
Computers in Human Behavior 112 (2020) 106458

Available online 17 June 2020
0747-5632/© 2020 Elsevier Ltd. All rights reserved.

Editorial 

Latest trends to optimize computer-based learning: Guidelines from cognitive load theory  
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1. Introduction 

Despite evidence that educational technology research is frequently 
lacking a conceptual base (e.g., Hew, Lan, Tang, Jia, & Lo, 2019), there 
is a theory that is gradually permeating the fields of educational tech
nology and computer-based learning: cognitive load theory (see Sweller, 
2020; Sweller, van Merri€enboer, & Paas, 2019). As reported in the 
bibliometric review of recent articles about multimedia learning by Li, 
Antonenko, and Wang (2019), cognitive load theory can be regarded as 
the leading conceptual framework to investigate the effectiveness of 
educational multimedia. In the same bibliometric analysis, Li et al. 
(2019) showed that the top journal publishing research on multimedia 
learning is Computers in Human Behavior. In the period from 1996 to 
2016, this journal published 46 articles about multimedia learning. 
Hence, the current special issue for the journal Computers in Human 
Behavior, which addresses computer-based learning based on cognitive 
load theory, is expected to contribute to these prominent international 
trends. 

2. Cognitive load theory and this special issue 

Cognitive load theory is an instructional theory aimed at optimizing 
educational materials and activities by developing design guidelines 
based on the knowledge of the human cognitive architecture (see 
Sweller, 2020; Sweller et al., 2019). In the past decades, many re
searchers have contributed to the development of cognitive load theory 
and a wide range of instructional guidelines is currently available which 
are based on rigorous experimental research (Sweller et al., 2019). 
Cognitive load theory is continually updating itself with new experi
mental findings, such as those included in this special issue which in
cludes six papers that focus on novel cognitive load theory approaches to 
optimize computer-based learning, and applied new techniques to 
measure cognitive load. The six empirical studies and their relationship 
to these topics are presented in Table 1. 

3. Novel cognitive load theory approaches to optimize 
computer-based learning 

The contributions of the papers can be categorized around three 
themes: refining existing cognitive load theory design guidelines 
(Armougum, Gaston-Bellegarde, Marle, & Piolino, 2020; Lee, Donkers, 
Jarodzka, Sellenraad, & van Merri€enboer, 2020), novel directions in 
supporting computer-based learning (de Koning, Rop, & Paas, 2020a; 
Hefter & Berthold, 2020), and effects of research methodology on vi
suospatial and cognitive processing (Park, Korbach, & Brünken, 2020). 

3.1. Refining existing cognitive load theory design guidelines 

In cognitive load theory research, one design guideline is the exper
tise reversal effect, which refers to the finding that processing methods 
that are effective for novices are less effective or even ineffective when 
the level of expertise increases (see Kalyuga, Ayres, Chandler, & Sweller, 
2003). The study by Armougum et al. (2020) extends prior work on 
expertise-related processing differences by investigating how the 
context in which the required processing occurs impacts cognitive load 
and performance, and studying this phenomenon in a virtual real-life 
situation instead of a lab-based situation. The participants were 124 
adults, novice and experienced train travelers, who were presented with 
a task in which they had to find their way to a given destination. Per
formance and cognitive load were measured when the train station 
presented either few (normal condition) or many (disturb condition) 
travelers. This study provides new insights in the practical application of 
expertise-related differences in processing in a real-life setting. 

Another design strategy that has emerged is avoiding the transient 
information effect, which occurs when information in a learning task 
disappears before it can be adequately processed (see Ayres & Paas, 
2007). There are basically two techniques to elude this effect in many 
animations and videos (see Merkt, Ballmann, Felfeli, & Schwan, 2018; 
Spanjers, van Gog, & van Merri€enboer, 2010; see also Castro-Alonso, 
Ayres, & Sweller, 2019). In one technique, called segmenting or sys
tem-determined pauses, the designer of the dynamic visualization cuts the 
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whole presentation in shorter and meaningful sections. The other 
technique, termed pace-control or learner-determined pauses, involves 
including features in the visualization that allow learners to control its 
pace (e.g., a pause/resume button) to give time for working memory 
resources to replenish (cf. Chen, Castro-Alonso, Paas, & Sweller, 2018). 
The study by Lee et al. (2020) focused on this latter technique. In this 
study, 70 medical university students (73% females) engaged in a 
computerized simulation game to practice emergency medicine and 
were given the option to pause the simulation or not. This study extends 
earlier work on the pace-control technique by investigating the effects of 
pausing the learning content in a non-linear task that is highly dynamic 
in nature. 

