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We present a protocol to deterministically prepare the electromagnetic field in a large photon
number state. The field starts in a coherent state and, through resonant interaction with one or
few two-level systems, it evolves into a coherently displaced Fock state, without any post-selection.
We show the feasibility of the scheme under realistic parameters. The presented method opens a
door to reach Fock states, with n ∼ 100 and optimal fidelities above 70%, blurring the line between
macroscopic and quantum states of the field.

Introduction.— Fock states are quantum states of the
electromagnetic field with a well defined number of ex-
citations. Such states are of significant theoretical and
experimental interest, with applications ranging from
protocols for quantum information to quantum metrol-
ogy [1], where the quantum properties of the field allow
for sensitivities greater than the achievable with classical
light [2]. All these applications benefit from a fast and
efficient generation of Fock states with a large number
of photons, a long standing goal for the quantum optics
community [3–11].

There are several theoretical proposals and experimen-
tal implementations for generating Fock states across dif-
ferent platforms, such as acoustic waves in resonators [8],
photonic waveguides [12–14] and superconducting cir-
cuits [15–18]. In the context of cavity quantum elec-
trodynamics (CQED), Fock states can be generated by
injecting one quanta at a time into a cavity field [7, 19], by
resonantly interacting a jet of atoms passing through the
cavity leaving the field in a upper-bounded steady Fock
state [20, 21], or by realizing quantum non-demolition
measurements progressively projecting the field into a
Fock state [22–26].

State of the art experiments generate Fock states with
either low photon number (n ∼ 7 − 15) [25, 27, 28], low
fidelity at large photon numbers (F > 80% for n ≤ 4 and
F < 50% for n ≥ 4) [23], or low probability of success
after long convergence times (∼ 80% after ∼ 20 ms) [24],
evidencing the difficulty of the problem and the efforts
made to generate arbitrarily large number states.

In this Letter we propose a protocol to deterministi-
caly generate large photon number states with signifi-
cantly large fidelities, depicted in Fig. 1 with a CQED
example. We consider a two-level atom that resonantly
interacts with a coherent state. We show that for partic-
ular interaction times, the field evolves into a Fock-like
state, slightly displaced in phase space. In the absence of
decoherence, this protocol allows for fidelities above 70%
for n ∼ 100. This process can be sped up by simultane-
ously interacting two or more entangled atoms with the
field. Under realistic losses, this scheme could generate
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Figure 1. Schematic of the proposal. One or two (entangled)
two-level atoms interact with a coherent state trapped in a
cavity. The field, represented here by its Wigner function,
evolves from a coherent state to a macroscopic superposition
(after an interaction time τC) and then into a Fock-like state
(after an interaction time τF). The time scale of the evolution
is set by coupling strength g. The final state of the field
approaches to a Fock-like state, despite the cavity and atomic
decay, given by the rates κ and Γ.

Fock states as large as n = 50 with a fidelity of 58% in
a CQED system [29] and a Fock states with n = 100
with a fidelity above 60% considering the state of the
art in circuit-QED [30–32]. Finally, we discuss the main
characteristics and results of the protocol, and give an
outlook of some open questions and future possibilities.
Theoretical model.— The interaction of an atom with

the electromagnetic field inside a cavity is well described
by the Jaynes-Cummings Hamiltonian [33]

Ĥ =
~ω0

2
σ̂z + ~ωcâ†â+ ~g(âσ̂+ + â†σ̂−), (1)

where ω0 and ωc are the atomic and field frequencies,
g = Ω0/2 is the coupling frequency, â and â† are the
field operators, and σ̂+ and σ̂− the raising and lowering
atomic operators. The evolution under resonant inter-
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action (ωc = ω0) of the atom-field compound state ρ is
determined by the master equation [1]

~i
dρ(t)

dt
= [Hint, ρ(t)]

− κ

2
(nth + 1)

(
â†âρ(t) + ρ(t)a†a− 2aρ(t)a†

)
− κ

2
nth

(
aa†ρ(t) + ρ(t)aa† − 2a†ρ(t)a

)
− Γ

2
(nth + 1) (σ̂+σ̂−ρ(t) + ρ(t)σ̂+σ̂− − 2σ̂−ρ(t)σ̂+)

− Γ

2
nth (σ̂−σ̂+ρ(t) + ρ(t)σ̂−σ̂+ − 2σ̂+ρ(t)σ̂−) ,

(2)

where Ĥint = ~g(âσ̂+ + â†σ̂−) is the Hamiltonian in the
interaction representation, κ and Γ are the cavity and the
atomic decay rates respectively, and nth is the average
number of thermal photons.

