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VORTICES IN THE ANISOTROPIC GINZBURG-LANDAU EQUATION FOR
THIN NEMATIC LIQUID CRYSTAL CELLS

In this thesis, a version of the anisotropic Ginzburg-Landau equation is studied as a model
of defects in thin cells of nematic liquid crystals.

This thesis is composed of 6 chapters and 2 appendices. The first 3 chapters are in-
troductory and serve to present the problem to be solved. The first chapter is focused on
presenting the nematic liquid crystals. In the next two chapters, we introduce the vortices
of the Ginzburg-Landau model in the context of liquid crystals with or without anisotropy.
In addition some results that will be useful in the construction of anisotropic vortex-type
solutions are stated.

Chapter 4 is dedicated to constructing vortices of positive and negative degree of the
Ginzburg-Landau anisotropic equation, based on a perturbative approach through an ap-
plication of Banach’s Fixed Point Theorem and the invertibility of the linearized operator
around the symmetric vortices in the suitable spaces. In addition the Fourier decomposi-
tion of the linear approximation of the negative degree perturbed vortex, for these solutions,
energy expansion and stability, are also studied.

The chapter 5 is dedicated to the finite element method, of the linear approximation of the
anisotropic vortex of negative degree, as well as a quantitative estimation of the quadratic
coefficient in its energy expansion. With these, the complete bifurcation diagram of the
energy of the anisotropic vortices is deduced for both negative and positive degrees.

In chapter 6, from the extension to R2 of the system of differential equations for the
dominant mode of the Fourier series decomposition of the linear approximation perturbed
solution found in chapter 4, we built a linear approximation of the negative anisotropic vortex
in the entire plane.
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VÓRTICES DE LA ECUACIÓN ANISOTRÓPICA DE GINZBURG-LANDAU EN
CELDAS DELGADAS DE CRISTALES LÍQUIDOS NEMÁTICOS

En esta tesis se estudia una versión de la ecuación anisotrópica de Ginzburg-Landau como
un modelo de defectos en celdas delgadas de cristales líquidos nemáticos.

Esta tesis está compuesta de 6 capítulos y 2 apéndices. Los primeros 3 capítulos son
introductorios y sirven para presentar el problema que se quiere resolver. El primer capítulo
está enfocado en presentar los cristales líquidos nemáticos. En los siguientes 2 capítulos,
introducimos los vórtices del modelo de Ginzburg-Landau en el contexto de cristales líquidos
con o sin anisotropía. Además de resultados que nos serán útiles en la construcción de
soluciones tipo vórtice anisotrópicos.

El capítulo 4 está dedicado a construir vórtices de grado positivo y negativo de la ecuación
anisotrópica de Ginzburg-Landau, basándose en un enfoque perturbativo a través de una
aplicación del Teorema de Punto Fijo de Banach y la invertibilidad del operador linealizado
en torno a los vórtices simétricos en los espacios adecuados. También se estudia su expansión
de energía y estabilidad de estas soluciones obtenidas. Además de su descomposición de
Fourier de la aproximación lineal del vórtice de grado negativo perturbado.

El capítulo 5, está dedicado a hacer simulaciones a través del método de elementos finitos,
de la aproximación lineal del vórtice anisotrópico de grado negativo, así como una estimación
cuantitativa del coeficiente cuadrático en su expansión de energía. Con esto se deduce el
diagrama de bifurcación completo de la energía de los vórtices anisotrópicos tanto de grado
negativo y positivo.

En el capítulo 6, a partir de la extensión a R2 del sistema de ecuaciones diferenciales para
el modo dominante de la descomposición en serie de Fourier de la aproximación lineal de la
perturbación de la solución encontrada en el capítulo 4, se construye una aproximación lineal
del vórtice anisotrópico de grado negativo en todo el plano.
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Chapter 1

Preliminar Concepts

1.1 Liquid Crystals

Liquid Crystals, as the name suggests, are phases which combine properties of ordered matter
(like solid crystal) and disordered matter (like an isotropic liquid). Therefore, liquid crystals
are materials that have local position and orientation correlation, [14, 24], which allows them
to flow and also present crystal-like properties.

Figure 1.1: Different states of matter are represented according to the increase in temper-
ature. When the temperature is low enough, the molecules are positionally arranged like a
solid crystal. When the temperature is high, the order is lost and it becomes an isotropic
liquid. In the middle, the liquid crystal state presents directional order, but not positional.

Liquid crystals have been a great source of interest since their discovery due to their optical
properties and their use in technological applications, the best known being the Liquid Crystal
Display (LCD).

Whereas there are many types of liquid crystals, we will focus in the so-called nematic
liquid crystals, where the molecules that make them up, are like rod-shaped elongated. The
preferred direction may vary throughout the medium and is called a director. The orientation
of the director is represented by a unit vector ~n(~r, t), that describes the average molecule
position in the liquid crystal at position ~r and a time t > 0.
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Figure 1.2: Molecular structure of MBBA (N-(4-Methoxybenzylidene)-4-butylaniline). A
typical nematic liquid crystal. [3]

The Oseen-Frank theory regards ~n as a vector field. However, due to statistical head-to-
tail symmetry of the constituent, this vector has the symmetry ~n = −~n, or in other words
«it does not have an arrowhead». Hence ~n can be understood as a line field, or equivalently,
as a map from Ω to the set of all line through the origin. The set of such lines forms the real
proyective plane RP 2 .

1.2 The Frank-Oseen model

Liquid crystal are a highly dissipative medium whose dynamic is characterized by minimizing
their elastic energy. In nematic materials, there are three principal distinct director axis
deformations: splay, twist and bend (figure 1.3). Each of these deformations has its own
elastic constant, giving rise to the elastic energy of Frank-Oseen:

Fd =

∫
V

K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
‖~n× (∇× ~n)‖2 dx

where K1 corresponds to the splay deformation, K2 to the twist deformation, K3 to the
bend one, and V corresponds a certain volume sample where the average of the molecules
of the director vector is taken. These constants are usually of the order of 10−6 dyne, for
example for MBBA their values are 5.8 × 10−7, 3.4 × 10−7, and 7 × 10−7 dyne, for K1, K2,
and K3, respectively.

Figure 1.3: Principal elastic deformations on a nematic liquid crystal.
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If the sample of liquid crystal is subject to electric or magnetic fields, for example, if we
have the electric field is given by ~E, then

Fe = −
∫
V

εa
2

(~E · ~n)2 dx,

where εa = ε‖ − ε⊥ is the anisotropic dielectric constant that accounts for nonlinear re-
sponse of the electric field, with ε‖ and ε⊥ the dielectric susceptibility for low-frequency
electric fields parallel and orthogonal, respectively, to the molecular director.
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Chapter 2

Ginzburg-Landau equations

2.1 Pitchfork Bifurcation

Bifurcations are qualitative changes on the properties of a system as a control parameter is
changed [42]. One example of our interest, is the case when a solution changes its stability
and two new stable solutions appear, it is called a Supercritical Pitchfork Bifurcation,
and it is common in system with reflection symmetry.

Figure 2.1: Supercritical Pitchfork Bifurcation [2]

The simplest system that presents this bifurcation

∂tu = µu− u3 (2.1)

here we recognize the bifurcation parameter µ, the bifurcation that occurs at µ = 0. Besides,
the equation (2.1) presents the reflection symmetry u 7→ −u.

This system has three steady states: u0 = 0 and u± = ±√µ. For µ < 0, there is one
stable equilibrium at u0 = 0. For µ > 0, there is an unstable equilibrium at u0 = 0, and two
stable equilibria at u± = ±√µ.

4



2.1.1 Degenerated Pitchfork Bifurcation

Now, we try to understand the Pitchfork Bifurcation in a two dimension variable, instead of
just one. The system must have rotational invariance instead of reflection symmetry. For
example, we can imagine this situation with an elastic rod subject to gravitational pull, fixed
in its base. If the rod is short, it can stay straight, but if the rod is too long it will inevitable
bend in any direction, or, in cylindrical coordinates, in any angle between 0 and 2π, as is
shown in Figure 2.2.

Figure 2.2: Illustration of rod can bend in any direction. Extracted from [48].

To describe a system which accounts the above situation, we need to introduce a complex
parameter A ∈ C, in this way Re(A) and Im(A), respectively, represent the deviation of the
rod in the x-axis, and in the perpendicular y-axis. We will call this parameter A = A(~r, t),
where ~r denotes the spatial variable and t the time variable, order parameter, a concept
that was first introduced by Ginzburg and Landau in the context of phase transitions [44].
Generally, this order parameter is a combination of the relevant fields in the system in a
way that important changes in the system, can be easily visualized as changes in the order
parameter.

The amplitude equation that describes this type of bifurcation, is the following normal
form

∂tA = µA− |A|2A (2.2)

and it is called a Degenerated Pitchfork Bifurcation.

We can consider this type of bifurcation in more complex systems, for example considering
an extended system. If we work, first in the one-dimensional case, we can consider the real
parameter A = u(x, t), satisfying

∂tu = µu− u3 + ∂xxu (2.3)

which has a structure similar to the equation (2.2), since it also presents the symmetry
u 7→ −u. In this equation (2.3), there are two symmetrical homogeneous solutions, when
µ > 0, u =

√
µ and u = −√µ, these solutions are both stable and have the same energy.

Besides, owing to initial conditions or fluctuations, two solutions can exist in different loca-
tions simultaneously, these different locations are called domains. When this happens the two
solutions are connected in a smooth way through the Kink solution, u =

√
µ tanh(x

√
µ/2).
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Furthermore, owing to the symmetry of the system, the analogous Antikink also exists
u = −√µ tanh(x

√
µ/2).

Now, considering the bifurcation in an extended system in the two-dimensional case, we
have that the easiest equation that describes this, is the Ginzburg Landau-Equation with
real coefficients

∂tA = µA− |A|2A+ ∆A (2.4)

where ∆ = ∂2
x + ∂2

y is understood as the usual Laplacian in 2 coordinates.

The system above presents a Degenerated Pitchfork Bifurcation when µ = 0, which means
that the homogeneous state A =

√
µ eiφ0 can take any value of φ0, when µ > 0. And just

like in 1-D case, the system can take different directions in different zones. If there are two
different directions (values of φ0) in the system, they are connected through a wall solution
A = eiφ0

√
µ tanh(x

√
µ/2), which is very similar to a kink, but extended, and therefore it

is known as an extended defect, since there is a continuum of points where the amplitude
becomes zero.

It is important note, that the equation (2.4) can be rewritten in the form ∂tA = − δE
δA
,

where the free energy is

E(A) =

∫ (
|∇A|2 +

1

2
(µ− |A|2)2

)
dS

Namely, the Ginzburg-Landau equation (2.4) is simply a gradient flow of the free energy.
Moreover, E is a Lyapunov functional:

dE
dt

=

∫ (
δE
δA

∂tA+
δE
δA

∂tA

)
dS = −2

∫
δE
δA

δE
δA

dS ≤ 0

and the minimal energy solution corresponds to the homogeneous state A =
√
µ eiφ0 .

2.2 Vortex solutions of Ginzburg-Landau Equation

The complex Ginzburg-Landau equation appears in different systems such as fluids, super-
fluids, superconductors, granular matter and liquid crystals, to mention a few [42]. The
main properties of the complex Ginzburg-Landau equation are reported in the review [7]. In
2-D this equation describes any stationary degenerate supercritical bifurcation [17], which
appears in the most system that presents vortices, understanding them as structures with
zero amplitude and a phase discontinuity at their center.

The stationary equation is written simply as

∆A+ (µ− |A|2)A = 0, (2.5)

where (in the case of the entire plane) A : R2 → C, we add the following boundary condition:

|A| → √µ as |x| → ∞, (2.6)
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The most studied solution of this equation is the Dissipative Vortex Solution: a rotation-
ally symmetric solution, where the amplitude is axisymmetric and the phase grows continu-
ously around the vortex: Am = Rm(r)ei(mθ+θ0), where (r, θ) are the polar coordinates in R2,
with the origin in the vortex position and θ0 is a continuous parameter that accounts for the
phase invariance of the amplitude and shows explicitly the position of the phase discontinuity.
Solutions Am are called m-vortices. We note that the boundary condition (2.6) allows one to
introduce A = degAm, the degree of A as the winding number at ∞ (vorticity), considered
as a vector field in R2:

degA =
1

2π

∫
|x|=R

d(argA), R� 1

The function Rm(r), satisfies the ordinary differential equation
∂2R

∂r2
+

1

r

∂R

∂r
− m2R

r2
+ µR−R3 = 0, r ∈ (0,+∞)

R(0) = 0, R(+∞) =
√
µ

(2.7)

The vanishing of the real amplitude at the origin, is necessary to eliminate the divergence
due to the phase singularity, and the condition at +∞ is compatible with (2.6).

Figure 2.3: Vortex solution with charge m = +1 of Ginzburg-Landau equation (2.5) (here
µ = 1). Structure of the magnitude (a) and phase of the positive vortex (b) [48]

Figure 2.4: Vortex solution with charge m = −1 of Ginzburg-Landau equation (2.5) (here
µ = 1). Structure of the magnitude (c) and phase of the positive vortex (d) [48]
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The solutions of (2.7) are not explicit, nevertheless we can find their asymptotic behavior
close to infinity and near the origin (see for instance, [15, 30])

R(r) ≈
{
αm r

|m| + . . . , r → 0
√
µ− m2

2
r−2 + . . . r →∞ (2.8)

where αm is a positive constant that depends on µ. A good approximation developed by
Pismen in [42] for µ = 1 and vorticity m = ±1 in the form of a Padé approximation for the
square of the amplitude magnitude is

R(r) ≈
√

0.34r2 + 0.07r4

1 + 0.42r2 + 0.07r4

For different values of µ this approximation has to be scaled as Rµ(r) =
√
µRµ=1(

√
µr).

The existence of other non-rotationally symmetric solutions is still an open problem, see
for example, [40, 20].

2.2.1 Symmetries of the Ginzburg-Landau equation

Lemma 2.2.1. The Ginzburg-Landau equation (2.4) is invariant under the following sym-
metries:

• Spatial translation transformation:

∀h ∈ R2, Th : A(~r, t) 7→ A(~r + h, t)

• Coordinates rotation and reflection transformation:

∀R ∈ O(2), TR : A(~r, t) 7→ A(R~r, t).

• Gauge transformations or phase invariance:

∀ eiφ0 ∈ U(1), Tφ0 : A(~r, t) 7→ eiφ0 A(~r, t).

• Charge transformations: A(~r, t) 7→ Ā(~r, t).

We note that the symmetry group, Gsym, of equation (2.5), i.e. the maximal group of
transformations, g, of A, such that, is A is a solution to (2.4) , then so is gA, is

Gsym = R2 ×O(2)× U(1)× Charge

By the symmetry group Gψ of a solution ψ, we understand the largest subgroup of Gsym

which leaves ψ fixed, i.e Gψ = {g ∈ Gsym | gψ = ψ}. Then the part of Gsym broken by ψ is
Gsym/Gψ. It is also considered (one parameter) subgroup H ⊂ Gsym preserved (or broken)
by ψ meaning by this that hψ = ψ ∀h ∈ H.

8



As an example, the subgroup of translations, R2, is preserved iff ψ is independent of
x. This happens only if degψ = 0 and the solution ψ in this case is ψ = eiα, α ∈ R. This
solution preserves also the subgroup of rotations but breaks the gauge and Charge subgroups.

Another class of solutions, more of our interest, are the rotationally symmetric solutions,
m-vortices,

Am = Rm(r) eimθ

where (r, θ) are the polar coordinates in R2. The symmetry group of Am, m 6= 0, is

Γ× U(1)−mO(2)

where Γ is the discrete subgroup of O(2) of rotations by the angles
2πk

m
, k ∈ Z, and

U(1)mO(2) = {eiϕmr(ϕ) |ϕ ∈ [0, 2π]},

where r(ϕ)ψ(x) = ψ(R(ϕ)−1x) with R(ϕ), the rotation by the angle ϕ. Thus Am breaks the
translations subgroup, R2, the rotation subgroup O(2)/Γ and the charge subgroup.

2.3 Energy

In order to simplify calculations, without loss of generality, we can take µ = 1. Thus, we will
consider the equation (2.5):

∆A+ (1− |A|2)A = 0, A : R2 → C Repeat eq. (2.5)

with the boundary condition (2.6):

|A| → 1 as |x| → ∞, Repeat eq. (2.6)

Therefore, the free energy associated to (2.5) it is:

E(A) =
1

2

∫ (
|∇A|2 +

1

2
(1− |A|2)2

)
dS (2.9)

replacing the vortex solution A = Rv(r)e
imθ, where Rv corresponds to the profile of the

vortex:

E(A) =
1

2

∫
(∂rRv)

2 +
m2R2

v

r2
+

1

2
(1−R2

v)
2 dS

separating the energy terms, we can write the energy E as:

E(A) = π

∫ ∞
0

(
(∂rRv)

2 +
m2R2

v

r2

)
r dr︸ ︷︷ ︸

E1

+
π

2

∫ ∞
0

(1−R2
v)

2 r dr︸ ︷︷ ︸
E2

9



the term E1 is divergent in an infinite domain, but the term E2 can be solved analytically
using the equation (2.7) satisfied by vortex profile Rv, and integrating by parts:

E2 = π

∫ ∞
0

(1−R2
v)RvR

′
v r

2 dr = −π
∫ ∞

0

(
rR′v

d(rR′v)

dr
−m2RvR

′
v

)
dr =

πm2

2

Now, to calculate E1 we need to introduce a cut-off at a distance L (see Theorem 2.3.1),
the divergent term depends on a numerical constant a0 giving by the specific shape of the
vortex-core solution:

E1 ≈ πm2 ln

(
L

a0

)
, (2.10)

it follows that, for A = Rv(r)e
imθ (the vortex solution):

E(A) ≈ πm2 ln

(
L
√

e

a0

)
(2.11)

Therefore, both vortices are indistinguishable from the point of view of their vorticity mag-
nitude.

In order to justify the use of the cut-off function in E1, we have the following theorem [39]
Theorem 2.3.1. Let ψ be a C1 vector field on R2 such that |ψ| → 1 as |x| → ∞.
If deg(ψ) 6= 0, then E [ψ] =∞.

Proof. If we write ψ = f eiϕ with f = |ψ| and ϕ = argψ, then |∇ψ|2 = |∇f |2 + f 2|∇ϕ|2, and
hence ∫

|∇ψ|2 ≥
∫
f 2|∇ϕ|2

Moreover, by the condition at +∞ on f = |ψ|, there is R such that f ≥ 1√
2
for all |x| ≥ R.

Thus ∫
|∇ψ|2 ≥ 1

2

∫
|x|≥R

|∇ϕ|2 (2.12)

In addition, the relation
∫
|x|=r

dϕ = 2π degψ implies that

2π| degψ| ≤ r

∫ 2π

0

|∇ϕ| dθ ≤ r

(
2π

∫ 2π

0

|∇ϕ|2 dθ

)1/2

by the Cauchy-Schwartz inequality. This implies that
∫ 2π

0

|∇ϕ|2 dθ ≥ 2π(degψ)2

r2
that to-

gether with (2.12) yields∫
|∇ψ|2 ≥ 1

2

∫
|x|≥R

|∇ϕ|2 =
1

2

∫ 2π

0

∫ ∞
R

|∇ϕ|2 r dr dθ ≥ π(degψ)2

∫ ∞
R

1

r2
r dr =∞.

