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BAYES-BASED ORBITAL PARAMETERS ESTIMATION IN TRIPLE HIERARCHICAL
STELLAR SYSTEMS

A hierarchical triple stellar system is viewed as two binary star systems combined, for esti-
mating its orbital parameters. This inference is very challenging technically because of the
large dimensions of the parameter space and the complex relationships between parameters
and the observations involved (astrometry and radial velocity).

This work proposes a new methodology for this estimation using a Bayesian MCMC-based
framework. In particular, graphical models are proposed for modelling the probabilistic rela-
tionship between parameters and observations in the context of isolated astrometry, isolated
radial velocity, and the joint case with astrometry and radial velocity as information sources.
They provide a novel way of performing the factorization of the joint distribution (of pa-
rameter and observations) in terms of conditional independent components (factors), so the
estimation can be performed in a two-stage process that combines different observations
sequentially.

A mathematical formalism to reduce the dimensionality in the state space for triple hier-
archical stellar systems in general is also provided.

Finally, this framework is tested on three well-studied benchmark cases of triple systems,
where the inner and outer orbital elements are determined, coupled with the mutual inclina-
tion of the orbits and the individual stellar masses. The results are consistent with previously
reported ones.
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BAYES-BASED ORBITAL PARAMETERS ESTIMATION IN TRIPLE HIERARCHICAL
STELLAR SYSTEMS

En la estimación de parámetros orbitales, un sistema estelar triple jerárquico puede ser visto
como dos sistemas binarios combinados. Este proceso de inferencia es muy desafiante, dada
la alta dimensionalidad del espacio de parámetros y las complejas relaciones entre éstos y las
observaciones involucradas (astrometría y velocidades radiales).

Este trabajo propone una nueva metodología para realizar esta estimación, usando un
framework bayesiano basado en MCMC. En particular, se proponen modelos gráficos para
modelar las relaciones probabilísticas entre parámetros y observaciones en el contexto de
sólo astrometría, sólo velocidades radiales, y el caso conjunto de astrometría y velocidades
radiales como fuentes de información. Estos proveen una manera novedosa de realizar la
factorización de la distribución conjunta (de parámetros y observaciones) en componentes
condicionales independientes (factores), y la estimación se realiza combinando diferentes tipos
de observaciones de manera secuencial.

También se plantea un formalismo matemático para reducir la dimensionalidad en el
espacio de estados para sistemas estelares triples jerárquicos en general.

Finalmente, este framework es testeado en tres casos conocidos de benchmark, donde los
elementos orbitales internos y externos están determinados, junto con la inclinación mutua
de las órbitas y las masas estelares individuales. Los resultados son consistentes con los
previamente reportados.
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Chapter 1

Introduction

In astronomy, the knowledge of stellar masses is really important to develop models related
to formation, structure and evolution of stars. In the particular case of multiple systems,
there is great interest in also determining the relative orbit orientation, because it provides
information about the formation and evolution of the stars and planets involved in the system
[Muterspaugh et al., 2010, Tokovinin and Latham, 2017].

The only direct method to calculate them is through the analysis of the motion of stars that
are bounded gravitationally and the computation of the parameters related to that movement
[Czekala et al., 2017, Mendez et al., 2017, Pourbaix, 1994]. In the case of triple systems
in particular, both visual and radial velocity data are required [Muterspaugh et al., 2010,
Tokovinin and Latham, 2017]; and visual-only orbits coupled with parallax measurements,
can be used to measure the total mass of the system.

As a Bayesian approach has not been explored for considering the combination of radial
velocity data and astrometry, this Thesis addresses the task of estimating the orbital parame-
ters in triple stellar systems by obtaining the conditional distribution over the full parameter
space. Generative models are proposed using graphical model tools that exploit the hierarchi-
cal approximation, and the distributions are computed adopting simulation-based schemes.
After computing them, the most likelihood solution of orbital parameters is obtained, as well
as confidence measures.

1.1 Hypotheses

This work focuses on the study of triple hierarchical stellar systems using astrometric and
spectroscopic measurements, and it aims at testing the following hypotheses:

1. Graphical model tools are a means to characterize the posterior probability density
function of orbital parameters in three different observational settings:

(a) Data sets with astrometric measurements of relative position between a primary
and a companion star.
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(b) Data sets containing radial velocity measurements.

(c) Data sets containing both kind of measurements.

2. The sample-based approximation of the probability density functions provided by Markov
Chain Monte Carlo can be used to calculate estimates such as expected value and max-
imum a posteriori, and those estimates lead to physically feasible orbits of the stellar
systems under study.

3. The availability of both astrometric and spectroscopic observations provide a estimation
of the individual stellar masses and the mutual inclination of the systems included in
the triple hierarchical approximation.

1.2 Objectives

1.2.1 Main objective

The main objective of this work is the implementation of a framework that analyses triple
hierarchical stellar systems using Bayesian processes. This framework gives as an output
an estimation of the orbital parameters in terms of sample-based approximations of the
probability density distribution. This approximation allows to compute the most likely orbital
parameters concerning the input data, and provides significant quantities as the stellar masses
involved. In addition, it has the potential to describe the full posterior distributions that can
be used to have indicators of the discrimination capacity that measurements have to estimate
orbital parameters.

1.2.2 Specific objectives

The specific objectives of this work are the following:

1. Formulate analytic expressions of the kinematic equations of hierarchical triple systems,
which describe the position and radial velocity of the inner and outer systems.

2. Design a Bayesian framework using graphical model tools. The following scenarios
must be considered:

(a) Using astrometric measurements alone,

(b) Using spectroscopic measurements alone,

(c) Using both astrometric and spectroscopic measurements.

3. Implementation of the algorithms associated to the aforementioned scenarios. This task
considers the design and implementation of several Markov Chain Monte Carlo rou-
tines to sample the posterior distribution formulated in the graphical model mentioned
before.

(a) Using astrometric measurements alone,
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(b) Using spectroscopic measurements alone,

(c) Using both astrometric and spectroscopic measurements.

4. Analyse Tokovinin and Latham [2017] and Tokovinin [2018a] data sets in order to test
the implemented algorithms. This aims to check the hypotheses mentioned in Section
1.1.

5. Brief analysis.

It is important to mention that this work is performed as a student member of the Informa-
tion and Decision Systems Laboratory1 and it is carried out in collaboration with Professors
René Méndez2, Jorge F. Silva3 and Marcos Orchard4. Also, it is funded by Fondecyt Project
1170854 - Topics on Information and Decision with Applications to Coding and Inverse Prob-
lems in Astronomy.

1.3 Structure
This document consists of six chapters, which are described as follows:

• Chapter 2 presents the State-of-the-Art regarding orbital parameters estimation in
hierarchical systems and using Bayesian tools.

• Chapter 3 shows the theoretical subjects used to accomplish the estimation modelling:
graphical models in Section 3.1, Markov Chain Monte Carlo in Section 3.2 and the
Gibbs Sampler in Section 3.3.

• Chapter 4 describes the observational model for triple hierarchical systems, along with
the probabilistic modelling and orbit calculation.

• Chapter 5 compares the obtained model to three well-studied systems selected from
Tokovinin [2018a], Tokovinin and Latham [2017], in different scenarios that serve as
benchmarks.

• Chapter 6 shows a brief discussion about the algorithm performance

• Finally, Chapter 7 presents the summary, conclusions and outlook; and Chapter 8
displays the future work.

The Appendices give full details about some relevant aspects of the methodology which are
described only succinctly in the main body of this Thesis.

1Electrical Engineering Department, Universidad de Chile
2Associated Professor, Astronomy Department, Universidad de Chile
3Associated Professor, Electrical Engineering Department, Universidad de Chile
4Associated Professor, Electrical Engineering Department, Universidad de Chile
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Chapter 2

State of the Art

This chapter presents a brief review of the state-of-the-art regarding fitting stellar orbits in
hierarchical triple systems and hierarchical systems in general, especially focusing on works
that consider a Bayesian approach. Due to the hierarchical approximation, Bayesian esti-
mation on binary systems is also covered. To get more detail about the hierarchical triple
systems structure, see Appendix A.

The only direct method to calculate the stellar masses is through the analysis of the mo-
tion of stars that are bounded gravitationally and the computation of the parameters related
to that movement [Czekala et al., 2017, Mendez et al., 2017, Pourbaix, 1994]. For this reason,
the problem of estimating orbital parameters in binaries has been widely studied in the liter-
ature, in particular with algorithms that involve a Bayesian methodology [eg: Blunt et al.,
2017, Ford, 2005, Lucy, 2014, 2018, Mendez et al., 2017, Sahlmann et al., 2013]. Bayesian pro-
cedures have a probabilistic nature, and their final objective is a precise approximation of the
conditional distribution of orbital parameter given the observations. Besides, it is important
to have an indicator expressing the confidence about the estimated observational parameters
after analyzing the star motion data, and the aforementioned distribution captures the un-
certainties and ll the information inferred from the data. On the other hand, Bayesian orbit
fitting could be useful to determine the optimal placement of future observations, and thus
reduce the uncertainty in the computed distributions [Blunt et al., 2017].

Moving to multiple systems, there is great interest in also determining the relative orbit
orientation, because it provides information about the formation and evolution of the stars
and planets involved in the system [Muterspaugh et al., 2010, Tokovinin and Latham, 2017].
In the case of triple systems in particular, in order to derive stellar masses, luminosisites, and
radii, along with determining the system’s coplanarity, both visual and RV data are required
[Muterspaugh et al., 2010, Tokovinin and Latham, 2017]. Nevertheless, visual-only orbits
coupled with parallax measurements, can be used to measure the total mass of the system.

The hierarchical approximation1 is in many cases useful, because it describes the whole
system as two binary systems interacting between themselves, so there is no need to resort
to numerical methods, because an analytic expression can be obtained. There are plenty

1For a definition of a hierarchical stellar system see Appendix A.
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of works that exploit this approximation and handle the estimation by disconnecting the
inner and the outer orbits. They treat each system as a binary case, where they perform
the estimation of parameters by the optimization a function of merit or a geometric based
procedure [eg: Docobo et al., 2008, Köhler et al., 2012, Tokovinin, 2018a].

In light of this, there are some works that combine the visual information with spectro-
scopic measurements.[Muterspaugh et al., 2010] combine both data set and minimize the
χ2 statistsic. [Czekala et al., 2017] determine the parameters using cross-correlation peaks
[Torres et al., 2002] and MCMC, combining the RV data with archival astrometry, and as-
sessing convergence using the Gelman-Rubin statistic [Gelman et al., 1992]. [Tokovinin and
Latham, 2017] propose to perform the estimation in consecutive sequential stages, alternating
between visual and spectroscopic data from the inner and outer systems, while minimizing
the χ2 statistic.