We assume that the field is initialized in a coher-
ent state of amplitude α and the state of the system
is initially separable, meaning ρ(0) = |ψ(0)〉 〈ψ(0)| with
|ψ(0)〉 = |φat〉 |α〉.

The compound state initially factorizable, generally
evolves into an entangled state. For a particular evo-
lution time τC = 2π

√
n̄/Ω0, with n̄ = |α|2 the average

number of photons, the atom and the field get disentan-
gled again and the field is found in a a cat-like state (see
Fig. 1) [34, 35]. Previous works have studied this sys-
tem within such a time regime [36, 37], nonetheless the
exact evolution of the field at longer times has remain
unexplored.

If we let the system interact for longer times we see
that the Wigner function of the field temporarily evolves
into a distribution that, at specific times t = τF, resem-
bles that of a Fock state [38] (see Fig. 1), but slightly
displaced in phase space [39]. At t = τF, the field and
the atom become almost disentangled again, producing
a field state that is nearly pure (purity ≈ 80%) [38]. By
controlling the interaction time and injecting the proper
field amplitude and phase to correct for the remnant co-
herent displacement, one can deterministically obtain a
target Fock state.

The more commonly used figure of merit to quan-
tify how close is the generated state ρf (t) = Trat [ρ(t)]
to an ideal Fock state with n photons (ρn) is the fi-
delity F (ρn, ρf (t)) = [Tr(

√√
ρnρf (t)

√
ρn)]2 [40]. Since

the fidelity is not a proper metric, we characterize how
similar both states are by calculating the function 1 −
δ(ρf (t), ρn), where δ(ρf (t), ρn) = 1

2Tr(|ρf (t) − ρn|) is
the trace distance [41]. Although we use one minus the
distance trace for our calculations, we present our results
in terms of the fidelity to provide a common-ground com-
parison with previous works.

We numerically calculate the evolution of the field state
ρf (t) under Eq. (2) and search for an optimum time
t = τF that maximizes the value of 1− δ (ρf (t), ρn) for a

target Fock state ρn. Because the field state evolves to
something close to a Fock state but with a small displace-
ment D(β)(= Exp

[
βa† − β∗a

]
), we applied a coherent

displacement −β after the field interacted with the atom
[18, 23, 42, 43]. We perform a numerical evaluation of
the function 1− δ (ρf (t, β), ρn) and optimize it over two
parameters, namely t and β, obtaining the optimal inter-
action time τF and its corresponding optimum coherent
displacement βF.

N

N

N

Figure 2. (a) The left blue axis shows one minus the trace
distance between the obtained state and |n〉 as a function of
n, where a single two-level atom initially in |e〉 interacts with
a coherent field α with different initial average number of
photons |α|2 = n̄ = {5, 10, 20, 50}. The right red axis shows
the obtained fidelity for n = n̄ as a function of n. (b) and
(c) Density matrices of the generated Fock-like states with
n = 10 and n = 60 respectively. (d) One minus the trace
distance between the obtained state and |n〉 as a function of
n for a field that starts in a coherent state |α|2 = n̄ = 10
and interacts with N = {1, 2, 3} atoms. The insets on top
of every curve represents the Wigner functions and fidelity of
the obtained field state at n = n̄.
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Results.— We first consider the case of a single atom
initially in the excited state interacting with a resonant
coherent field in the absence of any decoherence mecha-
nism. Fig. 2(a) shows, on the left axis, the maximum
achievable 1− δ (ρf (t, β), ρn) between the obtained field
(displaced by the proper β in each case) and a Fock state
with n photons as a function n. The calculation is re-
peated for different initial coherent states with average
photon number |α|2 = n̄. We observe that the optimum
generation of a Fock state happens at n = n̄, meaning
that the process benefits from keeping the same average
number of excitations in the field. (An example of the
energy conservation throughout the full evolution of the
system is presented in the Supplemental Material [38].)
For those cases, the fidelity can be higher than 75% for
n ≤ 50 as shown in the right axis of Fig. 2(a). Notice that
the points plotted for the fidelity (with n = n̄) correspond
to the peaks of distributions like those shown in the 1−δ
plots as a function of n for a fix n̄. Figs. 2(b) and 2(c)
show the elements of the density matrix for the generated
Fock-like states with n = 10 and n = 60 respectively. We
observe a small remnant in the coherences that explains
the obtained fidelities despite negligible population of ad-
jacent number states.