�
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Thus if we want to use energy arguments for vortices, the proof above shows us how to
modify E as follows:

Eren[ψ] =
1

2

∫ (
|∇ψ|2 − (degψ)2

r2
χ+

1

2
(1− |ψ|2)2

)
dS (2.13)

where r = |x| and χ ∈ C∞(R2) such that

χ(x) =

{
1 for |x| ≥ 2
0 for |x| ≤ 1

This modification (2.13) of the energy functional, is called the renormalized Ginzburg-Landau
energy functional [39, 45].

2.4 Linearized operator of Ginzburg-Landau equation around
vortex solution

2.4.1 Kernel of Linearized operator around vortex solution in the
plane

Definition 2.4.1 (Gâteaux-derivative). [4] Let W,V normed vector spaces, Ω an open
subset of W , w ∈ Ω and g : Ω ⊂ W → V a function. We say that g is Gâteaux-differentiable
at w, if there exists A ∈ L(W,V ) such that:

(∀ z ∈ W )
d

dλ
g(w + λz)

∣∣∣∣
λ=0

= lim
λ→0+

g(w + λz)− g(w)

λ
= A[z]

The map A is unique determined, called the G-differential or Gâteaux-derivative of g at w
and denoted by A = g′G(w).

Given an equation
M(u) = 0 (2.14)

and its solution u0, the linearization of this equation around u0 is the equation

DGM(u0)(w) = 0

where DGM(u0) is the Gâteaux-derivative, and the operator DGM(u0) : X → Y is the
linearized operator associated to (2.14).

In our case,M(u) = ∆u+ u(1− |u|2) and therefore

DGM(u0)(w) = ∆w + (1− |u0|2)w − 2(u0 · w)u0

where, by definition,
u · w :=

ū w + u w̄

2
= Re(u w̄)
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is the usual scalar product in C.

When u0 = Um(r) eimθ is the symmetric m-vortex solution, we will denote the correspond-
ing linearized operator by Lm. In order to study Lm, it happens to be more convenient to
write any complex valued function w as

w := (α + i β) eimθ,

where α and β are real valued functions. Because of this decomposition, it is natural to
define the conjugate linearized operator by

Lm := e−imθLmeimθ (2.15)

If follows from a simple computation that

Lm(α + i β) =

(
L

(m)
1 α− 2m

r2
∂θβ

)
+ i

(
L

(m)
2 β +

2m

r2
∂θα

)
(2.16)

where
L

(m)
1 α = ∆α +

(
−m

2

r2
+ 1− 3U2

m(r)

)
α (2.17)

L
(m)
2 β = ∆β +

(
−m

2

r2
+ 1− U2

m(r)

)
β (2.18)

Linearized operator when |m| = 1

Theorem 2.4.2. [39] Let u0 be a solution to the equation M(u0) = 0 breaking an one
parameter subgroup g(s) ∈ Gsym (the symmetry group of this equation). Let T be the generator
of g(s). Then Tu0 solves the linearized equation DGM(u0)w = 0,

Applying this result to our case and observing that the generators of translations, rota-
tions and gauge transformations are ∇x, x1∂x2 − x2∂x1 = ∂θ and i, respectively. Thus, we
have the following result:

Lemma 2.4.3 (Kernel of L±1 Part I). [39, 41] If we denote by u±0 = U(r)e±iθ the vortex
solution of degree |m| = 1, the following linearly independent Jacobi Fields are in the Kernel
of L±1, given by the invariance of the equation (2.5) under rotation and translations

1. The rotational invariance yields the solution

iu±0 = i e±iθ U(r)

2. The translational invariance along x1 and x2 direction leads to the solutions

∂u±0
∂x1

= e±i θ

[
U ′(r) cos θ ∓ i

U(r)

r
sin θ

]
∂u±0
∂x2

= e±i θ

[
U ′(r) sin θ ± i

U(r)

r
cos θ

]
12



Theorem 2.4.4 (Kernel of L±1 Part II).
[41] All solutions of L±1w = 0 which are defined on all C and are bounded in L∞-norm, are
linear combinations of

∂u±0
∂x1

,
∂u±0
∂x2

, iu±0

Therefore, if we denote by

Z = spanC

{
∂u±0
∂x1

,
∂u±0
∂x2

, iu±0

}
We have that

ker(L±1) ∩ L∞(R2,C) ⊃ Z

where L∞(R2,C) is the set of functions ψ : R2 → C such that ‖ψ‖∞ := sup
z∈R2

|ψ(z)| <∞.

Remark 2.4.5. An observation we should make, is that Z is not contained in L2(R2;C).

2.4.2 Linearized operator on a bounded domain

In this part, we consider the linearized operator L±1 defined for functions in the bounded
domain BR = B(0, R) with R > 0, we will denote this operator by L, where u0 = U(r)e±iθ is
the vortex solution of the Ginzburg-Landau equation in the ball BR:{

∆u+ u(1− |u|2) = 0, in BR

u = e±iθ on ∂BR
(2.19)

and U(r) = UR(r) satisfies the following ordinary differential equation:
∂2U

∂r2
+

1

r

∂U

∂r
− U

r2
+ U(1− U2) = 0, r ∈ (0, R)

U(0) = 0, U(R) = 1, U ≥ 0

(2.20)

The energy functional associated to equation (2.19) is given by

E(v) =

∫
BR

1

2
|∇v|2 +

1

4
(1− |v|2)2

and Q0 the bilinear form given by the (formal) second variation of E around u0,

Q0(w) :=
d2

dλ2
E(u0 + λw)

∣∣∣∣
λ=0

=

∫
BR

|∇w|2 −
∫
BR

(1− |u0|2)|w|2 + 2

∫
BR

(u0 · w)2 (2.21)

We observe that Q0(w) = 〈−Lw,w〉, where here and in what follows

〈w1, w2〉 := Re

∫
BR

w1w2
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Since L is self-adjoint, then all the eigenvalues of L must be real. Hence the eigenvalue
becomes

Lw = λw, λ ∈ R, w ∈ H1
0 (BR;C) ∩H2(BR;C). (2.22)

Lieb and Loss [33] proved that the first eigenvalue on (2.22) is non-negative. Later Mironescu
[36] showed that
Theorem 2.4.6. The first eigenvalue λ1 of −L is positive.

Besides, he showed that
Theorem 2.4.7. The symmetric vortex solution u0 is stable, in the sense that the quadratic
form Q0 associated to E is positive definite.
Moreover, ∀w ∈ H2(BR;C) ∩H1

0 (BR;C) we have that

Q0(w) ≥ λ1‖w‖2
L2(BR) (2.23)

where λ1 is the first eigenvalue of the linearized operator L around u0.

As a consequence of theorem 2.4.7, we have the following property about L as operator
from H2(BR,C) ∩H1

0 (BR,C) onto L2(BR,C):

Corollary 2.4.7.1 (The invertibility of the linearized operator L).
The linearized operator L : H2(BR;C) ∩H1

0 (BR;C)→ L2(BR;C) around u0 defined by

Lv = ∆v + v(1− |u0|2)− 2(u0 · v)u0

is an isomorphism, that is, L−1 ∈ L(L2(BR;C), H2(BR;C) ∩H1
0 (BR;C)) is such that

‖L−1(w)‖H2(BR) ≤ ‖L−1‖‖w‖L2(BR)

where ‖L−1‖ := ‖L−1‖L(L2(BR),H2(BR)) = sup
w 6=0

‖L−1(w)‖H2(BR)

‖w‖L2(BR)

<∞.

Proof. Is a direct application of Lax-Milgram Theorem (2.4.8) to Lv = f , with

a(v, w) =

∫
Ω

(−Lv · w) dx dy and l(w) = −
∫

Ω

(f · w) dx dy (2.24)

clearly a, l are continuous, bilinear and linear respectively. The coercivity of a, it follows
from (2.23). �

Theorem 2.4.8 (Lax-Milgram). [12] Let H a Hilbert space equipped with a scalar product
〈v, w〉 ∈ R, and let |v| = 〈v, v〉1/2 his norm.
Assume that a : H×H → R is a continuous, coercive bilinear form. Then, given any l ∈ H∗,
there exists a unique element u ∈ H such that

a(v, w) = 〈l, w〉 ∀ v ∈ H
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Chapter 3

Anisotropic Ginzburg Landau Equation

3.1 Experimental Setup

The nematic liquid crystal cell is composed of a thin nematic liquid crystal film sandwiched
between two glass plates, one of them has a photoconductive slab, usually these plates have
a surface of about 1-5 cm2, while the separation between the plates is 5−50µm. Thus a large
surface is available to observe different patterns. The two glass plates have been chemically
treated to provide an homeotropic anchoring to the molecules, that is, the alignment direction
of liquid crystal molecules close to the confining layers are perpendicular.

Figure 3.1: Schematic representation of the system under study, the rods describe the orien-
tation of the director and the gray rods (green rods) stand for the vortex position. Adapted
from [16]

If the material has negative dielectric constant εa, when a voltage is applied to the plates,
the molecules will tend to align perpendicular to the electric field in order to minimize the
interaction energy. This electric forces opposes the elasticity, therefore, for low voltages
the samples remains in equilibrium, but if the voltages is increased above a threshold, a
transitions occurs at a voltage known as Freedericksz Voltage [21] and a Schlieren texture
appears as in figure (3.2).
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Figure 3.2: Schlieren Texture of a Nematic Film [1]

This transition is a Degenerated Pitchfork Bifurcation, where the molecules leave the
vertical axis in a angle that depends on the magnitude of the voltage, but there is a cone of
possible equilibrium positions for the molecules.

3.2 Amplitude Equation Derivation

The description of the nematic liquid crystal inside the cell is given completely by the molec-
ular director ~n(x, y), which corresponds to the molecular order in the position (x, y).
We have to minimize the free energy, it is the sum between the Frank-Oseen elastic energy
and the energy due to the interaction of the liquid crystal with the electric field produced by
the applied voltage.

F =
1

2

∫
V

(K1(∇ · ~n)2 +K2(~n · (∇× ~n))2 +K3‖~n× (∇× ~n)‖2 − εa(~E · ~n)2) dx

Before we arrive at the dynamic equation, note that the free energy has the form

W (~n) =

∫
V

w(~n,∇~n) dx.

Therefore minimizing the free energy, with the additional constraint ‖~n‖ = 1, the Euler-
Lagrange equation for ~n is:

γ ∂tn = −δW
δn

s.a. ‖n‖ = 1 ⇐⇒ γ ∂tn = −δW
δn

+ n

(
n · δW

δn

)
(3.1)

where γ is the relaxation time, and W is the free energy.

Besides
δW

δn
is the gradient derivative of W , which is define given a variation d(x), it has

dW [n + εd]

dε

∣∣∣∣∣
ε=0

=:

∫
δW [n]

δn(x)
d(x) dx
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Its known that the gradient derivative is given by the Euler-Lagrange equations:

δW

δn
= − div

(
∂W

∂∇n
(n,∇n))

)
+
∂W

∂ n
=

[
− ∂

∂xj

(
∂W

∂ ni,j

)
+
∂W

∂ ni

]
ei

where we have used the notation ∇n = (ni,j) ei ⊗ ej :=

(
∂ni

∂xj

)
ei ⊗ ej .

Computing the terms of the gradient derivative, as in [24, page 107] and replacing in (3.1),
we find that ~n satisfies the following nonlinear partial differential equation

γ
d~n

dt
= K3 [∆~n− ~n (~n ·∆~n)] + (K3 −K1)[~n(~n · ∇)(∇ · ~n)−∇(∇ · ~n)]

+ (K2 −K3)[2(~n · ∇ × ~n)(~n(~n · ∇ × ~n)−∇× ~n) + ~n×∇(~n · ∇ × ~n)] (3.2)

− εa(~n · ~E)(~n(~n · ~E)− ~E)

where γ is the rotational viscosity of liquid crystal, εa < 0 is the anisotropic dielectric constant
that accounts for nonlinear response to electric fields, {K1, K2, K3} are the elastic constants.
Under uniform illumination, the electric field is given by ~E = (V/d)ẑ = Ez ẑ, where Ez is
the root mean square amplitude of the electric field, V is the applied voltage, and d is the
thickness of the liquid crystal cell.

3.2.1 Linear Analysis

We must first find the threshold voltage where the homeotropic position destabilizes due
to the effect of the electric field. For this we note that, in the absence of electric field, a
trivial equilibrium of (3.2) is ~n = ẑ, which is compatible with the homeotropic anchoring
~n(z = 0) = ~n(z = d) = ẑ.

Let us find the point where this equilibrium position is destabilized due to the effect of

the electric field, for this, let be ~n =

(
u, v, 1− u2 + v2

2

)
where {u(z, t), v(z, t)} are small

perturbations.
Replacing in (3.2) and retaining only linear terms, we get

γ u̇ =K3∂zzu− εaE2u

γ v̇ =K3∂zzv − εaE2v

Now we take an ansatz consistent with the homeotropic boundary conditions, u = v = 0 in
z = 0 and z = d, and find when it destabilizes. Thus we take a perturbation of the form
u = v = eσt sin(kz) with k = πm/d, and obtain

γ σm = −K3k
2
n − E2εa,

this growth relation implies that the perturbation eσt sin(kz) destabilizes when

γ σm = −K3k
2
, − E2εa > 0
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Thus, solving for the electric field, we get E2 =
−K3k

2
m

εa
=
−K3π

2m2

d2εa
, therefore the minimum

value for electric field that causes movement is for m = 1:

Ec =

√
−K3 π2

εa d2
,

Therefore, if a voltage V = E d is applied to the cell we obtain the critical Fréedericksz
Voltage [21] :

VFT =

√
−K3 π2

εa

Figure 3.3: Schematic representation of Fréedericksz Bifurcation. The horizontal
axis represents the voltage applied to the liquid crystal cell. The transverse plane stands for
the projection of the director in the horizontal plane of the sample [8].

3.2.2 Weakly Nonlinear Analysis

Close to the bifurcation voltage, we can assume the deviation from the homeotropic state
n̂ = (0, 0, 1) is small, that is

~n =

(
n1, n2, 1− n2

1 + n2
2

2

)
replacing in (3.2) and under uniform electric field ~E = Eẑ, we get:

γ
d

dt

(
n1

n2

)
= K3

(
∆n1 + n1((∂zn1)2 + (∂zn2)2)
∆n2 + n2((∂zn1)2 + (∂zn2)2)

)
− (K3 −K1)

(
n1 ∂zz(n

2
1 + n2

2)/2 + ∂xxn1 + ∂xyn2

n2 ∂zz(n
2
1 + n2

2)/2 + ∂xyn1 + ∂yyn2

)
+ (K2 −K3)

(
−∂xyn2 + ∂yyn1

∂xxn2 − ∂xyn1

)
− εa

(
n1E

2(1− n2
1 − n2

2)
n2E

2(1− n2
1 − n2

2)

)
(3.3)

If we consider n1 = X sin(kcz) + W1, n2 = Y sin(kcz) + W2 which describes the amplitude
of the first critical mode (kc = π/d), and ~W = (W1,W2), which stands for higher order
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corrections.
Using k = kc to simplify notation, and replacing in (3.3), we get(
γẊ sin(kz)

γẎ sin(kz)

)
=

(
(K3∂zz − εaE2)W1

(K3∂zz − εaE2)W2

)
+K3 sin(kz)

[
∆X − k2X + k2X(X2 + Y 2) cos2(kz)
∆Y − k2Y + k2Y (X2 + Y 2) cos2(kz)

]
− (K3 −K1) sin(kz)

[
Xk2(X2 + Y 2)(cos2(kz)− sin2(kz)) + ∂xxX + ∂xyY
Y k2(X2 + Y 2)(cos2(kz)− sin2(kz)) + ∂xyX + ∂yyY

]
+ (K2 −K3) sin(kz)

[
∂yyX − ∂xyY
∂xxY − ∂xyX

]
− εa sin(kz)E2

[
X(1− (X2 + Y 2) sin2(kz))
Y (1− (X2 + Y 2) sin2(kz))

]

Denoting by L the linear operator acting on W :

L =

(
K3∂zz − εaE2 0

0 K3∂zz − εaE2

)
we have that this system can be written as L ~W = ~b.

Theorem 3.2.1 (Fredholm’s Alternative). [22] If we consider the linear problem

Lw = b (3.4)

where L is a linear operator and w is the unknown variable. Fredholm’s alternative states that for a
given internal product 〈·|·〉 the linear problem (3.4) has solution if and only if

〈b|ψ〉 = 0, ∀ψ ∈ ker(L†).

By introducing the inner product 〈f |g〉 =

∫ d

0
f ·g dz, the operator L is self-adjoint and its kernel

is ker(L†) = {(sin(kz), 0), (0, sin(kz))}.

Therefore using Fredholm’s alternative we obtain

γ Ẋ =(−K3k
2 − εaE2)X +

[
3/4(K3k

2 + εaE
2)−K1k

2/2
]
X(X2 + Y 2)

+ (K1∂xxX +K2∂yyX + (K1 −K2)∂xyY )

γ Ẏ =(−K3k
2 − εaE2)Y +

[
3/4(K3k

2 + εaE
2)−K1k

2/2
]
Y (X2 + Y 2)

+ (K1∂yyY +K2∂xxY + (K1 −K2)∂xyX)

Rewriting this system with the complex parameter A = X + iY , and defining ∂η = ∂x + i∂y, we get

γ ∂tA = µA− aA|A|2 +
K1 +K2

2
∆A+

K1 −K2

2
∂ηηA (3.5)

where µ = −K3(π/d)2 − εaE2 is the bifurcation parameter, a = −3/4(K3k
2 + εaE

2) + K1k
2/2 '

K1 k
2/2 is a parameter of order 1 that accounts for the nonlinear response. Finally reescaling the

parameter A:

A(~ρ, t)→ γ√
a
A

(
2

K1 +K2
~r, t

)
we obtain

∂tA = µA−A|A|2 + ∆A+ δ∂ηηA (3.6)
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with δ 6= 0 and where δ = (K1−K2)(K1+K2) is the anisotropic parameter, stands for the anisotropy
elasticity of the system. This equation is called the Anisotropic Ginzburg-Landau equation .

Similar equations were derived before: using the method of homogenization fro nematic liquid
crystals near the Fréedericksz bifurcation [21], and for modeling self-organization in an array of
microtubules via molecular motors [31].

If δ = 0 this is the well known Ginzburg-Landau equation with real coefficients.

3.3 Anisotropic Ginzburg Landau Equation

In this section, we will review the know results for our anisotropic Ginzburg Landau equation, in
particular of the vortex-type solutions, mostly taken from the article [16] and the master thesis [48].
We are considering the following anisotropic Ginzburg-Landau equation

∂tA = µA−A|A|2 + ∆A+ δ∂ηηA (3.7)

This equation has lost the independent rotational symmetries A → A eiθ and z → zeiθ with θ ∈
(0, 2π), retaining only the joint symmetry A(z) → e−iθA(zeiθ). Note that equation (3.7) can be
rewritten in the form

∂tA = − δE
δĀ

,

where the free energy is:

E(A, δ) =
1

2

∫
Ω
|∇A|2 +

1

2
(µ− |A|2)2 + δRe{(∂ηĀ)2}dS (3.8)

where Ω ⊂ R2 is a bounded domain1.
The trivial equilibria that minimize the free energy are |A|2 = µ. However, this equation has
nontrivial inhomogeneous equilibria.

Using the notation Rϕ0 for a rotation by a angle ϕ0 of R2 about the origin, a short calculation
[16] shows that when ϕ0 = π/2:

E(A, δ) = E(A ◦ Rϕ0 ,−δ) = E(Rϕ0A,−δ).

Moreover, E has a fourfold symmetry in the sense that:

E(A, δ) = E [Rmπ/2A ◦ Rkπ/2, (−1)m+kδ]. (3.9)

This formula relates different equations and energies when m + k is odd, and at the same time it
shows that energy and bifurcations diagrams have to be even symmetric with respect to δ = 0.
Functionals with fourfold symmetries appear, for example in the so called d-wave Ginzburg-Landau
equation (see [28, 32]).