2.1 Contribution

However, it can be noted that a Bayesian approach has not been explored for considering
the combination of RV data and astrometry. Even though those methods have been widely
used in exoplanets research [e.g.: Ford and Gregory, 2006, Gregory, 2005, 2009, 2010, 2011,
Retired, 2010], they only considers RV measurements, and information related to several
orbital elements is present in both data sets [Lucy, 2018]. In this combined scenario the
problem of estimating the orbital parameters becomes more complex, since the dimensions
of the parameter space and the number of observation sources increases2, in addition to the
intricate relationships between them.

To cope with those challenges, the task of estimating the orbital parameters in triple hi-
erarchical stellar systems is addressed, by obtaining the conditional distribution over the full
parameter space, where visual and spectroscopic information is taken into account. Gener-
ative models that capture the distribution (probabilistic relationship) between parameters
and observations are proposed. To accomplish that, graphical model tools are employed to
model that probabilistic relationship considering the underlying dynamical model of triple
hierarchical stellar systems. These graphical models provide a novel way of performing the
factorization of the joint distribution (of parameter and observations) in terms of conditional
independent components (factors). Taking into account these factorizations of the joint
distribution, certain probabilistic relationships between parameters and observations get dis-
connected, and, as a result, the estimation of the posterior distribution can be performed in a
multiple-stage process [Jordan, 1998]. This process combines different sources of observations
sequentially to update the posterior distribution of parameters given the observations.

To compute the mentioned distributions, the well-known simulation-based scheme MCMC
[Robert and Casella, 2004] is adopted. It has been widely exploited to provide an empiri-
cal but precise approximation of the posterior distribution when the exact expression is
intractable [e.g.: Gamerman and Lopes, 2006, Liu, 2008]. In the present work a new MCMC-
based code is developed to compute the orbital configuration of a triple hierarchical stellar

2The astrometry can be obtained for the inner and outer systems, and the radial velocity measurements
from each one of the bodies involved.
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system, partially constructed upon the binary case described by [Mendez et al., 2017]. Af-
ter computing them, the most likelihood solution of orbital parameters (the MAP solution)
can be obtained, as well as confidence measured in terms of the variance of the posterior
distribution.

6



Chapter 3

Theoretical Framework

This chapter presents the main concepts that are necessary to understand the probabilistic
modelling in this thesis.

3.1 Graphical Models

Before the interactions between the observations and the parameters are analysed, some basic
concepts from the theory of Graphical Models that help to encode the conditional indepen-
dence properties observed within the involved variables will be introduced. Graphical models
are a powerful tool that comes from statistics, graph theory, and computer science. They seek
to represent statistical relationships and dependencies between variables through a graphs
representation where every node in the graph is a (scalar) random variable and the arcs cap-
tures concrete independence properties of the joint distribution of the problem. Therefore a
graph is induced by a joint distribution and the structure of the graph encodes key depen-
dencies within the variables. To illustrate, in the context of the Bayes Theorem (Equation
3.1), the prior-to-posterior inference process can be encoded as the diagram depicted in Fig-
ure 3.1, where a joint distribution (center) can be factorized in conditional components (left
and right). Graphs can be directed or undirected, depending on the system being graphically
represented, and the direction of the arrows represent influence.

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)
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A

B

A

B

A

B

P (A)P (B|A) P (A,B) P (B)P (A|B)

Figure 3.1: Graphical Model representation of the Bayes Theorem. Left and right graphs are
directed graphs, while the center graph is an undirected one.

Bayesian networks are a specific configuration of directed and acyclic graphical models,
which portray the joint distribution of a set of variables in terms of conditional and prior
probabilities. They allow to simplify the whole distribution in terms of factorization, due to
the following basic principles [Bishop, 2006, Jordan, 1998]:

1. The graph Z ← X → Y means that Z ⊥⊥ Y |X, i.e. Z is conditionally independent
from Y given X.

2. Given any node Xi, let’s denote by pa(Xi) its parents variables from the directed
graph. Then its basic conditional probability (or predictive model) is: P (Xi|pa(Xi)).
If a particular node Xi has no parents (pa(Xi) = {}), a not conditional probability will
be taken: P (Xi|pa(Xi)) = P (Xi).

3. Given a graph, the joint density over the set of variables U = {Xi, i = 1, .., L} follows
a recursive factorization:

P (U) =
L∏
i=1

P (Xi|pa(Xi)) (3.2)

Assuming that a variable X is independent of its non-descendants given its parents :
X ⊥⊥ nd(X)|pa(X), where nd(X) is a short-hand for all the variables not contained in
pa(X) and non-including X. This is called the directed Markov property.

Another example can be seen in Figure 3.2, where a Bayesian network with three variables
is shown. In this case, the joint probability is given by P (A,B,C) = P (C)P (A|C)P (B|C).

C

A B

Figure 3.2: Three variable Bayesian network

Therefore, graphical models (and Bayesian Networks in particular) can answer conditional
probability query P (Θ|Z = z), where Z is the evidence and Θ corresponds to some random

8



Algorithm 1 Metropolis-Hastings algorithm
Initialize x(0) sampling from prior distribution
for i = 1, .., Nsteps do
x′ = x with x ∼ q(x|x(i−1))
u′ = u with u ∼ U(0, 1)

A = min
(

1, π(x′)·q(x|x′)
π(x)·q(x′|x)

)
if u′ < A then
Accept sample: x(i) = x′

else
x(i) = x(i−1)

end if
end for

variables in the network. As P (Θ|Z = z) = P (Θ,z)
P (z)

, P (Θ, z) can be obtained through the
factorization in conditional independent components [Koller et al., 2007]. Then, in this
context, this tool provides a way to conduct the estimation in several processes that combine
different observations in a sequential fashion.

3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo, also known as MCMC, is a Bayesian inference technique that is
based on Markov chains properties. The iterations of the algorithm are modelled as states
from an irreducible aperiodic Markov chain {Xn}n≥0 with state space E, and the equilibrium
distribution of the chain π(·) corresponds to the target distribution to be sampled from. The
design of the chain grants spending most of the time in areas of high probability Andrieu
et al. [2003].

There is no need to actually know the target distribution because the samples are drawn
from a proposal distribution q(·|·) and they are accepted or rejected considering an ac-
ceptance probability ratio A(x, x′). In the context of Bayesian inference problems, the
target distribution is the posterior distribution of the parameters Θ to be estimated from the
data Z, π = p(Θ|Z). Also, the proposal distribution is based on the posteriors approximation
p(Θ|Z) α p(Z|Θ) · p(Z), so it is portrayed by q(Θ|Θ′) = p(Z|Θ′) · p(Z).

Finally, convergence is guaranteed because for these chains, for any initial distribution
µ and all i ∈ E, limn→∞ Pµ(Xn = i) = π(i), which is analogous for the continuous case
Brémaud [2013].

There is a wide variety of MCMC variants, and one of them is the Metropolis-Hastings
method (Algorithm 1), where:

1. The acceptance probability ratio consists of A(x, x′) = min
(

1, π(x′)·q(x|x′)
π(x)·q(x′|x)

)
.

2. The target density update consists of π(xi+1|xi) = q(xi+1|xi) ·min
(

1, π(x′)·q(x|x′)
π(x)·q(x′|x)

)
.
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Algorithm 2 Gibbs sampler algorithm
Initialize x(0)

for i = 1, .., Nsteps do
Retrieve states from last iteration: x(i) = x(i−1)

for j = 0, .., d do
xij ∼ π(xj|xij, .., xij−1, x

i−1
j+1, .., x

i−1
d )

end for
end for

3.3 Gibbs Sampler

Gibbs sampling (Algorithm 2) is a special case of the Metropolis-Hastings algorithm, useful
for sampling multidimensional distributions. Given a multidimensional parameter θ, this
sampler splits it into blocks and samples each block separately, generating the posterior
distribution by sampling through the conditional distribution of each block, conditional on
the fixed current values of the other blocks.

This scheme is equivalent to draw samples from the joint target distribution itself, but
it breaks down a complex high-dimensional problem into simple low-dimensional problems.
Also, sequential sampling of parameters prevents the algorithm from falling in zones of near-
zero probability.

The proposal distribution of Gibbs sampler is defined for each component j ∈ {1, . . . , d}:

q(x′|x(i)) =

{
π(x′j|x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
d ), if x(i)

k = x′k,∀k 6= j

0, otherwise

And the acceptance probability ratio A is always 1, so the proposal is always accepted.

3.3.1 Metropolis-within-Gibbs

This sort of approach is known as variable-at-a-time Metropolis-Hastings or Metropolis-
within-Gibbs, which consists of including Metropolis-Hastings steps within the Gibbs sampler
(Algorithm 3). Here, an auxiliary proposal distribution q′j is defined, that proceeds only for
the j-th component. This leads to a much easier way of proposing updates by sequentially
sampling the parameters; nevertheless, when variables are highly correlated, it may be very
difficult to change one without simultaneously changing the other.

3.4 Imputation Theory

Imputation theory addresses the problem of performing an estimation when incomplete data
is considered, which contemplates missing data and/or partial measurements, by augmenting
the observed data. While single imputation techniques rely on generating one plausible
data set that completes the blank spaces, they omit any sources of uncertainty that can be
associated to the imputation process, topic taken into account by the multiple imputation
approach. These techniques generate multiple plausible data sets, which are analysed and
then combined.
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Algorithm 3 Metropolis-within-Gibbs algorithm
Initialize x0

for i = 1, .., Nsteps do
Retrieve states from last iteration: x(i) = x(i−1)

for j = 0, .., d do
x′ = x with x ∼ q′j(x|x(i))
u′ = u with u ∼ U(0, 1)

A = min
(

1,
π(x′)·q′j(x(i)|x′)
π(x(i))·q′j(x′|x(i))

)
if u′ < A then
Accept sample: x(i) = x′

else
x(i) = x(i−1)

end if
end for

end for

Let Y be a data set, which consists of observed (Yobs) and missing values (Ymis), and θ
any parameter vector, the main goal of multiple imputation is the estimation of p(θ|Yobs),
considering the distribution p(Ymis|Yobs). Tanner and Wong [1987] propose an data augmen-
tation algorithm that converges to p(θ|Yobs) and can be included in any iterative estimation
scheme:

1. Generate m > 0 samples Y (i,1)
mis , . . . , Y

(i,m)
mis from pi(Ymis|Yobs), considering the current

guess pi(θ|Yobs). This can be achieved by drawing a sample θi ∼ pi(θ|Yobs) and then
sampling the imputations from p(Ymis|θi,Yobs) Claveria et al. [2019].

