Tabla de contenido

1. Intr	roducción y organización de la memoria	1
1.1.	Introducción	1
1.2.	Organización de la memoria	2
2. Mo	tivación, Objetivos y Alcance	3
2.1.	Motivación	3
2.2.	Objetivos	3
2.3.	Alcance	4
3. Met	todología	5
4. Esta	ado del conocimiento	6
4.1.	Generalidades	6
4.2.	Cargas en las vías	6
4.2.	.1. Cargas Cuasi – Estáticas	6
4.2.	.2. Cargas dinámicas	7
4.2.	.3. Cargas Longitudinales	9
4.3.	Propagación de las ondas en el terreno	9
4.3.	.1. Ondas sísmicas en medio elástico y continuo	9
4.3.	.2. Propagación de ondas en semi – espacios elásticos	14
4.3.	.3. Atenuación de las ondas con la distancia	
4.3.	.4. Ondas en un medio estratificado	
4.4.	Normas de vibraciones y Ruido	19
4.4.	.1. Introducción	19
4.4.	.2. Normas de aceptación de ruido	19
4.5.	Medidas de Mitigación de vibraciones	24
4.5.	.1. Métodos Activos	24
4.5.	.2. Métodos Pasivos	25
4.5.	.3. Métodos en la trayectoria de las ondas	25
5. Ant	tecedentes	
5.1.	Introducción	
5.2.	Tramo por estudiar de la Línea 3	
5.3.	Propiedades y geometría del túnel	
5.4.	Estratigrafía del lugar	35
5.4.	.1. Propiedades Geotécnicas	

5	.4.	Antecedentes de los Trenes	37
	5.4.1	1. Composición del tren	37
	5.4.2	2. Propiedades de la rueda	39
5	.5.	Antecedentes de la vía	39
	5.5.1	1. Riel	39
6.	Mod	delo de estudio	42
6	5.1. Mo	Iodelo dinámico del tren	42
	6.1.1	1. Frecuencias Naturales	44
	6.1.2	2. Amortiguamiento modal	44
	6.1.3	3. Cargas basales	46
	6.1.4	4. Respuesta de desplazamientos y carga transmitida	49
	6.1.5	5. Carga en el espacio del tiempo	50
	6.1.6	.6. Carga en el espacio de las Frecuencias	54
6	.2. Mo	Iodelo Flac3D	59
	6.2.1	1. Efecto del amortiguamiento	63
	6.2.2	2. Efecto del tamaño de los elementos finitos	74
7.	Resu	ultados obtenidos	80
7	.1. Re	espuesta en superficie	82
	7.1.1	1. Comparación del Desplazamiento	82
	7.1.2	2. Comparación de la Velocidad	84
	7.1.3	3. Comparación de la Aceleración	87
7	.2. Lí	ímites de la norma	90
7	.3. Tú	únel Herradura	91
	7.3.1	1. Comparación Desplazamiento	92
	7.3.2	2. Comparación de la Velocidad	94
	7.3.3	3. Comparación de la Aceleración	96
5	.6.	Límites de la norma	99
8.	Con	nclusiones	100
9.	Bibl	liografía	104
10.	A	Anexo A	106

Índice de figuras

Figura 2.	1 Vibración	superficial	debido a	al tráfico	de trenes	subterráneos.	(Montalvo,	2007)	3
Figura 4.	1 Esquema	modelo ferr	oviario s	sencillo.	(Esveld, 2				7