Collective atomic effects increase the effective interac-
tion strength, hence shortening the necessary interaction
times to generate a target Fock state. Only a few initial
atomic states lead to the formation of a Fock-like state.
These are linear superpositions of the eigenstates |φλi〉
of the collective atomic operator Ŝ

(N)
x =

∑N
i σ̂

(i)
x , i.e.

Ŝ
(N)
x |φλi

〉 = λi |φλi
〉 with eigenvalues λi, where σ̂

(i)
x is

the Pauli matrix operating on the i-atom and N is the
total number of atoms. In particular, the initial atomic
states that lead to a Fock-like states are those of the form
|φat〉 = 1/

√
2 (|φλ1

〉+ |φλ2
〉), such that λ2 = −λ1. The

formation of a Fock state speeds up by a factor of N
when λ1 = max{λi}.

Figure 2(d) shows one minus the trace dis-
tance of the generated Fock state, as a function
of n, for one, two, and three atoms. The initial

atomic states are |φat〉 =
{
|e1〉; 1√

2
(|g1g2〉+ |e1e2〉) ;

1
2 (|e1e2e3〉+ |e1g2g3〉+ |g1e2g3〉+ |g1g2e3〉)

}
, respec-

tively, where gi and ei represent the ith-atom being
in the ground or excited state respectively. We see
that increasing the number of atoms has a detrimental
effect on the fidelity of the final Fock state, because
the purity of the field gets compromised when a larger
fraction of the total coherence of the system remains
in the atomic subsystem [38]. Considering this, and
the technical difficulties of realizing entangled states of
many particles, we limit our analysis to the case of one
and two atoms.

Figure 3(a) shows the optimum times τF in units of a
single-atom/single-photon Rabi period as a function of
the target number of photons n, for one and two atoms
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Figure 3. (a) Optimum times τF to generate a Fock state
|n〉 as a function of n, starting from a coherent state |α|2 =
n̄ = n, for the case of a single atom in |e1〉 (blue circles) and
two entangled atoms in (|e1e1〉 + |g1g1〉)/

√
2 (red triangles).

The vertical axis is in units of resonant Rabi periods. (b)
Displacements βF for the states achieved in (a) as a function
of n.

(same initial atomic states as before). The optimal evo-
lution time τF follows even multiples of a (

√
n+
√
n+ 1)

dependence [38], represented by segmented shaded lines.
The multiple branches appear because the Fock-like state
is periodically generated throughout the evolution of the
system, but with slightly different fidelities. The max-
imization of the fidelity leads to what looks like jumps
of τF between different branches [38]. Figure 3(b) shows
the displacements βF necessary to generate the Fock-like
state with the largest fidelity as a function of n. In our
case the displacement is always real, since we begin the
interaction with a real α. If α were complex, then the ap-
propriate displacement will have the same complex phase
than α. The role of the coherent displacementD(βF) is to
compensate for the energy difference between the initial/
target state and the final state of the field after energy
exchange with the atoms [38].-

Experimental feasibility in CQED.— We analyse our
protocol for typical experimental parameters in CQED
with Rydberg atoms [25] (see Fig. 1). We consider de-
coherence from cavity and atomic losses, and thermal
photons (Eq. (2)) to be κ = 1/Tc, with Tc = 130 ms the
cavity damping time, Γ = 1/Ta, with Ta = 30 ms the
atomic lifetime, nth = 0.05 (at 0.8 K) [44], and a vacuum
Rabi frequency of Ω0 = 2π × 49 kHz [1]. The atoms are
sent through the cavity as a jet, and the interaction time
is controlled by the atomic velocity. Fig. 4(a) shows the
optimum times τF as a function of n, for one and two
atoms. The decay rate of a Fock states with n photons is
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Figure 4. (a) Optimum times τF to generate a Fock state |n〉
as a function of n, starting from a coherent state |α|2 = n̄ = n,
for the one and two atom cases (see Fig. 2). The vertical
axis is in units of resonant Rabi periods. Colored dashed line
corresponds to the multiple branches of the solutions for both
cases [38]. The black dashed line represents the decay time of
a Fock state of n photons inside the cavity. (b) Fidelities for
the states generated in (a) as a function of n. Continuous lines
denote the ideal lossless system, and dashed lines denotes the
system under realistic decoherence mechanisms in CQED.