2. Update pi(θ|Yobs) considering a mixture of the m augmented posteriors.
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Chapter 4

Orbital Parameters Estimation

4.1 Observation Model

Triple hierarchical stellar systems consist of two binary systems bounded together, as the
ones illustrated in Figure 4.1, where two configurations are feasible. The first one is com-
posed of two bodies in an inner orbit (Aa and Ab) and an external body (B) which, along
with the center of mass of the inner orbit (A), constitutes the outer orbit. The alternative
configuration consists of a body (A) which, along with an inner binary (Ba and Bb) form the
outer system. Then, both systems behave like Keplerian orbits and they are characterized
by parameters shown in Figure 4.2, where the notation for each system and the symbols
meanings are indicated. The inner parameters will be denoted as the parameters related to
the inner orbit and the outer parameters, as the ones related to the outer orbit.

For each system, certain sets of measurements are available. In all cases, the observation
model from Equation (4.1) will be assumed, which maps the nθ-dimensional parameter vector
into the nz-dimensional measurement vector. Besides, f(θ, τ) corresponds to a nz-dimensional
function, and ε(τ) to the observation noise, assumed to be additive white Gaussian noise.

z(τ) = f(θ, τ) + ε(τ) (4.1)

4.2 Inference processes

The final objective in Bayesian inference is the computation of the predictive model of the
parameters PΘ|Z(·|z). This posterior distribution captures all the information inferred from
the data z, allowing to derive estimators of the parameters θ̂ given the evidence and taking
into account the uncertainty in the estimate, instead of basing the prediction just on the
most likely value. The purpose of this Section is to present some analysis of the inference
problem to simplify the computation of the predictive model PΘ|Z(·|z).

In the context of a hierarchical stellar system, the main practical goal in this process is to
obtain the relative orbit orientation along with the individual stellar masses, thus, following

12



A

Ba Bb
Aa Ab

B

Figure 4.1: Triple hierarchical stellar systems. They consist of an internal binary (Aa and Ab),
orbited by an external body (B). Following the classical convention from visual binary research, the
A component is the brighter (more massive) star, while B is the the fainter (less massive) component.
Of course, it could also be that the tighter binary is B (consisting thus of the external binary Ba
and Bb) orbiting a single primary A.

Figure 4.2: Variables and symbols used in this manuscript
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the procedure from Appendix A.5, the predictive model of the parameters a, P, q, i,Ω from
the inner and the outer subsystems is needed. For both of them, astrometry and radial
velocities measurements are accessible; however, they are not always available for both or-
bits simultaneously. Therefore, a methodology that considers all possible combinations of
astrometry and radial velocities for every triple hierarchical systems does not seem reason-
able. Based on the type of data that are typically available, the following scenarios have been
considered: astrometric observations alone, radial velocity observations alone and
both sources combined.

Astrometry Alone

An astrometric observation of the inner system corresponds to the relative position of the
secondary Ab with respect to the primary Aa, described by a Keplerian orbit, in Cartesian
coordinates. It follows the general observation model from Equation (4.1), with a highly
non-linear function f1:

~z1(τ) = f1(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, τ) + ε1(τ) (4.2)

An astrometric observation of the outer system corresponds to the relative position of B
with respect to the inner primary Aa. However, as A and B behave in a Keplerian way,
and the primary Aa is moving along with Ab, it causes a wobble, leading the measurements
also to depend on inner parameters. The position of B with respect to Aa is described in
Cartesian coordinates, and the observations also follow the general observation model from
Equation (4.1):

~z2(τ) = f2(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, qAaAb

,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, τ) + ε2(τ) (4.3)

However, given the form of f2, the observation equation from Equation (4.3) can be written
as:

~z2(τ) = f1(TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, τ) (4.4)

+
qAaAb

1 + qAaAb

· f1(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, τ) + ε2(τ)

= ~y2(τ) + ~y1(τ) + ε2(τ)

Given the parameters involved in the observation model, this scenario allows to compute
the mutual inclination1 and the sum of the stellar masses2, but not the individual stellar
masses [Lane et al., 2014]. It is worth mentioning that functions f1 and f2 are presented in
full detail in Appendix A.3. Based on the dependencies observed in the Eq. (4.2), (4.3) and
(4.4), graphical models were designed expressing the relationships between parameters and
the observations ~z1 (inner orbit) and ~z2 (outer orbit). They are shown in Figures 4.3 and 4.4,
where N1 and N2 are the number of observations of ~z1 and ~z2, respectively. Those networks

1Ambiguously, due to the ambivalence of the Ω angle, the RV measurements are needed
2The parallax of the system is needed.
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allows to factorize the joint distribution in conditional components and, therefore, arrange
the inference process for this scenario.

TAaAb
PAaAb

eAaAb
aAaAb

ωAaAb ΩAaAb
iAaAb

~z1(τk)
N1
k=1

Figure 4.3: Graphical model representation of the observation model from inner astrometric mea-
surements.

TAB PAB eAB aAB ωAB ΩAB iAB

~y2(τk)~z2(τk)~y1(τk)

TAaAb
qAaAb PAaAb

eAaAb
aAaAb

ωAaAb ΩAaAb
iAaAb

N2
k=1

N2
k=1

N2
k=1

Figure 4.4: Graphical model representation of the observation model from outer astrometric mea-
surements. Red arrows represent deterministic (not probabilistic) relationships

The graphical model of the inner system is really simple, so the factorization remains as
Equation (4.5).

p(U) = p(~z1|TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
) (4.5)

· p(TAaAb
) · p(PAaAb

) · p(eAaAb
) · p(aAaAb

) · p(ωAaAb
) · p(ΩAaAb

) · p(iAaAb
),

where U = {~z1, TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
}

In contrast, the graphical model of the outer system is more complex, because it involves
more parameters and includes some virtual observations in it. Then, the factorization can
be shown as:

p(U) = p(~z1|~y1, ~y2) · p(~y1|TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, qAaAb

) (4.6)
· p(~y2|TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB)

· p(TAB) · p(PAB) · p(eAB) · p(aAB) · p(ωAB) · p(ΩAB) · p(iAB)

· p(TAaAb
) · p(PAaAb

) · p(eAaAb
) · p(aAaAb

) · p(ωAaAb
) · p(ΩAaAb

) · p(iAaAb
) · p(qAaAb

),

where U = {~z2, ~y1, ~y2, TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, qAaAb

,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB}
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In these graphical models, the red arrows in Figure (4.4) indicate that the conditional
distribution is Dirac function, representing a deterministic relationship:

p(U) = p(~z1|~y1, ~y2)

· δ(~y1 −
qAaAb

1 + qAaAb

· f1(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
)) (4.7)

· δ(~y2 − f1(TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB))

· p(TAB) · p(PAB) · p(eAB) · p(aAB) · p(ωAB) · p(ΩAB) · p(iAB)

· p(TAaAb
) · p(PAaAb

) · p(eAaAb
) · p(aAaAb

) · p(ωAaAb
) · p(ΩAaAb

) · p(iAaAb
) · p(qAaAb

),

where U = {~z2, ~y1, ~y2, TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, qAaAb

,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB}

Finally, the conditional independence structures encoded in the graphical models allow to
conduct the inference in a series of sequential steps illustrated in Figure (4.5). This sequential
process uses the following notation:

Θ1 = {TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
} (4.8)

Θ2 = {qAaAb
, TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB}

and the following steps:

1. Compute the predictive model PΘ1| ~Z1
(·|~z1) using {~z1(τk)}N1

k=1 in a sample-based scheme.

2. Generate empirical samples of θ1 using the posterior distribution of Θ1 given ~Z1,
PΘ1| ~Z1

(·|~z1).

3. Generate virtual observations {~y1(τk)}N2
k=1, using PΘ1| ~Z1

(·|~z1), for each observation epoch
from ~z2, in an imputations framework.

4. Compute the predictive model PΘ2| ~Z1, ~Z2
(·|~z1, ~z2) using {~y1(τk)}N2

k=1 and {~z2(τk)}N2
k=1 in a

sample-based scheme. At the end of this stage, obtain i.i.d. samples of the posterior
distributions of the whole set of parameters Θ1∪Θ2 given the observations {~z1(τk)}N1

k=1

and {~z2(τk)}N2
k=1.

More details about each subprocess can be found in Appendix C.
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~z1(τk) Compute predictive model (1)

Generate samples from θ1 (2)

Generate samples from {~y1(τk)}N2
k=1 (3)

Compute predictive model (4)~z2(τk)

PΘ1| ~Z1
(·|~z1)

PΘ2| ~Z1, ~Z2
(·|~z1, ~z2)N2

k=1

N1
k=1

Figure 4.5: Information-flow diagram in astrometric alone scenario.

Radial Velocity Alone

Radial Velocity (RV) observations correspond to the velocity of one of the bodies involved
in the triple hierarchical configuration, measured along the observer’s line-of-sight. Measure-
ments of the inner system’s primary Aa (Ba) are necessary; however, measurements of Ab
and B ( Bb and A) are included if available. The RV measurements B only depends on outer
parameters; but, as the center of mass A moves in the outer orbit, the RVs from Aa and Ab
consider this movement and depend on inner and outer parameters. The observation model
follows the general form from Equation (4.1), with highly non-linear functions f :

z3(τ) = f3(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
, iAaAb

, qAaAb
,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, qAB, τ) + ε3(τ) (4.9)
z4(τ) = f4(TAaAb

, PAaAb
, eAaAb

, aAaAb
, ωAaAb

, iAaAb
, qAaAb

,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, qAB, τ) + ε4(τ)

z5(τ) = f5(TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, qAB, τ) + ε5(τ)

Given the parameters involved in the observation model, this scenario allows to compute
the individual stellar masses 3, but not the mutual inclination. It is worth mentioning that
functions fi are presented in full detail in Appendix A.4.

Based on the dependencies observed in Eq. (4.9), a graphical model was designed ex-
pressing the relationship between the parameters and the observations z3 (inner system’s
primary), z4 (inner system’s secondary) and z5 (outer system’s primary/secondary). It is
shown in Figure 4.6, where N3, N4 and N5 are the number of observations of z3, z4 and z5,
respectively.

Even though the measurements related to the outer body (z5) are disconnected from the
inner parameters (as can be seen in Eq. (4.9) and Figure 4.6), it is not common to have a lot

3The parallax of the system is needed.
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of observations4; then a preliminary “outer body” stage would involve just a few observations.
On the other hand, measurements from the inner’s secondary (z4) are also uncommon, due
to technical reasons mostly.