Figura 6. 1 Modelo simplificado de tren-vía. (Melis, 2002)
Figura 6. 2 Modelo Plano de Carro + bogí +ruedas y eje, suspensión primaria y secundaria para
modelo analítico de carga dinámica. (CAF, INFORME DE CÁLCULO DE DENSIDAD DE
FUERZA DE CONTACTO, 2015)
Figura 6. 3 Nivel de Rugosidad de las vias para distintas longitudes de onda. (3590, 2005)47
Figura 6. 4 Frecuencia de Carga vs Longitud de Onda para distintas velocidades. (Escalas
Logaritmicas).
Figura 6, 5 Aceleración basal para distintas velocidades y longitudes de onda, obtenidas mediante la
fórmula 6.2
Figura 6, 6 Carga de contacto rueda-riel en el tiempo provocada por cada GDL para una velocidad
de 30 [Km/h]
Figura 6, 7 Carga de contacto rueda-riel en el tiempo provocada por cada GDL para una velocidad
de 40 [Km/h]
Figure 6 8 Carga da contacto rueda rial en al tiempo provocada por cada CDL para una valocidad
de 50 [Km/h]
Eigure 6. 0 Carga da contacto rueda rial en al tiempo provocada por cada CDL, para una valocidad
de 60 [Km/h]
Eigure 6, 10 Carros de contecto mude miel en el tiempe provocado por cado CDL poro una valocidad
Figura 6. 10 Carga de contacio rueda-nei en el tiempo provocada por cada GDL para una velocidad
$\frac{1}{5}$
Figura 6. 11 Carga de contacto rueda-riel en el tiempo provocada por cada GDL para una velocidad
de 80 [Km/h]
Figura 6. 12 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 30 [Km/h]55
Figura 6. 13 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 40 [Km/h]55
Figura 6. 14 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 50 [Km/h]56
Figura 6. 15 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 60 [Km/h]56
Figura 6. 16 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 70 [Km/h]57
Figura 6. 17 Transformada de Fourier de la carga de contacto rueda-riel para cada uno de los carros,
en condicion de TARA (AW0) para una velocidad de 80 [Km/h]57
Figura 6. 18 Transformada de Fourier de la carga de contacto rueda-riel para el carro completo en
condicion AW0 (arriba) y en condicion AW4 (abajo) para una velocidad de circulación igual a 80
[Km/h]58
Figura 6. 19 Modelo de estudio, Phase 260
Figura 6. 20 Historial de registros tanto en las cercanias del túnel como en superficie, además del
punto de aplicación de la carga. Modelo sacado de FLAC3D
Figura 6. 21 Comparación del desplazamiento, velocidad y aceleración vertical en la línea central
del túnel en la Superficie Libre
Figura 6. 22 Comparación del desplazamiento, velocidad y aceleracion vertical en puntos
superficiales alejados de la línea central del túnel
Figura 6, 23 Efecto de la distancia en el desplazamiento. la velocidad y aceleración verticales en la
superficie libre para el modelo de 2% de amortiguamiento
Figura 6. 24 Distribución de la aceleración vertical en el modelo de estudio. Unidades en [m/s ²]69

Figura 6. 25 Variación del desplazamiento máximo en función de la distancia al eje central del túnel	
y para distintos niveles de amortiguamiento)
Figura 6. 26 Variacion de la velocidad maxima en funcion de la distancia al eje central del tunel y	`
para distintos niveles de amortiguamiento	,
para distintos niveles de amortiguamiento	
Figura 6, 28 Transformada de fourier de la aceleración vertical en la superficie libre)
Figura 6. 29 Zona de estudio de (Acevedo Plaza, 2020) y lugar de estudio de esta memoria (Rojo).	2
Figura 6. 30 Frecuencia natural del suelo de Quilicura, (Acevedo Plaza, 2020), Zona de estudio 3.73	;
Figura 6. 31 Mallado de modelo Fino, Tamaño máximo 1.3 m74	ŀ
Figura 6. 32 Señales filtradas a 25 Hz y 63 Hz75	ý
Figura 6. 33 Señales en el espacio de las frecuencias75	ý
Figura 6. 34 Comparación de desplazamiento de modelo mallado fino y grueso. Punto de referencia en la superficie libre en la Línea Central	5
Figura 6, 35 Comparación de velocidad de modelo mallado fino y grueso. Punto de referencia en la	,
superficie libre en la Línea Central	5
Figura 6, 36 Comparación de aceleración de modelo mallado fino y grueso. Punto de referencia en	,
la superficie libre en la Línea Central	,
Figura 6 37 Comparación de desplazamiento de modelo mallado fino y grueso. Punto de referencia	
en la superficie libre alejados de la Línea Central Dirección horizontal (perpendicular al túnel) x y	
vertical z	,
Figura 6, 38 Comparación de velocidad de modelo mallado fino y grueso. Punto de referencia en la	
superficie libre alejados de la Línea Central Direccion horizontal (perpendicular al túnel) x y	
vertical z	2
Figura 6-39 Comparación de aceleración de modelo mallado fino y grueso. Punto de referencia en	,
la superficie libre aleiados de la Línea Central. Direccion horizontal (perpendicular al túnel) x v	
vertical z	3
Figura 6. 40 Transformada de Fourier de la señal obtenida para mallado fino y grueso de la	
aceleración vertical en superficie libre)
Figura 7. 1 Modelo para estudio del efecto de elastómero bajo losa	
Figura 7. 2 Detalle modelo	
Figura 7. 3 Modelo de losa Flotante	2
Figura 7. 4 Historial de registros tanto en las cercanias del túnel como en superficie, además del	
punto de aplicación de la carga. Modelo sacado de FLAC3D82	2
Figura 7. 5 Comparación desplazamiento vertical en superficie Lc del sistema base y con losa	,
$\mathbf{\Sigma} = \mathbf{Z} \in \mathbf{C}$)
Figura 7.6 Comparacion desplazamiento vertical para distintos puntos de control en superficie del	
sistema base y sistema losa flotante	ł
Figura /. / Variación porcentual entre desplazamiento maximo en eje x (arriba) y eje z (abajo) para	
sistema de Losa Flotante y sistema Base	ł
Figura 7. 8 Comparación velocidad vertical en superficie Lc del sistema base y con losa flotante85)
Figura 7.9 Comparación velocidad vertical para distintos puntos de control en superficie del	-
Sistema dase y sistema losa notante)
rigura /. 10 Transformada de Fourier de la velocidad vertical en los distintos puntos de control	5
supernotates)

