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Seltrapping in flat band lattices 
with nonlinear disorder
Danilo Rivas & Mario i. Molina*

We study the transport properties of an initially localized excitation in several flat band lattices, in the 
presence of nonlinear (Kerr) disorder. In the weak nonlinearity regime, the dynamics is controlled by the 
degeneracy of the bands leading to a linear form of selftrapping. In the strong nonlinearity regime, the 
dynamics of the excitations depends strongly on the local environment around the initial excitation site 
that leads to a highly fluctuating selfrapping profile. For a binary nonlinear disorder, it is shown that the 
spreading of the flat band fundamental mode, is completely inhibited for a finite fraction of all cases. 
This fraction corresponds to the fraction of times the same value of (random) nonlinearity is assigned to 
all sites of the fundamental mode.

The phenomenon of selftrapping of excitations in nonlinear lattices has been an active research field for many 
years, from the time it was realized that some solutions of the coupled electron-phonon problem in biomolecules, 
featured stable, propagating localized excitations, termed discrete solitons. At the time, it provided a possible 
way to understand the propagation of excitations along some molecules1,2. In the semiclassical approach to the 
problem, the vibrational coordinates are treated classically while the electron is treated quantum mechanically. 
Further, if the vibrational degrees of freedom are assumed to be enslaved to the electronic ones, one arrives to 
an effective electronic equation known as the Nonlinear Discrete Schrödinger (DNLS) equation3–5 (see below). 
Other instance where selftrapping can appear is in solid-state physics where excitonic trapping barrier and lattice 
defect production can occur in crystals6–11.

In addition to the condensed matter or biophysical context, the DNLS has also appeared in other physical con-
texts, such as coupled waveguide arrays in optics12,13 and Bose-Einstein condensates in coupled magneto-optical 
traps14,15. One of the striking features of the DNLS equation (see below) is that it leads to discrete solitons: the 
localization of the excitation in a small region of the lattice and capable of propagating for relatively long dis-
tances along a quasi onedimensional chain, with little dispersion. Along the years the DNLS has been examined 
for several lattices and various dimensionalities, and under a variety of conditions ranging from disorder in the 
on-site energies16–18, effect of nonlinear impurities19–24, nonlocal effects25, disorder of the nonlinear parameter26, 
and long-range effects27. Perhaps the most striking feature observed is the robustness of the discrete soliton, under 
many of these conditions. Its existence can be argued based on the local character of the DNLS (Eq. 1): Starting 
with a nonlinear lattice and assuming that a localized excitation exists, say of size d, then the nonlinearity is only 
appreciable near the soliton position, and the rest of the lattice can be taken as linear, to a first approximation. We 
are left with a sort of nonlinear impurity of size d and, since we know a breaking of translational invariance gives 
rise to a localized mode, we should have a localized excitation. This closes the self-consistent argument. There 
remains finer details like the minimum value of the nonlinearity parameter for trapping to occur.

Another mechanism for generating localized modes, this time in linear systems, has gained recent interest: 
Flat bands. Simply stated, a flat band system is a periodic system whose spectra contains flat bands. The presence 
of a flat band implies the existence of a set of entirely degenerate states, which do not display evolution in time. In 
an optical context they are interesting since they allow the long-distance propagation without distortion of shapes 
based on combinations of these flat modes. These states rely on a precise geometrical interference condition, and 
have been studied and observed in optical and photonic lattices28–32, graphene33,34, superconductors35,36, frac-
tional quantum Hall systems37–39, and exciton-polariton condensates40,41. An interesting question is whether these 
compact modes are structurally stable against common perturbations such as disorder in the local site energies, 
disorder and anisotropies in the coupling to nearest neighbors. This ‘noise’ is to be expected during the fabrication 
of these structures. For the stub, Lieb and kagome thin ribbons, it was found that their flatband modes are more 
or less robust to these perturbations, the Lieb ribbon in particular42. For the diamond lattice with linear disorder 
and constant nonlinearity it was found that the interplay between degeneracy and weak diagonal linear disorder 
gives rise to complex statistical properties43.
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In this work we examine the interplay between degeneracy and nonlinear disorder in several lattices that pos-
sess flat bands. In particular, we will focus on the trapping dynamics of these excitations and study their thresh-
olds for selftrapping. We will show that, al small nonlinearities, degeneracy effects take place inducing a linear 
localization effect, while at high and disordered nonlinearities, selftrapping is strongly dependent on the local 
vicinity of the initial site, giving rise to a highly fluctuating selftrapping profile. The transport properties are also 
affected by the existence of flat bands and we will show that there are conditions under which nonlinear disorder 
does not affect the system transport.