Therefore, a sequential factorization of the joint in terms of partial posteriors is not sim-
ple to develop and the modelling the complete joint distribution between parameters and
observations is preferred(see Figure 4.7).

TAB PAB eAB aAB ωAB iAB qAB vcm

z3(τk)z4(τk)z5(τk)

TAaAb
PAaAb

eAaAb
aAaAb

ωAaAb iAaAb
qAaAb

N3
k=1

N4
k=1

N5
k=1

Figure 4.6: Graphical model representation of RV scenario.

TAB PAB eAB aAB ωAB iAB qAB vcm

{z3(τk)
N3
k=1, z4(τk)

N4
k=1, z5(τk)

N5
k=1}

TAaAb
PAaAb

eAaAb
aAaAb

ωAaAb iAaAb
qAaAb

Figure 4.7: Graphical model representation of RV scenario.

That network allows to factorize the joint distribution in conditional components and,
therefore, arrange the inference process for this scenario. As the graphical model is really
simple, the factorization remains as Equation (4.10).

4Mainly due to the long outer periods.
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p(U) = p(ZRV |TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
, iAaAb

, qAaAb
,

TAB, PAB, eAB, aAB, ωAB, iAB, qAB, vcm) (4.10)
· p(TAB) · p(PAB) · p(eAB) · p(aAB) · p(ωAB) · p(iAB) · p(qAB) · p(vcm)

· p(TAaAb
) · p(PAaAb

) · p(eAaAb
) · p(aAaAb

) · p(ΩAaAb
) · p(iAaAb

) · p(qAaAb
),

where U = {ZRV, TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
, iAaAb

, qAaAb
,

TAB, PAB, eAB, aAB, ωAB, iAB, qAB, vcm}

In this case the inference is conducted in one step using the complete joint distribution of
the problem (see Figure 4.8) and using the notation

ΘRV = {TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
, iAaAb

, qAaAb
,

TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, qAB, vcm}

Concerning the predictive model PΘRV |ZRV
(·|z3, z4, z5), this is approximated with samples

using a sample-based scheme. More details about it can be found in Appendix C.

ZRV Compute predictive model (1) PΘRV |ZRV
(·|z3, z4, z5)

Figure 4.8: Information-flow diagram in RV alone scenario.

Combined Scenario

Finally, the scenario where both astrometric and RVmeasurements are available is considered.
This rich scenario allows to compute the relative orbital orientation and the stellar masses5.
Due to the dimensionality of this setting, the estimation is complex computationally and
analytically. On the modelling side, there are several complex interdependencies between
the parameters and the observations. A major effort was made in this work to encode this
relationship by the graphical model presented in Figure 4.9. Consequently, a factorization as
the one presented on previous simpler (unimodal) models is difficult to illustrate in a simple
diagram.

For the inference, an approach that builds on the aforementioned simpler scenarios is
proposed. Interestingly, the steps resemble the ones presented by [Tokovinin and Latham,
2017]. The procedure is shown in Figure 4.10 and consider the following steps:

1. Compute the predictive model PΘRV |ZRV
(·|z3, z4, z5) using {~z3(τk)}N3

k=1, {~z4(τk)}N4
k=1 and

{~z5(τk)}N5
k=1 in a sample-based scheme (1).

2. Compute the predictive model PΘ1| ~Z1
(·|~z1) in a sample-based scheme, using the obser-

vations {~z1(τk)}N1
k=1 and the posteriors from last stage as priors (2).

3. Generate empirical samples of θ1 using the posterior distribution of Θ1 given ~Z1,
PΘ1| ~Z1

(·|~z1) (3).

5The parallax of the system is needed.
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4. Generate virtual observations {~y1(τk)}N2
k=1, using PΘ1| ~Z1

(·|~z1), for each observation epoch
from ~z2, in an imputations framework (4).

5. Compute the predictive model PΘ2| ~Z1, ~Z2
(·|~z1, ~z2) using {~y1(τk)}N2

k=1 and {~z2(τk)}N2
k=1 in a

sample-based scheme (5).

6. Return to (1) until a stopping criterion or the maximum amount of iterations are
reached.

At the end of each stage i.i.d. samples of the posterior distribution of the parame-
ters are obtained, partially conditioned on the set of observations associated to that stage
({~z1(τk)}N1

k=1, {~z2(τk)}N2
k=1 or ZRV ). Besides, with each new stage the target distribution is

reached, given all the available observations ({~z1(τk)}N1
k=1, {~z2(τk)}N2

k=1 and ZRV ).

More details about each subprocess can be found in Appendix C.

ZRV Compute predictive model (1) PΘRV |ZRV
(·|z3, z4, z5)

~z1(τk) Compute predictive model (2) PΘ1| ~Z1
(·|~z1)

Generate samples from θ1 (3)

Generate samples from {~y1(τk)}N2
k=1 (4)

Compute predictive model (5)~z2(τk) PΘ2| ~Z1, ~Z2
(·|~z1, ~z2)N2

k=1

N1
k=1

PΘRV ∪Θ1|ZRV , ~Z1
(·|z3, z4, z5, ~z1)

PΘ|ZRV , ~Z1, ~Z2
(·|z3, z4, z5, ~z1, ~z2)

Figure 4.10: Information-flow diagram in the combined scenario.

Finally, given that the target distribution is unknown, and it is obtained through
sampling-based methods, it is not possible to establish convergence by computing the distance
between this distribution and the current estimation. This issue leads to consider as stopping
criterion the difference between the current distribution pSi

(Θ) and the one from the last step
pSi−1

(Θ). The selected distance measure is the conditional variance.
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Chapter 5

Results

In order to test the methodology presented in the previous sections, three well studied triple
hierarchical stellar systems published by Tokovinin and collaborators [Tokovinin, 2018a,
Tokovinin and Latham, 2017] are selected, and kindly provided by him upon request, then
regarded as "benchmark" system from the point of view of the estimation algorithm. This
section exhibits the main results of these comparisons, and a brief discussion regarding the
estimation processes performed in all scenarios (astrometry only, radial velocity only, and
combined scenario).

Best parameters In this work, the “best solution” is the one obtained from the maximum
a posteriori (MAP) estimator, derived in turn from the posterior joint distribution. It is
accompanied by a confidence interval obtained using “modified” quartiles over the marginal
distributions: the lower (Q1) and upper (Q3) quartiles were computed using the MAP esti-
mator as the median value (Q2).

In the RV alone scenario, given the one-stage Bayesian methodology implemented in this
work, MAP is equivalent to the maximum likelihood (ML) estimator, i.e., the particles that
maximize the likelihood and, thus, minimizes the χ2 statistic1.

Finally, it is worth mentioning that the orbits and radial velocity curves are shown for
each data set. Besides the MAP estimator, those plots take into account the 1000 most likely
solutions.

Derived quantities Based on the best parameters, the mutual inclination and the sum/in-
dividual masses were obtained. It has been mentioned previously that the parallax is needed
to obtain relevant physical parameters of the system, such as the sum of the masses (astrom-
etry observations alone) or the individual ones (combined astrometry plus radial velocity
observations). All the parallaxes considered in these calculations have been obtained from
the Multiple Star Catalogue (MSC), a catalogue of hierarchical multiple stellar systems with
three or more components2 [Tokovinin, 2018b]. These results are shown in Figure 5.1.

1See [Mendez et al., 2017]
2http://www.ctio.noao.edu/∼atokovin/stars
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Outer system’s plots It is important to note a subtle issue regarding the orbit of the
outer system: Its "wobble" (due to the presence of inner system) implies that its orbit, as
measured from the primary, is not necessarily a closed orbit (see Appendix A1, Equations
(A.11) and (A.12)). For this reason, when plotting the outer orbit the time t is established
as the independent variable and not the (outer) true anomaly ν. The curves obtained for the
following range of epochs are consecutively plotted:

• [t− P, t] in green,

• [t, t+ P ] in red: this is the curve that minimizes the O-C residual.

• [t+ P, t+ 2P ] in black.

5.1 LHS 1070 (00247-2653)
The triple system LHS 1070, also known as GJ 2005 and LP 881-64, consists of a binary
(Ba, Bb) accompanied by a distant star (A). There are astrometric measurements available
for the inner and outer subsystems [Köhler et al., 2012, Tokovinin, 2018a], so the first scenario
from the methodology was applied.

Inner orbit: The period was known to be ∼ 17 years, so a uniform prior between 10 and
100 years was set, and the same boundaries were determined to limit the exploration of
the state space. The normalized periastron passage T and the eccentricity e were restricted
only between their physical boundaries, [0, 1] and [0, 0.85], respectively. A number of 250000
iterations and a burn-in of 25000 iterations were chosen.

The best 1000 orbits can be seen in Figure 5.2 (left) and the marginal histograms in
Figure 5.3.

Outer orbit: [Tokovinin, 2018a] estimated a period ∼ 77 years, so a uniform prior between
70 and 90 years was set. Regarding the eccentricity, the uniform prior was bounded in
[0.001, 0.05], based on the value estimated by [Tokovinin, 2018a] of ∼ 0.039. The lower bound
was necessary because the algorithm was inclined to small eccentricities (under 10ˆ−4). The
angles Ω and i were known ∼ 13.9 and ∼ 62.5 degrees, respectively, so both uniform priors
were set between [0, 100]. On the other hand the ω prior was set between [100, 360] degrees.

With respect to the physical boundaries, only the period was constrained [0.001, 0.05] years.
A number of 5000000 iterations and a burn-in of 3000000 iterations were chosen. The best
1000 orbits can be seen in Figure 5.2 (right) and the marginal histograms in Figure 5.5;
however, Figure 5.4 shows in detail the orbits obtained for the following range of epochs:

• First row shows [t− P, t] (green).

• Second row shows [t, t+ P ] (red). This is the curve that minimizes the O-C residual.

• Third row shows [t+ P, t+ 2P ] (black).

