correlation the next month, consistent with
implied correlation being a risk factor, then stocks that correlates positively with implied
correlation are more demanded, since they help to protect investors against periods of high
correlation. Then the demand on put options written on those stocks should decrease. In
other words, the demand on options of portfolio 5 decreases and price of put options decreases.
On the other hand, when correlation is forecast to be high stocks that are negatively correlated
to the implied correlation are riskier, since they behave bad in periods of high correlation.
Consequently, the demand of put options written on those stocks increases, i.e., options of
portfolio 1 are more demanded and their price increases. Therefore, it is optimal to go long
on portfolio 5 and short on portfolio 1. When investors forecast a low correlation the next
month, they switch strategy by going long on portfolio 1 and short on portfolio 5.

In particular at the end on each month t+ 1, we have a forecast ÎCt+1 of implied correlation.
By using the previous three months as estimation window, from t − 2 to t, we estimate an
AR(p) process for implied correlation. Then ÎCt+1 is obtained as follows:

ÎCt+1 = α̂0 + α̂1ICt...+ α̂pICt−p+1,

where p, the number of lag terms is obtained employing the corrected Aikaike information
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criterion. Then, the implied correlation timing strategy is:

Strategy =

{
Long portfolio 5, Short portfolio 1 if ICt < ÎCt+1

Long portfolio 1, Short portfolio 5 otherwise.
(3.2)

For this trading strategy we use a 6-month estimation window, which reports a better forecast
of the implied correlation, but the results are still significant for 3 and 9 months. The forecast
and the corresponding realized implied correlation are shown in the Figure 3.1.

Figure 3.1: Forecast vs IC

This strategy reports a 10% monthly return on average, statistically significant at 1%, with
a 0.52 standard deviation. In the same way as our previous strategy, we incurred in two
options transactions, so the minimum return obtained is -142%, which is equivalent to losing
money in both positions. On the other hand, the maximum return obtained in a month is
222%, less than the average of the maximum return of the 5 portfolios.

Both strategies, the 5-1 spread portfolio and the IC timing strategy, generate significant
returns both economically and statistically.
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3.2 Post-Formation Controls for Risk

We want to check if the returns of the previously described strategies answer to some known
risk in the market or it is something new, arguably correlation risk. We regress the following
linear factor model:

Rp,t = α + βFt + ε,

where Rp,t are the returns of the strategies obtained in Section 3.1 and Ft denotes a matrix
of risk factors. We consider different factors, that have been studied in the past, with a
significant effect on the options returns, such as (1) Fama and French [1993] three factor
model, the Carhart [1997] momentum factor model (2), Goyal and Saretto [2009] show that
the difference between implied volatility and realized volatility significantly affect the cross-
section of option returns, so we include the excess zero-beta straddle factor and the delta-
hedged call factor return as option volatility factors (3); and more recently, Bai et al. [2019]
find that firm-level variance risk premium significantly predicts future option returns, so we
also use a Variance Risk Premium factor (4). Since all the factors are spread traded portfolios,
the intercept α from the regression can be interpreted in the usual sense of mispricing relative
to the factor model and hence, the option returns described in this paper are not related to
standard aggregate sources of risk.

Table 3.2 reports the estimated coefficients. For the 5-1 strategy, in specifications (1), (2),
and (3) we observe that alpha remains statistically significant, at 1%, and very similar, even
higher, to the average raw returns. But for specification (4) we see a drop in alpha magnitude
and significance, possibly attributable to the VRP variable. For the IC Timing Strategy, the
loadings on Fama and French Market and Value factors are significant. The main difference
between signs in loadings for both strategies relies on the HML and VRP loadings, this
implies that our second strategy earn abnormal returns even with positive exposure to Value
risk and positive Variance Risk Premium. The alpha of the IC Timing Strategy remains
constant, and become more significant, both economically and statistically, in specification
(4), reaching an alpha of 14%. We conclude that our returns can not be associated with any of
this common source of risk. In the appendix we show the same results for the value-weighted
portfolios.
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Table 3.2: Post Formation Regressions