The Model
The Nonlinear Schrödinger (DNLS) equation is given by 
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where Cn is the electronic or optical excitation amplitude at site n, ϵn is a site energy term, Vn,m is the linear cou-
pling between sites n and m. Finally, χn is the nonlinear parameter at site n. In a condensed matter context, it cor-
responds to the square of the electron-phonon coupling at site n, while in optics it corresponds to the nonlinearity 
of an optical fiber. In this work we focus on the special case ϵn = 0 and ∑mVn,m = V for n,m nearest neighbors, 
zero otherwise. The nonlinear parameter will be taken from a bivalued distribution: χn = χor0 with fifty-fifty 
percent probability. Initially, we place the excitation on a single site (n = 0) of the lattice (or on a given waveguide 
in an optical waveguide array). Later on, we will also excite the fundamental flat band mode of these lattices and 
examine its time evolution under nonlinear disorder.

Figure 1 shows the flat band lattices to be considered here: Stub (a), Lieb (b), diamond(c) and a regular 
n − simplex. The last one is not a lattice, but an array of n equally-coupled sites in dimension D = n − 1 and is 
almost completely degenerate, as we will show below. For D = 0 we have a single site (n = 1), for D = 1 we have a 
dimer (n = 2), for D = 2 we have an equilateral triangle (n = 3), for D = 3 we have a regular tetrahedron (n = 4), 
and so on. For each lattice we have also indicated the form of its fundamental flat band mode. For instance, for 
the Lieb lattice, this mode is a kind of ring A, − A, A, − A which is characterized for having no transversal time 
evolution due to complete phase cancellation42.This is also true for the stub and diamond lattices. We will see that, 
when the initial site for the dynamical evolution of an observable overlaps partially with the flat band mode, it 
gives rise to partial trapping at small nonlinearity.

In order to ascertain the trapping of the excitation, we define the time-average probability at the initial site as 

∫= .
→∞

∣ ∣P
T

C t dtlim 1 ( ) (2)T

T
0

0
0

2

To measure the spreading of the excitation as a function of time, we use the root mean square (RMS) displacement 
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For a completely extended mode, R = N, while for a completely localized state, R = 1, where N is the number of 
sites.

Figure 1. Schematic view of a stub (a), Lieb (b) and diamond (c) lattice. The simplex regular array for D = 3 is 
shown in (d). Examples of the fundamental flat band modes for each lattice are shown in black and gray. Sites in 
black (gray) possess amplitudes A( − A) or viceversa.
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Uniform Nonlinearity
We start by examining ⟨P0⟩ in the absence of random nonlinearity, χn = χ. Results are shown in Fig. 2, where the 
several curves denote the various inequivalent initial excitation sites that are possible for each lattice. The first 
thing we notice is the presence of a nonlinear selftrapping transition at a given nonlinearity parameter value. It is 
qualitatively similar for all the three lattices, and its presence is in agreement with previous studies in other non-
linear lattices44. As shown on Fig. 2, at χ → 0, the selftrapping curves approach either a value O(1/N), or a finite 
value. Both type of curves differ on the initial excitation site inside the lattice. For instance, in the case of the Lieb 
lattice, when the initially excited site fall on a site with coordination number equal to two (Fig. 2, curve 2), that site 
can be thought of as belonging to the generic fundamental mode of the Lieb flat (completely degenerate) band. 
This fundamental mode, in the form of a ‘ring’ (see Fig. 1c) has a nonzero overlap with our initial condition. This 
imply that the time evolution of our initial excitation will contain a contribution from the flat mode (as well as 
contributions from the modes of the other two extended bands). Since the flat mode has no time evolution, a part 
of our initial state will not propagate giving rise to a certain degree of trapping. Now, the situation gets even better: 
The flat band states (marked in Fig. 1) are also flat band modes for the nonlinear problem42 as well. This can be 
quickly checked for each lattice from the stationary version of Eq. (1). This stable nature of the flat band mode, 
especially for the Lieb lattice, make these systems attractive in optics for the undistorted propagation of signals. 
Now, what happens when the initial excited site does not fall ‘inside’ the fundamental flat band mode? For the 
Lieb lattice this is the case for the site with n = 4 nearest neighbors. Here, at low nonlinearity we expect that the 
pulse will spread all over the lattice, leading to a zero trapped fraction at the origin at long times. Further increase 
of nonlinearity will ultimately produce the usual selftrapping transition (Fig. 2, curve 4). These conclusions also 
apply for the rest of the lattices shown in Fig. 1. For the case of the simplex, which is not a lattice, we notice that 
in addition to the selftrapping transition at high nonlinearities, there is a large degree of linear selftrapping45. This 
similarity with the rest of the other lattices is no accident and, as we will show below, is due to a common element 
among all of them: degeneracy.