• Finally, the last row shows the orbit obtained by [Tokovinin, 2018a].
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Parameter This work [Tokovinin, 2018a]

T [yrs] 2007.694 2006.440
−0.459
+0.280

−0.007
+0.007

P [yrs] 17.146 17.247
−0.043
+0.041

−0.016
+0.016

e
0.023 0.0172
−0.0031
+0.0034

−0.0008
+0.0008

a (") 0.460 0.4598
−0.0007
+0.0008

−0.0007
+0.0007

ω (◦)
229.648 202.53
−9.860
+6.023 fixed

Ω (◦)
14.745 14.82
−0.0689
+0.0681

−0.12
+0.12

i (◦)
62.225 62.04
−0.101
+0.107

−0.11
+0.11

q
0.952 0.942
−0.041
+0.023

Table 5.1: Estimated inner parameters of LHS1070

Parameter This work [Tokovinin, 2018a]

T [yrs] 2049.750 2049.67
−2.326
+1.720

−1.32
+1.32

P [yrs] 77.972 77.62
−3.499
+2.101

−2.10
+2.10

e
0.037 0.039
−0.018
+0.039

−0.02
+0.02

a (") 1.531 1.528
−0.049
+0.025

−0.112
+0.112

ω (◦)
212.974 210.7
−3.946
+1.826

−6.4
+6.4

Ω (◦)
14.016 13.9
−0.988
+0.496

−0.7
+0.7

i (◦)
62.362 62.5
−0.784
+0.467

−0.4
+0.4

Table 5.2: Estimated outer parameters of LHS1070

5.2 HIP 101955 (20396+0458)
This system, also known as HD 196795 and GJ 795AB, consists of an inner subsystem Aa, Ab
and a distant object B, forming the outer subsystem known as KUI 99 AB. Astrometry is
available for the inner and outer orbits, and there are also radial velocity measurements for
Aa, Ab and B; then, the combined scenario is performed.

Inner system: The inner system is known to be highly eccentric [Malogolovets et al.,
2007, Tokovinin and Latham, 2017], then eccentricity’s prior was bounded in [0.5, 0.8]. On
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Parameter This work [Tokovinin and Latham, 2017]

T [yrs] 1935.227 2000.518
−0.044
+0.040

−0.004
+0.004

P [yrs] 2.510 2.51013
−0.0009
+0.001

−0.00052
+0.00052

e
0.619 0.6170
−0.0148
+0.0141

−0.0047
+0.0047

a (") 0.124 0.1242
−0.0022
+0.0026

−0.0011
+0.0011

ω (◦)
105.017 109.7
−4.538
+13.225

−1.8
+1.8

Ω (◦)
151.284 147.1
−12.887
+5.639

−1.8
+1.8

i (◦)
24.831 24.1
−5.184
+3.473

−1.7
+1.7

q
0.805 0.84 (astrometric)
−0.036
+0.042 0.45 (spectroscopic)

Table 5.3: Estimated inner parameters of KUI99

the other hand, since [Duquennoy, 1987] study it is known that the period is ∼ 2.5, so P ’s
prior was bounded in [1.5, 3.5].

Due to the inconsistencies in the data, [Tokovinin and Latham, 2017] found different q
regarding the wobble’s astrometric information and the one from spectroscopy, that is 0.84
and 0.45. As this method does not consider the amplitudes K1 and K2 as independent
variables, q was set between [0.7, 0.95], which is consistent with the fractional mass f in
[0.42, 0.48] and the value of 0.8 from [Malogolovets et al., 2007].

On the other side, all the speckle measurements before 1981 were considered, but the
associated error was increased considerably with respect of the other measurements. Besides,
there is an issue about the blending of the Aa and B components in the reported RVs, so
it must be taken into account in the results. The best 1000 inner orbits can be seen in
Figure 5.6 (left) and the MAP’s inner RV curve in Figure 5.7 (left).

Outer system: The period was known to be ∼ 40 years, with small eccentricity and highly
inclined [Baize, 1981, Heintz, 1984, Malogolovets et al., 2007]. Then, the priors from those
parameters were set in [35, 45], [0, 0.25] and [0, 180], respectively.

The best 1000 outer orbits can be seen in Figure 5.6 (right) and Figure 5.8 shows in detail
the orbits obtained for the following range of epochs:

• First row shows [t− P, t] (green).

• Second row shows [t, t+ P ] (red). This is the curve that minimizes the O-C residual.

• Third row shows [t+ P, t+ 2P ] (black).
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Parameter This work [Tokovinin and Latham, 2017]

T [yrs] 1938.605 2016.110
−0.266
+0.129

−1.32
+1.32

P [yrs] 38.641 38.6790
−0.025
+0.055

−0.031
+0.031

e
0.114 0.118
−0.004
+0.003

−0.016
+0.016

a (") 0.855 0.855
−0.003
+0.002

−0.110
+0.110

ω (◦)
231.432 233.4
−1.909
+0.972

−0.5
+0.5

Ω (◦)
127.632 127.6
−0.172
+0.161

−0.08
+0.08

i (◦)
87.477 87.40
−0.106
+0.096

−0.05
+0.05

q
0.445
−0.207
+0.277

vcm (km
s
) −41.081 −41.11

−1.301
+1.635

−0.08
+0.08

Table 5.4: Estimated outer parameters of KUI99

• Finally, the last row shows the orbit obtained by [Tokovinin and Latham, 2017].

The MAP’s outer RV curve in Figure 5.7 (first row, right).

5.3 HIP 111805 (22388+4419)

This system, also known as HD 214608, consists of an inner subsystem Ba, Bb and a distant
object A. Astrometry is available for the inner and outer orbits, and there are also radial
velocity measurements for Ba, Bb and A; then, the combined scenario is performed.

Inner system: The inner system is also known as HO 265 and it was recognized as highly
inclined and with a small eccentricity [Balega et al., 2002, Duquennoy, 1987, Tokovinin and
Latham, 2017], so the priors were set in [0.01, 0.08] and [80, 100]. The period was known
around 551 days, so the starting value was fixed to 1.5 years, but set free in [0.1, 10].

On the other hand, [Tokovinin and Latham, 2017] indicated that the RV measurements
presented a blend and denoted them as noisy. They also found different mass ratios q for the
visual and spectroscopic data. Based on previous results, the prior was set in [0.5, 0.9].

The best 1000 inner orbits can be seen in Figure 5.9 (left) and the MAP’s inner RV curve
in Figure 5.10 (left). Due to the visual inner information, the algorithm was inclined to small
eccentricities (under 10−2), which disagreed with the spectroscopic information. That issue
can be seen in the fit in the radial velocity curves.
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Parameter This work [Tokovinin and Latham, 2017]

T [yrs] 1901.497 1986.093
−0.284
+0.566

−0.093
+0.093

P [yrs] 1.498 1.5012
−0.014
+0.106

−0.0004
+0.0004

e
0.010 0.022
−0.0005
+0.034

−0.011
+0.011

a (") 0.041 0.0385
−0.002
+0.004

−0.0010
+0.0010

ω (◦)
257.039 232.9
−128.699
+51.659

−22.3
+22.3

Ω (◦)
154.208 334.5
−0.268
+1.679

−1.0
+1.0

i (◦)
89.565 87.40
−0.667
+2.503

−0.05
+0.05

q
0.620 0.60 (astrometric)
−0.061
+0.055 0.68 (spectroscopic)

Table 5.5: Estimated inner parameters of HIP111805

Outer system: The outer system is also known as HDO 295 or ADS16138, with a period
of ∼ 30 years [Duquennoy, 1987, Hough, 1890, Tokovinin and Latham, 2017]. Then, the
starting value for P was fixed to 30 years, but set free in [10, 100], and the prior for i was set
in [80, 100]. The eccentricity was known to be ∼ 0.3, so the prior was in [0.2, 0.5]. Finally,
the mass ratio q prior was set in [0.6, 0.8].

The best 1000 outer orbits can be seen in Figure 5.9 (right) and Figure 5.11 shows in
detail the orbits obtained for the following range of epochs:

• First row shows [t− P, t] (green).

• Second row shows [t, t+ P ] (red). This is the curve that minimizes the O-C residual.

• Third row shows [t+ P, t+ 2P ] (black).

• Finally, the last row shows the orbit obtained by [Tokovinin and Latham, 2017].

The MAP’s outer RV curve in Figure 5.10 (right).
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Parameter This work [Tokovinin and Latham, 2017]

T [yrs] 1915.827 2010.179
−0.343
+0.218

−0.073
+0.073

P [yrs] 31.551 30.127
−0.159
+0.011

−0.031
+0.031

e
0.328 0.324
−0.007
+0.004

−0.004
+0.004

a (") 0.335 0.3361
+0.001−0.0004 −0.0015

+0.0015

ω (◦)
80.887 84.92
−0.527
+0.295

−0.18
+0.18

Ω (◦)
154.170 154.25
−0.090
+0.205

−0.09
+0.09

i (◦)
88.281 88.28
−0.127
+0.154

−0.10
+0.10

q
0.661 0.70465116279
−0.052
+0.066

vcm (km
s
) −22.524 −22.58

−0.140
+0.144

−0.08
+0.08

Table 5.6: Estimated outer parameters of HIP111805
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Figure 5.2: The first row shows the inner (left) and outer (right) orbits of LHS1070. The second
row shows the results obtained by [Tokovinin, 2018a].
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Figure 5.3: Marginal empirical distributions obtained after performing the first stage (inner orbit)
for LHS1070. The MAP estimator (from the joint distribution) is indicated in red and the lower
and upper quartiles are shown in blue.
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Figure 5.4: Detail of the outer astrometric orbit of LHS1070

32



Figure 5.5: Marginal empirical distributions obtained after performing the second stage (outer
orbit) for LHS1070. The MAP estimator (from the joint distribution) is indicated in red and the
lower and upper quartiles are shown in blue.

33



Figure 5.6: The first row shows the inner (left) and outer (right) orbits of HIP101955. The second
row shows the results obtained by [Tokovinin and Latham, 2017].
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Figure 5.7: The first row shows the inner (left) and outer (right) RV curves of HIP101955. The
second row shows the results obtained by [Tokovinin and Latham, 2017].
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Figure 5.8: Detail of the outer astrometric orbit of HIP101955

36



Figure 5.9: The first row shows the inner (left) and outer (right) orbits of HIP111805. The second
row shows the results obtained by [Tokovinin and Latham, 2017].
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Figure 5.10: The first row shoes the Inner (left) and outer (right) RV curves of HIP111805. The
second row shows the results obtained by [Tokovinin and Latham, 2017].
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Figure 5.11: Detail of the outer astrometric orbit of HIP111805
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Chapter 6

Discussion

It is challenging to work with sample-based schemes in high dimensions in terms of con-
vergence and fine-tuning of the algorithm hyperparameters. In this work, the estimation is
performed using a hybrid between MCMC and the Gibbs sampler, exploring the state space
using a random walk. The estimations were successfully performed in all scenarios; however,
a few considerations must be taken.