Figura 7. 11 Vairación porcentual entre velocidad máxima en eje x (arriba) y eje z (abajo) para
sistema de Losa Flotante y sistema Base
Figura 7. 12 Comparación aceleración vertical en superficie Lc del sistema base y sistema losa
flotante
Figura 7. 13 Comparación aceleración vertical para distintos puntos de control en superficie del
sistema base y sistema losa flotante
Figura 7. 14 Transformada de Fourier de la señal de Aceleración Vertical en los distintos puntos de control superficiales
Figura 7. 15 Variación porcentual entre Aceleración máxima en eje x (arriba) y eje z (abajo) para
sistema de Losa Flotante y sistema Base
Figura 7. 16 Niveles de vibracion en superficie. Velocidad de referencia 1*10^-6 in/s. Rango de
frecuencias mostrado 4 – 25 Hz. Comparación entre Sistema Base y Sistema con Losa Flotante90
Figura 7. 17 Túnel tipo Herradura. Modelo FLAC 3D
Figura 7. 18 Desplazamiento vertical en la línea central del túnel en superficie. Comparación Túnel
con Contra Bóveda y Túnel Herradura
Figura 7. 19 Desplazamiento vertical en superficie alejado de la LC. Comparación Túnel con Contra
Bóveda y Túnel Herradura93
Figura 7. 20 Variación porcentual entre Desplazamiento máximo en eje x (arriba) y eje z (abajo)
para Tunel tipo Herradura y Túnel con Contrabóveda94
Figura 7. 21 Velocidad vertical en la línea central del túnel en superficie. Comparación Túnel con
Contra Bóveda y Túnel Herradura95
Figura 7. 22 Velocidad vertical en superficie alejado de la LC. Comparación Túnel con Contra
Bóveda y Túnel Herradura95
Figura 7. 23 Transformada de Fourier de la Velocidad Vertical en los distintos puntos de control
superficiales. Comparación Túnel con Contrabóveda y Túnel tipo Herradura96
Figura 7. 24 Razón entre Velocidad máxima en eje x (arriba) y eje z (abajo) para Tunel tipo
Herradura y Túnel con Contrabóveda
Figura 7. 25 Aceleración vertical en la línea central del túnel en superficie. Comparación Túnel con
Contra Bóveda y Túnel Herradura97
Figura 7. 26 Aceleración vertical en superficie alejado de la LC. Comparación Túnel con Contra
Bóveda y Túnel Herradura
Figura 7. 27 Transformada de Fourier de la Aceleración Vertical en los distintos puntos de control
superficiales. Comparación Túnel con contrabóveda y Túnel tipo Herradura
Figura 7. 28 Razón entre Aceleración máxima en eje x (arriba) y eje z (abajo) para Tunel tipo
Herradura y Túnel con Contrabóveda
Figura 7. 29 Niveles de vibracion en superficie. Velocidad de referencia 1*10^-6 in/s. Rango de
frecuencias mostrado 4 – 25 Hz. Comparación entre Túnel con Contrabóveda y Túnel tipo
Herradura