5-1 Strategy IC Timing Strategy

(1) (2) (3) (4) (1) (2) (3) (4)

Alpha 0.11∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.06∗ 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.14∗∗∗
(0.03) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04)

Mkt.RF −0.40 −0.05 0.09 −1.67∗∗ −1.68∗∗ −1.58∗
(0.68) (0.73) (0.77) (0.67) (0.72) (0.75)

SMB −1.05 −1.07 −0.99 −0.92 −0.93 −0.89
(1.23) (1.23) (1.23) (1.21) (1.21) (1.20)

HML −1.84∗ −1.38 −1.05 2.32∗∗ 2.32∗∗ 2.01∗
(1.01) (1.08) (1.08) (1.00) (1.06) (1.06)

Mom 0.91 1.19 0.0 −0.22
(0.74) (0.79) (0.73) (0.78)

dhCall −3.09 −0.19 −0.39 0.29
(2.47) (2.76) (2.45) (2.70)

zbStraddle −0.13 −0.04 0.10 0.11
(0.11) (0.12) (0.11) (0.12)

VRP −0.69∗ 0.66∗
(0.29) (0.29)

R2 0.02 0.03 0.01 0.06 0.06 0.06 0.03 0.10

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.3 Transaction Costs

Next, we investigate whether the strategies described in section 3.1 still have profits after
considering transaction costs, measured by the bid-ask spread. Both strategies consist in
sell and buy two Put options simultaneously, therefore we face transaction costs two times
each month. To this end, we consider 4 measures of effective spread; 0%, 25%, 50% and
100%. Specifically, an effective spread equal to 0% indicates options with transaction cost
exactly at the midpoint of the bid and ask price quotes. On the other hand, an effective
spread of 25% or 50% would correspond to a transaction cost of 0.25 or half of the bid-ask
spread, respectively. Finally, 100% is equivalent to paying the entire bid-ask quote. These
transaction costs are considered each time we rebalance our position.

Table 3.3 reports the results. The first row of each sub-table presents the results for the time-
series returns; the second row exhibits the alpha of the (1) specification of the post-formation
regression as in Table 3.2; and the third row of each sub-table represents the alpha of the
(4) specification. For the first strategy, the 5-1 spread, the impact is higher. The average
return decrease drastically, from a 10% monthly return to a 2% monthly return taking the
entire bid-ask spread into account, and the α of the post-formation regression decrease from
6% to -1% in specification (4) in table 3.2, and from 11% to 3% in specification (1). For our
second strategy, the return and alphas are significant, and the economic relevance remains,
notoriously on the (4) specification, which yields a 7% monthly return even at 100% of the
effective spread. Muravyev and Pearson [2015] show that the effective spread measure taken
into account by the high frequency trade timing ability is 53% of the quoted spread average,
and Mayhew [2002] show that the effective spreads for equity options are large in absolute
terms but small relative to the quoted spreads, resulting typically in a ratio of effective to
quoted spread less than 0.5. So at 50% effective spread the returns are still significantly
positive at the 5%, with an expected monthly return of 6% and an 11% alpha of the post-
formation regression. We conclude that although transaction costs have an impact on the
monthly returns, they do not eliminate the statistical nor economic significance of our results,
at very reasonable estimates of effective spreads, particularly on the IC Timing Strategy.
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Table 3.3: Transaction Costs

ESPR/QSPR

5-1 Midpoint 25% 50% 75% 100%

All 0.10∗∗∗ 0.08∗∗ 0.06∗ 0.04 0.02
Alpha (1) 0.11∗∗∗ 0.09∗∗ 0.07∗ 0.05 0.03
Alpha (4) 0.06∗ 0.04 0.03 0.01 -0.01