Convergence Even though the algorithm reaches the target distribution in the limit of
long runs, it gets too many iterations to converge. For that reason, other options should be
evaluated, like simulated tempering or parallel tempering [Earl and Deem, 2005, Marinari
and Parisi, 1992]. On the other hand, methods that employ the gradient of the prior and
the likelihood could be explored, such as MALA [Robert and Casella, 2004, Roberts et al.,
1996], Hamiltonian Monte Carlo [Neal et al., 2011], proximal MCMC algorithms [Combettes
and Pesquet, 2011, Parikh et al., 2014] or diffusion-based MCMC algorithms [Herbei et al.,
2017], so local optima must be taken into account. Finally, Bayesian methods different to
MCMC could be considered, as the rejection-sampling method from [Blunt et al., 2017].

Fine tuning of proposals and priors On the other hand, the hand-tuning of the priors
and the proposals is a demanding task, and it is important because those hyperparameters
are directly related to the algorithm’s convergence.

Regarding the proposals, the variance for each one of the dimensions involved must be
chosen. If it is too wide, a lot of particles where π = 0 could be chosen; if it is too small,
most of the particles are accepted, so the chain moves slowly. Besides, the problem could
worsen because of possible correlations between the parameters [Sharma, 2017], which are not
considered at the moment. Despite rules of thumb could be applied (as c = σ2sd(J

TJ)−1),
the Jacobian must be computed, and that is not easy for highly non-linear functions as the
one seen in this work. Hence, other alternatives as adaptive MCMC methods could be used.
Even though those algorithms are not Markovian anymore, they do not rely on one pre-set
variance and the new particle is chosen based on the earlier history of the chain [Haario et al.,
2004, 2005, 2001].

On the other hand, concerning the priors, lots of particles were rejected due to physical
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restrictions. This could be known beforehand by considering this information when adjusting
the priors, and stop rejecting samples due to infeasible masses. Later on, this could be applied
in unstable zones or another type of physical restriction.

Physical restrictions There are many restrictions related to the dynamics of triple hi-
erarchical star systems that are included in the implemented algorithms. First of all, all of
the parameters are bounded within a certain range, which could make the code to stick in
the boundaries. Thus, the state space was adapted as a circular one, keeping the sampling
procedure as there were no restrictions.

Despite that, the problem arises when dimensionality reductions were performed. The
minimization of χ2 statistic was conducted just using weighted least squares, so the particles
were rejected after that process, which increases the computational cost and keeps the chain
from converging. This issue could be fixed by solving a non-linear optimization problem with
restrictions.

Besides, the imputations framework also rejects particles that violate the restrictions.
That could be considered before sampling the posterior from the last step (the astrometric
inner orbit) and thus prevent the situation.

Inconsistent Data Finally, inconsistencies between the astrometry and the radial veloc-
ities must be addressed. This could be solved by just not considering the ambiguous infor-
mation or by adjusting the weights associated with those observations.
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Chapter 7

Conclusions

The purpose of this work has been to apply a Bayesian MCMC-based methodology to the
problem of estimating the orbital parameters in triple hierarchical stellar systems, that al-
ready have a measured parallax. Graphical models were employed for modelling the prob-
abilistic relationship between parameters and observations in the astrometry-alone, radial-
velocity-alone and the combined scenarios. Thus, the joint distribution is factorized in terms
of independent blocks and then performed the estimation in a two-stage process, combining
different sets of observations sequentially.

The framework provides MAP estimates along with the full joint posteriors of the param-
eters, given the observations, allowing to assess the uncertainties robustly. It requires prior
knowledge about the system, although non-informative priors1 could be used to get good
results.

Regarding the radial velocities-alone scenario, a mathematical formalism is introduced,
motivated by the works of [Wright and Howard, 2009] and [Mendez et al., 2017] in the
context of exoplanets and visual-and-spectroscopic binaries, respectively, and adapted to the
specific case of triple systems. It consists of a dimensionality reduction (15 to 10 parameters)
using weighted-least squares, which allows to sample from a subset of the parameter space,
hence reducing the computational cost. This is applied for systems of the form Aa, Ab - B
and Ba, Bb - A.

On the other hand, the methodology is useful for outer long periods, because, even though
there are just a few (or no) measurements from the distant body B (or A), the algorithm
allows to constrain the mass ratio of the outer system qAB.

This scheme is tested with real measurements of astrometry and radial velocities, where
the inner and outer orbital elements are determined. By utilizing both kinds of measurements,
these results allow to determine the mutual inclination of the orbits and the individual stellar
masses, solutions that are consistent with former reported results.

1For example, a uniform prior
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Chapter 8

Future work

Parallax and derived quantities uncertainty The parallax can be considered as a
gaussian random variable, taking into account the means and variances indicated in the
catalog from [Tokovinin, 2018b]. Then, through a procedure based on transformations of
random variables, a posterior distribution for the individual/sum of masses and the mutual
inclination could be obtained.

Radial velocities amplitude Even though the radial velocity amplitudes (K1, K2, K3

and K4) can be described in terms of some orbital parameters (details in Appendix A.4),
some works as [Tokovinin and Latham, 2017, Wright and Howard, 2009] rather choose to
consider them as independent parameters.

Thus, in the combined data scenario (astrometry and radial velocity information) two
different inner mass ratios qAaAb

are obtained:

• One from the wobble fAaAb
computed using the outer astrometric information.

• One from the amplitudes K1 and K2, computed using the inner radial velocity infor-
mation.

Although an ambiguity is presented, this variant of the algorithm should be implemented
to offer a fair comparison of the estimated orbital parameters.

Belief propagation In this work, graphical models were mainly used to show the rela-
tionships between parameters and observations, and the estimation of the parameters was
performed detaching the different observation sources, supplemented with virtual sensors
techniques (imputation theory). However, more advanced belief propagation techniques can
be used, exploiting directly the structure from the graphical model.
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Appendix A

Triple Hierarchical Stellar Systems
Model Equations

Hierarchical stellar systems are a particular case of the general n-body problem, because it
can be separated into (n−1) subgroups, where each hierarchy level can be treated as a binary
system separately [Leonard, 2000]. Thus, triple hierarchical stellar systems are approximated
with two Keplerian orbits on top of each other; where one represents the motion of the wide
system and other that of the inner/tighter system.

More precisely, those systems consist of an (inner) binary (Aa and Ab, with its center of
mass denoted by A) orbited by an external body B. It is also possible to have a star A orbited
by an (outer) binary (Ba and Bb). It is worth mentioning that the dynamical interaction
between the inner and outer systems constantly change both orbits, the inclination and
eccentricity are free to evolve in time [Steves et al., 2010] and, under certain conditions, the
argument of the pericenter of the orbit oscillates around a constant value, which leads to a
periodic exchange between its eccentricity (e) and its inclination (i), known as Kozai-Lidov
cycles [Naoz, 2016]. However, the time scale of that evolution is much longer than the time
span of the observations, so the orbital parameters can be considered constant [Tokovinin
and Latham, 2017], which is one of the basic assumptions adopted in this paper.

A.1 General Dynamics
Inner system: First of all, the bodies Aa and Ab keep Newton motion laws:

~̈rAa =
GmAb

r2
AaAb

r̂AaAb
(A.1)

~̈rAb
=

GmAa

r2
AaAb

r̂AaAb
(A.2)

Subtracting Equations A.1 and A.2:

~̈rAaAb
= ~̈rAb

− ~̈rAa = − G

r2
AaAb

(mAa +mAb
)r̂AaAb

(A.3)
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This represents the movement of the secondary around the primary, which is what the
astrometric measurement portrays.

Outer system: Repeating the procedure for the outer system, the movement of B around
(the center of mass of) A (considered as a single object) is represented by:

~̈rAB = − G

r2
AB

(mA +mB)r̂AB (A.4)

However, as for the inner system, it is a matter of interest to obtain the movement of B
around the primary Aa, given that this is what what is usually measured in differential as-
trometry of visual binaries (see Figure 4.1 for details). Therefore, considering Equation (A.5),
the relationship between Aa and the center of mass A Equation (A.6), and the position of the
center of mass A Equation (A.7), the vector ~rAaA can be rewritten as shown in Equation (A.8).

~rAaB = ~rAaA + ~rAB (A.5)
~rAaA = ~rA − ~rAa (A.6)

~rA =
mAa~rAa +mAb

~rAb

mAa +mAb

(A.7)

~rAaA =
mAa~rAa +mAb

~rAb

mAa +mAb

− ~rAa = (~rAb
− ~rAa)

mAb

mAa +mAb

(A.8)

Defining the mass ratio qAaAb
=

mAb

mAa
and using that ~rAaAb

= ~rAb
− ~rAa , Equation (A.8)

can be rewritten as:
~rAaA = ~rAaAb

(
qAaAb

1 + qAaAb

)
(A.9)

Thereby, Equation (A.5) can be rewritten as:

~rAaB = ~rAB + ~rAaAb

(
qAaAb

1 + qAaAb

)
(A.10)

Defining the wobble factor [Tokovinin and Latham, 2017] or the fractional mass
[Heintz, 1978] fAaAb

=
qAaAb

1+qAaAb

, it is finally obtained that the movement of B with respect to
the primary Aa is given by:

~rAaB = ~rAB + fAaAb
· ~rAaAb

(A.11)

It is important to note that Equation (A.11) clearly shows that if ~rAaAb
and ~rAB satisfy

Kepler’s equations, the combined orbit ~rAaB is not Keplerian and that, in particular, it is not
a closed orbit. On the other hand, when the tight binary corresponds to B and it is formed
by Ba, Bb, it is easy to show that a negative wobble factor is obtained [Lane et al., 2014,
Tokovinin, 2018a, Tokovinin and Latham, 2017]:

~rBaA = ~rBA − fBaBb
· ~rBaBb

(A.12)
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A.2 True Anomaly
Having obtained the orbital parameters, the value of the relative position between stars can
be computed at any given epoch τ . Let be T the time of periastron passage, the epoch
when the separation between primary and its companion reaches its minimum value. Then,
Kepler’s equation can be written:

M =
2π(τ − T )

P
= E − e sin(E) (A.13)

Where the termsM and E are the mean anomaly and eccentric anomaly, respectively.
As Equation (A.13) has no analytic solution, it must be solved using numerical methods.
Once E is obtained, the true anomaly ν can be computed through:

tan
(ν

2

)
=

√
1 + e

1− e
tan

(
E

2

)
(A.14)

The true anomaly corresponds to the angle between the main focus of the ellipse and
the companion star, provided that the periastron is aligned with the X axis, and the primary
star occupies the main focus of the ellipse. As the quadrants for E and ν are the same, i.e.,
Equation (A.14) allows to compute ν without any ambiguity.