For the simplex, closed form results have been obtained previously for a general case46. Here we re-derive the results 
for our regular n-simplex following a simplified treatment, for simplicity. We start from an array of equally coupled 
sites, with χn = 0, Vn,m = V and ϵn = 0. We choose one site and place all the excitation there at t = 0. As we did in the 
case of the lattices, we are interested in measuring the amoun t of excitation remaining on the initial site at large times. 
The spectrum of the simplex is well known46 and consists of N − 1 degenerate states with eigenvalue λ = −1: 

= − 1 (1/ 2 )( 1, 0, , 1)∣ ⟩ , ∣ ⟩ = −2 (1/ 2 )) 1, 0, , 1, 0), = > −3 (1/ 2 )( 1, 0, , 1, 0, 0)∣ ⟩  , ⋯,plus the state  

Figure 2. Time-averaged probability ⟨P0⟩ of finding the excitation at the initial site vs the nonlinearity 
parameter χ, for different lattices. The numerical labels for each curve denote the number of nearest 
neighbors of the initial site. For the simplex array, we plot the corresponding curves for different simplex sizes. 
[N = 130, T/V = 20].
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∣ ⟩N (1/ 2 )(1, 1, , 1)= , the last one with eigenvalue N − 1. The time evolution of C0(t), the amplitude of finding 
the excitation at the initial site, can be expanded in terms of the eigenstates of the simplex. We obtain, 
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which shows a linear trapping at the initial site. For N≥2 it increases monotonically with N, approaching 1 at 
N → ∞. Thus, the reason for this linear trapping resides on the large amount of degeneracy. Something similar 
occurs in a periodic lattice with a flat band, where all the states inside the flat band are degenerate.

Random Nonlinearity
Selftrapping. Now we examine the effect of randomness in the nonlinear parameter χn. We take now χn 
from a binary distribution χn = χ or 0, with 50–50% probability, and χ = V, 2V, 3V, 4V, 5V, 6V. Instead of com-
puting the realization-average of (time-averaged) ⟨Po⟩ as would be the usual procedure, we decided to do a scatter 
plot of ⟨P0⟩ for each nonlinear disorder realization and combine all of them. Results are shown in Fig. 3 for the 
Lieb and stub lattices (for the diamond lattice results are similar). We see two regimes: One, where at low nonlin-
earities the trapping is nearly zero, followed by a high nonlinearity region where the trapping either drops to zero 
or keeps a finite value, depending on the particular nonlinear disorder realization. The other regime is similar 
to the first one, but instead of zero selftrapping at low nonlinearity, it has a finite value, consistent with the linear 
selftrapping observed in the absence of nonlinear randomness, Section III. There are virtually no intermediate 
regimes, independently of the number of random realizations. The regime that will be observed depends on the 
position of the initially excited site with respect to the fundamental mode profile.