1The energy of vortex solutions diverges in unbounded domain, (see Theorem 2.3.1)
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3.3.1 Fourfold symmetry

In fact, if we consider a function f defined in Ω = B(0, L) with Fourier expansion

f(z) =
∞∑

n=−∞
fn(r)einθ where z = reiθ

and f(z) has the form

f(z) =
∞∑

n=−∞
f4n±1(r)ei(4n±1)θ

that it, only modes indexed by 4n± 1 are present, it can be proven (see propos. A.0.2) that

µA−A|A|2 +∇2
⊥A+ δ∂ηηA

has an expansion in Fourier, where only modes indexed by 4n± 1 appear.

Besides, the presence of anisotropy also breaks the symmetry between the vortices with positive
and negative vorticity.

Figure 3.4 shows vortices with positive and negative topological charge found in the anisotropic
Ginzburg-Landau equation (3.7) . For the vortex with charge +1, the modulus remains rotationally
invariant, while for the −1 vortex the rotational invariance around the core is broken by the fourfold
symmetry.

Figure 3.4: Vortex solution of anisotropic Ginzburg-Landau equation (3.7) with µ = 1. Struc-
ture of the magnitude (a) and phase of the positive vortex (b). Structure of the magnitude
(c) and phase of the positive vortex (d) [48]

Moreover, this is also seen experimentally, as shown the following figure
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Figure 3.5: Snapshot of vortices of opposite charges observed in a nematic liquid crystal cell
within circular crossed polarizers (CCP). Vortex of positive (negative) charge has circular
(square) shape [51].

3.3.2 Positive Vortex Solution in Anisotropic Ginzburg-Landau

By introducing the ansatz Am(r, θ, {θ0}) = R(r)ei(mθ+ϕ0) in the anisotropic Ginzburg-Landau equa-
tion (3.7), we obtain:

0 = ei(mθ+θ0)

(
µR−R3 + (1 + δ ei(2−2m)θe−2iθ0)

[
∂2R

∂r2
+

1

r

∂R

∂r
− m2R

r2

])
which simplifies when m = +1:

0 = µR−R3 + (1 + δe−2iθ0)

[
∂2R

∂r2
+

1

r

∂R

∂r
− R

r2

]
. (3.10)

Taking the imaginary part implies

0 = δ sin 2θ0

[
∂2R

∂r2
+

1

r

∂R

∂r
− R

r2

]
. (3.11)

the only possible way to obtain a nontrivial solution is to consider the phase parameter sin θ0 = 0,
which gives

θ0 = {0, π
2
, π,

3π

2
}.

Besides, taking the real part of (3.10), we get an equation for the amplitude:

0 = µR−R3 + (1 + δ cos 2θ0)

[
∂2R

∂r2
+

1

r

∂R

∂r
− R

r2

]
where the isotropic solution R = Rv is recovered by the factor scaling

√
1 + δ cos θ0:

R(r) = Rv

(
r√

1 + δ cos 2θ0

)
Therefore, the positive anisotropic vortex solution is

A = Rv

(
r√

1± δ

)
ei(θ+π

4
∓π

4
+nπ), n = 0, 1 (3.12)
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with Rv the magnitude of the vortex solution of the Ginzburg-Landau equation with real coefficients.

In consequence, the anisotropic vortex solution corresponds to a scaling of the positive symmetric
vortex solution, with a finite number of possible phase jumps.

In order to study the stability properties of the vortex solution with +1 degree, we can study the
properties of the anisotropic free energy E(A, δ). Using the vortex solutionA = Rv(r/

√
1± δ)ei(θ+θ0),

where + stands for θ0 ∈ {0, π} and − for θ0 ∈ {π/2, 3π/2}, and taking Ω = B(0, L), we obtain

E(A, δ) = π

∫ L

0

{
(∂rRv)

2 +
R2
v

r2
+

1

2
(1−R2

v)
2 + δ cos(2θ0)

(
∂rRv +

Rv
r

)2
}
r dr

changing variables ρ = r/
√

1± δ, we get:

E(A, δ) = π

∫ L/
√

1±δ

0

{
(∂ρRv(ρ))2 +

R2
v(ρ)

ρ2
+

(1± δ)(1−R2
v(ρ))2

2
± δ

(
∂ρRv(ρ) +

Rv(ρ)

ρ

)2
}
ρdρ,

after straightforward calculations (see [48]), we derive the energy of the vortex with positive topo-
logical charge:

E(A, δ) ≈ π ln

(
L

a0

√
1± δ

)
+
π(1± δ)

2
± πδ

(
ln

(
L

a0

√
1± δ

)
+ 1

)
(3.13)

This expression shows that the scaling that makes the core smaller is the one with less energy and,
therefore, preferred by the system.

For the negative vortex solution in anisotropic Ginzburg-Landau, in the next chapter we will
construct a negative anisotropic solution for δ small in a ball, and in the chapter 6, we approximate
a negative anisotropic vortex solution in the plane R2.
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Chapter 4

Anisotropic Vortices: Existence, Stability
and Energy

In the present chapter, using properties of the linearized operator of the Ginzburg-Landau equation
around the negative symmetric vortex solution.

We will construct a solution similar to a negative vortex in a perturbative approach to the
anisotropic Ginzburg-Landau equation, rewriting this perturbation as a fixed point of certain oper-
ator F .

On the other hand, we study the energy expansion and certain stability for these anisotropic
vortex solutions (negative and positive). Finally, we obtain a system of differential equations from
the Fourier decomposition of the linear approximation of the perturbation of the negative symmetric
vortex-like solution, in order to characterize the vortex core structure of negative anisotropic vortex
solution, as well as, to get a quantitative study of the energy expansion around anisotropic negative
vortex solution.

4.1 Construction of the solution

Let R > 0 be a positive number, and let us consider BR = B(0, R), the ball in C with radius R and
center at the origin.
We will work with the anisotropic Ginzburg-Landau Equation in Ω = BR with negative degree
boundary condition, {

∆u+ u(1− |u|2) + δBu = 0, in BR,
u = e−iθ on ∂BR.

(4.1)

here u : BR → C, where we denote Bu := ∂ηηū as an anisotropic operator and ∂η =: ∂x + i∂y. This
equation can be considered as a perturbation of the Ginzburg-Landau equation with negative degree
at ∂BR: {

∆u+ u(1− |u|2) = 0, in BR,
u = e−iθ on ∂BR.

(4.2)

Let u0 = U(r)e−iθ the symmetric vortex solution of degree -1 of (4.2) and we consider a small
perturbation of u0 of the form u = u0 + δv solution of (4.1) with δ 6= 0, where v ∈ X, with X a
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functional space to be determined, replacing this perturbation u in (4.2) yields:

∆u0 + δ∆v + (1− |u0 + δv|2)(u0 + δv) + δB(u0 + δv) = 0

we can rewrite this as

∆u0+u0(1−|u0|2)+δ [∆v+v(1−|u0|2)−2(u0·v)u0+Bu0]+δ2 [Bv−u0|v|2−v(u0·v)−δv|v|2] = 0 (4.3)

since u0 is solution of (4.2), then ∆u0 +u0(1−|u0|2) = 0, and replacing this in (4.3), we can simplify
by δ > 0 and we get

[∆v + v(1− |u0|2)− 2(u0 · v)u0 +Bu0] + δ [Bv − u0|v|2 − v(u0 · v)− δv|v|2] = 0 (4.4)

we can rewrite (4.4) in a more convenient way

∆v + v(1− |u0|2)− 2(u0 · v)u0︸ ︷︷ ︸
Lv

= −Bu0 + δ [u0|v|2 + v(u0 · v) + δv|v|2 −Bv ]︸ ︷︷ ︸
Nδ(v)

(4.5)

where L is the linearized operator of the equation (4.2) around the solution u0, and Nδ(v) is the
nonlinear term of (4.5) given below by (4.8). Besides by the boundary condition in (4.1) we must
have v = 0 at ∂BR and also by Corollary 2.4.7.1, L is an isomorphism from H2(BR;C)∩H1

0 (BR;C)
onto L2(BR;C). Hence, denoting L−1 as the inverse of L, we have to consider the functional space

X = H2(BR;C) ∩H1
0 (BR;C) equipped with the norm ‖ · ‖X = ‖ · ‖H2(BR) (4.6)

where it is known that (X, ‖ · ‖X) is a Banach space. Therefore (4.5) is equivalent to

v = L−1(−Bu0 +Nδ(v)) (4.7)

where
Nδ(v) = δ [u0|v|2 + v(u0 · v) + δv|v|2 −Bv ] (4.8)

Thus, if we define

F : BK ⊂ X −→ X by F(w) = L−1(−Bu0 +Nδ(w))

where BK = {w ∈ X : ‖w‖H2 ≤ K} is the closed ball in X with radius K and center at 0. We note
that (4.7) can be expressed as a fixed point of the operator F , and therefore if we found K such
that: F(BK) ⊂ BK and F is a contraction in BK , then by the Banach Fixed Point Theorem, we
found a unique v ∈ BK such that v = F(v) = L−1(−Bu0 +Nδ(v)).

Let’s find K such that the hypotheses just mentioned are fulfilled:

(1) F(BK) ⊂ BK : Let w ∈ BK , then

‖F(w)‖X = ‖L−1(−Bu0 +Nδ(w))‖X ≤ ‖L−1‖‖−Bu0 +Nδ(w)‖L2(BR)

≤‖L−1‖‖−Bu0‖L2(BR) + ‖L−1‖‖Nδ(w)‖L2(BR) (4.9)

We estimate the nonlinear term:

‖Nδ(w)‖L2 ≤ |δ|
[
‖u0|w|2 ‖L2︸ ︷︷ ︸
≤ ‖w‖2L4

+ ‖w(u0 · w)‖L2︸ ︷︷ ︸
≤ ‖w‖2L4

+|δ| ‖w|w|2 ‖L2︸ ︷︷ ︸
≤ ‖w‖3L6

+ ‖Bw ‖L2︸ ︷︷ ︸
. ‖w‖H2

]

25



where we have used that |u0| ≤ 1 and Cauchy-Schwartz inequality. Using that the following
Sobolev embedding is continuous

H2(BR;C) ∩H1
0 (BR;C) ↪→ H1

0 (BR;C) ↪→ Lp(BR;C), ∀ 1 ≤ p <∞,

we have that, there are constants C1, C2, C3 > 0 independent of w, such that

‖Nδ(w)‖L2 ≤ |δ|
[
C1 ‖w‖H2(BR) + C2 ‖w‖2H2(BR) + C3 |δ|‖w‖3H2(BR)

]
. (4.10)

Since ‖w‖H2(BR) ≤ K, from (4.9) and (4.10) we obtain that ‖F(w)‖H2 ≤ K holds if and only
if

ϕK(δ) = ‖L−1‖ ‖B u0‖L2 −K + |δ| ‖L−1‖
[
C1K + C2K

2 + C3|δ|K3
]
≤ 0. (4.11)

Then, taking K = 2 ‖L−1‖ ‖B u0‖L2 , we get ϕK(0) = −‖L−1‖ ‖B u0‖L2 < 0, thus by the
continuity of the function ϕK(·) around δ = 0, exists δK > 0, such that ∀ 0 < |δ| < δK ,
ϕK(δ) ≈ ϕK(0) < 0.

Before continuing with the proof, the following lemmas will be useful for us to simplify the
arguments to prove that F is contraction in BK :
Lemma 4.1.1 (Gâteaux-derivative of Nδ).
The nonlinear map Nδ : H2(BR;C)→ L2(BR;C) given by

Nδ(v) = δ [u0|v|2 + v(u0 · v) + δv|v|2 −Bv ], (4.12)

is Gateaux-differentiable at w, ∀w ∈ H2(BR;C) with (Nδ)′G(w) ∈ L(H2(BR;C), L2(BR;C)) given
by

(Nδ)′G(w)(z) = δ
[

2(w · z)u0 + (u0 · z)w + (u0 · w)z + 2δ (w · z)w + δz|w|2 −Bz
]
, (4.13)

and moreover, we have the following estimate

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) ≤ C(δ, ‖w‖H2), (4.14)

where
C(δ, ‖w‖H2) = |δ|

[
C̃1 + C̃2 ‖w‖H2 + C̃3 |δ| ‖w‖2H2

]
, (4.15)

and the constants C̃1, C̃2 and C̃3 are positive.

Proof. Given w ∈ H2(BR;C) fixed, we compute A[z] =
dNδ(w + λz)

dλ

∣∣∣∣
λ=0

with z ∈ H2(BR;C):

A[z] =
dNδ(w + λz)

dλ

∣∣∣∣
λ=0

=
d

dλ

(
δ
[
u0 |w + λz|2 + (w + λz)(u0 · (w + λz)) + δ(w + λz)|w + λz|2 −B(w + λz)

] ) ∣∣∣∣
λ=0

=δ
[

2(w · z)u0 + (u0 · z)w + (u0 · w)z + 2δ (w · z)w + δz|w|2 −Bz
]
,
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It is clear that A[•] is linear, now let’s see that it is a bounded operator fromH2(BR;C) to L2(BR;C):

‖A[z]‖L2

≤ |δ|
[
2‖(w · z)u0‖L2 + ‖(u0 · z)w‖L2 + ‖(u0 · w)z‖L2 + 2|δ| ‖(w · z)w‖L2 + |δ|‖z|w|2‖L2 + ‖Bz‖L2

]
≤ |δ|

[
2‖w‖L4‖z‖L4 + 2‖w‖L4‖z‖L4 + 2|δ| ‖w‖2L8‖z‖L4 + |δ|‖w‖2L8‖z‖L4 + ‖Bz‖L2

]
.

Using that H2(BR,C) ↪→ Lp(BR,C) with 1 ≤ p < ∞ is an continuous embedding, then there are
constants C̃1, C̃2, C̃3 > 0 independent of w such that

≤ |δ|
[
C̃2‖w‖H2‖z‖H2 + C̃3 |δ| ‖w‖2H2‖z‖H2 + C̃1‖z‖H2

]
= |δ| ‖z‖H2

[
C̃1 + C̃2 ‖w‖H2 + C̃3 |δ| ‖w‖2H2

]
= C(δ, ‖w‖H2)‖z‖H2 ,

it follows that A ∈ L(H2(BR;C), L2(BR;C)) and by definition 2.4.1 of Gâteaux-differentiability, we
have that the nonlinear mapNδ, defined by (4.12), is Gâteaux-differentiable at w with (Nδ)′G(w) = A
satisfying the estimate (4.14)-(4.15).

�

Notation: For w1, w2 ∈ Ω let [w1, w2] denote the segment {λw1 + (1− λ)w2 |λ ∈ [0, 1]}.
Lemma 4.1.2 (Mean Value Theorem). [4] Let (W, ‖·‖W ), (V, ‖·‖V ) normed vector spaces, Ω an
open set of W and g : Ω ⊂ W → V a function. Let w1, w2 ∈ Ω such that [w1, w2] ⊂ Ω and we
suppose the Gateaux derivative of g in the point w, g′G(w), exists ∀w ∈ [w1, w2], therefore

‖g(w1)− g(w2)‖V ≤ sup
w∈[w1,w2]

‖g′G(w)‖L(W,V ) ‖w1 − w2‖W .

(2) F is contraction in BK : Let w1, w2 ∈ BK :

‖F(w1)−F(w2)‖H2(BR) = ‖L−1‖ ‖Nδ(w1)−Nδ(w2)‖L2(BR)

≤ ‖L−1‖ sup
w∈[w1,w2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) ‖w1 − w2‖H2(BR),

where in the inequality we used the Mean Value Theorem, with (Nδ)′G(w)(·) the Gateaux
derivative of Nδ in the point w ∈ [w1, w2] ⊂ BK (since w1, w2 ∈ BK and BK is convex).
It follows that for F to be a contraction in BK , we should prove that:

‖L−1‖ sup
w∈[w1,w2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) < 1.

From estimate (4.14)-(4.15), and since w ∈ BK = {w ∈ X : ‖w‖H2 ≤ K}, it follows that

‖L−1‖ sup
w∈[w1,w2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) ≤ |δ| ‖L−1‖
[
C̃1 + C̃2K + C̃3 |δ|K2

]
.

Thus, the right side is less than 1, if and only if

ηK(δ) = |δ| ‖L−1‖
[
C̃1K + C̃2K

2 + C̃3 |δ|K3
]
−K < 0.. (4.16)

Using the same argument as before, we noticed that ηK(0) = −K < 0, thus by the continuity of
the function ηK(·) around δ = 0, exists δ̃K > 0, such that ∀ 0 < |δ| < δ̃K , ηK(δ) ≈ ηK(0) < 0.
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Finally, taking δ∗ = min(δK , δ̃K), such that (4.11) and (4.16) remains true for all 0 < |δ| < δ∗.
Therefore, we find K such that hypothesis of Banach Fixed-Point Theorem to the operator F are
fullfilled, it follows ∃! v ∈ BK such that v = F(v).

We conclude the following result:
Theorem 4.1.3 (Existence of negative anisotropic vortex solution).
Let δ 6= 0, for the anisotropic Ginzburg-Landau with negative vorticity at ∂BR{

∆u+ u(1− |u|2) + δBu = 0, in BR
u = e−iθ on ∂BR

(4.1)

exists δ∗ > 0 such that for all 0 < |δ| < δ∗, the equation (4.1) has a solution of the form u = u−0 + δv
with u−0 = U(r)e−iθ the symmetric negative vortex-like solution of{

∆u+ u(1− |u|2) = 0, in BR
u = e−iθ on ∂BR

(4.2)

and where v ∈ H2(BR;C) ∩H1
0 (BR;C) satisfies{

Lv = −Bu−0 +Nδ(v) in BR
v = 0 on ∂BR

(4.17)

where L is the linearized operator of the equation (4.2) around u−0 , and Nδ(v) is the nonlinear term
given by

Nδ(v) = δ [u−0 |v|
2 + v(u−0 · v) + δv|v|2 −Bv ],

Additionally it has ‖v‖H2(BR) ≤ K, with K = 2 ‖L−1‖ ‖B u−0 ‖L2.

Analogously, taking in all this construction u+
0 = U(r)eiθ the positive vortex-like solution, we

obtain the next version of the previous theorem:
Theorem 4.1.4 (Existence of positive anisotropic vortex solution).
Let δ 6= 0, for the anisotropic Ginzburg-Landau with positive vorticity at ∂BR{

∆u+ u(1− |u|2) + δBu = 0, in BR
u = eiθ on ∂BR

(4.18)

exists δ∗ > 0 such that for all 0 < |δ| < δ∗, the equation (4.18) has a solution of the form u = u+
0 +δv

with u+
0 = U(r)eiθ the symmetric positive vortex-like solution of{

∆u+ u(1− |u|2) = 0, in BR
u = eiθ on ∂BR

(4.19)

and where v ∈ H2(BR;C) ∩H1
0 (BR;C) satisfies{

Lv = −Bu+
0 +Nδ(v) in BR

v = 0 on ∂BR
(4.20)

where L is the linearized operator of the equation (4.2) around u+
0 , and Nδ(v) is the nonlinear term

given by
Nδ(v) = δ [u+

0 |v|
2 + v(u+

0 · v) + δv|v|2 −Bv ],

Additionally it has ‖v‖H2(BR) ≤ K, with K = 2 ‖L−1‖ ‖B u+
0 ‖L2.

Moreover, we have the same result for u+
0 = ei(θ+θ0) with θ0 ∈ {0, π2 , π,

3π
2 } (in order to coincide with

the positive anisotropic vortex in the plane) with the corresponding slight modifications.
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Remark 4.1.5. Note, we have explicit solution for the positive anisotropic vortex solution, given by
the formula in (3.12).