Índice de tablas

Tabla 4. 1 Influencia del Radio de Impedancia en la amplitud de desplazamientos y tensiones de	las
ondas reflejadas y transmitidas	19
Tabla 4. 2 Clasificacion de las vibraciones y su nivel de percepción para las personas (Bachman	n &
Ammann, 1987).	21
Tabla 4. 3 Valores de KB para edificaciones residenciales (German Institute of Standards, 1999))23

Tabla 4. 4 Respuesta humana frente a diferentes niveles de vibracion y ruido generadas en Terr	reno
(FTA, 2006)	23
Tabla 4. 5 Ground-Borne Vibration (GBV) y Ground-Borne Noise (GBN) y criterios de impac	ctos
(FTA, 2006).	24

Tabla 5. 1 Antedecedentes Líneas de metro de Santiago. (Wikipedia, 2019)	0
Tabla 5. 2 Propiedades Geométricas del Túnel a estudiar. (ARCADIS, 2013)	2
Tabla 5. 3 Coordenadas de los puntos geométricos de secciones de túnel. (ARCADIS, 2013)33	3
Tabla 5. 4 Propiedades Mecánicas del hormigón estructural. (Layera, 2018)	4
Tabla 5. 5 Propiedades mecánicas del acero de las mallas electrosoldadas. (Layera, 2018)34	4
Tabla 5. 6 Propiedades Geométricas de elementos subestructuras de la vía. (ARCADIS, 2013)34	4
Tabla 5. 7 Parámetros geotécnicos del tramo de estudio	б
Tabla 5. 8 Peso de la caja de los carros sin equipos. Unidades en [kg] (CAF, 2015)	7
Tabla 5. 9 Peso de los equipos de los carros. Unidades en [kg] (CAF, 2015)	7
Tabla 5. 10 Peso de los bogíes de los carros. Unidades en [kg] (CAF, 2015)	8
Tabla 5. 11 Peso de los Carros completos en diferentes condiciones de carga. Unidades en [kg].	
(CAF, 2015)	8
Tabla 5. 12 Dimensiones de las cajas de los Carros Tren Linea 3 y 6 del Metro de Santiago. (CAF,	
INTERFACE MATERIAL RODANTE CON OBRAS CIVILES (P63-IB-0004-ESF-000-MB-	
0002), 2012)	8
Tabla 5. 13 Suspensión primaria y secundaria de los carros y contacto Hertziano	8
Tabla 5. 14 Características de la rueda de los trenes de la línea 3 y 6. (ArcelorMittal, s.f.)	9
Tabla 5. 15 Información del riel en Línea 3 y 6. (ArcelorMittal, s.f.)	9
Tabla 5. 16 Dimensiones, área e inercia del Riel UIC-6040	0
Tabla 5. 17 Dimensiones de Sección equivalente a Riel UIC-60. Dimensiones en [mm]41	1
Table (1 Ensure rise Naturales de las comes non disiones de comes Tore (AWO) - llans	

Tabla 6. 1 Frecuencias Naturales de los carros para condiciones de carga Tara (AwO) y lieno
(AW4). Unidades en [Hz]
Tabla 6. 2 Amortiguamiento en % para distintas condiciones de carga45
Tabla 6. 3 Amortiguamiento de cada modo de los carros y para distintas condiciones de carga. Los
valores estan en [%]45
Tabla 6. 4 Componente predominante segun modo, tipo de carro y condición de carga46
Tabla 6. 5 Frecuencias de carga de fuerza de contacto. Unidades en Hz59
Tabla 6. 6 Frecuencia de la onda de carga, longitud de onda asociada y tamaño máximo del
elemento para el modelado61
Tabla 6. 7 Resumen de las propiedades del perfil de Quilicura. Modificado de (Godoy, González, &
Sáez, 2015)61
Tabla 6. 8 Modelos de estudio de influencia del tamaño del elemento y amortiguamiento61
Tabla 6. 9 Tiempo de cálculo de los ditintos modelos62
Tabla 6. 10 Frecuencias predominantes de la respuesta en superficie libre72

Tabla 7. 2 Tabla resumen de la variación porcentual de los valores máximos comparados para	
ambos modelos. Números negativos representan disminución, mientras que los positivos	
representan aumento. Comparación Túnel Herradura y Túnel con contrabóveda9) 9