IC Timing Strategy Midpoint 25% 50% 75% 100%

All 0.10∗∗∗ 0.08∗∗ 0.06∗ 0.05 0.03
Alpha (1) 0.11∗∗∗ 0.09∗∗∗ 0.07∗∗ 0.05 0.04
Alpha (4) 0.14∗∗∗ 0.13∗∗∗ 0.11∗∗∗ 0.09∗∗ 0.07∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.4 Sub-Sample Analysis

We investigate the robustness of our results in 3.1 over different sub-samples. To this end, we
split the data in five periods, based on the NBER expansions and contractions periods: from
January 1996 to February 2001, from March 2001 to November 2001, from December 2001 to
November 2007, from December 2007 to June 2009, and from July 2009 to December 2014.
Table 3.4 reports the summary statistics for the portfolios. The last two columns exhibit the
monthly average of the returns for both strategies. The recessions periods are marked with
an R.

Table 3.4: Summary Statistics Over Different Subsamples

Subperiod 1 2 3 4 5 5− 1 IC TS

Jan 1996 - Feb 2001 −0.12 0.02 0.01 0.05 0.13 0.24 0.08
Mar 2001 - Nov 2001 R 0.50 0.58 0.45 0.60 0.62 0.12 −0.42
Dec 2001 - Nov 2007 −0.16 −0.18 −0.19 −0.17 −0.15 0.01 0.05
Dec 2007 - Jun 2009 R 0.02 0.11 0.16 0.12 0.30 0.28 −0.09
Jul 2009 - Dec 2014 −0.27 −0.30 −0.22 −0.25 −0.20 0.06 0.07

It is not surprising that the returns of the options are positive, and very high, in recessions,
when most of the stocks in the market are in downside. In every sub-sample our 5-1 spread
is positive, becoming even higher in recessions, up to 28% monthly return. On the other
hand, our IC Timing Strategy varies with the economic cycle: during expansions remains
positive, but during contractions it becomes negative. Possibly, our second strategy relies
on expansive markets, in the third and fifth periods generates higher returns than our 5-1
spread; this conclusion is also justified by the significance of the Market factor in Table 3.2.
It should be noted that recession periods have few observations.
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Conclusion

This paper shows that aggregate implied correlation is an important indicator of market-
wide risk. We estimate risk-neutral expectations of second moments from option prices of
the S&P100 index and its individual constituents.

We document that implied correlation has strong forecasting power for the option market
return, both in-sample and out-of-sample, and it is responsible for a notorious difference in
the cross-section of individual option contracts. A strategy that take advantage of this spread
produces a 10% average monthly return. A second strategy that uses a prediction of the IC
to anticipate investor behavior, produces a 10% average monthly return.

We find that our strategies’ returns are not related to obvious sources of risk, generating
significative alphas after controlling for several factors, although it is not enough evidence
to conclude that these are true alphas. The alphas of the post-formation regression become
even higher, with a 14% for our IC Timing Strategy.

Including transaction costs in the form of effective spread at the time of construction of
portfolios, our findings remain the same, at reasonable estimates of effective spreads for
the 5-1 spread strategy, and even with inclusion of the entire effective bid-ask spread as
transaction cost, our IC Timing Strategy produces 7% monthly return significant at 10%.
And if we split the sample, to control for the effect of possible particular periods, we reach
the same conclusions. Our 5-1 spread returns holds, regardless the economical cycle, but our
IC Timing Strategy fails in contractions periods.
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Appendix

Figure 3.2: Daily IC innovation (∆ICt)
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Table 3.5: Predictive Return Regressions

Dependent variable:

Cumulative Naked Put Returns h=1

(1) (2) (3) (4) (5) (6)

IC −0.222∗∗∗ −0.240∗∗∗ −0.248∗∗∗ −0.213∗∗∗ −0.217∗∗ −0.184∗∗
(0.078) (0.091) (0.090) (0.080) (0.107) (0.082)

VIX 0.033
(0.094)