3.2. Novel directions in supporting computer-based learning 

A novel direction for the transient information effect is explored in 
this special issue by Hefter and Berthold (2020). While typically the 
cognitive load theory research is concerned with developing guidelines 
for the (re)design of the main learning task itself, Hefter and Berthold 
focused on how to design the instructions for (and thus preceding) the 
main learning task. This is something that is usually overlooked or 
simply designed based on intuition. In their study, 42 adult participants 
(50% females) had to self-explain video-examples and were given the 
self-explanation instructions either in video format (transitory) or in 
textual format (non-transitory). This study contributes to cognitive load 
theory research by applying guidelines to an earlier phase in the 
instructional process than the main learning task, as well as providing 
empirical work on the effectiveness of learning from video-examples and 
the transient information effect. 

In the past decades, cognitive load theory research has provided 
guidelines for instructors to optimize the design of instructional mate
rials (i.e., instructor-management of cognitive load). As an example, the 
split-attention effect holds that learners obtain higher learning perfor
mance when spatially separated text and pictures are presented in a 
physically integrated format than in a spatially separated format (see 
Ayres & Sweller, 2014; e.g., Pouw, Rop, de Koning, & Paas, 2019; Thees 
et al., 2020). Despite the value of optimized instructional materials for 
learning, many instructional materials are still available that are 
sub-optimally designed (e.g., text and picture presented in a 
split-attention format). Following recent studies (de Koning, Rop, & 
Paas, 2020b; Sithole, Chandler, Abeysekera, & Paas, 2017), de Koning, 
Rop, & Paas (2020a) investigated the effectiveness of a self-management 
of cognitive load approach wherein 92 psychology undergraduates (70% 
females) were taught a physical or mental integration strategy to sup
port learning from split-attention materials presented on the computer. 
The effects of both self-management guidelines were compared on tests 
of retention, comprehension and transfer. Also, effects of spatial 

distance (large or small) between text and picture were investigated. 
This study thus contributes to the literature by exploring a novel 
approach to manage cognitive load in instructional materials that is 
focused on the learner instead of the instructional material itself. 

3.3. Effects of research methodology on visuospatial and cognitive 
processing 

In many instructional materials, learners are confronted with inter
esting information that is not necessary for achieving the learning goal. 
Learning from such instructional materials usually results in lower 
performance compared to studying the same materials without these 
unnecessary details, which is referred to as the seductive details effect 
(Lehman, Schraw, McCrudden, & Hartley, 2007) and is related to the 
redundancy effect of cognitive load theory (Kalyuga & Sweller, 2014). 
The study by Park et al. (2020) extends research in the seductive details 
effect by investigating the extent to which engaging in a think-aloud 
procedure inhibits or helps processing visuospatial and textual in
structions with (or without) seductive details. Inhibition might be 
experienced because the think-aloud procedure is a secondary task that 
needs to be performed simultaneously with the main learning task. 
Engaging in a think-aloud might help processing of the presented in
formation because it supports self-regulatory behavior during learning. 
This was tested with 116 psychology students (84% females) in a lab 
setting where participants engaged in think-aloud or not while they 
learned from textual and visual materials presented on a laptop, 
including or not seductive details. Together, the present study makes 
both a methodological and a theoretical contribution to the literature. 

4. Applied new techniques to measure cognitive load 

In this section, we describe how the empirical papers in this special 
issue describe new techniques to measure cognitive load, which can be 
applied to computer-based learning. Traditionally, the most common 
measures of cognitive load are subjective methods (see Anmarkrud, 
Andresen, & Bråten, 2019; Mutlu-Bayraktar, Cosgun, & Altan, 2019; 
Naismith & Cavalcanti, 2015), such as self-reported ratings of experi
enced cognitive load (e.g., Beege, Schneider, Nebel, Mittangk, & Rey, 
2017; Colliot & Jamet, 2018; Weng, Otanga, Weng, & Cox, 2018). 