Moreover, we have as corollary the following extension of the previous theorem to a particular
boundary condition
Theorem 4.1.6 (Vortex solution with disturbed boundary condition at ∂BR).
Let ε > 0, we consider the following anisotropic Ginzburg-Landau equation{

∆u+ u(1− |u|2) + δBu = 0, in BR
u = e±iθ + ε g(θ) on ∂BR

(4.21)

where g : ∂BR → C is a continuous function. If we consider h the C-harmonic function in the closed
disk BR with boundary values g(θ), that is{

∆h = 0 in BR
h = g on ∂BR

(4.22)

we have the existence of δ∗(ε), such that for all 0 < |δ| ≤ δ∗ exists solution uδ of (4.21) of the form
uδ = u±0 + δv where u±0 = U(r)e± iθ is the symmetric vortex solution and v ∈ C(BR;C) solve the
following nonlinear elliptic system{

Lv = −Bu±0 +Nδ(v) in BR
v = ε g on ∂BR

(4.23)

where L is the linearized operator of the equation (4.2) around u±0 , and Nδ(v) is the nonlinear term,
given respectively by

Lv = ∆v + v(1− |u±0 |
2)− 2(u±0 · v)u±0 ,

Nδ(v) = δ [u±0 |v|
2 + v(u±0 · v) + δv|v|2 −Bv ],

Additionally it has ‖v‖H2(BR) ≤ K, here K = M‖L−1‖(‖B u±0 ‖L2 + ε ‖L‖‖h‖H2) with M some real
constant such that M > 1.

Proof. Analogously to the case (4.5), if we impose a solution of the form u = u±0 + δv to (4.21), with
v ∈ H2(BR;C) and u±0 the symmetric vortex solution, we obtain{

Lv = −Bu±0 +Nδ(v) in BR
v = ε g on ∂BR

(4.24)

however, unlike the proof of theorem 4.1.3, the perturbation v /∈ H1
0 (BR;C), but we can consider

ṽ = v − ε h, then we have that ṽ solves the following system:{
Lṽ = f̃ +Nδ(ṽ + ε h) in BR
ṽ = 0 on ∂BR

(4.25)

where f̃ = −Bu±0 + εLh. Therefore, using the same ideas of the proof in theorem 4.1.3, we can
rewrite (4.25) as a fixed point of the following operator

F̃ : BK ⊂ X −→ X by F̃(w) = L−1(f̃ +Nδ(w + ε h))

where BK = {w ∈ X : ‖w‖H2 ≤ K} is the closed ball in X with radius K and center at 0. Here
X = H2(BR;C) ∩H1

0 (BR;C) equipped with the norm ‖ · ‖X = ‖ · ‖H2(BR). Let’s find K such that
the hypotheses of Banach Fixed Point Theorem are fulfilled:
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(1) F̃(BK) ⊂ BK : Let w ∈ BK , then

‖F̃(w)‖X = ‖L−1(f̃ +Nδ(w + ε h))‖X ≤ ‖L−1‖‖f̃ +Nδ(w + ε h)‖L2(BR)

≤‖L−1‖‖f̃‖L2(BR) + ‖L−1‖‖Nδ(w)‖L2(BR) (4.26)

Using the (4.10), we have that there are constants C1, C2, C3 > 0 independent of w, such that

‖Nδ(w+ε h)‖L2 ≤ |δ|
[
C1 ‖w+ε h‖H2(BR)+C2 ‖w+ε h‖2H2(BR)+C3 |δ|‖w+ε h‖3H2(BR)

]
(4.27)

Since ‖w‖H2(BR) ≤ K, from (4.26) and (4.27) we obtain that ‖F̃(w)‖H2 ≤ K holds if and
only if

ξK(δ) = ‖L−1‖ ‖f̃‖L2−K+|δ| ‖L−1‖
[
C1(K+ε‖h‖X)+C2(K+ε‖h‖X)2+C3|δ|(K+ε‖h‖X)3

]
≤ 0

(4.28)
Then, taking K = M ‖L−1‖ ‖f̃‖L2 with M any constant such that M > 1, we get ξK(0) =
−(M − 1)‖L−1‖ ‖f̃‖L2 < 0, thus by the continuity of the function ξK(·) around δ = 0, exists
δK > 0, such that ∀ 0 < |δ| < δK , ξK(δ) ≈ ξK(0) < 0.

(2) F̃ is contraction in BK : Let w1, w2 ∈ BK :

‖F̃(w1)− F̃(w2)‖H2(BR) = ‖L−1‖ ‖Nδ(w1 + ε h)−Nδ(w2 + ε h)‖L2(BR)

≤ ‖L−1‖ sup
w∈[w̃1,w̃2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) ‖w1 − w2‖H2(BR)

where in the inequality we used the Mean Value Theorem, with (Nδ)′G(w)(·) the Gateaux
derivative of Nδ in the point w ∈ [w̃1, w̃2] ⊂ BK , here w̃1 = w1 + ε h and w̃2 = w2 + ε h.
It follows that for F̃ to be a contraction in BK , we should prove that:

‖L−1‖ sup
w∈[w̃1,w̃2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) < 1

First, we note that for w ∈ [w̃1, w̃2], ∃λw ∈ [0, 1] such that

w = λww̃1 + (1− λw)w̃2 = λww1 + (1− λw)w2 + ε h

Thus, since w1, w2 ∈ BK = {w ∈ X : ‖w‖H2 ≤ K} we obtain

‖w‖H2 ≤ λw‖w1‖H2 + (1− λw)‖w2‖H2 + ε‖h‖H2 ≤ K + ε‖h‖H2

therefore, from the estimate (4.14)-(4.15), it follows that

‖L−1‖ sup
w∈[w̃1,w̃2]

‖(Nδ)′G(w)‖L(H2(BR),L2(BR)) ≤ |δ| ‖L−1‖
[
C̃1 + C̃2 (K+ε h)+ C̃3 |δ| (K+ε h)2

]
Hence the right side is less than 1, if

νK(δ) = |δ| ‖L−1‖
[
C̃1(K+ε ‖h‖H2)+C̃2 (K+ε ‖h‖H2)2+C̃3 |δ| (K+ε ‖h‖)3

]
−K < 0 (4.29)

Using the same argument as before, we noticed that νK(0) = −(K + ε ‖h‖H2) < 0, thus by
the continuity of the function νK(·) around δ = 0, exists δ̃K > 0, such that ∀ 0 < |δ| < δ̃K ,
νK(δ) ≈ νK(0) < 0.

Finally, taking δ∗ = min(δK , δ̃K), such that (4.28) and (4.29) remains true for all 0 < |δ| < δ∗.
Therefore, we find K such that hypothesis of Banach Fixed-Point Theorem to the operator F̃ are
fullfilled, it follows ∃! ṽ ∈ BK such that ṽ = F̃(ṽ).

�
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4.2 Anisotropic energy

Let u±δ = u±0 + δv : BR → C be the solution of:{
∆u+ u(1− |u|2) + δ ∂ηηū = 0, in BR,

u = e±iθ on ∂BR.
(4.30)

given in the previous subsection. We denote by Eδ(·) the energy functional associated to equation
(4.30), given by

Eδ(w) =

∫
BR

1

2
|∇w|2 +

1

4
(1− |w|2)2 +

δ

2
Re{(∂ηw̄)2}dx dy (4.31)

4.2.1 Stability

Lemma 4.2.1 (Continuity of v). The perturbation v ∈ H2(BR,C) ∩ H1
0 (BR,C) from theorems

4.1.3 and 4.1.4, satisfies v ∈ C(BR,C).

Proof. Is a direct consequence of the Sobolev’s Embedding Theorem

W j+m,p(Ω) ↪→ CjB(Ω),

where Ω ⊂ Rn is a bounded domain sufficiently smooth, j ≥ 0 and m ≥ 1 are integers, p ∈ [1,∞)
and mp > n (see [5, page 85]) �

Corollary 4.2.1.1. Under the assumptions as theorem 4.1.3 and 4.1.4, the solution
u±δ = u±0 + δ v is stable if the parameter δ is sufficiently small, in the sense that, the following
associated quadratic form associated to Eδ(·)

Qδ(w) =
d2

dλ2
Eδ(u

±
δ +λw)

∣∣∣∣
λ=0

=

∫
BR

(
|∇w|2−(1−|u±δ |

2)|w|2+2(u±δ ·w)2+δRe {(∂ηw)2}
)

dS (4.32)

for w ∈ V0 = H1
0 (BR;C), is positive definite; that is, Qδ(w) > 0 for w ∈ V0, ‖w‖L2(BR) 6= 0.

Proof. Using that u±δ = u±0 + vδ, where vδ = δv, we have

Qδ(w) =

∫
BR

(
|∇w|2 − (1− |u±0 |

2)|w|2 + 2(u±0 · w)2 + δRe {(∂ηw)2}
)

dS +O(‖vδ‖L∞ + ‖vδ‖2L∞)‖w‖2L2

Note we have the inequality δ
∫
BR

Re(∂ηw)2 dS ≥ −|δ|
∫
BR

|∇w|2 dS for all δ 6= 0, then we get

≥
∫
BR

(
(1− |δ|)|∇w|2 − (1− |u±0 |

2)|w|2 + 2(u±0 · w)2
)

dS +O(‖vδ‖L∞ + ‖vδ‖2L∞)‖w‖2L2

= (1− |δ|)Q0(w) + δ

∫
BR

(
− (1− |u0|2)|w|2 + 2(u0 · w)2

)
dS +O(‖vδ‖L∞ + ‖vδ‖2L∞)‖w‖2L2

≥ (1− |δ|)Q0(w)− |δ| sup
BR

(1− |u0|2)‖w‖2L2 +O(‖vδ‖L∞ + ‖vδ‖2L∞)‖w‖2L2

= (1− |δ|)Q0(w)− |δ| sup
BR

(1− |u0|2)‖w‖2L2 +O(|δ|‖v‖L∞ + |δ|2‖v‖2L∞)‖w‖2L2
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where in last term we use ‖vδ‖L2 = |δ|‖v‖L∞ , therefore if we use that Q0(w) is definite positive in
V0, moreover we have that Q0(w) ≥ λ1‖w‖2L2 , where λ1 > 0 is the first eigenvalue of the linearized
operator L, and also, by the lemma 4.2.1 ‖v‖L∞(BR) <∞, we obtain the following, for δ sufficiently
small:

Qδ(w) ≥ [ (1− |δ|)λ1 − |δ| sup
BR

(1− |u0|2) +O(|δ|) ] ‖w‖2L2(BR) (4.33)

Finally for w ∈ V0, ‖w‖L2(BR) 6= 0 and δ 6= 0 sufficiently small, we have that Qδ(w) > 0. �

4.2.2 Anisotropic energy expansion of anisotropic vortex solution

Lemma 4.2.2. For any R > 0 and for all δ ∈ (0, δ∗) with δ∗, given by the Theorem (4.1.3) or
(4.1.4), the following expansion holds

Eδ(u0 + δv) = Eδ(u0) + δ2

[ ∫
BR

Re(∂ηū0 ∂ηv̄) dS +
1

2
Q0(v)

]
+ O(δ3) (4.34)

where

O(δ3) =
δ3

2

∫
BR

Re(∂ηv̄)2 +

∫
BR

(u0 · v)|v|2

+
δ4

4

∫
BR

|v|4 (4.35)

and Q0(v) = 〈−Lv, v〉 is the quadratic form associated to E0(·), here 〈w1, w2〉 = Re

∫
BR

w1w2.

Proof. By the definition (4.31), we have

Eδ(u0 + δv) =

∫
BR

1

2
|∇(u0 + δv)|2 +

1

4
(1− |u0 + δv|2)2 +

δ

2
Re{(∂η(ū0 + δv̄))2}dx dy

=

∫
BR

1

2
|∇u0|2 +

1

4
(1− |u0|2)2 +

δ

2
Re{(∂ηū0)2}+ δ

∫
BR

[
(∇u0 · ∇v)− (1− |u0|2)(u0 · v)

]
+ δ2

∫
BR

Re(∂ηū0 ∂ηv̄) +
δ2

2

∫
BR

[
|∇v|2 + 2(u0 · v)2 − (1− |u0|2)|v|2

]

+
δ3

2

∫
BR

Re(∂ηv̄)2 +
δ3

2

∫
BR

(u0 · v)|v|2 +
δ4

4

∫
BR

|v|4 (4.36)

integrating by parts the second integral, we can rewrite (4.36) as

Eδ(u0 + δv) =Eδ(u0) + δ

∫
BR

Re
[
(−∆u0 − (1− |u0|2)) v̄

]
+ δ2

∫
BR

Re(∂ηū0 ∂ηv̄)

+
δ2

2

∫
BR

[
|∇v|2 + 2(u0 · v)2 − (1− |u0|2)|v|2

]
+O(δ3) (4.37)

where O(δ3) is given explicitly in (4.35). Since Q0(v) =

∫
BR

[
|∇v|2 + 2(u0 · v)2 − (1 − |u0|2)|v|2

]
(see (2.21)) and u0 is solution of (4.2), that is, −∆u0 − (1 − |u0|2) = 0, we obtain the expansion
(4.34). �
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Energy comparison between vortices at order delta

Now, we compare the energy expansion between the anisotropic vortex solutions of degrees +1 and
−1, at order O(δ):

Eδ(u0 + δv) = Eδ(u0) +O(δ2) Repeat eq. (4.34) at order O(δ)

where u0 = U(r)e±i (θ+θ0) is the symmetric vortex solution of (4.2). Noting that

Eδ(u0) = E0(u0) +
δ

2

∫
BR

Re{(∂ηū0)2},

and E0(u0) =: E0 is the isotropic energy of the symmetric vortex solution, which is an independent
expression of δ and of the magnitude of degree of u0. Therefore, just analyze the term with δ:

• Vortex of positive degree: u+
0 = U(r)ei(θ+θ±0 ), where θ+

0 = {0, π}, θ−0 = {π/2, 3π/2}, then

Re{(∂ηū+
0 )2} = cos(2θ0)︸ ︷︷ ︸

±1

(
∂rU +

U

r

)2

,

thus

∴ Eδ(u
+
0 + δv) = E0 ± δ π

∫ R

0

(
∂rU +

U

r

)2

r dr +O(δ2) (4.38)

• Vortex of negative degree: u−0 = U(r)e−i(θ+θ0), where θ0 ∈ R, then

Re{(∂ηū−0 )2} = cos(4θ + 2θ0)

(
∂rU −

U

r

)2

,

it follows that∫
BR

Re{(∂ηū−0 )2} =

∫ 2π

0
cos(4θ + 2θ0) dθ

∫ R

0

(
∂rU −

U

r

)2

r dr = 0,

∴ Eδ(u
−
0 + δv) = E0 +O(δ2) (4.39)

Thus, we can mathematically justify the quantitative behaviour of Eδ(·) for the different degrees
of anisotropic vortex solutions using (4.38) and (4.39) at order O(δ) for δ small enough (in particular
with |δ| < δ∗).

Energy comparison between vortices at order delta square

As was previously stated in (4.38), we have that the energy at u+ = u+
0 + δv depends linearly on δ

at order O(δ), and δ is small enough, so the linear dependence on δ dominates over the quadratic
δ2 dependence. In contrast, (4.39) shows that the energy at u− = u−0 + δv doesn’t depend linearly
on δ, but only depends quadratically on δ.

Thus, we seek to analyze the energy expansion Eδ(u
−
0 + δv) at order O(δ2). Using (4.39), we

note that
∴ Eδ(u

−
0 + δv) = E0 +G(v, u0) δ2 (4.40)
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where
G(v, u0) =

∫
BR

Re(∂ηū0 ∂ηv̄) dS +
1

2
Q0(v) (4.41)

with u0 the negative symmetric vortex solution of degree −1 and v ∈ H2(BR,C)∩H1
0 (BR,C) satisfies

the nonlinear elliptic partial differential equation (4.17), that is, Lv = −Bu0 +Nδ(v). Therefore, it
seeks to analyze the sign of G(v, u0).

4.2.3 Linear approximation of the perturbation

In order to analyze the sign of G(v, u0) and due to the fact that Nδ(v) = O(δ), we can consider the
linear approximation of v, that is, Lv = −Bu0 with v ∈ H2(BR,C)∩H1

0 (BR,C). Therefore, we can
derive the following lemma:
Lemma 4.2.3 (Integration by parts for the linear approximation of v).
For the linear approximation of v, that is, Lv = −Bu0, with L the linearized operator of the equation
(4.2) around u0 and we had denoted by Bw := ∂ηηw̄ as the anisotropic operator with ∂η =: ∂x + i ∂y.
We have the identity: ∫

BR

Re(∂ηū0 ∂ηv̄) dS = −Q0(v) (4.42)

where Q0(v) = 〈−Lv, v〉 is the quadratic form associated to E0(·), here 〈w1, w2〉 = Re

∫
BR

w1w2.

Proof. Let v ∈ H2(BR,C) ∩H1
0 (BR,C) with Lv = −Bu0. First, we note that

Q0(v) = Re

∫
BR

(−Lv v) dS = Re

∫
BR

(Bu0 v) dS = Re

∫
BR

(∂η(∂ηu0) v) dS (4.43)

and if we denote by φ = ∂ηu0, then∫
BR

∂η(φ) v =

∫
BR

∂xφ v + i

∫
BR

∂yφ v (4.44)

=

∫
∂BR

φ v nx + i

∫
∂BR

φ v ny −
∫
BR

φ∂xv − i

∫
BR

φ∂yv (4.45)

=−
∫
BR

φ∂ηv (4.46)

where in (4.45) we integrate by parts with nx and ny are the normal derivatives to ∂BR in the
directions x and y respectively, and in (4.46) we use that v ∈ H1

0 (BR,C).
Finally, we conclude (4.42) using (4.43) and the integration by parts before:

Q0(v) = Re

∫
BR

(∂η(∂ηu0) v) dS = Re

− ∫
BR

∂ηu0 ∂ηv dS

 = −
∫
BR

Re(∂ηu0 ∂ηv̄) dS

�
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Thus, in the linear approximation of v, using this lemma, we have that

G(v, u0) =

∫
BR

Re(∂ηū0 ∂ηv̄) dS +
1

2
Q0(v) = −1

2
Q0(v) < 0

where in the last inequality, we have used Theorem 2.4.7, due the fact that v ∈ H2(BR,C) ∩
H1

0 (BR,C). We conclude, the sign of G(v, u0) is negative.