A.3 Cartesian Coordinates
Inner System Regarding the inner system, the movement of the secondary Ab around the
primary Aa can be described in Cartesian coordinates by:[

XAaAb
(τ)

YAaAb
(τ)

]
=

[
rAaAb

(τ) · cos(νAaAb
(τ))

rAaAb
(τ) · sin(νAaAb

(τ))

]
(A.15)

Then, to project the orbit in the plane of the sky, the Thiele-Innes constants are used

{AAaAb
, BAaAb

, FAaAb
, GAaAb

}

which are a function of the orbital parameters

{aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

}[
xAaAb

(τ)
yAaAb

(τ)

]
=

[
AAaAb

XAaAb
(τ) + FAaAb

YAaAb
(τ)

BAaAb
XAaAb

(τ) +GAaAb
YAaAb

(τ)

]
(A.16)

Outer System On the other hand, concerning the outer system, the movement of the
secondary B around the fictional primary A can be described in Cartesian coordinates by:[

XAB(τ)
YAB(τ)

]
=

[
rAB(τ) · cos(νAB(τ))
rAB(τ) · sin(νAB(τ))

]
(A.17)
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Then, to project the orbit in the plane of the sky, the Thiele-Innes constants {AAB, BAB, FAB, GAB}
are used, which are a function of the orbital parameters {aAB, ωAB,ΩAB, iAB}:[

xAB(τ)
yAB(τ)

]
=

[
AABXAB(τ) + FABYAB(τ)
BABXAB(τ) +GABYAB(τ)

]
(A.18)

Finally, Equation (A.11) is rewritten in Cartesian coordinates:

~rAaB = ~rAB + fAaAb
· ~rAaAb

(A.19)[
XAaB(τ)
YAaB(τ)

]
=

[
XAB(τ)
YAB(τ)

]
+ fAaAb

·
[
XAaAb

(τ)
YAaAb

(τ)

]

As the projection in the plane of the sky can be represented as consecutive rotation
matrices, it is a linear transformation. So, the projection of a weighted sum is the weighted
sum of the projections. Then, the Cartesian coordinates of the position of B with respect to
Aa can be written as: [

xAaB(τ)
yAaB(τ)

]
=

[
xAB(τ)
yAB(τ)

]
+ fAaAb

·
[
xAaAb

(τ)
yAaAb

(τ)

]
(A.20)

The procedure is analogous when the binary corresponds to B, and it is formed by Ba, Bb.[
xBaA(τ)
yBaA(τ)

]
=

[
xAB(τ)
yAB(τ)

]
− fBaBb

·
[
xBaBb

(τ)
yBaBb

(τ)

]
(A.21)

A.4 Radial Velocity
Conversely, it can be noted that the velocity of Ab with respect to the center of mass A can
be written as:

uA,Ab
(τ) = uAb

(τ)− uA(τ) (A.22)

Considering that A and B are moving in an elliptic orbit around the center of mass of the
system, denoted by cm. So, the velocity of A can be described as:

uA(τ) = vcm +K3 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (A.23)
uB(τ) = vcm −K4 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (A.24)

If the mass ratio of the outer system qAB = mB

mA
is introduced, Equations A.23 and A.24

can be rewritten as:

uA(τ) = vcm + qAB ·K4 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (A.25)
uB(τ) = vcm −K4 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (A.26)
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Besides, Aa and Ab are also moving in an elliptic orbit around A, and therefore:

uAa(τ) = uA +K1 (eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (A.27)
uAb

(τ) = uA −K2 (eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (A.28)

If the mass ratio qAaAb
is introduced, Equations A.27 and A.28 can be rewritten as:

uAa(τ) = uA +K1 (eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (A.29)

uAb
(τ) = uA −

K1

qAaAb

(eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (A.30)

The above Equations are expressed in terms of K1 and K4, because it is more likely
to obtain measurements from the inner primary Aa than from the inner secondary Ab. In
addition, the object A is fictional, so only B’s RV measurements could be available.

A.5 Other Relevant Quantities
There are some quantities that are relevant to compute after the orbital parameters have
been estimated, namely, the stellar masses and the mutual inclination of the system. In
the following subsections explicit expressions in terms of the orbital parameters are derived.

A.5.1 Stellar Masses

To obtain the stellar masses for each one of the three bodies involved, the relationships for
binary systems are used, given the hierarchical approximation. For the inner system, given
that:

aAaAb
= aAa + aAb

(A.31)

qAaAb
=

aAa

aAb

=
mAb

mAa

(A.32)

mAa +mAb
=

1

ω̄3
·
a3
AaAb

P 2
AaAb

(A.33)

Then, the individual masses correspond to:

mAa =
a3
AaAb

ω̄3 · P 2
AaAb

· 1

(1 + qAaAb
)

(A.34)

mAb
=

a3
AaAb

ω̄3 · P 2
AaAb

· qAaAb

(1 + qAaAb
)

(A.35)
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The procedure is analogous for the outer system.

A.5.2 Mutual Inclination

Given the parameters iAaAb
, iAB, ΩAaAb

and ΩAB, the mutual inclination Φ can be obtained
as [Lane et al., 2014, Muterspaugh et al., 2010]:

cos(Φ) = cos(iAaAb
) · cos(iAB) + sin iAaAb

· sin iAB · cos(ΩAB − ΩAaAb
) (A.36)
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Appendix B

Dimensionality Reduction

B.1 Preliminaries
Here, dimensionality reduction in the radial-velocity-alone scenario is proposed, to reduce
from 20-dimensional state space to a 15-dimensional space. Even though it is just 25%
reduction, in sample-based schemes like MCMC any decrease in the computational cost is
appreciated.

The reduction consists on the separation of the parameter vector into two lower dimension
vectors: one containing non-linear components (θNL) and the other components that are
linearly dependent with respect to θNL and can be obtained through a weighted least-squares
procedure (θL). The method is inspired by [Wright and Howard, 2009] where they reformulate
the radial velocity equations in such a way that they get linear in some parameters, allowing
for an analytic calculation of weighted least-square solutions.

Therefore, the search of the state space is focused on

θNL = [TAaAb
, PAaAb

, eAaAb
, qAaAb

, iAaAb
, TAB, PAB, eAB, qAB, iAB]

and then the vector of parameters θL = [aAaAb
, ωAaAb

, aAB, ωAB, vcm] is obtained.

B.2 Method
Following the procedure described in Appendix A, the radial velocity equations can be for-
mulated as B.1. This modelling does not consider linear trends d(t− t0), which are used to
account for unmodeled noise sources and to notice the presence of massive objects in wide
orbits around the star [Retired, 2010, Wright and Howard, 2009].

uA(τ) = vcm + qAB ·K4 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (B.1)
uB(τ) = vcm −K4 (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (B.2)
uAa(τ) = uA +K1 (eAaAb

cos(ωAaAb
) + cos(ωAaAb

+ νAaAb
(τ)) (B.3)

uAb
(τ) = uA −

K1

qAaAb

(eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (B.4)
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However, the amplitudes K1 and K4 can be calculated as a function of the parameters
PAaAb

, eAaAb
, aAaAb

, iAaAb
, PAB, eAB, aAB and iAB as follows:

K1 =
2π sin(iAaAb

)

PAaAb

√
(1− e2

AaAb
)
·
a′′AaAb

ω̄
· qAaAb

1 + qAaAb

· λ (B.5)

K4 =
2π sin(iAB)

PAB
√

(1− e2
AB)
· a
′′
AB

ω̄
· 1

1 + qAB
· λ (B.6)

Where λ is a constant to convert from arcsec
yr

to km
s
. Then, if the variables K ′1, K ′4, m1

and m2 from Equations (B.7) to (B.10) are considered, the radial velocity equations can be
reformulated as shown in Equations (B.11) to (B.14).

K ′1 =
sin(iAaAb

)

PAaAb

√
(1− e2

AaAb
)
· qAaAb

1 + qAaAb

(B.7)

K ′4 =
sin(iAB)

PAB
√

(1− e2
AB)
· 1

1 + qAB
(B.8)

m1 = 2π ·
a′′AaAb

ω̄
· λ (B.9)

m2 = 2π · a
′′
AB

ω̄
· λ (B.10)

uA(τ) = vcm + qAB ·K ′4 ·m2 · (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (B.11)
uB(τ) = vcm −K ′4 ·m2 · (eAB cos(ωAB) + cos(ωAB + νAB(τ)) (B.12)
uAa(τ) = uA +K ′1 ·m1 · (eAaAb

cos(ωAaAb
) + cos(ωAaAb

+ νAaAb
(τ)) (B.13)

uAb
(τ) = uA −

K ′1
qAaAb

·m1 · (eAaAb
cos(ωAaAb

) + cos(ωAaAb
+ νAaAb

(τ)) (B.14)

Finally, considering the auxiliary variables α1, β1, α2 and β2:

α1 = m1 · cos (ωAaAb
) (B.15)

β1 = −m1 · sin (ωAaAb
) (B.16)

α2 = m2 · cos (ωAB) (B.17)
β2 = −m2 · sin (ωAB) (B.18)

the following equations are obtained:

~uA(τ) = ~vcm + qAB ·K ′4 · α2 · (eAB + cos(νAB)) + qAB ·K ′4 · α2 · sin(νAB(τ)) (B.19)
~uB(τ) = ~vcm −K ′4 · α2 · (eAB + cos(νAB))−K ′4 · β2 · cos(νAB(τ)) (B.20)
~uAa(τ) = ~uA +K ′1 · α1 · (eAaAb

+ cos(νAaAb
)) +K ′1 · β1 · sin(νAaAb

(τ)) (B.21)

~uAb
(τ) = ~uA −

K ′1
qAaAb

· α1 · (eAaAb
+ cos(νAaAb

))− K ′1
qAaAb

· β1 · sin(νAaAb
(τ)) (B.22)
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The radial velocity equations depicted above can be represented in a matrix form if the
parameter’s vector ~θ = [α1, β1, α2, β2, vcm]T is defined:

uAa(τ) = ~θT ·


K ′1 · (cos (νAaAb

(τ)) + eAaAb
)

K ′1 · sin (νAaAb
(τ))

qAB ·K ′4 · (cos (νAB(τ)) + eAB)
qAB ·K ′4 · sin (νAB(τ))

1

 = ~θT · FAa(τ) (B.23)

uAb
(τ) = ~θT ·


− K′1
qAaAb

· (cos (νAaAb
(τ)) + eAaAb

)

− K′1
qAaAb

· sin (νAaAb
(τ))

qAB ·K ′4 · (cos (νAB(τ)) + eAB)
qAB ·K ′4 · sin (νAB(τ))

1

 = ~θT · FAa(τ) (B.24)

uB(τ) = ~θT ·


0
0

−K ′4 · (cos (νAB(τ)) + eAB)
−K ′4 · sin (νAB(τ))

1

 = ~θT · FB(τ) (B.25)

Then, considering a matrix F with the matrices FAa , FAb
and FB for all the epochs of

measurement for the three bodies involved

F = [FAa(τra(0)) . . . FAa(τra(Na))|FAb
(τrb(0)) . . . FAb

(τrb(Nb))|FB(τrB(0)) . . . FB(τrB(NB))]

and a vector with the modelled values for all the epochs of measurement for the three bodies
involved ~u = [uAa(τra(0)) . . . uAa(τra(Na)), uAb

(τrb(0)) . . . uAb
(τrb(Nb)), uB(τrB(0)) . . . uB(τrB(NB))],

it can be written in compact form that ~u = ~θT · F .