Measurement of cognitive load has been an ongoing source of debate 
ever since cognitive load theory was first introduced (e.g., Kirschner, 
Ayres, & Chandler, 2011), and typically centered around the subjective 
nature of the measurement. Hence, researchers have also started to 
investigate the potential of objective methods to measure cognitive load. 
Examples of objective methods to measure cognitive load that can be 
applied in computer-based learning scenarios include pupillary response 
(e.g., Hess & Polt, 1964; Huh, Kim, & Jo, 2019), electrodermal activity 
(see Boucsein, 2012), cardiac response (e.g., Grassmann, Vlemincx, von 
Leupoldt, & Van den Bergh, 2017), linguistic cues (e.g., Khawaja, Chen, 
& Marcus, 2012), secondary-tasks (e.g., Haji et al., 2015), and electro
encephalography (e.g., €Orün & Akbulut, 2019). 

In three studies of this special issue (Armougum et al., 2020; 
Johannessen et al., 2020; Lee et al., 2020), objective measures of 
cognitive load were collected in addition to subjective measures, which 
enables direct comparisons between both methods. Lee et al. (2020) 
investigated medical students practicing emergency medicine producers 
in a computerized simulation game. The subjective measure of cognitive 
load employed was the mental effort scale developed by Paas (1992), 
and the objective measure used was pupillary response (pupillometry, 
pupil dilation). 

In the experiment by Armougum et al. (2020), novice and expert 
train travelers were asked to find certain destination in a virtual train 
station. Cognitive load was manipulated by presenting the trials in peak 
hours (high cognitive load) or in non-peak hours (low cognitive load) at 
the virtual station. The subjective measure used was the NASA-TLX 
(Task Load Index) developed by Hart and Staveland, 1988. 

Table 1 
Overview of the six empirical studies in the special issue.  

Novel cognitive load theory approaches to optimize computer-based learning: 
Study in the Special Issue Guideline Key Reference 
Armougum et al. (2020) Expertise reversal 

effect 
Kalyuga et al. (2003) 

de Koning, Rop, & Paas (2020a) Split-attention effect Ayres and Sweller 
(2014) 

Hefter and Berthold (2020); Lee 
et al. (2020) 

Transient information 
effect 

Ayres and Paas 
(2007) 

Park et al. (2020) Redundancy effect Kalyuga and Sweller 
(2014) 

Applied new techniques to measure cognitive load: 
Study in the Special Issue Measure Key Reference 
Armougum et al. (2020);  

Johannessen et al. (2020) 
Electrodermal activity Boucsein (2012) 

Johannessen et al. (2020); Lee 
et al. (2020) 

Pupillary response Hess and Polt (1964) 

Johannessen et al. (2020) Cardiac response Grassmann et al. 
(2017)  
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Electrodermal activity (galvanic skin response) was the choice for the 
objective measure of cognitive load. 

Johannessen et al. (2020) conducted an exploratory study with three 
trauma physicians performing resuscitation in an emergency depart
ment. The subjective measure of cognitive load was the mental effort 
scale by Paas (1992), and three objective measures were collected with 
sensors in wearable devices. One measure, obtained via eye tracking 
glasses, included pupillary response. The two other measures, obtained 
via a wristband, calculated electrodermal activity and cardiac response. 

5. Discussion 

The current special issue includes six articles about computer-based 
learning. Crucially, the studies were all conducted under the umbrella of 
a leading framework for instructors and instructional designers, namely, 
cognitive load theory. As such, these articles are expected to invigorate 
cognitive load theory research by describing novel approaches to this 
theory, as well as new applications to measure cognitive load. 

5.1. Implications for cognitive load theory research 

Concerning novel approaches to cognitive load theory, the studies in 
this special issue employed different computer-based learning scenarios. 
Media included virtual reality, laptops, and desktop computers. Visu
alizations included simulation game, video, and animated multimedia. 
All these scenarios were appropriate to test novel approaches to opti
mize design guidelines based on cognitive load theory. In other words, 
the value of cognitive load theory permeates different forms of tech
nology. An implication following from this versatility of cognitive load 
theory is that research about this theory should continue placing the 
human cognitive architecture before the latest technology fad. 