The explanation for this behavior lies on the observation that, the nonlinearity at the initial site as well as the 
local environment around this initial site is random. First, let us assume that the nonlinearity at the initial site is 
χ and that the nearby sites also have nonlinearity χ. If χ is large, there will be a tendency to create a selftrapped 

Figure 3. Scatter plot of the time-averaged probability ⟨P0⟩ of finding the excitation at the initial 
site vs the nonlinearity parameter χ. Top: Lieb lattice with initial condition at (a) site with 2 nearest 
neighbors (n.n.) and (b) site with 4 n.n. Bottom: Stub lattice initial site with 1 n.n. (c) and 3 n.n. (d). 
[N = 130, T/V = 20, #realizations = 20].
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mode with localization length ξ. Since most of the excitation is contained inside a region of length ξ, the value of 
nonlinearity outside ξ is of no importance. In other words, a cluster of nonlinear sites can support a nonlinear 
localized mode, where the nonlinearity of the rest of the sites away from the trapped mode becomes unimportant. 
The result for this case is that we will have a selftrapping transition around 4V ref. 43. The second important case 
is when the initial site has nonlinearity χ but it is surrounded by a cluster of purely linear sites (χ = 0). In this 
case we are really talking about a nonlinear impurity, whose selftrapping transition happens around 3V ref. 40, 
depending on the position of the initial site and the geometry of the lattice. A third important case is when the ini-
tial site and its close vicinity have sites with zero nonlinearity. Here, the excitation will tend to decay quickly and 
propagate away. Since the amplitude of this wave becomes smaller and smaller as it propagates, nonlinear effects 
(χ∣Cn∣2) will become less and less important, and the excitation will ultimately escape in a ballistic manner. Here, 
⟨P0⟩ will be very small, O(1/N). Since the conditions at and near the initial site are random, the system will jump 
from one behavior to the other, from realization to realization. The main behaviors are clear, however, and would 
have been missed if we have employed a usual average of ⟨P0⟩. The behavior that is not so random occurs at small 
nonlinearity values. There, the important thing is whether the initial site has or not overlap with the fundamental 
flat band mode of the lattice. If there is no overlap ⟨P0⟩ will be O(1/N), while when there is overlap, ⟨P0⟩ will be 
finite, as explained in section III.

Dynamics. Having explained the main features of dynamical selftrapping in the presence of nonlinear disorder,  
we examine now how this disorder affects the transport of localized excitations and the dynamical evolution of 
the fundamental flat band modes of several lattices. The case of a one dimensional lattice with nonlinear disorder 
was treated in ref. 42. It was found that the presence of nonlinear disorder was only relevant at the beginning of 
the time evolution. At later times, the mean square displacement quickly converges to a ballistic profile σ(t)2 ~ t2. 
This was explained as the weakening of nonlinearity as the height of the wave front decreases as it spreads on the 
lattice. Based on normalization grounds, the amplitude of the propagating wave behaves as O(1/N) rendering the 
nonlinear term χ∣Cn∣2 unimportant at asymptotically long times.

It is interesting to see if similar behavior also holds for higher dimensional lattices which also possess flat 
bands. Figure 4 shows the disorder-averaged mean square displacement for the Lieb lattice, as a function of time, 
for several different nonlinearity parameter values. In this case, the scatter plots are very simple and do not display 
any internal regimes, and behavior of the system is adequately captured by a realization average.

We consider two cases: One, where the initial site is also part of the fundamental flat band mode (i.e., it has 
2 nearest neighbors), and the other where is not (i.e., it has 4 nearest neighbors). We have also normalized σ2(t) 
to the value for the one dimensional ballistic case, 2(Vt)2. We see that after a short interval, all curves converge 
quickly to the ballistic case, ⟨σ2⟩ ~ t2, as in the purely one dimensional case. In case (a) however, the ‘speed’ σ/Vt 
is lower than in case (b). This is probably due to the fact than in the first case, the initial site has overlap with the 
fundamental ring mode, giving rise to partial linear trapping. This renormalizes the amount of the wave that can 
propagate to infinity, giving rise to a lower speed. Another contribution to the decrease of the speed comes from 
nonlinearity, as seen already in one dimensional chains26.