In order to compare the energies between u+ and u−, it only remains to analyze quantitatively
the value G(v, u0) for u0 the negative symmetric vortex of degree −1, For this purpose, we note
that, in the linear approximation of v, that is, Lv = −Bu0, we can compute the right hand side,
considering u0 = U(r)e−iθ:

−Bu0 = −∂2
η(U(r)e−iθ) = ei3θ · −

[
∂2
rU(r)− 3

∂rU(r)

r
+ 3

U(r)

r2

]
︸ ︷︷ ︸

c0(r)

, (4.47)

therefore, v = L−1(c0(r))e3iθ, in other words, the linear approximation of v, gives the following
form for solution u:

u = U(r) e−iθ + δ U1(r) ei3θ

Therefore, if we consider the form v = V (r)e3iθ, by (4.42) we have that

G(v, u0) =
1

2

∫
BR

Re(∂ηū0∂ηv̄) dS =
1

2

∫
BR

Re

(
e2iθ

(
U ′(r)− U(r)

r

)
︸ ︷︷ ︸

∂ηū0

e−2iθ

(
V ′(r) +

3

r
V (r)

)
︸ ︷︷ ︸

∂ηv̄

)
dS

=
1

2

∫
BR

Re

(
U ′ − U

r

)(
V ′ +

3

r
V

)
r dr dθ = π

R∫
0

(
U ′(r)− U(r)

r

)(
V ′(r) +

3

r
V (r)

)
r dr dθ

Thus, an approximation for the value G(v, u0) we can reduce to compute the value of

G(v, u0) = π

R∫
0

(
U ′(r)− U(r)

r

)(
V ′(r) +

3

r
V (r)

)
r dr dθ (4.48)

where U(r) is the vortex profile of the symmetric vortex solution, which satisfies the following
ordinary differential equation

∂2U(r)

∂r2
+

1

r

∂U(r)

∂r
− U(r)

r2
+ U(r)(1− U2(r)) = 0, r ∈ (0, R), U(0) = 0, U(R) = 1, (4.49)

and V (r) is the vortex profile of v = V (r)e3iθ solution of Lv = −Bu0 en BR.
For the purpose of computing numerically the value of G(v, u0) in (4.48), we can replace v = V (r)e3iθ

in Lv = −Bu0,

∂2V (r)

∂r2
+

1

r

∂V (r)

∂r
− 9

r2
V (r) + V (r)(1− U2(r))− (1 + e−8iθ)U2V = c0(r)

We note the vortex profile V (r) does not decouple from θ, therefore we need a series Fourier decom-
position.
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4.2.4 Fourier Series decomposition

Since v ∈ C(BR,C) ⊂ L2(BR,C), we can decompose v in Fourier series using complex exponential

v(z) =
∑
m∈Z

vm(r) eimθ (4.50)

where z = r eiθ and the functions vm : [0, R] −→ C are continuous function complex valued. Since we
are considering v as a perturbation of the negative symmetric vortex solution, and due to invariance
of the anisotropic Ginzburg-Landau equation in the subspace W− (see proposition A.0.2) defined as

W− =

{
u =

∑
k∈Z

a4k−1(r)ei(4k−1)θ on BR, a4k−1(r) ∈ C, ∀ r ∈ [0, R]

}
,

we must consider only modes indexed by 4m− 1 in (4.50), that is

v(z) =
∑
m∈Z

v4m−1(r) ei(4m−1)θ =

A0(r) +
∑
m≥1

(
Am(r) e4imθ +A−m(r)e−4imθ

) e−iθ, (4.51)

where A0(r) := v−1(r), Am(r) := v4m−1(r) and A−m := v−4m−1(r) for m ≥ 1, then if we replace
this in Lv = −Bu0 and using the computation in (4.47), that is −Bu0 = co(r)e

3iθ we get

L(e−iθA0(r)) +
∑
m≥1

(
Le−iθ(Am(r) e4imθ) + Le−iθ(A−m(r)e−4imθ)

)
= c0(r)e3iθ (4.52)

using L−1 = eiθL e−iθ the conjugate linearized operator around u0 = U(r)e−iθ (see (2.15)), in view
that u has the form u = (U(r) + δ U1(r) ei4θ)e−iθ, we only consider modes m that |m| = 1, that is

L−1(α(r)e−4iθ) + L−1(β(r)e4iθ) = co(r)e
4iθ (4.53)

where α = A−1, β = A1 are complex valued functions, i.e. v = (α e−4iθ + β e4iθ)e−iθ.

Therefore, it is more convenient to use the Fourier decomposition in trigonometric form, that is,

v = (wr + iwi) e−iθ

with wr = wr(r, θ), wi = wi(r, θ) real-valued functions, then by (2.16), we get

L−1(wr + iwr) = ∆wr + (1− 3U2)wr −
1

r2
wr +

2

r2
∂θwi + i

(
∆wi + (1− U2)wi −

1

r2
wi −

2

r2
∂θwr

)
(4.54)

thus replacing this in (4.53), we get

∆wr + (1− 3U2)wr −
1

r2
wr +

2

r2
∂θwi = c0(r) cos(4θ)

∆wi + (1− U2)wi −
1

r2
wi −

2

r2
∂θwr = c0(r) sin(4θ)

(4.55)

and using the Fourier decomposition, that is,

wr(r, θ) = x(r) cos(4θ) + y(r) sin(4θ), wi(r, θ) = w(r) cos(4θ) + z(r) sin(4θ),
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(4.55) becomes

x′′(r) +
1

r
x′(r)− 17

r2
x(r) + (1− 3U2(r))x(r) +

8

r2
z(r) = c0(r), r ∈ (0, R)

y′′(r) +
1

r
y′(r)− 17

r2
y(r) + (1− 3U2(r))y(r)− 8

r2
w(r) = 0, r ∈ (0, R)

w′′(r) +
1

r
w′(r)− 17

r2
w(r) + (1− U2(r))w(r)− 8

r2
y(r) = 0, r ∈ (0, R)

z′′(r) +
1

r
z′(r)− 17

r2
z(r) + (1− U2(r))z(r) +

8

r2
x(r) = c0(r), r ∈ (0, R)

(4.56)

In particular, since we looking for particular solutions of the system, we can take y = w ≡ 0,
then the system reduces to

x′′(r) +
1

r
x′(r)− 17

r2
x(r) + (1− 3U2(r))x(r) +

8

r2
z(r) = c0(r),

z′′(r) +
1

r
z′(r)− 17

r2
z(r) + (1− U2(r))z(r) +

8

r2
x(r) = c0(r),

r ∈ (0, R) (4.57)

with the boundary condition x(R) = z(R) = 0 (or equivalently v = 0 on ∂BR), where

co(r) = −
[
U ′′(r)− 3

U ′(r)

r
+ 3

U(r)

r2

]
.

In the following chapters, we will try to solve this system, from different points of view, both
numerically and analytically when R→ +∞.
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Chapter 5

Numerical Results

In this chapter, we give a numerical analysis of the linear approximation of v, that is,
Lv = −Bu0, in order to obtain a quantitative description of the energy expansion of Eδ(u−0 + δv)
when u−0 is the negative symmetric solution of degree -1 of equation (4.2). Therefore, through a weak
formulation of Lv = −Bu−0 and using the Padé approximation of the profile U(r), we use the finite
element method to give a complete diagram bifurcation of anisotropic energy between anisotropic
vortex solutions of positive and negative degree.

5.1 Finite element method

5.1.1 Introduction

The finite element method is a numerical method used to solve linear and nonlinear partial differential
equations with specific boundary conditions. It allows by a discretization of the domain, to transform
a system of partial differential equations into an algebraic system. The process is structured as
follows:

• The continuous domain on which the function is defined gets divided in finite elements trough
a process named tessellation. Hence, the mesh is automatically built using Delaunay-Voronoi
algorithm. Each tassel is triangular. If we identify each triangle as Tk, then the finite element
approximation of the domain Ω→ f.e.m.→ Ωh =

⋃nt
k=1 Tk where nt is the number of triangles.

• The finite element space is defined, it usually consists of a Hilbert space of polynomial functions
defined on each element of the mesh and affine in x, y. These functions build the canonical
basis of the Hilbert space and are continuous, piecewise equal to 1 on one vertex and 0 on all
others. Naming then φk, and indicating with Th = {Tk}k=1,...,nt the family of triangles in the
mesh, we can define the space as:

Vh(Th,P2) =

{
w(x, y) |w(x, y) =

M∑
k=1

wk φk(x, y), wk ∈ R

}
(5.1)

HereM is the dimension of Vh, ie. the number of vertices. P2 indicates that the basis functions
are continuous piecewise quadratic. Finally, the sets of coefficients wk are called «degrees of
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freedom of w», and effectively contain all the information about the projection of the analytic
function we are interested in, onto the finite dimensional Hilbert space.

• The algebraic system is set depending on the particular differential equation solved.

5.1.2 Finite element method for the linear approximation of anisotropic
vortex solution

With this in mind, we proceed to compute a numerical solution through finite element method for
the following problem:
For Ω = B(0, R) the ball of center 0 and radius R in R2, find v : Ω→ C such that{

Lv = −Bu−0 in Ω
v = 0 on ∂Ω

(5.2)

where L is the linearized operator of the equation (4.2) around u0 the negative symmetric solution
of degree -1 of equation (4.2).

This problem is implemented with FreeFem++ [29], in the following steps

• First step: Construction of the domain Ω. In FreeFem++ the domain is assumed to
described by its boundary that is on the left side of the boundary which is implicitly oriented
by the parametrization.

real R=5.; //domain radius
border domega ( t = 0.0, 2.0 * pi ) { x =R* cos(t); y = R*sin(t); label=1;}
int n=200;
mesh Th=buildmesh(domega(n));
plot(Th,wait=1,ps="dominio.eps", cmm="domain_meshing");

Figure 5.1: Mesh of Ω with R = 5 and n = 200 triangles
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• Second step: Solve the linear approximation. The basic variational formulation of (5.2)
is:Find w ∈ H2(Ω,C) ∩H1

0 (Ω,C), such that for all w ∈ H2(Ω,C) ∩H1
0 (Ω,C) we have

a(v, w) = l(w) (5.3)

where a(v, w) =

∫
Ω
Lv · w dx dy and l(w) = −

∫
Ω
Bu−0 · w dx dy.

To discretize (5.3), let Th the regular uniform triangulation of Ω with triangles of maximum
size h < 1, let Vh = {vh ∈ C0(Ω) : vh|T ∈ P2(T ), ∀T ∈ Th; vh = 0 on ∂Ω} denote a
finite-dimensional subspace of H2(Ω,C) ∩H1

0 (Ω,C) where P2 is the set of polynomials of R2

of degree ≤ 2. Thus the discretize weak formulation of (5.3) is:

Find vh ∈ Vh : a(vh, wh)− l(w) = 0 ∀wh ∈ Vh (5.4)

Figure 5.2: Phase of perturbation v with R = 5.
(Left) 3D representation (Right) 2D representation.

Figure 5.3: Modulus magnitude perturbation v. The z-scale has been adjusted, be guided by the
values in color bar.
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Figure 5.4: The negative anisotropic vortex solution u = u−0 + δv,
with (Left) δ = 0, (Center) δ = 0.2 and (Right) δ = 0.5.

Figure 5.2 illustrates the phase perturbation of the negative anisotropic vortex solution, which
has a degree +3, induced by the right hand-side of the linear approximation −Bu−0 = U1(r)ei3θ

where U1 = U1(r) is a real-valued function depending only of r ∈ [0, R].

Figure 5.3 shows that, the modulus of v satisfies the boundary condition v = 0 on ∂BR, and
also, shows that v = 0 in a neighborhood of origin, but you have to be careful that the number of
triangles of the domain mesh, as discussed in Remark 5.1.1. See also [6, page 186].
Finally, the fourfold symmetry of the negative anisotropic vortex solution, is shown in the numerical
simulation through its modulus magnitude, Figure 5.4. This fourfold structure being clearer, when
the anisotropy constant is greater.

Remark 5.1.1. If we write the linearized operator in polar coordinates, we see that it is singular
at the origin. And that singularity can be transferred to the numerical solution by the finite element
method, if we increase the number of triangles in the domain mesh, as shown in the following Figure:

Figure 5.5: Representation vh is not regular. Modulus magnitude of v on BR with R = 5.
(Left) n = 370 triangles, (Right) n = 400 triangles
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5.1.3 Quadratic coefficient of negative anisotropic vortex solution

In order to analyze the value of G(v, u0), using the lemma 4.2.3, we have that

G(v, u0) = −1

2
Q0(v) = −1

2
〈−Lv, v〉 =

1

2
〈Bu0, v〉 =

1

2

∫
BR

Re(Bu0 v) dx dy

we compute this expression for different solutions v of (5.2) depending for different values of the
domain radius R and particular triangulations of Ω, the numerical results obtained by the finite
element method are shown below by the table 5.1 and by the figure 5.6.

R n G(v, u0;R) G̃(v, u0;R) |Error|
3 150 -1.43212 -0.07721 1.35491
4 80 -2.95169 -2.89304 0.05865
5 250 -4.56483 -5.07717 0.51234
10 300 -11.0234 -11.861702 0.838302
15 700 -15.2255 -15.83039 0.60489
20 700 -18.2545 -18.64622 0.39172
50 700 -27.9452 -27.61488 0.33032
100 700 -35.225 -34.399405 0.825595
150 600 -38.1544 -38.36809 0.21369

Table 5.1: Numerical values of G(v, u0) as a function of domain radius R. The number of
triangles n used in the mesh of BR of the finite element method are also included. Also, is
included the values of G̃(v, u0;R) (the curve fitting of values of G(v, u0;R)) and its fitting
error.

Figure 5.6: Numerical calculations (circles) and logarithmic curve fitting G̃(v, u0;R) (dashed
red line) for the quadratic coefficient G(v, u0) with u0 = U(r)e−iθ as a function of domain
radius R.

Furthermore, due to the divergence behaviour of the energy in the symmetric vortex solutions,
we can compute a curve logarithmic fitting, giving the following

G̃(v, u0;R) = −9.788 · ln(R) + 10.676 (5.5)
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Note that in Table 5.6, for each fixed domain radius R, a particular number n of triangles is used
for domain meshing. This is not so arbitrary, but is due to the singularity described in Remark
5.1.1. So this process was carried out in a heuristic way, and can be seen in more detail in Appendix
B.

5.1.4 Numerical calculation of anisotropic Energy

In this part, using the numerical curve fitting for G(v, u0;R) obtained in before part, we plot the
anisotropic energy of the vortex solutions as a function of the anisotropy parameter δ. For this, we
use the analysis of the energy expansion obtained in the previous chapter:

Eδ(u
+
0 + δv) = E0 ± δ π

∫ R

0

(
∂rU +

U

r

)2

r dr +O(δ2) Repeat eq. (4.38)

Eδ(u
−
0 + δv) = E0 +G(v, u0;R) δ2 +O(δ3) Repeat eq. (4.40)

where E0 is the isotropic energy of the isotropic vortex solution u±0 , given by

E0 ≈ π ln

(
R
√

e

a0

)
, (5.6)

where a0 is a constant related to the vortex core of isotropic vortex solution.

Computation of isotropic vortex energy

In the liquid crystal context, we can think that the domain Ω ⊆ R2 is a surface of about 1− 5cm2

and the diameter of vortex core is 1.2µm [8]. Therefore, since for the numerical simulations we
use the Padé approximation for the vortex profile of symmetric vortex solution, we have that the
numerical value for radius of vortex core is a0 ≈ 1.126 [42], then rescaling with the liquid crystal
context, we must consider Rmin ≈ 5641 and Rmax ≈ 12615. Thus, we have

E0(Rmin) ≈ 28.33 and E0(Rmax) ≈ 30.86 (5.7)

Bifurcation Diagram

For Rmax = 12615, we have the following diagram of the anisotropic energy as function of delta for
anisotropic vortices of degree -1 and +1 (Figures 5.7 and 5.8).

For Rmin = 5641, we have the following diagram of the anisotropic energy as function of delta
for anisotropic vortices of degree -1 and +1 (Figures 5.9 and 5.10).

We observe from the figures 5.7 and 5.9, that the energy of negative anisotropic vortex solution
is greater than the energy of positive vortex solution u = u+

0 ei(θ+θ−) + δv, which has less energy
than u = u+

0 ei(θ+θ+) + δv, for δ > 0 small (and viceversa for δ < 0). This shows the validity range
of the Theorems 4.1.3 and 4.1.4, also shows that these solutions are only stable in the sense of the
Corollary 4.2.1.1, for small delta.
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Figure 5.7: Anisotropic energy Eδ of the negative anisotropic vortex u = u−0 + δv (green)
and the positive anisotropic vortex u = u+

0 ei(θ+θ±) + δv where θ+ ∈ {0, π} (red) and θ− ∈
{π/3, 3π/3} (blue). Diagram made in Maple.

Figure 5.8: Detail of the previous picture, with δ ∈ (−0.1, 0.1). Anisotropic energy Eδ of
the negative anisotropic vortex u = u−0 + δv (green) and the positive anisotropic vortex
u = u+

0 ei(θ+θ±) + δv where θ+ ∈ {0, π} (red) and θ− ∈ {π/3, 3π/2} (blue). Diagram made in
Maple.
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Figure 5.9: Anisotropic energy Eδ of the negative anisotropic vortex u = u−0 + δv (green)
and the positive anisotropic vortex u = u+

0 ei(θ+θ±) + δv where θ+ ∈ {0, π} (red) and θ− ∈
{π/3, 3π/3} (blue). Diagram made in Maple.

Figure 5.10: Detail of the previous picture, with δ ∈ (−0.1, 0.1). Anisotropic energy Eδ
of the negative anisotropic vortex u = u−0 + δv (green) and the positive anisotropic vortex
u = u+

0 ei(θ+θ±) + δv where θ+ ∈ {0, π} (red) and θ− ∈ {π/3, 3π/2} (blue). Diagram made in
Maple.
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Chapter 6

Analysis for an O.D.E. system from
negative anisotropic vortex

In this chapter, in order to approximate a negative anisotropic vortex solution in the whole plane,
we consider the system of differential equations for the dominant mode of the Fourier series decom-
position of the linear approximation Lv = −Bu−1

0 with v = 0 on ∂BR:

(EQ)


x′′ +

1

r
x′ − 17

r2
x+ (1− 3U2(r))x+

8

r2
z = c(r),

z′′ +
1

r
z′ − 17

r2
z + (1− U2(r))z +

8

r2
x = c(r),

r ∈ (0,+∞) Repeat eq. (6.1)

We want to construct bounded solutions. We first study the homogeneous system, constructing
a base of solutions with certain asymptotic behaviors at zero and at infinity , using a fixed-point
argument from the succession of its Picard iterates. This idea comes from the book of Pacard and
Riviere [41, Chapter 3], and the recent articles of Anne Beaulieu [9, 10].

Besides, we obtain the no existence of bounded global solutions in R2, to the homogeneous
system, which implies (in case of existence) the uniqueness of bounded solutions in case they exist.
Moreover, we connect behaviours of the solutions of the base at 0 to +∞.

Finally, rewriting the extended system of differential equations as a first order system, and with
the help of the method of variation of parameters, we can construct a bounded solution to the
inhomogeneous system.
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6.1 Introduction

We study the existence of bounded solutions of the following system, which arises taking R→∞ in
the system (4.57):

x′′ +
1

r
x′ − 17

r2
x+ (1− 3U2)x+

8

r2
z = c (r),

z′′ +
1

r
z′ − 17

r2
z + (1− U2)z +

8

r2
x = c (r),

r ∈ (0,+∞) (6.1)

where the functions x = x(r) and z = z(r) are real-valued.
Here U = U(r) is the unique solution of the differential equation

U ′′ +
1

r
U ′ − 1

r2
U + U(1− U2) = 0, r > 0

U(0) = 0, lim
r→∞

U(r) = 1

(6.2)

and c(r) = −
[
U ′′(r)− 3

U ′(r)

r
+ 3

U(r)

r2

]
.