κn [27], represented by the dashed line and a shaded area
in Fig. 4(a). The extension of the scheme to larger pho-
ton number states or larger number of atoms is truncated
by decoherence effects, and its exploration is limited by
our computational capabilities. Figure 4(b) shows the
maximum fidelity for one and two atoms as a function of
the target Fock state, both in the ideal case and in the
presence of decoherence. Notice that in the presence of
decoherence one benefits of using two atoms for target
Fock states above n = 50. The obtained Fock-like states
are robust against imperfections in both the evolution
time τF and the coherent displacement βF, where typi-
cal experimental errors produce negligible changes in the
state fidelity [38, 42].

State of the art of CQED experiments with Rydberg
atoms can reach a maximum interaction time of 20 Rabi
periods [45]. Although experimental improvements are
being made on that regard, this presents an opportunity
to study protocols for state preparation of a few entan-
gled atoms to speed up the state generation process.

We observe that even for the simplest of the previously
described cases, meaning a single excited atom interact-

ing with a coherent state, it is possible to achieve larger
fidelities by conditioning the field to a particular post-
selected atomic state [1]. As a comparison, for an ini-
tial/target state n̄ = n = 10 and a single atom we obtain
a fidelity of 92% upon measuring the atom in the excited
state, compared with F = 84% in the un-projected case.
A careful analysis of optimal projections on the atomic
subsystem goes beyond the scope of this paper, but it
opens an opportunity to improve the presented scheme.

Our protocol for Fock states generation can be eas-
ily extended to other platforms. Circuit-QED systems
are particularly interesting, since the interaction time be-
tween the artificial atom and the field is arbitrarily large.
Considering parameters of state of the art circuit-QED
experiments [30–32], it is possible to generate a Fock state
near n = 100 with 60% fidelity with a single qubit, close
to the performance of the protocol without decoherence.
Analysis and Discussion.— We observe that the gen-

eration of Fock-like states requires two physical phenom-
ena: non-linearity and interference. Given that the ef-
fective Rabi frequency depends on the photon number
as Ω = Ω0

√
n, the probability distribution of the coher-

ent state will be distorted upon unitary evolution, re-
sulting in the negativity of its Wigner function. This is
a particular case of a non-linear evolution generating a
non-classical state [46]. On the other hand, when the in-
teracting two-level system is in a superposition, the field
evolves as such, allowing for interference effects among
probability amplitudes of the field overlapping in phase
space (see video in [38]). The non-linear n̂ dependence
and the ability to evolve the field in a superposition, gen-
erating Fock-like states, are not unique features of the
Jaynes-Cummings model. For example, the effective in-

teraction Hamiltonian Heff = g/2
√
n̂Ŝ

(N)
x [36, 47] can

also generate Fock-like states. While the non-linearity-
plus-interference picture explains the generation of highly
non-classical states, it does not answer why we can ob-
tain Fock-like states in particular or why these have such
large and robust fidelities. Nonetheless, it is not too sur-
prising that the distribution of a field unitarily evolved
to have a large phase uncertainty will resemble that of a
Fock state. The most remarkable aspect of the presented
protocol is the fact that a macroscopically intense classi-
cal field can express its truly granular (quantum) nature
upon interaction with a quantum two-level system.

The presented scheme could be implemented across dif-
ferent QED platforms. Its limiting factors is the shortest
time scale for the decoherence. Since the system needs
to undergo several Rabi cycles before the fields ends in a
Fock-like state, we suspect that the necessary condition
to succeed is that of strong coupling, where g � nκ,Γ.
Conclusions.— We have presented a protocol to deter-

ministically generate large photon number state within
QED systems. The field starts in a coherent state and
evolves to a Fock-like state upon resonant interaction
with a two-level system, without need of a post-selective
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procedure. The intrinsic non-linear evolution of the
field plus interference effects in the photon number
probability amplitudes generate a state of the field that
is well described by a Fock state coherently displaced
in phase space. After correcting for such displacement,
we obtain a Fock-like state with optimal fidelities as
large as 71% for n = 100. We show how this process
can be sped up aided by a second two-level system,
but compromising the fidelity of the final state. The
scheme shows to be feasible for current state-of-the-art
experiments. Although our analysis is mainly focused
on a CQED system, it can be extended to other QED
platforms. We expect that the implementation of the
presented protocol will have a significant impact on
quantum metrology applications.
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SUPPLEMENTARY MATERIAL: DETERMINISTIC GENERATION OF LARGE FOCK STATES

Fock states generation with a single two-level system

The quasi-resonant interaction of a single two-level system with a coherent radiation field is well described by the
Jaynes-Cummings Hamiltonian,

H =
~ω0

2
σz + ~ωca†a+ ~g(aσ+ + a†σ−), (3)

where ω0 and ωc are the two-level system and field frequencies respectively, g = Ω0/2 is the coupling frequency, â and
â† are the field operators, and σ̂+ and σ̂− raising and lowering operators of the two-level system. The evolution of
the atom-field compound state ρ, is determined on resonance by the interaction Hamiltonian Hint = ~g(aσ+ + a†σ−).