IV 0.052
(0.086)

LIQ −0.031
(0.080)

VRP −0.105
(0.221)

vVRPi −0.055
(0.206)

CRP −0.018
(0.140)

dhCall −0.566∗
(0.329)

zbStraddle −0.489∗
(0.278)

Constant −0.243∗∗ −0.243∗∗ −0.243∗∗ −0.243∗∗ −0.243∗∗ −0.244∗∗
(0.101) (0.101) (0.101) (0.101) (0.101) (0.101)

Adjusted R2 0.017 0.013 0.013 0.013 0.015 0.034

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.6: Predictive Return Regressions

Dependent variable:

Cumulative Naked Put Returns h=2

(1) (2) (3) (4) (5) (6)

IC −0.226∗∗∗ −0.240∗∗ −0.241∗∗ −0.209∗∗ −0.233∗∗ −0.205∗∗
(0.166) (0.215) (0.205) (0.171) (0.209) (0.166)

VIX 0.025
(0.185)

IV 0.030
(0.159)

LIQ −0.059
(0.156)

VRP −0.055
(0.310)

vVRPi −0.035
(0.316)

CRP 0.007
(0.239)

dhCall −0.312∗∗
(0.266)

zbStraddle −0.338∗∗
(0.306)

Constant −0.244∗∗ −0.244∗∗ −0.245∗∗ −0.244∗∗ −0.244∗∗ −0.244∗∗
(0.203) (0.203) (0.203) (0.203) (0.203) (0.203)

Adjusted R2 0.039 0.035 0.035 0.037 0.032 0.048

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.7: Predictive Return Regressions

Dependent variable:

Cumulative Naked Put Returns h=4

(1) (2) (3) (4) (5) (6)

IC −0.206∗∗ −0.217∗ −0.212∗ −0.188∗ −0.232∗∗ −0.188∗∗
(0.375) (0.495) (0.476) (0.397) (0.411) (0.382)

VIX 0.020
(0.393)

IV 0.013
(0.354)

LIQ −0.064
(0.313)

VRP −0.0004
(0.709)

vVRPi −0.052
(0.792)

CRP 0.040
(0.395)

dhCall −0.223∗∗
(0.358)

zbStraddle −0.244∗∗
(0.377)

Constant −0.240∗∗ −0.240∗∗ −0.240∗∗ −0.239∗∗ −0.240∗∗ −0.241∗∗
(0.407) (0.407) (0.407) (0.408) (0.407) (0.407)

Adjusted R2 0.062 0.059 0.058 0.064 0.055 0.071

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.8: Predictive Return Regressions

Dependent variable:

Cumulative Naked Put Returns h=5

(1) (2) (3) (4) (5) (6)

IC −0.207∗∗ −0.227∗ −0.215∗ −0.189∗ −0.222∗∗ −0.201∗∗
(0.494) (0.653) (0.627) (0.520) (0.535) (0.496)

VIX 0.037
(0.524)

IV 0.016
(0.465)

LIQ −0.063
(0.422)

VRP 0.034
(0.746)

vVRPi −0.062
(0.791)

CRP 0.018
(0.408)

dhCall −0.073
(0.458)

zbStraddle −0.075
(0.466)

Constant −0.240∗∗ −0.240∗∗ −0.240∗∗ −0.239∗∗ −0.241∗∗ −0.241∗∗
(0.511) (0.511) (0.511) (0.512) (0.511) (0.511)

Adjusted R2 0.080 0.078 0.076 0.084 0.071 0.074

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

30



Table 3.9: Predictive Return Regressions

Dependent variable:

Cumulative Naked Put Returns h=6

(1) (2) (3) (4) (5) (6)

IC −0.198∗ −0.222∗ −0.207 −0.179∗ −0.216∗ −0.194∗
(0.616) (0.791) (0.762) (0.640) (0.690) (0.616)

VIX 0.043
(0.616)

IV 0.018
(0.531)