Theorem 6.1.1. [15, 30] There exists a unique, non-constant solution of (6.2). This solution U is
strictly increasing and 0 < U < 1. Furthermore,

U(r) = 1− 1

2r2
+O

(
1

r4

)
for large r, and there exists some constant κ > 0 such that

U(r) = κ r − κ

8
r3 +

(
κ3

24
+

κ

192

)
r5 +O(r7)

for r close to 0.
Corollary 6.1.1.1. In consequence, the function c(r) defined before, has the following asymptotic
expansions:

c (r) = −κ
(
κ3

3
+

1

24

)
r3 +O(r5) as r → 0+

c (r) = − 3

r2
+

15

2 r4
+O

(
1

r6

)
as r → +∞

Remark 6.1.2. Since the system (6.1) comes from extending to (0,+∞) the system (4.57), we have
that

v = (x(r) cos(4θ) + i z(r) sin(4θ)) e−i θ (6.3)

is a solution of the system
L−1v = c(r) e3iθ (6.4)

where L−1 is the linearized operator of the Ginzburg-Landau equation around u−0 = U(r)e−iθ.
Remark 6.1.3. In terms of L−1, the conjugate linearized operator of L−1, we have that

w := x(r) cos(4θ) + i z(r) sin(4θ) =

(
x+ z

2

)
e4iθ +

(
x− z

2

)
e−4iθ (6.5)

is a solution of the system
L−1w = c(r) e4iθ (6.6)

47



6.2 Asymptotic behavior of solutions of the homogeneous
system

In this section, we study the asymptotic behavior of solutions of the homogeneous version of the
system defined in (6.1): 

x′′ +
1

r
x′ − 17

r2
x+ (1− 3U2)x+

8

r2
z = 0

z′′ +
1

r
z′ − 17

r2
z + (1− U2)z +

8

r2
x = 0

(6.7)

These ordinary differential equations are second order and the functions x and z are real valued,
hence the space of solutions of (6.7) is a 4-dimensional real vector space.
Letting a = (x+ z)/2, b = (x− z)/2, we consider the system for (a, b)

a′′ +
1

r
a′ − 9

r2
a+ (1− 2U2) a− U2 b = 0

b′′ +
1

r
b′ − 25

r2
b+ (1− 2U2) b− U2 a = 0

(6.8)

We will give a complete description of two solution bases for the system (6.7), one base being defined
near 0, and another base being defined near +∞.

6.2.1 The possible behaviours at zero

Theorem 6.2.1. We have a base of four solutions (a, b) of (6.8), with the following behaviors at 0.

1. There exist 2 linearly independent solutions that are bounded near at 0,

(a1(r), b1(r)) ∼0 (O(r9), r5), (a3(r), b3(r)) ∼0 (r3,O(r7))

2. There exist 2 linearly independent solutions that blow up at 0,

(a2(r), b2(r)) ∼0 (O(r2θ(r)), r−5), (a4(r), b4(r)) ∼0 (r−3,O(r2θ̃(r)))

where

θ(r) =
−r + r−3

4
and θ̃(r) =

−r3 + r−1

4

First we explain the idea of the proof. We can rewrite the system (6.8) as
a′′ +

1

r
a′ − 9

r2
a = U2 b− (1− 2U2) a

b′′ +
1

r
b′ − 25

r2
b = U2 a− (1− 2U2) b

(6.9)

We use a constructive method, similar to the proof of the Banach fixed point Theorem. We define a
fixed point problem of the form (a, b) = T (a, b). For this purpose, we explain the reduction of order
method:
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Remark 6.2.2. (Reduction of order method for non-homogeneous linear second-order
equation) Given the general non-homogeneous second order equation

y′′ + c1(r) y′ + c2(r) y = g(r) (6.10)

and a single solution ϕ(r) of the homogeneous equation [g(r) = 0], then we can try a solution of
(6.10) in the form y(r) = ϕ(r)v(r), where v(r) is an arbitrary function.
If we replace this ansatz in (6.10), we get the following first-order equation (reduction of order of
second-order equation) for v′:

d

dr
(µ(r)v′(r)) = ϕ(r)g(r)e

∫
c1(r) dr (6.11)

where the integrating factor is µ(r) = ϕ(r)2 e
∫
c1(r) dr.

After integrating the last equation, v′(r) is found, containing one constant of integration. Then,
integrate v′(r) to find the full solution of the equation (6.10), exhibiting two constants of integration
as it should:

y(r) = ϕ(r) v(r)

In our case, we work with the non-homogeneous linear second-order system (6.8) of two variables
a = a(r) and b = b(r), where we apply the remark 6.2.2 to each equation of the system.
Note that the solutions of the homogeneous to the first equation of the system are φ1(r) = r3 and
φ2(r) = r−3, and for the second equation are φ1(r) = r5 and φ2(r) = r−5.
Thus, if we are looking for solutions a and b that are bounded at 0, we must use the respective
homogeneous solutions that are bounded at 0. Hence, a = r3v1(r) and b = r5v2(r), with the
following equations (note that e

∫
1
r

dr = r):

d

dr
((r3)2r v′1(r)) = r4[U2 b− (1− 2U2) a],

d

dr
((r5)2r v′2(r)) = r6[U2 b− (1− 2U2) a]

After integrating between 0 and t, and after integrating between 0 and r, we have
v1(r) = v1(0) +

∫ r

0
t−7

∫ t

0
s4 [U2(s) b(s)− (1− 2U2(s)) a(s)] ds dt,

v2(r) = v2(0) +

∫ r

0
t−11

∫ t

0
s6 [U2(s) a(s)− (1− 2U2(s)) b(s)] ds dt

If we denote α := v1(0) and β := v2(0), and we replace the previous expressions in a = r3v1(r) and
b = r5v2(r), we have the following integral system:


a = α r3 + r3

∫ r

0
t−7

∫ t

0
s4 [U2(s) b(s)− (1− 2U2(s)) a(s)] ds dt,

b = β r5 + r5

∫ r

0
t−11

∫ t

0
s6 [U2(s) a(s)− (1− 2U2(s)) b(s)] ds dt

(6.12)

where (α, β) ∈ R2 are parameters.

Analogously, if we are looking for solutions a and b that blow up at 0, we must use the respective
homogeneous solutions that blow up at 0. Hence, a = r−3v1(r) and b = r−5v2(r) and following the
same procedure as in the bounded case, we have the following integral system:
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
a = α r−3 + r−3

∫ r

0
t5
∫ t

0
s−2 [U2(s) b(s)− (1− 2U2(s)) a(s)] dsdt,

b = β r−5 + r−5

∫ r

0
t9
∫ t

0
s−4 [U2(s) a(s)− (1− 2U2(s)) b(s)] ds dt

(6.13)

where (α, β) ∈ R2 are parameters.

The solution (a1, b1)

Proposition 6.2.3. [41, 9, 10] There exists a solution (a1, b1) of (6.8) such that, there exists some
real number R and C verifying

∀ r ≤ R, |a1(r) r−2|+ |b1(r)− r5| ≤ C r7 (6.14)

∀ r < R, |a′1(r) r−2|+ |b′1(r)− 5 r4| ≤ C r6 (6.15)

Proof. Let us consider the integral system (6.12) with (α, β) = (1, 0), then we consider (a1, b1)
solution of the following integral system:

a = r3 + r3

∫ r

0
t−7

∫ t

0
s4 [U2(s) b(s)− (1− 2U2(s)) a(s)] dsdt,

b = r5

∫ r

0
t−11

∫ t

0
s6 [U2(s) a(s)− (1− 2U2(s)) b(s)] dsdt

(6.16)

Let us denote by T1(a, b) the right-hand side of (6.16), we define the maps η1(r) = r7 and η2(r) = r5,
and we define two sequences {

α0 = 0, β0 = η2

(αk+1, βk+1) = T1(αk, βk)
(6.17)

We prove that for all 0 < r < 1, we have

|αk+1 − αk|(r) ≤ C η1(r) r2 (‖η−1
1 (αk − αk−1)‖L∞([0,r]) + ‖η−1

2 (βk − βk−1)‖L∞([0,r])) (6.18)

|βk+1 − βk|(r) ≤ C η2(r) r2 (‖η−1
1 (αk − αk−1)‖L∞([0,r]) + ‖η−1

2 (βk − βk−1)‖L∞([0,r])) (6.19)

and
|α1 − α0|(r) ≤ C r2 η1(r), |β1 − β0|(r) ≤ C r2 η2(r) (6.20)

then it follows

‖η−1
1 (αk+1 − αk)‖L∞([0,r]) + ‖η−1

2 (βk+1 − βk)‖L∞([0,r])

≤ (Cr)2k(‖η−1
1 (α1 − α0)‖L∞([0,r]) + ‖η−1

2 (β1 − β0)‖L∞([0,r]))

Thus, if we choose R such that CR < 1, we can define,

for all 0 < r < R, a1(r) = α0 +

∞∑
k=0

(αk − αk−1), b1(r) = β0 +

∞∑
k=0

(βk − βk−1) (6.21)

Then, we have (a1, b1) = T1(a1, b1) and the continuity of (a1(r), b1(r)) for r ∈ (0, R] follows from the
continuity of (αk, βk) for all k (this will be proved below, together with the estimates (6.18), (6.19)
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and (6.20)) and from the uniform convergence of the sums in (0, R]. The extension of this solution
in (0,+∞) follows from the ODE theory.

The continuity of (αk, βk) for all k follows by induction, this is, for k ≥ 1 assuming that αk−αk−1

and βk − βk−1 are continuous in (0, R], and the use of the estimates (6.18), (6.19), it gives us the
continuity of αk+1 − αk and βk+1 − βk in (0, R].

Then, it only remains to prove the estimates (6.18) and (6.19), and also the estimates in (6.20).
To prove the first, we note that for 0 < t ≤ r, we have∫ t

0
s4
[
U2(s) |βk − βk−1|+ |1− 2U2(s)| |αk − αk−1|

]
ds

≤M ‖η−1
2 (βk − βk−1)‖L∞([0,r])

∫ t

0
s4s2s5 ds+M ‖η−1

1 (αk − αk−1)‖L∞([0,r])

∫ t

0
s4s7 ds

= M (‖η−1
1 (αk − αk−1)‖L∞([0,r]) + ‖η−1

2 (βk − βk−1)‖L∞([0,r]))

∫ t

0
s11 ds

where we have used the estimates U2(s) ≤Ms2 and |1− 2U2(s)| ≤M . Thus,

|αk+1 − αk| ≤M (‖η−1
1 (αk − αk−1)‖L∞([0,r]) + ‖η−1

2 (βk − βk−1)‖L∞([0,r])) r
3

∫ r

0
t−7

∫ t

0
s11 ds dt

Then, the desired estimate (6.18) remains to the estimation for all 0 < r < 1,

r3

∫ r

0
t−7

∫ t

0
s11 ds dt =

r9

6 · 12
≤ Cr9 = Cr2 η1(r)

Thus, we have (6.18) and also the estimate of |α1 − α0|.
Analogously for the second estimate (6.19), we have for 0 < t ≤ r∫ t

0
s6
[
U2(s) |αk − αk−1|+ |1− 2U2(s)| |βk − βk−1|

]
ds

≤M ‖η−1
1 (αk − αk−1)‖L∞([0,r])

∫ t

0
s6s2s7 ds+M ‖η−1

2 (βk − βk−1)‖L∞([0,r])

∫ t

0
s6s5 ds

= M ‖η−1
1 (αk − αk−1)‖L∞([0,r])

∫ t

0
s15 ds+M ‖η−1

2 (βk − βk−1)‖L∞([0,r])

∫ t

0
s11 ds

where we have used the estimates U2(s) ≤Ms2 and |1− 2U2(s)| ≤M . Thus,

|αk+1 − αk| ≤M ‖η−1
1 (αk − αk−1)‖L∞([0,r]) r

5

∫ r

0
t−11

∫ t

0
s15 ds dt

+M ‖η−1
2 (βk − βk−1)‖L∞([0,r]) r

5

∫ r

0
t−11

∫ t

0
s11 ds dt

Then, the desired estimate (6.19) remains to the estimates for all 0 < r < 1,

r5

∫ r

0
t−11

∫ t

0
s15 ds dt ≤ Cr11 = Cr2 r9 ≤ Cr2 η2(s)

r5

∫ r

0
t−11

∫ t

0
s11 ds dt =

r7

24
≤ Cr2 r5 = Cr2 η2(s)

Thus, we have (6.19) and also the estimate of |β1 − β0|.
Therefore, this proves the the existence of (a1, b1). �
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Similarly, following the same procedure, the following behaviors are observed for the rest of the
base solutions:

The solution (a2, b2)

Proposition 6.2.4. [41, 9, 10] There exists a solution (a2, b2) of (6.8) such that, there exists some
real number R and C verifying

∀ r ≤ R, |a2(r)| ≤ C(r2θ(r) + r3), |b2(r)− r−5| ≤ C r3 (6.22)

∀ r < R, |a′2(r)| ≤ C(rθ(r) + r2), |b′2(r) + 5 r−6| ≤ C r−6 (6.23)

The solution (a3, b3)

Proposition 6.2.5. [41, 9, 10] There exists a solution (a3, b3) of (6.8) such that, there exists some
real number R and C verifying

∀ r ≤ R, |a3(r)− r3| ≤ C r5, |b3(r)| ≤ C r7 (6.24)

∀ r < R, |a′3(r)− 3r2| ≤ C r4, |b′3(r)| ≤ C r6 (6.25)

The solution (a4, b4)

Proposition 6.2.6. [41, 9, 10] There exists a solution (a4, b4) of (6.8) such that, there exists some
real number R and C verifying

∀ r ≤ R, |a4(r)− r−3| ≤ C r−1, |b4(r)| ≤ C(r2θ̃ + r5) (6.26)

∀ r < R, |a′4(r) + 3 r−4| ≤ C r−2, |b′4(r)− 5 r4| ≤ C(rθ̃ + r4) (6.27)

6.2.2 The possible behaviours at infinity

In this subsection, we use the system (6.7) and we construct a base of four solutions (xj , zj) j =
1, . . . , 4 characterized by their behaviors at +∞.
Theorem 6.2.7. [41, 9, 10] We have a base of four solutions (x, z) of (6.7), such that

x1(r) = J+
4 (1 +O(r−2)) and z1(r) = J+

4 O(r−2)

x3(r) = O(r2) and z3(r) = r4(1 +O(r−2))

x2(r) = J−4 (1 +O(r−2)) and z2(r) = J−4 O(r−2)

x4(r) = O(r−6) and z4(r) = r−4(1 +O(r−2))

(6.28)

where J±4 is defined in lemma 6.2.8.
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We can rewrite the system (6.7) as
x′′ +

1

r
x′ − 14

r2
x− 2x = − 8

r2
z − 3

(
1− U2 − 1

r2

)
x

z′′ +
1

r
z′ − 16

r2
z = − 8

r2
x−

(
1− U2 − 1

r2

)
z

(6.29)

We use the same idea as in the bounded case. For some given R0 > 0, we define a fixed point
problem of the form (x, y) = T (x, y) for (x, y) defined on [R0,+∞).
For this purpose, we will need the following lemma, a result concerning the asymptotic behavior of
some Bessel functions at +∞, and we will also use as a homogeneous solution of first equation in
(6.29),
Lemma 6.2.8. [41] For all n ≥ 0, and all η > 0, there exist R0 > 0, Cη > cη > 0 and a function
J−n solution of

d2J

dr2
+

1

r

dJ

dr
− 1

r2
(n2 − 2)J − 2J = 0, in (R0,+∞) (6.30)

such that
cη r
−1/2−η e−

√
2r ≤ J−n ≤ Cη r−1/2+η e−

√
2r, ∀ r ≥ R0 (6.31)

For all n ≥ 0, there exist R0, C > c > 0 and a function J+
n , solution of (6.30) in (R0,+∞) such

that
c r−1/2 e

√
2r ≤ J+

n ≤ C r−1/2 e
√

2r, ∀ r ≥ R0 (6.32)

Proof. For a complete reference about Bessel functions, in particular, about asymptotic expansion
of modified Bessel functions, see [49, pages 202-203]. Also, for a alternative proof of this lemma, see
[41, pages 56-57]. �

The idea is the same as in the construction of base of solutions near r = 0, we apply the lemma
6.2.2 over each equation of the system, if we apply the lemma 6.2.8 to the first equation, then we
get that the homogeneous solutions for the first equation of (6.29) are φ1(r) = J+

4 and φ2(r) = J−4 ,
and for the second equation are φ1(r) = r−4 and φ2(r) = r4.

Using this, we are going to construct four solutions (xj , zj), j = 1, . . . , 4 of (6.7). The strategy
is almost the same for each solution. First, for some given R0 > 0, we consider E = BC(I,R) the
Banach space of all bounded continuous real-valued functions on the interval I = [R0,∞), endowed
with the sup-norm ‖·‖∞ defined by

‖x‖∞ = sup
r∈I
|x(r)| for x ∈ BC(I,R)

a fixed point problem of the form
(x, z) = T (x, z) (6.33)

defined for (x, z) ∈ C([R0,+∞))× C([R0,+∞)). Therefore for a given function ξ, we will prove the
existence of a fixed point (x, z) verifying, for some C > 0, an estimate of the form

|xj(r)− ξ(r)|+ |zj(r)| ≤ C ξ(r) r−2 if j = 1, 2, (6.34)

or |xj(r)|+ |zj(r)− ξ(r)| ≤ C ξ(r) r−2 if j = 3, 4. (6.35)
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in this way we will obtain the following

(xj(r), zj(r)) = (ξ(r) (1 +O(r−2)), ξ(r)O(r−2)) if j = 1, 2 (6.36)

(xj(r), zj(r)) = (ξ(r)O(r−2), ξ(r) (1 +O(r−2)) if j = 3, 4. (6.37)

We define by induction, for (x1, z1) and for (x2, z2)

(α0, β0) = (ξ, 0) and (αk+1, βk+1) = T (αk, βk). (6.38)

For (x3, z3) and for (x4, z4), we exchange the role of x and z, that gives

(α0, β0) = (0, ξ) and (αk+1, βk+1) = T (αk, βk). (6.39)

We denote η : r 7→ r, then we prove that there exists C > 0 independent of R0, such that for all
R0 ≥ 0 and all k ≥ 0,
for j = 1, 2

|(αk+1 − αk) ξ−1|(r) ≤ C

r2

(
‖(αk − αk−1) ξ−1‖∞ + ‖(βk − βk−1) ξ−1η2‖∞

)
(6.40)

and

r2|(βk+1 − βk) ξ−1|(r) ≤ C

r2

(
‖(αk − αk−1) ξ−1‖∞ + ‖(βk − βk−1) ξ−1η2‖∞

)
(6.41)

for j = 3, 4

r2|(αk+1 − αk) ξ−1|(r) ≤ C

r2

(
‖(αk − αk−1) ξ−1η2‖∞ + ‖(βk − βk−1) ξ−1‖∞

)
(6.42)

and

|(βk+1 − βk) ξ−1|(r) ≤ C

r2

(
‖(αk − αk−1) ξ−1η2‖∞ + ‖(βk − βk−1) ξ−1‖∞

)
(6.43)

Then, we define

x(r) = α0(r) +
∑
k≥0

(αk+1 − αk)(r) and z(r) = β0(r) +
∑
k≥0

(βk+1 − βk)(r) (6.44)

Since C is independent of R0, we choose R0 > 0 such that (CR−2
0 ) < 1, the sums ξ−1x(r) and

ξ−1η2z(r) ( or ξ−1η2x(r) and ξ−1z(r)) converge (uniformly) in E.

We will need the following estimates
Lemma 6.2.9. Let α ∈ R and β > 0 be given. Then∫ +∞

t
sα e−βs ds ≤ 2

β
tα e−βt ∀ t ≥ 2α

β
(6.45)

and ∫ t

R
sα eβs ds ≤ 2

β
tα eβt t ≥ R ≥ −2α

β
(6.46)
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The fastest blow-up at +∞: the solution (x1, z1)

Proposition 6.2.10. [41, 9, 10] There exists a solution (x1, z1) of (6.7), such that there exists C
and R0 > 0 such that for all r > R0

|x1(r)− J+
4 (r)|+ |z1(r)| ≤ CJ+

4 (r) r−2 (6.47)

|x′1(r)− (J+
4 )′(r)| ≤ CJ+

4 (r) r−3, |z′1(r)| ≤ CJ+
4 (r) r−4 (6.48)

Proof. Let R0 > 0 be given. Let us consider the following fixed point problem (x, z) = T (x, z)
x = J+

4 + J+
4

∫ r

+∞
(J+

4 )−2t−1

∫ t

R0

sJ+
4

(
− 8

s2
z − 3

(
1− U2 − 1

s2

)
x

)
ds dt

z = r4

∫ r

R0

t−9

∫ t

R0

s5

(
− 8

s2
x−

(
1− U2 − 1

s2

)
z

)
ds dt

(6.49)

with x, z ∈ C([R0,+∞),R).