The atom-field compound state, which is initially factorizable, evolves into an entangled state. For a particular
evolution time, this state get nearly disentangled and the field can be found in a mesoscopic superposition of coherent
states (see Fig. 1 of the main text). After a given time, the field state evolves to one that closely resembles a Fock
state, but slightly displaced in phase space. In order to show this analytically, we consider the two-level system initially
in the excited state while the field is in a coherent state, |ψ(0)〉 = |e〉 |α〉. The evolution of the total field-atomic state
can be written within the JC solution as [1]:

|ψ(t)〉 =
∑
n

Cn(n̄) |n〉
(

cos(gt
√
n+ 1) |e〉 − i

√
n

α
sin(gt

√
n) |g〉

)
, (4)

where |e〉 and |g〉 are the excited and ground state of the two-level system, |n〉 is the field Fock state of n photons,
and Cn are the probability amplitudes that represent the initial field state in the Fock basis. At time t = 0,
|Cn(n̄)|2 = n̄ne−n̄/n! would be the probability to find n photons in the initial coherent field with |α|2 = n̄.

This state can be displaced through a coherent displacement operator for the field D(β) with amplitude β, so that

|ϕβ(t)〉 = D(β) |ψ(t)〉 =
∑
n

Cn(n̄)D(β) |n〉 (. . . ) =
∑
m

|m〉 ⊗ |km(t)〉 , (5)

where |m〉 is a Fock state of the field and |km(t)〉 is the two-level system state given by

|km(t)〉 = 〈m| |ϕβ(t)〉 = 〈m|D(β)|ψ(t)〉 =
∑
n

Cn(n̄)〈m|D(β)|n〉
(

cos(gt
√
n+ 1) |e〉 − i

√
n

α
sin(gt

√
n) |g〉

)
. (6)

The density matrix of such a displaced state is

ρ(β, t) = |ϕβ(t)〉 〈ϕβ(t)| =
∑
m

∑
l

|km(t)〉 〈kl(t)| ⊗ |m〉 〈l| . (7)

By taking the two-level system partial trace, we can express the field density matrix as

ρf (β, t) =
∑
m

∑
l

Trat [|km(t)〉 〈kl(t))|] |m〉 〈l| ;

=
∑
m

∑
l

Trat[〈m| |ϕβ(t)〉 〈ϕβ(t)| |l〉] |m〉 〈l| ;

=
∑
m

∑
l

Trat[〈m| ρ(β, t) |l〉] |m〉 〈l| ;

=
∑
m

∑
l

Fm,l(β, t) |m〉 〈l| ,

(8)

where Fm,l(β, t) = Trat[〈m|ρ(β, t)|l〉] = 〈m|ρf (β, t)|l〉. This is a way to write the density matrix of the field in the
Fock states basis.

Notice that Fm,m(β, t) is the fidelity of finding the field ρf (β, t) in a Fock state |m〉. When the term Fm,m(β, t) is
maximized as a function of the displacement β and evolution time t, the other diagonal elements are minimized in
order to maintain the unit value of the trace. If the target Fock state is then |m〉, the function to maximize is

Fm,m(β, t) =
∑
n

∑
n′

Cn(n̄)Cn′(n̄)〈m|D(β)|n〉〈m|D(β)|n′〉∗
(

cos(g
√
n+ 1t) cos(g

√
n′ + 1t) +

√
nn′

|α|2
sin(g

√
nt) sin(g

√
n′t)

)
.

(9)
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To get a better sense of the function Fm,m(β, t), we first analyse its terms [48]

〈m|D(β)|n〉 = 〈n|e−β
2/2

∞∑
i=0

(βa†)i

i!

∞∑
j=0

(−βa)j

j!
|m〉 (10)

with

(a†)iaj |n〉 =

√
n!
√

(n− j + i)!