Concerning measurement of cognitive load, the studies in this special 
issue showed that subjective and objective measures tend to assess 
different aspects of cognitive load and produce different results, as 
previously reported (e.g., Korbach, Brünken, & Park, 2017; Makransky, 
Terkildsen, & Mayer, 2019). Moreover, the three objective assessments 
presented here—pupillary response, electrodermal activity, and cardiac 
response—have also two key differences with the subjective ratings: (a) 
they are controlled by the autonomous system, and (b) they are calcu
lated during learning. This contrasts the conscious and somewhat 
delayed measurement of subjective ratings, so employing these different 
approaches will likely provide complementary data. An implication is 
that contemporary studies about cognitive load theory should pursue 
including more than one measurement, including subjective and 
objective methods. 

5.2. Implications for computer-based educational practice 

The six papers in this special issue show that design guidelines are 
applicable to a wide range of media (e.g., laptops, virtual reality) and 
visualization types (simulation, video), suggesting that the results of 
these papers are relevant for learning in different educational settings 
and contexts. Additionally, the papers provide further guidance to 
educational practitioners by offering insight into effective use of existing 
and novel design guidelines. One aspect that becomes clear in the papers 
in this special issue is that the context in which learning takes place 
matters and could determine the effectiveness of certain design guide
lines. This can be found in the complexity or intensity of the task (Lee 
et al., 2020), the number of people around learners (Armougum et al., 
2020), or in the (type and number of) tasks that students are required to 
do, such as engaging in think-aloud while learning which is often used in 
educational practice (Park et al., 2020). 

Another important finding presented in this special issue (Hefter & 
Berthold, 2020) is that design guidelines, which are typically applied to 
the main learning task, can also be effectively used to the 
pre-instructional phase, and that, in turn, influences performance on the 

main learning task. Another implication is that educational pro
fessionals can teach students strategies to overcome negative effects of 
sub-optimally designed instructional materials (de Koning, Rop, & Paas, 
2020a). This means that teachers have a new type of strategies, in 
addition to strategies focusing on deeper understanding of the content 
such as self-explaining, at their disposal to support students to under
stand the content of a lesson. 

A final practical implication relates to the measurement of cognitive 
load. Objective measures of cognitive load appear useful to give an 
indication of experienced cognitive load and can be measured with easy- 
to-use tools such as a wristband (Johannessen et al., 2020). This gives 
teachers the possibility to have online insight into the demands a task 
places on learners, so they can timely intervene in the students’ learning 
without having to continuously ask the student. Using tools such as a 
wristband is unobtrusive and offers a possibility to monitor fluctuations 
in cognitive load over prolonged periods of time (e.g. a whole lesson) 
and identify parts of the lesson that are particularly demanding for 
learners. 

5.3. Future research directions 

Regarding cognitive load theory approaches to optimize computer- 
based learning, areas for future research could investigate the useful
ness of design guidelines in relatively novel learning contexts such as 
virtual environments, or different phases of the learning process as well 
as to further investigate the intricacies between design guidelines and 
personal factors such as expertise (see also de Koning, Hoogerheide, & 
Boucheix, 2018). Another promising line of research concerns the 
teaching of strategies to learners to empower them to deal with learning 
materials that are not optimally designed based on cognitive load theory 
guidelines. It would, for example, be useful to investigate teaching of 
self-management strategies beyond the split-attention effect. 

Concerning applied techniques to measure cognitive load, in addi
tion to the methods presented in this special issue, a promising objective 
technique is electroencephalography, which can measure immediate 
brain activity indicating changes in cognitive load during learning (e.g., 
Castro-Meneses, Kruger, & Doherty, 2020; Makransky et al., 2019; 
Wang, Antonenko, Keil, & Dawson, 2020; €Orün & Akbulut, 2019). Also, 
objective techniques could measure how different personal fac
tors—including (a) gender (e.g., Castro-Alonso, Wong, Adesope, Ayres, 
& Paas, 2019; Heo & Toomey, 2020; Wong, Castro-Alonso, Ayres, & 
Paas, 2018), (b) visuospatial working memory processing (see Cas
tro-Alonso, 2019), and (c) verbal working memory capacity (e.g., Merkt 
et al., 2018)—moderate changes in cognitive load. 
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