Let ξ = J+
4 . We define (αk, βk) by

(α0, β0) = (ξ, 0) and (αk+1, βk+1) = T (αk, βk) Repeat eq (6.38)

First, we prove that, for R0 large enough, if

((αk − αk−1)(J+
4 )−1, (βk − βk−1)(J+

4 )−1η2) ∈ E × E (6.50)

then
((αk+1 − αk)(J+

4 )−1, (βk+1 − βk)(J+
4 )−1η2) ∈ E × E (6.51)

where we have denoted by η : r 7→ r. Therefore, we suppose that (6.50) is true, to show that (6.50)
is true. We begin noting the following

|(αk+1 − αk)(r)| ≤ J+
4

∫ r

+∞
(J+

4 )−2t−1
∫ t

R0

s J+
4

(
8

s2
∣∣βk − βk−1∣∣(s) + 3

∣∣∣1− U2 − 1

s2

∣∣∣∣∣αk − αk−1
∣∣(s))dsdt

(6.52)

|(βk+1 − βk)(r)| ≤ r4

∫ r

R0

t−9

∫ t

R0

s5

(
8

s2

∣∣αk − αk−1

∣∣(s) +
∣∣∣1− U2 − 1

s2

∣∣∣∣∣βk − βk−1

∣∣(s)) dsdt

(6.53)
To prove that (αk+1 − αk)(J+

4 )−1 ∈ E, we write∫ t

R0

s J+
4

(
8

s2

∣∣βk − βk−1

∣∣(s) + 3
∣∣∣1− U2 − 1

s2

∣∣∣∣∣αk − αk−1

∣∣(s)) ds (6.54)

≤
∫ t

R0

s(J+
4 )2 8

s2
s−2 ds‖(J+

4 )−1η2(βk − βk−1)‖∞ +

∫ t

R0

s
M

s4
(J+

4 )2 ds‖(J+
4 )−1(αk − αk−1)‖∞

where we have used
∣∣∣1− U2 − 1

s2

∣∣∣ ≤ M

s4
for some constant M > 0.

Using that J+
4 (r) = O(e

√
2r/
√
r) (by (6.32)), also the inequalities (6.45) and (6.46), we get

that

(J+
4 )−2t−1

∫ t

R0

s J+
4

(
8

s2
(βk − βk−1)(s) + 3

(
1− U2 − 1

s2

)
(αk − αk−1)(s)

)
ds
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is integrable on [r,+∞), when R0 ≥ 6
2
√

2
, then (αk+1 − αk)(J+

4 )−1 is a bounded function
on [R0,+∞). Besides, by the Lebesgue dominated convergence theorem [12], we obtain that
(αk+1 − αk) is a continuous functions on [R0,+∞). It follows that, (αk+1 − αk)(J+

4 )−1 ∈ E.

∫ t

R0

s5

(
8

s2

∣∣αk − αk−1

∣∣(s) +
∣∣∣1− U2 − 1

s2

∣∣∣∣∣βk − βk−1

∣∣(s)) ds

≤
∫ t

R0

s5J+
4

(
1

s2
‖(J+

4 )−1(αk − αk−1)‖∞ +
M

s4
s−2‖(J+

4 )−1η2(βk − βk−1)‖∞
)

ds

We use (6.45) with α = 3 and for α = 1, and R0 ≥ 0, it follows that

t−9

∫ t

R0

s5

(
8

s2
(αk − αk−1)(s) +

(
1− U2 − 1

s2

)
(βk − βk−1)(s)

)
ds

is integrable in [R0, r), therefore (βk+1 − βk) is a bounded function, and by the Lebesgue
dominated convergence theorem, we obtain that (βk+1 − βk) is a continuous function. We
can conclude (6.51).

Now, we prove (6.40), we estimate, in view of (6.45) and for R0 ≥ 8
2
√

2

J+
4

∫ +∞

r

(J4
+)−2 1

t

∫ t

R0

s(J+
4 )2s−4 ds ds

≤ CJ+
4

∫ +∞

r

(J4
+)−2 1

t

2

2
√

2
t−4e2

√
2t dt ≤ CJ+

4

∫ +∞

r

2

2
√

2
t−4 dt ≤ Cr−3J+

4 (6.55)

This gives (6.40), with ξ = J+
4 , and this gives also

|α1 − α0|(r) ≤ Cr−3J+
4 (6.56)

Analogously, we prove (6.41), for this, we estimate, for R0 ≥ 15
√

2
2

r4

∫ r

R0

t−9

∫ t

R0

s5J
+
4

s4
ds dt ≤ r4

∫ r

R0

t−9

(
2√
2
t3/2e

√
2t

)
dt ≤ r4

∫ r

R0

2√
2
t−15/2e

√
2t dt ≤ Cr−3J+

4

This gives (6.41) and also gives

|β1 − β0|(r) ≤ Cr−3J+
4 (6.57)

By (6.40) and (6.41) give, for all k ≥ 1 and r > R0

(J+
4 )−1|αk+1 − αk|(r) + (J+

4 )−1r2|βk+1 − βk|(r)

≤ (CR−2
0 )k−1(‖(J+

4 )−1(α1 − α0)‖∞ + ‖(J+
4 )−1η2(β1 − β0)‖∞)

(6.58)

Thus, defining x1 and z1 as follows:

x1(r) = J+
4 (r) +

∑
k≥0

(αk+1 − αk)(r), z1(r) =
∑
k≥0

(βk+1 − βk)(r) (6.59)

We use the following characterization through the absolute convergence of Banach spaces
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Lemma 6.2.11. A normed space (E, ‖·‖E) is a Banach space if and only if, each absolutely
convergent series in E converges in E, that is∑

k≥0

‖vk‖E <∞ implies that
∑
k≥0

vk converges in E (6.60)

In our case, we have the Banach Space (E, ‖·‖∞), and by (6.51),(6.58) we have that

∀ k ≥ 0, (J+
4 )−1(αk+1 − αk) ∈ E, (J+

4 )−1η2(βk+1 − βk) ∈ E

‖(J+
4 )−1(αk+1 − αk)‖∞ ≤ (CR−2

0 )k−1(‖(J+
4 )−1(α1 − α0)‖∞ + ‖(J+

4 )−1η2(β1 − β0)‖∞)

‖(J+
4 )−1η2(βk+1 − βk)‖∞ ≤ (CR−2

0 )k−1(‖(J+
4 )−1(α1 − α0)‖∞ + ‖(J+

4 )−1η2(β1 − β0)‖∞)

Since C is independent of R0, we choose R0 > 0 such that (CR−2
0 ) < 1, the series∑

k≥0

‖(J+
4 )−1(αk+1 − αk)‖∞,

∑
k≥0

‖(J+
4 )−1η2(βk+1 − βk)‖∞

converge, then by lemma 6.2.11 we have that∑
k≥0

(J+
4 )−1(αk+1 − αk),

∑
k≥0

(J+
4 )−1(βk+1 − βk)

converges in E, therefore we have that x1 and z1 defined by (6.59) are continuous functions
on [R0,+∞). It is a direct calculation to verify that x1 and z1 are solutions of the integral
system (6.49). In consequence, (x1, z1) is a solution of (6.7).

In order to prove the behavior at +∞ for x1, we note that

|x1(r)− J+
4 | ≤

∑
k≥0

|αk+1 − αk|(r)

≤ |α1 − α0|(r) + J+
4

[∑
k≥1

(Cr−2
0 )k−1(‖(J+

4 )−1(α1 − α0)‖∞ + ‖(J+
4 )−1η2(β1 − β0)‖∞)

]

and by (6.56),(6.57) we obtain the behavior at +∞ for x1. A similar proof gives the desired
behavior of z1 at +∞. In consequence, (x1, z1) satisfies (6.47).

Now, we prove (6.48). For (x′1(r), z′1(r)), we note that

(α′k+1 − α′k)(r) = (J+
4 )′(J+

4 )−1(αk+1 − αk)(r)

+
(J+1

4 )−1

r

∫ r

R0

sJ+
4

(
− 8

s2
(βk − βk−1)− 3

(
1− U2 − 1

s2

)
(αk − αk−1)

)
ds.

Thus, using successively (6.46) and (6.58)
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(J+
4 )−1|α′k+1 − α′k|(r) ≤ C(J+

4 )−1|αk+1 − αk|(r)

+C r−2(‖(J+
4 )−1η2(βk − βk−1)‖∞ + ‖(J+

4 )−1(αk − αk−1)‖∞)

≤ C r−3(CR−3
0 )k−1(‖(J+

4 )−1(α1 − α0)‖∞ + ‖(J+
4 )−1(β1 − β0)‖∞)

(6.61)

This gives the convergence in E of∑
k≥1

(J+
4 )−1(α′k+1 − α′k)(r)

Besides, we have

|α′1(r)− α′0(r)|(J+
4 )−1 ≤ (J+

4 )−1|α1 − α0|(r) + C r−4 J+
4 ((J+

4 )′)−1 ≤ C r−3

and then we get the behaviour of x1 at +∞, (J+
4 )−1|x′1(r)− (J+

4 )′| ≤ C r−3.

�

Similarly, following the same procedure, the following behaviors are observed for the rest of the
base solutions:

The fastest decaying at +∞: the solution (x2, z2)

Proposition 6.2.12. [41, 9, 10] There exists a solution (x2, z2) of (6.7), such that there exists C
and R0 > 0 such that for all r > R0

|x2(r)− J−4 (r)|+ |z2(r)| ≤ CJ−4 (r) r−2 (6.62)

|x′2(r)− (J−4 )′(r)|+ |z′2(r)| ≤ CJ−4 (r) r−3. (6.63)

The intermediate blowing up behavior at +∞: the solution (x3, z3)

Proposition 6.2.13. [41, 9, 10] There exists a solution (x3, z3) of (6.7), such that there exists C
and R0 > 0 such that for all r > R0

|x3(r)|+ |z3(r)− r4| ≤ Cr2 (6.64)

|x′3(r)|+ |z′3(r)− 4r3| ≤ C r (6.65)

The intermediate vanishing behavior at +∞: the solution (x4, z4)

Proposition 6.2.14. [41, 9, 10] There exists a solution (x4, z4) of (6.7), such that there exists C
and R0 > 0 such that for all r > R0

|x4(r)|+ |z4(r)− r−4| ≤ C r−6 (6.66)

|x′4(r)|+ |z′4(r) + 4 r−5| ≤ Cr−7 (6.67)
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6.2.3 The homogeneous system does not admit globally bounded
solutions

Theorem 6.2.15. The homogeneous system (6.7) doesn’t admit globally bounded solutions in [0,+∞).

Proof. We use the quadratic form associated to linearized Ginzburg-Landau operator defined by:

Q(w) := − 1

4π

∫
R2

〈w,L−1w〉r dr dθ,

which is well-defined for all w ∈ H1(R2;C). Here, 〈f, g〉 = Re(fḡ).
In our case, we consider w, defined by

w := a(r) e4iθ + b(r) e−4iθ (6.68)

where a and b are real valued functions only depend on r ∈ (0,+∞). In this case, we simply have

Q(w) =

∫ +∞

0

(∣∣∣∣dadr

∣∣∣∣2 +

∣∣∣∣dbdr

∣∣∣∣2 +
25

r2
a2 +

9

r2
b2

)
r dr −

∫ +∞

0
(1− U2)(a2 + b2) r dr

+
1

2

∫ +∞

0
U2(a+ b)2 r dr.

and for ψ = ψ(r) complex-valued function, we have:

Q(ψ) =

∫ +∞

0

(∣∣∣∣dψdr
∣∣∣∣2 +

1

r2
|ψ|2

)
r dr −

∫ +∞

0
(1− U2)|ψ|2 r dr +

1

2

∫ +∞

0
U2|ψ + ψ̄|2 r dr

Now, for the function w := a(r) e4iθ + b(r) e−4iθ, defined before, we define the auxiliary function

w̃ := i (a2 + b2)1/2.

Using the Cauchy-Schwartz inequality we obtain(
d

dr
(a2 + b2)1/2

)2

≤
∣∣∣∣dadr

∣∣∣∣2 +

∣∣∣∣dbdr

∣∣∣∣2
Thus ∫ +∞

0

(
d

dr
(a2 + b2)1/2

)2

r dr ≤
∫ +∞

0

∣∣∣∣dadr

∣∣∣∣2 +

∣∣∣∣dbdr

∣∣∣∣2 r dr.

This inequality gives

Q(w)−Q(w̃) ≥
∫ +∞

0

(
24

r2
a2 +

8

r2
b2
)
r dr +

1

2

∫ +∞

0
(1− U2)(a+ b)2 r dr

This implies,
Q(w̃) ≤ Q(w) (6.69)

Let us assume that (x, z) is a globally bounded solution of the homogeneous system (6.7), by the
remark 6.1.3, we have that

w =

(
x+ z

2

)
e4iθ +

(
x− z

2

)
e−4iθ
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is a solution of the homogeneous system in R2

L−1w = 0

If we define a := (x + z)/2 and b := (x − z)/2, we have that (a, b) is a globally solution of the
homogeneous system (6.9).

Therefore, from theorems 6.2.1 and 6.2.7, if follows that that w ∈ H1(R2;C) and since L−1w = 0,
we obtain Q(w) = 0.

On the other hand, a result of del Pino, Felmer and Kowalczyk [18], asserts that

Q(w̃) ≥ 0

This, together with (6.69), gives

0 ≤ Q(w̃) ≤ Q(w) = 0

and thus Q(w̃) = Q(w) = 0.

In particular, it follows directly from the expression of Q(w) −Q(w̃) that a = b = 0, or equiva-
lently, x = z = 0. �

From the previous theorem, the following corollary can be deduced immediately
Corollary 6.2.15.1 (Uniqueness of globally bounded solutions of the inhomogeneous
system).
If there is a globally bounded solution to the system (6.1), it must be unique.

6.2.4 The fastest vanishing at zero is related with the fastest blow-
up at infinity

The following theorem connects the fastest vanishing at 0 and to the exponentially blowing up
behaviour at +∞ and the fastest decaying at +∞ to the fastest blowing-up behaviour at 0.
Theorem 6.2.16. [41, 9, 10] We have the following connections between the base of solutions at 0,
defined in Theorem 6.2.1 and the base of solutions at +∞ defined in Theorem 6.2.7

(i) Let (a1, b1) solution of 6.8 defined by (a1, b1) ∼0 (O(r9), r5). Then (a1, b1) blows up exponen-
tially at +∞ like (J+

4 , J
+
4 )/2.

(ii) Let (x2, z2) be the solution of 6.7 defined by (x2, z2) ∼+∞ (J−4 , J
−
4 ) Then (x2, z2) ∼0 C(o(r−5), r−5)

Proof. (i) First, we prove that (a1, b1) blows up exponentially at +∞. We define x = a1 + b1 and
z = a1 − b1. Then by the Theorem 6.2.1, a1(r) = O(r9) and b1(r) = r5, since the behavior of r5

dominates over the behaviour of r9 near r = 0, then we have

x(r) = a1(r) + b1(r) ∼ r5 and z(r) = a1(r)− b1(r) ∼ −r5 near r = 0.

Now, let us prove that
x > 0, and z < 0 for r > 0. (6.70)
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Observe that those inequalities are already true for r small, near 0. Then, we proceed to prove
(6.70) by contradiction.Let us suppose that (6.70) is not true, then there would exists R0 > 0 such
that

x(r) > 0 ∀ r ∈ (0, R0), x(R0) = 0 and
dx

dr
(R0) ≤ 0 , (6.71)

and
z(r) < 0 ∀ r ∈ (0, R0), z(R0) = 0 and

dz

dr
(R0) ≥ 0 , (6.72)

Taking the first equation of the system (6.7) with the equation for U , (6.2), we get the following
system for all r > 0, 

x′′ +
1

r
x′ − 17

r2
x+

8

r2
z − 2U2x = −(1− U2)x

U ′′ +
1

r
U ′ − 1

r2
U = −U(1− U2)

(6.73)

Multiplying the first equation of (6.73) by r U and the second equation of (6.73) by −r x, and noting

that
d2•
dr2

+
1

r

d•
dr

=
1

r

d

dr
(r •)


U

d

dr

(
r x′
)
− 17

r
xU +

8

r
z U − 2 r U2 x = −r U(1− U2)x

−x d

dr

(
r U ′

)
+
xU

r
= −r U(1− U2)x

(6.74)

Adding both equations and integrating between 0 and r, we get∫ r

0

(
U

d

ds
(s x′)− x d

ds
(sU ′)

)
ds+

∫ r

0

(
−16

s
xU +

8

s
z U

)
ds− 2

∫ r

0
sU3 x ds = 0 (6.75)

An integration by parts, gives us the following equality∫ r

0

(
U

d

ds
(s x′)− x d

ds
(sU ′)

)
ds = [s x′U ]|r0 −

∫ r

0
U ′ s x′ ds + [−x sU ′]|r0 +

∫ r

0
U ′s x′ ds

= [s x′U − sU ′x]|r0

replacing this equality in (6.75), we get

r[x′ U − U ′ x] +

∫ r

0

(
−16

s
xU +

8

s
z U

)
ds− 2

∫ r

0
sU3 x ds = 0 (6.76)

then noting
−16

s
xU +

8

s
z U ≤ 0 for all 0 < s ≤ r < R0, we obtain

∀ r ∈ (0, R0],
dx

dr
U − dU

dr
x ≥ 2

r

∫ r

0
sU3 x ds (6.77)

evaluating (6.77) at r = R0 and using the fact that U > 0, we obtain

0 ≥ dx

dr
(R0)U(R0) ≥ 2

R0

∫ R0

0
sU3(s)x(s) ds > 0
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which is a contradiction. The second case can be treated similarly, combining the second equation
of the system (6.7) with the equation for U , (6.2), we get

r[z′ U − U ′ z] +

∫ r

0

(
−16

s
z U ds+

8

s
xU

)
ds = 0 (6.78)

and consequently

∀ r ∈ (0, R0],
dz

dr
U − dU

dr
z ≤ 16

r

∫ r

0

1

s
z U ds (6.79)

evaluating (6.79) at r = R0 and using the fact that U > 0, we obtain

0 ≤ dz

dr
(R0)U(R0) ≤ 16

R0

∫ R0

0

z(s)U(s)

s
ds < 0

which is the another contradiction. Therefore the proof of (6.70) is complete.
Now that we have proved x > 0 and z < 0 for r > 0, we may use (6.76) together with the fact that

r[x′U − U ′x] = r U2 d

dr

( x
U

)
to obtain

∀ r > 0, r U2 d

dr

( x
U

)
≥ 2

∫ r

0
sU3 x ds (6.80)

and analogously

∀ r > 0, r U2 d

dr

( z
U

)
≤ 16

∫ r

0

zU

s
ds (6.81)

thus if follows x is increasing and z decreasing for all r > 0.