(n− j)!
|n− j + i〉 . (11)

Since we want to project this last term into a Fock-like state |m〉, we make m = n− j + i

Case 1: m ≥ n; i = m− n+ j with jmin ∈ [0, n],

〈m|D(β)|n〉 = e−β
2/2βm−n

√
n!
√
m!

n∑
j=0

(−1)j(β2)j

(m− n+ j)!j!(n− j)!

= e−β
2/2βm−n

√
n!

m!
Lm−nn (β2)

(12)

Case 2: m < n; j = n−m+ i with i ∈ [0,m]

〈m|D(β)|n〉 = e−β
2/2(−β)n−m

√
n!
√
m!

n∑
i=0

(−1)i(β2)i

(n−m+ i)!i!(m− i)!

= e−β
2/2(−β)n−m

√
m!

n!
Ln−mm (β2)

(13)

with Lkn(x) the Laguerre associated function

Lkn(x) =

n∑
r=0

(−1)r(n+ k)!

(n− r)!r!(k + r)!
xr. (14)

We observe that Eq. (9) is difficult to approximate, not just because it is defined as a piecewise function, but because
several terms of the summation in n and n′ significantly contribute to the final result. The terms that contribute the
most are those with n and n′ ∼ n̄, because the Poissonian coefficients Cn(n̄)Cn′(n̄) are maximized when n = n′ = n̄,
providing an envelope for the summation. However, the terms with 〈n|D(β)|m〉 can sharply vary amplitude as a
function of n for |β| > 0.15, as the Laguerre polynomials can have several roots. The temporal evolution of the
fidelity (term in parenthesis in Eq. (9)) does not depend on the target state |m〉, but on the different terms of the
summation n and n′, and the initial average photon number n̄. However, we numerically notice that the state with
maximum fidelity are those with n̄ = m (see Fig. 2 in the main text). Moreover, by inspecting numerical results, we
find that the optimum time τF, which maximizes the fidelity of the final state, is the time that maximizes the time
dependent term of Eq. (9) when n = n′ = n̄, meaning

(
cos(g

√
n+ 1t) cos(g

√
n+ 1t) + sin(g

√
nt) sin(g

√
nt)
)
. The

solutions of maximizing that term are given by

gτF(n, l) = (2l + 1)
π

2
(
√
n+ 1 +

√
n), (15)

where the integer l represents the multiple solutions that periodically bring the field into a displaced Fock state.

Fock states generation with few two-level systems

We compare the obtained analytical solution against numerical simulations for the optimum Fock state generation.
Numerical errors in the field state evolution are negligible. To ensure this, we use a Hilbert space in the Fock
basis that is much larger than the average number of photons of the initial coherent field. This is more than
factor two larger for a large average photon number. We repeat the calculation varying the size of the Hilbert
space to assess the convergence of the solution. In the case of a single two-level system interacting with the
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field, the numerical solutions agree with the analytic ones. Fig. 5 shows the optimum times gτF to generate
the highest fidelity Fock-like state of n photons as a function of n, starting from a coherent state |α|2 = n̄ = n
with its multiple solutions, without considering decoherence. We include here the information of how those times
change when increasing the number of two-level system. We found that with a second two-level system, the
times to generate a Fock state are twice as fast than the case with a single two-level system, and with a third
two-level system it is three times faster. This is a consequence of the collective Rabi frequency, provided the
right initial state (see Fig. 2 in the main text). Fock-like states are generated periodically during the evolution of
the system, but every time with a slightly different fidelity. For different target states the optimum time τF can
vary within this multiple repetition. This is shown in Fig. 5, where the best time to generate a target Fock-like
state “jumps” from one branch of the solution to another, as a consequence of maximizing the fidelity of the final state.

(a) (b)

(c)
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Figure 5. (a) Time gτF to generate the number states of n photons with optimum fidelity. (a) shows the single two-level system

initial state |e〉. (b) shows the two two-level systems initial state (|ee〉 + |gg〉)/
√

(2). (c) shows the three two-level systems
initial state (|eee〉+ |egg〉+ |geg〉+ |gge〉)/2. The Markers are numerical simulations. The solid lines correspond to the multiple
analytic solutions for the case of a single two-level system, and in (b) and (c) they are scaled by the total number of two-level
systems.