Afterwards, the vector of parameters ~θ can be estimated from the data directly using
least-squares and the figure of merit χ2 (Equation (B.26)). If the matrix W is defined as the
diagonal with the weights associated to each observation Wkl = δkl

σ2
k
, ~v a vector with all the

observations from the three bodies concatenated and using weighted least-squares:

χ2 =
Na∑
k=1

(vk − uAa(τra(k)))
2

σAa(τra(k))2
+

Nb∑
k=1

(vk − uAb
(τrb(k))

2

σAb
(τrb(k))2

+

NB∑
k=1

(vk − uB(τrB(k))
2

σB(τrB(k))2
(B.26)

∂χ2

∂~θ
= −2(~v − ~θTF )WF T = ~0 (B.27)

And the parameters’ vector is obtained through ~θ = ~vWF T (FWF T )−1.
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Finally, the original parameters can be recovered:

m1 =
√
α2

1 + β2
1 (B.28)

m2 =
√
α2

2 + β2
2 (B.29)

ωAaAb
= arctan

(
−β1

α1

)
(B.30)

ωAB = arctan

(
−β2

α2

)
(B.31)

a′′AaAb
=

m1 · ω̄
2πλ

(B.32)

a′′AB =
m2 · ω̄
2πλ

(B.33)
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Appendix C

Computation of Predictive Models

All of the predictive distributions were numerically approximated using MCMC algorithms.
Those sampling-schemes construct a Markov chain with Θ as state space and π(θ) = p(θ|z)
as the stationary distribution. They generate a sequence of parameter values θ1, θ2 · · · θn, by
sampling from a proposal distribution an then accepting/rejecting the sample according to
a criteria that depends on prior information and the likelihood. That empirical distribution
approaches the target distribution in the limit of long runs.

Following Bayes rule, π can be written as:

π(θ) = p(θ|z) =
p(z|θ)p(θ)∫
p(z|θ)p(θ)dθ

(C.1)

However, it is not necessary to compute de denominator, as MCMC algorithms base the
acceptance/rejection of a sample θ′ based on the posterior ratio:

π(θ′)

π(θ′)
=
p(z|θ′)p(θ′)
p(z|θ)p(θ)

(C.2)

Due to the highly dimensional state space, an hybrid Gibbs sampler MCMC variant is
used, which allows us to draw iteratively samples from the conditional posterior distribution
for each variable given the remaining ones using an MH iteration. The state space is explored
using a random walk with Gaussian proposal distributions. Besides, there is a constrained
state space due to physical restrictions on the parameters, thus it is assumed to be circular
for each dimension, then several iterations on the boundaries are avoided.

On the other hand, given that the observation model includes Gaussian additive noise (see
Equation (4.1)), all likelihoods are proportional to exp(−1

2
χ2):

L(θ) = p(z|θ) ∝ exp

(
−1

2

N∑
k=1

‖zk − f(θ, τk)‖2

σ2
k

)
(C.3)

Finally, it is worth mentioning that, due to T can be replaced by T ±nP (n could be any
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integer), T ∈ (0, P ) is chosen. Then, for simplicity the variable T ′ = T
P
∈ (0, 1) is defined

and it is used along the estimations. After finishing, the old variable T is obtained.

Here below, the details of each one of the scenarios presented in Section 4.2 are explained.

C.1 Astrometry alone

As seen in Figure 4.5, two processes are run consequently. First, the astrometric observations
from the inner system {~z1}N1

k=1 are used to estimate the parameters set

Θ1 = {TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
}

However, a dimensional reduction is performed. For each iteration of the algorithm, the
parameters

θNL = {TAaAb
, PAaAb

, eAaAb
}

are left free and the parameters θL = {aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

} are obtained using a
weighted least-squares procedure. The process is explained in detail in [Mendez et al., 2017].

Then, the astrometric observations from the outer system to estimate the parameters set
Θ2 = {qAaAb

, TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB} are used, employing an imputations frame-
work within MCMC (see [Claveria et al., 2019] for more details). Here, for each iteration of
the algorithm:

1. Sample Θ2 using the proposal distribution, and obtain

{~y2 = f1(TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB, τk)}N2
k=1

2. Sample from the distribution PΘ1| ~Z1
(·|~z1), obtained in the last step, and generate {~y1 =

qAaAb

1+qAaAb

· f1(TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
, τk)}N2

k=1.

3. Compute ~z = ~y2 + ~y1 and use it as observation to continue with the algorithm.

Later, we add a physical restrictions step. Besides checking the support for each parameter,
it is necessary to check:

• The hierarchical approximation in periods PAaAb
< PAB and semi-major axes aAaAb

<
aAB.

• The sum of masses has sense: mAa +mAb
< mA +mB ⇔

a3AaAb

P 2
AaAb

<
a3AB

P 2
AB

.

This process is shown in detail in Algorithm 4.

59



C.2 Radial Velocities alone
Unlike the last scenario, all observations are used at once, achieving the estimation of the
parameter set

ΘRV = {TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
,

iAaAb
, qAaAb

, TAB, PAB, eAB, aAB, ωAB, iAB, qAB, vcm}

in just one process, as seen in Figure 4.8. Nonetheless, since the dimension of the parameter
space rises to fifteen, a dimensionality reduction is proposed.

For each iteration of the algorithm, the parameters

θNL = {TAaAb
, PAaAb

, qAaAb
, iAaAb

, TAB, PAB, eAB, qAB, iAB}

are left free and the parameters θL = {aAaAb
, ωAaAb

, aAB, ωAB, vcm} are obtained using a
weighted least-squares procedure, similar to the processes described in [Mendez et al., 2017,
Wright and Howard, 2009], and explained in detail in Appendix B. This allows us to sample
from a reduced parameter space θNL, while linearly deriving the rest of the parameters θL.

Later, we add a physical restrictions step. Besides checking the support for each parameter,
it is necessary to check:

• The hierarchical approximation in periods PAaAb
< PAB and semi-major axes aAaAb

<
aAB.

• The sum of masses has sense: mA = mAa +mAb
⇔ | a

3
AB

P 2
AB
· 1

(1+qAB)
−

a3AaAb

P 2
AaAb

| < ε.

The algorithm can be seen in detail in Algorithm 6.
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Appendix D

Algorithms for parameter estimation

At last, here we show the pseudocode of the MCMC algorithms mentioned in Appendix C:

• Algorithm (4) shows the MCMC-based method to perform the parameter estimation
of parameters {TAaAb

, PAaAb
, eAaAb

, aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

}.

• Algorithm (5) shows the MCMC and imputations-based framework to perform the
parameter estimation of parameters {qAaAb

, TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB}.

• Algorithm (6) shows the MCMC-based method to perform the parameter estimation
of parameters

{TAaAb
, PAaAb

, eAaAb
, aAaAb

, ωAaAb
, iAaAb

, qAaAb
, TAB, PAB, eAB, aAB, ωAB, iAB qAB, vcm}
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Algorithm 4 MCMC - Parameter estimation for inner parameters (astrometric alone sce-
nario).
1: θNL = {TAaAb

, PAaAb
, eAaAb

}
2: θL = {aAaAb

, ωAaAb
,ΩAaAb

, iAaAb
}

3: Initialize θ(0) sampling from priors
4: for k = 1 . . . Nsteps do
5: θ′ = θ(k)

6: for j = 1 . . . 3 (All the non linear parameters) do
7: Sample θ′j ∼ N (θ′j, σ

2
j ) (Apply additive Gaussian perturbation on component j)

8: Compute θL
9: Compute L(θ′)
10: Sample u′ ∼ U(0, 1)

11: Compute acceptance ratio L(θ′)

L(θ(k))

12: if u < ratio then
13: θ

(k+1)
j = θ′j

14: else
15: θ

(k+1)
j = θ

(k)
j

16: end if
17: end for
18: end for

Algorithm 5 MCMC and Imputations - Parameter estimation for outer parameters (astro-
metric alone scenario).
1: θ1 = {TAaAb

, PAaAb
, eAaAb

, aAaAb
, ωAaAb

,ΩAaAb
, iAaAb

}
2: θ2 = {qAaAb

, TAB, PAB, eAB, aAB, ωAB,ΩAB, iAB}
3: Initialize θ(0)

2 sampling from priors
4: for k = 1 . . . Nsteps do
5: Generate imputations {~y1}N2

k=1, using PΘ1| ~Z1
(·|~z1).

6: θ′2 = θ
(k)
o

7: for j = 1 . . . 8 do
8: Sample θ′2j ∼ N (θ′2j , σ

2
j ) (Apply additive Gaussian perturbation on component j)

9: Compute physical restrictions
10: Compute ~y2(θ′2, τ) and L(θ′2)
11: Sample u′ ∼ U(0, 1)

12: Compute acceptance ratio L(θ′)

L(θ(k))

13: if u < ratio then
14: θ

(k+1)
2j

= θ′2j
15: else
16: θ

(k+1)
2j

= θ
(k)
2j

17: end if
18: end for
19: end for
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Algorithm 6 MCMC - Parameter estimation in the RV alone scenario.
1: θNL = {TAaAb

, PAaAb
, eAaAb

, qAaAb
, iAaAb

, TAB, PAB, eAB, qAB, iAB}
2: θL = {aAaAb

, ωAaAb
, aAB, ωAB, vcm}

3: Initialize θ(0) sampling from priors
4: for k = 1 . . . Nsteps do
5: θ′ = θ(k)

6: for j = 1 . . . 10 (All the non linear parameters) do
7: Sample θ′NLj

∼ N (θ′NLj
, σ2

j ) (Apply additive Gaussian perturbation on component
j)

8: Compute θL
9: Compute physical restrictions
10: Compute L(θ′)
11: Sample u′ ∼ U(0, 1)

12: Compute acceptance ratio L(θ′)

L(θ(k))
:

13: if u < ratio then
14: θ(k+1) = θ′j and save θ′
15: else
16: θ(k+1) = θ(k)

17: end if
18: end for
19: end for
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