Now, we have prove that the behaviour of x and z in +∞ are exponential. First, we will give the
details for the behaviour of x. So, suppose that x has increasing polynomial behaviour. We know
that (6.80) is valid for all r > 0, differentiating this inequality with respect to r, we have

U x′′ +
1

r
U x′ +

(
−U

′

r
− U ′′ − 2U3

)
x ≥ 0

Using the fact that −U ′′ − U ′

r
= − 1

r2
U + U(1− U2) and U > 0 for all r > 0, we can get

x′′ +
1

r
x′ +

(
1− 1

r2
− 3U2

)
x ≥ 0

and noting that near r = ∞,
(

1− 1

r2
− 3U2

)
= −2 +

2

r2
+ O

(
1

r4

)
, then we can choose r0 > 0

large enough such that x′′+
1

r
x′−C x ≥ 0 for all r > r0, where C > 0. So, we consider the following

ordinary differential inequality: {
x′′ +

1

r
x′ − C x ≥ 0, ∀ r > r0

x(r0) > 0
(6.82)

Now, we consider x̃(r) = A eλ+ r + B eλ− r, where λ± =
−1±

√
1 + 4Cr2

0

2 r0
are the roots of the

polynomial p(λ) = λ2 + λ
r0
− C, therefore for A,B ≥ 0 and r > r0 we get

x̃ ′′ +
1

r
x̃ ′ − C x̃ ≤ x̃ ′′ +

1

r0
x̃ ′ − C x̃ = A eλ+ rp(λ+) +B eλ− rp(λ−) = 0
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Therefore, x̃ is a super solution of the differential inequality (6.82), thus for w(r) := x̃(r) − x(r) it
follows

w′′ +
1

r
w′ − C w ≤ 0, for all r > r0 (6.83)

Note that, we can choose B > 0 such that w(r0) = A eλ+ r0 + B eλ− r0 − x(r0) > 0, then we affirm
that w(r) ≥ 0 for all r > r0, otherwise if exists r∗ > r0 such that w(r∗) < 0, due to the fact

that lim
r→∞

x(r)

eλ+ r
= 0 (x have polynomial increasing behaviour), therefore exists r1 > r∗ such that

w(r) > 0 ∀ r > r1, then, without loss of generality we can also suppose that w in r∗ is a local
minimum, thus exists r∗ > r0 such that w(r∗) > 0, w′(r∗) = 0 and w′′(r∗) ≥ 0, then it follows

w′′(r∗) +
1

r
w′(r∗)− C w(r∗) > 0

contradicting (6.83). Thus w(r) ≥ 0 for all r ≥ r0, this implies

∀A > 0, w(r) = A eλ+ r +B eλ− r − x(r) ≥ 0, for all r > r0

Finally, taking A→ 0+, we obtain x(r) ≤ B eλ− r for all r > r0 and since λ− < 0, we have that x(r)
has exponential decreasing behavior for r > r0, but this is not compatible with the fact that x(r)
has increasing behaviour for r > 0.
Then, x in +∞, cannot have increasing polynomial behaviour. Analogously we have the same result
for z. Finally, by the Theorem 6.2.7, we identify the behavior of (x, z) at +∞. Then, x and −z have
an exponentially increasing behaviour at +∞.

(ii) See the proof in [10, Theorem 1.2] �

6.3 Bounded solutions of the inhomogeneous system

In this section, we study the existence of bounded global solutions in (0,+∞) of
x′′ +

1

r
x′ − 17

r2
x+ (1− 3U2)x+

8

r2
z = c (r)

z′′ +
1

r
z′ − 17

r2
z + (1− U2)z +

8

r2
x = c (r)

Repeat equation (6.1)

using the results obtained for the homogeneous system.
For this purpose, we make the transformation a =

x+ z

2
, b =

x− z
2

. Thus we get


a′′ +

1

r
a′ − 9

r2
a+ (1− 2U2) a− U2 b = c(r)

b′′ +
1

r
b′ − 25

r2
b+ (1− 2U2) b− U2 a = 0

(6.84)

we can rewrite (6.84) as the following first order ode:

x′(r) = A(r)x(r) + f(r) with x(r) = (a, r a′, b, r b′)t (6.85)
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where

A(r) =


0 1

r 0 0
−r(1− 2U2) + 9

r 0 r U2 0
0 0 0 1

r
r U2 0 −r(1− 2U2) + 25

r 0

 , f(r) =


0

r c(r)
0
0


First, using the results obtained in the theorems 6.2.1 and 6.2.7, we construct a fundamental solution
of

X ′(r) = A(r)X(r) (6.86)

where X(r) is a function with values in M4 (the set of 4× 4 with real entries) whose columns form
a basis space of solution of homogeneous version of equation (6.85), with the following asymptotic
behavior at 0 and at +∞

W (r) =


a1 a3 a2 a4

r a′1 r a′3 r a′2 r a′4
b1 b3 b2 b4
r b′1 r b′3 r b′2 r b′4

 ∼ 0


O(r9) O(r−1) r3 r−3

O(r9) O(r−1) 3r3 −3r−3

r5 r−5 O(r7) O(r)
5r5 −5r−5 O(r7) O(r)



W (r) =


x1 + z1 x2 + z2 x3 + z3 x4 + z4

r (x′1 + z′1) r (x′2 + z′2) r (x′3 + z′3) r (x′4 + z′4)
x1 − z1 x2 − z2 x3 − z3 x4 − z4

r (x′1 − z′1) r (x′2 − z′2) r (x′3 − z′3) r (x′4 − z′4)

 ∼∞


J+
4 J−4 r4 r−4

r
√

2 J+
4 −r

√
2 J−4 4r4 −4r−4

J+
4 J−4 −r4 −r−4

r
√

2 J+
4 −r

√
2 J−4 −4r4 4r−4


Moreover, since W (r) is a fundamental solution of (6.86), it follows by Liouville’s formula

detW (r) = detW (r0) exp

∫ r

r0

trA(s) ds = detW (r0)

where r, r0 ∈ (0,+∞) and we have used that trA(s) = 0 ∀ s ∈ (0,+∞). Then using the behaviour
of W (r) at +∞, when r0 → +∞, we obtain

detW (r) = det


J+

4 J−4 r4 r−4

r
√

2 J+
4 −r

√
2 J−4 4r4 −4r−4

J+
4 J−4 −r4 −r−4

r
√

2 J+
4 −r

√
2 J−4 −4r4 4r−4

 =
1

r0
det


1 1 1 1

r0

√
2 −r0

√
2 4 −4

1 1 −1 −1

r0

√
2 −r0

√
2 −4 4

 = 16·4
√

2

We have by the method of variation of parameters, that a particular solution of (6.85) is given
by

x(r) = W (r)

∫ r

0
W (s)−1f(s) ds (6.87)

We will show that this particular solution is bounded, analyzing its asymptotic behavior at 0
and at infinity, but first note that W (s)−1f(s) = s c(s) C2(s), where we have named C2 the second
column of W (s)−1. We have at 0 and at +∞

C2(s) ∼ 0


O(s−1)
O(s9)
O(s−3)
O(s3)

 , C2(s) ∼+∞
1

64
√

2


16 J−4
−16 J+

4

4
√

2 s−4

−4
√

2 s4

 (6.88)
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where −64
√

2 is the determinant of W (s), and by corollary (6.1.1.1), we have at 0 and at +∞

s c(s) ∼ 0 −κ
(
κ3

3
+

1

24

)
s4, s c(s) ∼+∞ −3 s−1

then we have at 0

x(r) ∼ 0 W (r)

∫ r

0
s c(s) C2(s) ds = W (r)

∫
r

0


O(s3)
O(s13)
O(s)
O(s7)

 ds = W (r)


O(r4)
O(r14)
O(r2)
O(r8)

 (6.89)

=


O(r9) O(r−1) r3 r−3

O(r9) O(r−1) 3r3 −3r−3

r5 r−5 O(r7) O(r)
5r5 −5r−5 O(r7) O(r)



O(r4)
O(r14)
O(r2)
O(r8)

 =


O(r5)
O(r5)
O(r9)
O(r9)

 (6.90)

and for the analysis of X at ∞, we only analyze the integrating from R0 > 0 big enough such
that we have the behavior asymptotic at +∞ as stated in the Theorem 6.2.7:

x(r) =W (r)

∫ r

0
s c(s) C2(s) ds ∼∞ W (r)

∫ r

R0

−3 s−1 1

64
√

2


16 J−4
−16 J+

4√
2 s−4

−4
√

2 s4

 ds ∼∞ W (r)


O(r−1J−4 )
O(r−1J+

4 )
O(r−4)
O(r4)



=


J+

4 J−4 r4 r−4

r
√

2 J+
4 −r

√
2 J−4 4r4 −4r−4

J+
4 J−4 −r4 −r−4

r
√

2 J+
4 −r

√
2 J−4 −4r4 4r−4



O(r−1J−4 )
O(r−1J+

4 )
O(r−4)
O(r4)

 =


O(1 + r−2)
O(r−1)

O(−1 + r−2)
O(r−1)



Then, we can conclude the following result
Theorem 6.3.1 (Linear approximation of negative anisotropic vortex solution in R2).
We have that v = a(r) e3iθ + b(r) e−5iθ is the solution of the system

L−1v = −Bu−0

where L−1 is the linearized operator of the Ginzburg-Landau equation around u−0 = U(r) e−i θ defined
in the plane R2. Besides, (r, θ) are the polar coordinates in R2, and (a, b) are the unique bounded
solution of the system (6.84) with the following asymptotic behavior at 0 and +∞

(a(r), b(r)) ∼0 (O(r5),O(r9)), (a(r), b(r)) ∼∞ (O(1 + r−2)),O(−1 + r−2))

Moreover, we have that

u(r, θ) = U(r) e−i θ + δ a(r) e3iθ + δ b(r) e−5iθ +O(δ2) (6.91)

is a linear approximation in δ, of the anisotropic negative vortex solution of the anisotropic Ginzburg-
Landau equation defined in the plane R2

∆u+ u(1− |u|2) + δ ∂ηηū = 0, u : R2 → C (6.92)

where ∂η = ∂x + i∂y.
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Remark 6.3.2. We note that, the form of solution (6.91), is compatible with invariance of the
anisotropic Ginzburg-Landau equation (6.92) in the subspace

W−(R2) =

{
u =

∑
k∈Z

a4k−1(r)ei(4k−1)θ on R2, a4k−1(r) ∈ C, ∀ r ∈ [0,+∞)

}

where we have extended the definition of invariant subspace A.0.1 to the plane R2.

Remark 6.3.3. We can conjecture that

(a(r), b(r)) ∼∞ (O(r−2),O(r−2)) (6.93)

this due to the following work in progress:
Theorem 6.3.4. [46, 47] Let u−δ,R ∈ XR := {u ∈ H1(BR;C) : u = e−iθ on ∂BR} the minimizer of
the following problem

min
u∈XR

Eδ,R(u)

where
Eδ,R(u) =

∫
BR

1

2
|∇u|2 +

1

4
(1− |u|2)2 +

δ

2
Re{(∂ηū)2} dS

We have that, exists C > 0 independent of R, such that for all R > 0∫
R2

(1− |u−δ,R|
2)2 dS ≤ C

Therefore, for u−δ = lim
R→∞

u−δ,R in C1
loc(R2;C), we get∫

R2

(1− |u−δ |
2)2 dS <∞

Moreover, based on the arguments of Brezis, Merle and Riviere [13], we have

lim
|x|→∞

|u−δ (x)| = 1

whence the conjecture (6.93) follows.
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Conclusion and future work

In this thesis we have shown:

(i) The existence, via perturbative approach, of anisotropic vortices of both positive and negative
degree of the Ginzburg-Landau anisotropic equation. Furthermore, it was proven that they
are stable solutions, because their associated quadratic form, is positive definite for small
perturbations.

(ii) Using the finite element method and theory, the anisotropic energy diagram of anisotropic
vortices of positive and negative degree, is shown qualitatively and quantitatively, in the
context of nematic liquid crystals.

(iii) Is proposed an extension to the system of differential equations from the Fourier decomposition
of the negative anisotropic vortex, found via perturbative approach, and thus, we have the
existence of a linear approximation in δ of negative degree anisotropic vortex in the plane.

It is proposed in the future to work in the following directions:

1. Study the uniqueness of the vortex-type anisotropic solutions from the previous results. This
can be done by studying numerically, and because the solution is unique in the closed ball
BK ⊆ H2(BR;C) ∩H1

0 (BR;C) with K = 2‖Bu±0 ‖‖L−1‖.

2. Using the above results, investigate the dynamics of the vortex in the anisotropic case, in
particular a mathematical investigation of the anisotropic vortex interaction law.

3. To study the ode system equations from extending to the plane, in a functional framework of
Sobolev spaces with weights, in order to avoid explosive solutions at zero and at infinity.

4. The existence of forced anisotropic vortices, using the perturbative approach, developed in
this thesis.

5. Using the previous results, investigate the interaction in a vortex lattice, under the Ginzburg-
Landau anisotropic equation.
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Appendix A

Invariant function subspace of the
anisotropic Ginzburg-Landau equation

Definition A.0.1. Let W+,W− be the function subspaces defined by

W+ =

{
u =

∑
k∈Z

a4k+1(r)ei(4k+1)θ on BR, a4k+1(r) ∈ C, ∀ r ∈ [0, R]

}

W− =

{
u =

∑
k∈Z

a4k−1(r)ei(4k−1)θ on BR, a4k−1(r) ∈ C, ∀ r ∈ [0, R]

}
where BR is the disk of radius R and centered at 0 in R2. It is clear that W± is a subspace of
H1
g0(BR), where g0 = e±iθ.

In this section, we justify the invariance of the subspaces W±, where the invariant space means
that if u ∈ W± is smooth on BR, then ∆u + u (µ − |u|2) + δBu ∈ W±, here Bw := ∂ηηw with
∂η = ∂x + i ∂y .

We will only do the invariance of subspace W+, while the case for subspace W− is analogous.

The invariance proof of W+ is obtained directly from the following proposition
Proposition A.0.2. Assume u ∈W+ is smooth, then ∆u, Bu and (µ− |u|2)u are in W+.

Proof. Assume u ∈W is smooth on B. Then

u =
∑
k∈Z

a4k+1(r)ei(4k+1)θ (A.1)

a4k+1(r) = r|4k+1|ã4k+1(r2), ∀ k ∈ Z (A.2)

where ã4k+1 are smooth complex-valued functions. To prove proposition A.0.2, we need the following
lemma.

Lemma A.0.3. Fix k, l,m ∈ Z. Assume

u =r|4k+1|a(r2)ei(4k+1)θ,

v =r|4l+1|b(r2)ei(4l+1)θ, (A.3)

w =r4m+1c(r2)ei(4m+1)θ,

68



where a, b and c are smooth complex-valued functions. Then

∆u = r|4k+1|a0(r2)ei(4k+1)θ, (A.4)

Bu = r|4k−1|a1(r2)ei(4k−1)θ + r|4k+3|a2(r2)ei(4k+3)θ, (A.5)

uv̄w = r|1+4(k−l+m)|a3(r2)e[1+4(k−l+m)]θ, (A.6)

where aj are smooth complex-valued functions.

By (A.1),(A.2) and A.0.3, we have

∆u =∆

(∑
k∈Z

r|4k+1|ã4k+1(r2)ei(4k+1)θ

)
=
∑
k∈Z

r|4k+1|ã0
4k+1(r2)ei(4k+1)θ from (A.4)

Bu =B

(∑
k∈Z

r|4k+1|ã4k+1(r2)ei(4k+1)θ

)
=
∑
k∈Z

r|4k−1|ã1
4k+1(r2)ei(4k−1)θ + r|4k+3|ã2

4k+1(r2)ei(4k+3)θ from (A.5)

|u|2u =uūu

=
∑
k∈Z

∑
l∈Z

∑
m∈Z

[(r|4k+1|ã4k+1(r2)ei(4k+1)θ)(r|4l+1|ã4l+1(r2)ei(4l+1)θ)(r|4m+1|ã4m+1(r2)ei(4m+1)θ)]

=
∑
k∈Z

∑
l∈Z

∑
m∈Z

r|1+4(k−l+m)|ã3
k,l,m(r2)ei[1+4(k−l+m)]θ

where ãj4k+1 and ã3
k,l,m are smooth complex-valued functions. Thus we obtain that ∆u, Bu and

(µ− |u|2)u are in W+. Therefore, we complete the proof of proposition A.0.2 �

Proof. Now we prove the lemma A.0.3. Since ∆ =
∂

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂θ2
, we can check that

∆u =

{
[(16k + 8)a′(r2) + 4r2a′′(r2)]r4k+1ei(4k+1)θ if 4k + 1 > 0[
−16a′(r2) + 4r2a′′(r2)

]
r−4k−1ei(4k+1)θ if 4k + 1 < 0

Hence, we obtain (A.4).
From (A.3), we have

uv̄w = r|4k+1|+|4l+1|+|4m+1|a(r2)b(r2)c(r2)ei[1+4(k−l+m)θ. (A.7)

We may check in different cases that |4k+ 1|+ |4l+ 1|+ |4m+ 1| = |1 + 4(k− l+m)|+ 2n for some
integer n. Thus by (A.7), we obtain (A.6).
Now we want to prove (A.5). To prove this, we see that follows from the following lemma:

Lemma A.0.4. Fix k0 ∈ Z and |k0| ≥ 1. Assume u = r|k0|a(r2)eik0θ, where a is a smooth complex-
valued function. Then

Bu = r|k0−2|h(r2)ei(k0−2)θ + r|k0+2|H(r2)ei(k0+2)θ

where h,H are smooth complex-valued functions.

�
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Appendix B

Computation details of the quadratic
coefficient in energy expansion

In this appendix, we attach the detail of the numerical calculation of the quadratic coefficient, for a
different number of triangles.

n G(v, u0; 3)
50 -1.42607
80 -1.43028
100 -1.43126
150 -1.43212
160 -1.4322
170 -2.69327
180 -279.684
200 -1.790740

Table B.1: R = 3

n G(v, u0; 4)
50 -2.94084
80 -2.95169
90 -2.95269
100 -12.4559
110 -2.95395
150 -2.95498
170 -5.19764
180 0.481622
190 -2.95541
200 -3.48964
220 -3.3419

Table B.2: R = 4

n G(v, u0; 5)
50 -4.53966
70 -4.55619
100 -4.56162
150 -4.56387
160 -4.5641
170 -8.073
180 -8.2357
190 -4.56446
200 -4.56455
250 -4.56483

Table B.3: R = 5

70



n G(v, u0; 10)
50 -10.856
80 -10.9842
100 -11.0069
120 -11.0141
150 -11.0189
200 -11.0221
250 -11.0223
300 -11.0234
350 -11.0236
400 -13.465
500 -12.0818

Table B.4: R = 10

n G(v, u0; 15)
50 -14.8962
75 -15.0533
100 -15.1717
150 -15.208
200 -15.22
300 -30.1209
400 -21.1889
500 -17.7968
700 -15.2255

Table B.5: R = 15

n G(v, u0; 20)
50 -18.162
100 -18.1351
150 -18.2087
200 -18.2396
300 -18.2506
500 -23.1577
700 -18.2545

Table B.6: R = 20

n G(v, u0; 50)
100 -38.0204
150 -29.0261
200 -27.7348
250 -27.8612
300 -27.8787
400 -641.547
500 -272.866
700 -27.9452

Table B.7: R = 50

n G(v, u0; 100)
100 4057
200 -34.2108
300 -36.7717
400 57.6687
500 -3.33288
700 -35.225
800 -32.7028
1000 -35.2695

Table B.8: R = 100

n G(v, u0; 150)
100 -22.91
150 -14.3147
200 -521.225
180 2885.68
190 6.53451
210 -48.0069
220 -480.421
250 -41.3135
300 261.034
350 -13.8576
400 -82.146
450 313.27
500 -17334.4
600 -38.1544
700 -38.9488
800 -33.6625

Table B.9: R = 150
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