Finally, we compute the time evolution of the participation ratio R(t) of the fundamental flat band modes in 
the presence of random nonlinearity. The shape of these modes depend on the particular geometry of the lattice, 
but they are characterized by a distribution of amplitudes and phases designed to effect an exact phase cancel-
lation that impedes the propagation of the wave beyond a small region, typically consisting on a few sites. Some 
examples are shown in Fig. 1 for the stub, Lieb and diamond lattices.

Figure 5 shows scatter plots for the evolution of the participation ratio R(t) vs time for the diamond lattice, 
for different nonlinearity disorder (χ, 0) (results for the other two lattices are similar). We immediately notice 
that the scatter plots reveals two regimes: A spreading one where R(t) increases monotonically with time, and a 
completely localized regime, where the initial size of the fundamental modes does not change in time, no matter 

Figure 4. Disorder-averaged mean square displacement for the Lieb lattice, as a function of time, for several 
nonlinearity values, from χ = V (highest curve) down to χ = 6 V (lowest curve). Panels (a,b) refer to an initial 
site with and without overlap with fundamental flat band mode, respectively.
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the strength of random nonlinearity. Close scrutiny at the numerics reveals that R(t) remains constant whenever 
the nonlinear parameter is the same for both initial sites. Since this happens in half of the cases, there is a 50% 
probability for R(t) to remain at its initial value. This happens for all values of (χ, 0) examined. In addition, we 
notice a rich behavior for R(t) at high χ, where the slope of R(t) is smaller than in the case of low χ and strong 
oscillations appear. We found that the explanation of this phenomenon lies in the value of χ and the existence of 
some internal selftrapping dynamics: For the diamond lattice, the system of interest consists on two sites that are 
excited with the same amplitude but opposite phases, and each one is assigned a value of random nonlinearity 
χ1, χ2 ∈ {0, χ}. When χ1 = χ2, that is, (0, 0) or (χ, χ), R(t) will remain at its initial value R = 2. To get to a prop-
agation regime, we need different nonlinear coefficients. Let us assume, without loss of generality, that χ2 = 0. 
Now, let us consider the case where χ1 = χ > χc, the critical nonlinearity needed to trap an excitation inside a 
given nonlinear site and its immediate surroundings. After the (double) excitation, the amplitude deposited at 
site with χ2 = 0 propagates away from the initial vicinity, while the site with χ1 = χ or some of its adjacent sites 
will trap a portion of the initial amplitude. The end result is a finite fraction of the initial excitation trapped inside 
the immediate vicinity of the initial site. The rest of the excitation propagates away from this region and, after a 

Figure 5. Diamond lattice: Evolution of the participation ratio R(t) for different nonlinearity strengths: (a) 
χ = V, (b) χ = 2V, (c) χ = 3V, (d) χ = 4 V, (e) χ = 5V and (f) χ = 6 V (20 random realizations).
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short while, this propagation is almost indistinguishable from propagation in a nonlinear-free medium. This is 
due to the fact that the excitation fraction on each site decreases in time (on normalization grounds), making the 
value of the nonlinear parameter irrelevant for propagation purposes at long times. Now, the trapping of a sub-
stantial fraction at the vicinity of the initial site, causes R(t) to grow more slowly as compared to the case without 
nonlinearity, since the number of effectively excited sites is located inside a relatively small region. The higher 
the value of the nonlinearity, the larger the trapping effect and thus, the slower and slower the increase of R(t). 
The trapped fraction can be roughly defined as ∣A(t)∣2 = ∑nn∣Cn(t)∣2, where the sum is over the nearest neighbors 
of the initial nonlinear site. Now, observation of the dynamical evolution of this trapped fraction ∣A(t)∣2 reveals 
that, due to its internal dynamics, the trapped fraction oscillates in time, with a substantial change in amplitude. 
This causes R(t) to oscillate as well, since when the amplitude increases, R(t) decreases due to a concentration of 
the trapped portion in a smaller region, while the opposite happens when the amplitude decreases. In Fig. 6 we 
show an example of the strong correlation between the oscillations of the trapped fraction ∣A(t)∣2 and the oscil-
lations in R(t), that illustrates this point. It is the combination of selftrapping at the initial site and the oscillatory 
dynamics of the trapped fraction, that lead to the rich dynamical behavior shown in Fig. 5(e,f). Incidentally, all 
this phenomenology would have been missed have we simply computed disorder-averaged curves behavior in 
R(t). The persistence of R(t) when both nonlinear parameters are the same, can be easily explained from the basic 
equations (1) where one can easily check that, when the nonlinearities on all sites of the linear flatband mode are 
the same, then this flatband mode is also a solution to the nonlinear equations and therefore, it persists during 
evolution42,47, giving rise to a participation ratio that will keep its initial value. For a finite fraction of all realiza-
tions, R(t) remains constant, regardless of nonlinearity on sites outside the fundamental mode. These fractions 
are 1/4, 1/8 and 1/2, for the stub, lieb and diamond lattices, respectively and correspond to the fraction of times 
the same value of (random) nonlinearity is assigned to all sites of the fundamental mode.