Figure 6 shows the values of β that generate the maximum fidelity Fock-like states, both for the one and two
two-level systems cases. We were not able to find an analytical expression for the optimum displacement, however we
give here the numerical fit for the single two-level system case,

βF(l) ∼ a(l) + b(l)gτF(l), (16)

with a(l) = 0.13+1/(1.07+10.3 l) when l odd, a(l) = −0.08−1/(2.65+2.6 l) when l even, b(l) = (−1)l+1× [−0.0018+
0.016/(−0.25 + l)] for all l, where l shows the explicit dependence on the multiple solutions for the evolution time.
The displacements needed for the one and two two-level systems cases are similar, as Fig. 6 shows. The solid curves
are the fitting curves found for the case of a single two-level system, showing the similarity with the case of two
two-level systems. This evidences that the magnitude of displacements necessary to generate Fock-like states does
not significantly change for increasing number of two-level systems.

In the following hyperlink, https://www.dropbox.com/s/opjn6pnpmkbc3fd/A1N10.avi?dl=0, we give a video show-
ing the full dynamic of the Wigner function for the intracavity field for a target Fock state with n = 10 photons. The
video includes the first two l-solutions.

https://www.dropbox.com/s/opjn6pnpmkbc3fd/A1N10.avi?dl=0
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Figure 6. Displacement parameter β that generate the best Fock-like state as a function of n, along with their fits (Eq. (16)),
for one (blue circles) and two two-level system (red triangles) case respectively. Solid lines are fits to the single two-level system
case.

Purity analysis

We numerically analyze the purity and the fidelity of the generated Fock-like state after coherent displacement in
phase space, D(β)ρfD

−1(β). We compute the purity as

Tr[D(β)ρfD
−1(β)D(β)ρfD

−1(β)] = Tr[D(β)ρfρfD
−1(β)]

= Tr[D−1(β)D(β)ρfρf ]

= Tr[ρfρf ] = Tr[ρ2
f ],

(17)

which is independent of the applied displacement. Fig. 7 shows the purity of the resulting state of the field as a
function of |α|2 = n̄ = n. This quantifies how much the two-level system(s) and the field states disentangled after the
interaction. We observe that the purity in the single two-level system case is approximately constant with values near
80%. The purity drops below 70% for the case of two two-level systems, suggesting that, even though more two-level
systems can speed up the Fock state generation process, they will unavoidably compromise some of the coherence of
the final state of the field.
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0.6

0.8

1.0

n

Tr
[ρ

f2 ]
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Figure 7. Purity of the final state of the field as a function of n, for the case of both one and two two-level systems.

Density matrix analysis

In order to get a deeper understanding of the dynamics of the field, we study the evolution of the trace elements of
the field density matrix in the Fock state basis,

ρfnn(t) = Tr[|ψ(t)〉 〈ψ(t)| · (|n〉 〈n| ⊗ I)] (18)
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where |ψ(t)〉 is the atomic-field state before displacement (see Eq. (4)). We color plot in Fig. 8(a) the evolution of the
diagonal elements of the field density matrix before the displacement for an initial coherent state with n̄ = 5 photons
(i.e. for a target Fock state of n = 5). Vertical blue lines denote the times at which the Fock state is generated for
different solutions of Eq. (15) denoted by l. This shows that the target Fock state is generated several times during
the system evolution, but with different fidelities. In the case of low n, the best fidelity is found for l = 1. Fig. 8(b)
and (c) show the probability distribution comparison of a theoretical Fock state displaced by βF (red curve) with the
generated state (blue line, white dots), for l = 1 and l = 2 respectively.

Figure 8. (a) Color plot of the trace elements of the field density matrix (before displacement) in the Fock basis for a target
number state of n = 5 photons, as a function of Fock states (y-axis) and interaction time gt (x-axis). Vertical blue lines
denote the integer l that represents the multiple solutions that periodically bring the field into a displaced Fock-like state.
(b) Probability distribution of the state for l = 1 (blue curve) compared with an ideal displaced Fock state (red curve). (c)
Probability distribution of the state for l = 2 (blue curve) compared with an ideal displaced Fock state (red curve).

For completeness, in Fig. 9(a) and (b) we plot how does the diagonal elements of the field density matrix look like
when displaced for βF(l = 1) and βF(l = 2) respectively. In these cases, the emergence of a probability distribution
that peaks at n = 5 is evident. To highlight this, Fig. 9(c) shows the probability distribution of both final states of
the field.