LIQ −0.070
(0.517)

VRP 0.037
(1.115)

vVRPi −0.046
(1.195)

CRP 0.026
(0.445)

dhCall −0.058
(0.499)

zbStraddle −0.068
(0.504)

Constant −0.242∗∗ −0.242∗∗ −0.242∗∗ −0.241∗∗ −0.243∗∗ −0.242∗∗
(0.617) (0.617) (0.617) (0.618) (0.616) (0.617)

Adjusted R2 0.084 0.083 0.081 0.091 0.075 0.078

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.10: Value-Weighted Portfolios Summary Statistics

Statistic 1 2 3 4 5 5− 1

Mean −0.09 −0.09 −0.04 −0.09 0.04 0.13
St. Dev. 0.94 1.00 1.03 0.89 1.11 0.76
Max 4.14 4.94 4.37 3.47 3.91 3.99
Min −1.00 −1.00 −1.00 −1.00 −1.00 −2.35
β −0.07 0 0.02 0.05 0.11
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Table 3.11: Value-Weighted Post Formation Regressions

5-1 Strategy IC Timing Strategy

(1) (2) (3) (4) (1) (2) (3) (4)

Alpha 0.15∗∗∗ 0.15∗∗∗ 0.14∗∗∗ 0.14∗∗ 0.10∗ 0.10∗ 0.09∗ 0.13∗∗
(0.05) (0.05) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06)

Mkt.RF −1.31 −1.32 −1.03 −1.84∗ −1.96∗ −1.92
(1.00) (1.08) (1.14) (1.03) (1.12) (1.18)

SMB −2.01 −2.01 −1.85 −1.03 −1.02 −0.95
(1.80) (1.81) (1.83) (1.88) (1.88) (1.90)

HML −2.24 −2.25 −1.98 3.57∗∗ 3.41∗∗ 3.11∗
(1.48) (1.59) (1.62) (1.54) (1.65) (1.67)

Mom −0.01 0.04 −0.32 −1.00
(1.10) (1.18) (1.13) (1.22)

dhCall −4.34 −1.51 −3.76 −4.29
(3.65) (4.12) (3.79) (4.24)

zbStraddle −0.11 −0.04 −0.10 −0.14
(0.17) (0.18) (0.17) (0.18)

VRP −0.40 0.67
(0.43) (0.45)

R2 0.02 0.02 0.002 0.04 0.04 0.04 0.01 0.06

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.12: Value-Weighted Transaction Costs

ESPR/QSPR

5-1 Midpoint 25% 50% 75% 100%

All 0.13∗∗ 0.11∗∗ 0.10∗ 0.08 0.06
Alpha (1) 0.15∗∗∗ 0.13∗∗∗ 0.12∗∗ 0.10∗ 0.08
Alpha (4) 0.14∗∗ 0.12∗∗ 0.10∗ 0.08 0.06

IC Timing Strategy Midpoint 25% 50% 75% 100%

All 0.09∗∗ 0.07∗ 0.06 0.04 0.02
Alpha (1) 0.09∗ 0.08∗ 0.06 0.05 0.03
Alpha (4) 0.13∗∗ 0.11∗ 0.10 0.08 0.06

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.13: Value-Weighted Summary Statistics Over Different Subsamples

Subperiod 1 2 3 4 5 5− 1 IC TS

Jan 1996 - Feb 2001 −0.03 0.02 0.15 0.04 0.30 0.33 0.08
Mar 2001 - Nov 2001 R 0.37 0.66 0.72 0.41 1.09 0.72 −0.18
Dec 2001 - Nov 2007 −0.12 −0.11 −0.16 −0.15 −0.04 0.08 0.14
Dec 2007 - Jun 2009 R 0.12 0.05 0.25 0.16 0.31 0.19 −0.12
Jul 2009 - Dec 2014 −0.24 −0.27 −0.18 −0.23 −0.20 0.04 0.05
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