Now, one might wonder how much of the previous results will still hold in the presence of a different kind of 
nonlinearity distribution. To see that, we assigned the value of the nonlinear parameter at each site according to a 
uniform distribution [0, χ], and proceeded to compute ⟨P0⟩ and R(t) for all lattices. The stub lattice case is shown 
in Fig. 7a. We notice that, for a given χ value, the trapped portion is now spread over a finite range, instead of tak-
ing (roughly) two values as before (Fig. 3d). This is understood by noticing that a critical value of nonlinearity χc 
exists, below which there is no selftrapping. Above χc finite trapping at the initial site is possible. Thus, when χ in 
Fig. 7a is below χc, the selftrapped portion is essentially zero, as before. When χ is greater that χc, there is a range 
[χc, χ] where partial trapping is possible, going from a very small value in the vicinity of χc, to a finite value cor-
responding to χ, in a continuous manner. That explains the continuous spread in ⟨P0⟩. Now, as for the behavior of 
R(t), we see in Fig. 7b a more pronounced spread than in the binary case (Fig. 5f). This is due to the existence of 
a continuous nonlinearity range that translates into a continuous trapping. On the other hand, we notice that the 
curve R(t) = 2 has disappeared. This is due to the fact that it is very unlikely that the two initial sites are assigned 
the same random value of χ. At short times, Fig. 7b also shows a case where χ1 and χ2 were similar, leading to an 
initial propagation R(t) ~ 2, but for short times only.

Conclusions
In this work we have examined the selftrapping and transport properties of localized excitations on various 
nonlinearly-disordered lattices characterized for having a spectra with flat bands in the linear limit. We found 
that the presence of high degeneracy due to the presence of flat bands has a strong impact on trapping and trans-
port in this system. The presence of disorder in the nonlinearity causes a fluctuating environment at the initial 
site, making the system jump between the selftrapped state and the free state. At small nonlinearity, flat bands 
effects cause linear selftrapping provided the initial site belongs to one of the fundamental flat band modes. 
The mean square displacement showed a ballistic character at long times, with the nonlinear disorder playing a 
minor role only. The evolution of the participation ratio of a fundamental flat band mode, in the presence of this 
nonlinear disorder, showed a strong dependence on the values of nonlinearity on the flat band sites: When their 
nonlinearity values are different, the participation ratio expand monotonically with time. However, when the flat 

Figure 6. Diamond lattice: Time evolution of the participation ratio R(t) and trapped fraction ∣A(t)∣2 for a 
single realization, and χ = 6V (scale for ∣A(t)∣2 has been shifted for ease in visualization).
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band sites share the same value of the nonlinearity parameter, the participation ratio remains constant, no matter 
the values of nonlinearity outside the flat band sites. For the lattices considered in this work, the most stable one 
against random binary nonlinear disorder is the diamond lattice. The robustness of the flat band mode (in a finite 
fraction of cases) against finite nonlinear disorder, combined with stability against other perturbations42, make 
these flat band lattices and their accompanying flat band modes promising candidates for optical applications, as 
in long-distance diffraction-free transmission of information.
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