Energy conservation and the role of coherent displacement

In the absence of any two-level system decay or cavity decay, the energy of the system must be conserved at all
times. The Jaynes-Cummings Hamiltonian describes the coherent energy exchange between the two-level system and
the field, while conserving the total energy. Fig. 10(a) shows this by displaying the dynamics of the expectation
values for each energy contribution, given an initially excited two-level system and a coherent state with |α|2 = 5.

During the evolution of the system, the field can have an average energy above or below its initial value, depending
on the initial state of the two-level system. More importantly, the final energy of the field can differ from the energy of
the target Fock state. In the particular case of Fig. 10(a) the energy of the field is always above the one of the target
Fock state of n = 5. This suggest that some energy should be substracted from the field at the end of the evolution
(or added with the correct phase) to reach the target state. This is the role of the final coherent displacement in
phase space, D(β).

The mean energy of a Fock state |n〉 is ~ωn. After displacing it by D(β), it becomes ~ω(n + |β|2). This is quite
different from the case of displacing a coherent state |α〉, where the average energy changes to ~ω|α + β|2. Such
energy change could be quite large due to interference effects. In other words, the displacement of a Fock state adds
incoherently to the final mean energy of the field.
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Figure 9. (a) Color plot of the trace elements of the field density matrix in the Fock basis after the field state is displaced by
βF(l), for (a) βF(l = 1) = 0.649 and (b) βF(l = 2) = −0.477. The two-level system is initially in the excited state and field
starts in a coherent state with n̄ = 5. We emphasize that these figures show the diagonal elements of the density matrices in
the Fock after being displaced in phase space by the optimum value of βF(l). This is why it looks like the distribution starts
near n = 10 for (a) and near n = 3 for (b).(c) shows the probability distribution for the states generated at l = 1 (red solid
curve) and the state at l = 2 (blue dashed curve).

In our proposal, we wait for the coherent state to evolve into a Fock-like state slightly displaced by β0, whit energy
~ω(n + |β0|2), and at that time we stop the evolution and apply a displacement D(β) to compensate for the energy
exchanged with the two-level system. Such displacement changes the energy of the field to ~ω(n+ |β0 − β|2). If the
displacements have the same magnitude but opposite phases (β = −β0) we obtain a Fock state centered at the origin
with the desired energy ~ωn. This displacement occurs at the τF time denoted by a vertical dashed line in Fig. 10(a).

Since the two-level system can change its initial energy by at most one excitation, the energy difference between
the final and initial field state is at most one photon, meaning that the necessary coherent displacement is |β| ≤ 1.
In particular, we observe that the optimum Fock-like state is generated when the two-level system is left near a
50/50 superposition, meaning an energy of half a photon. This explains why the numerically obtained optimum
displacements are always of the order of |βF| ∼

√
0.5, as shown in Fig. 6.

Experimental robustness in CQED with Rydberg atoms

We study the feasibility of the presented scheme in the context of CQED [25]. We consider the two most likely
sources of error, which are the final coherent state displacement βF and the atom-cavity interaction time gτF. In
CQED the displacement β is done by injecting a coherent microwave field from the side of the cavity, providing a
small coupling into the cavity mode. The phase of the displacement can be manipulated relative to the phase of the
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Figure 10. (a) Evolution of the expectation values of the energy for the complete system, two-level system and field as a
function of gt. The field is initially in a coherent state of |α|2 = 5 and the two-level system is in the excited state. The target
state is |n = 5〉. The black vertical line denotes the time τF at which the Fock-like state with the largest fidelity is obtained.
The black horizontal line denotes the energy of the target state. The energy difference between the field energy and the target
state energy at a time τF is the one corrected by the coherent displacement D(βF).

coherent field initially injected in the cavity [42]. On the other hand, the interaction time τ is set by the velocity of
the atom sent through the cavity, where slower atoms means longer interaction times [1].
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Figure 11. Fock state fidelity as a function of the coherent state displacement β and the atoms-cavity interaction time in units
of Rabi frequency gτ , for the case of (a) N = 1 with n = 5, (b) N = 1 with n = 50, and (c) N = 2 with n = 10. The color scale
represents the state fidelity with respect to the ideal number state. The vertical dashed lines represent reported experimental
errors. Typical error in the interaction time are too small to be represented in these plots.

Fig. 11 shows the fidelity for the Fock state preparation of n = 5 and n = 50 with a single two-level system, and
of n = 10 with two two-level systems for a range of values near βF and τF, more than ten time larger than typical
experimental errors [42]. We observe that the most critical parameter to keep under control is the interaction time.
However, the Fock state generation seems to be robust under typically reported experimental errors.
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