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ABSTRACT

A ring resonator made of a silica-based optical fiber is a paradigmatic system for the generation of dissipative localized structures or dissipative
solitons. We analyze the effect of the non-instantaneous nonlinear response of the fused silica or the Raman response on the formation of
localized structures. After reducing the generalized Lugiato–Lefever to a simple and generic bistable model with a nonlocal Raman effect, we
investigate analytically the formation of moving temporal localized structures. This reduction is valid close to the nascent bistability regime,
where the system undergoes a second-order critical point marking the onset of a hysteresis loop. The interaction between fronts allows for
the stabilization of temporal localized structures. Without the Raman effect, moving temporal localized structures do not exist, as shown in
M. G. Clerc, S. Coulibaly, and M. Tlidi, Phys. Rev. Res. 2, 013024 (2020). The detailed derivation of the speed and the width associated with
these structures is presented. We characterize numerically in detail the bifurcation structure and stability associated with the moving temporal
localized states. The numerical results of the governing equations are in close agreement with analytical predictions.
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Optical nonlinear resonators constitute an excellent platform for
researchers. These simple and robust devices display rich dynam-
ics that open fundamental questions and also lead to practical
applications. An example is the recent advance in frequency-
comb generation in microresonators operating close to the cavity
resonance. We investigate the nonlocal-delayed Raman response
in optical resonators subject to optical injection. The time-
delayed nonlocal response appears in many areas of nonlinear sci-
ence, such as magnetism, optics, and population dynamics. This
phenomenon is a rule rather than an exception. We show that a
time-delayed nonlocal response can generate traveling localized
structures. We enlighten this mechanism on the generic bistable
model through analytical and numerical investigations. Numer-
ical results show a reasonably good agreement with the theoret-
ical predictions. A characterization of the bifurcation structure
of traveling localized structures is provided. Furthermore, we

propose an experimentally relevant optical device to demonstrate
the feasibility of this mechanism that may lead to proper new
research in Kerr-comb-based devices.

I. INTRODUCTION

The laser field confined in nonlinear optical resonators is mod-
eled by the paradigmatic Lugiato–Lefever Equation (LLE1). This
simple model constitutes an excellent tool for the understanding
and analysis of various intra-cavity behaviors such as localized
structures,2,3 fronts,4,5 spatiotemporal chaos,6,7 and rogue waves8,9

(see recent overviews on the theory and applications of the LLE10,11).
In particular, localized structures (LSs), often called dissipative soli-
tons or cavity solitons, are the most studied nonlinear object. They
can be classified into two categories, spatial and/or temporal. This
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is a well documented issue of nonlinear science, such as chem-
istry, plant ecology, and optics.12,13 In the temporal regime, they
consist of a single stable pulse or more pulses on top of a low
intensity background.2,3 Recently, considerable attention has been
devoted both from a fundamental as well as from an applied point
of view. From a theoretical point of view, temporal LSs undergo a
rich dynamical behavior such as multi-stability, self-pulsing, spa-
tiotemporal chaos, or chimera state propagation along chains of
coupled resonators.14 From an applied point of view, it is worth
mentioning recent breakthroughs in frequency-comb generation in
microresonators15–18 when pumped close to the cavity resonance
condition.

Recently, the mean-field model, which consists of the LLE1 with
the Raman delayed nonlocal response,19 has been shown to support
moving temporal LSs.20 Note that local delay feedback can induce
spontaneously the motion of LSs.21–23 The dynamics of macroscopic
systems is often subjected to time-delayed feedback. This effect orig-
inates from temporal correlations that are inherent not only to
optical24,25 but also to magnetic26 and biological systems.27–30

In the present work, we focus on the normal dispersion regime
where homogeneous steady states (HSSs) are modulationally stable,
i.e., far from any symmetry-breaking instability. More precisely, we
focus on the understanding of moving LSs formation in a generic
bistable model that has been recently derived, together with the
law governing the interaction between two well-separated fronts.20

In this contribution, we provide a detailed derivation of this law.
This interaction allows the stabilization of moving LSs under the
influence of the Raman response. More importantly, we compute
the bifurcation and phase diagrams associated with these struc-
tures under the influence of the Raman response and highlight the
connection between such bifurcation structure and the front inter-
action and locking. To construct these diagrams, we apply numerical
parameter continuation algorithms based on a Newton–Raphson
solver.51,52

Our results can be applied to optical frequency-comb gen-
erators such as all-fiber resonators, whispering-gallery-mode res-
onators, or microresonators with the Raman effect. Frequency
combs generated in optical Kerr resonators can be seen as the spec-
tral content of the stable LS occurring in the cavity. This link has
been discussed (see recent review31 in the theme issue32). Besides
their impact on fundamental physics, optical frequency combs have
led to significant advances in many real-life applications, such as
precision distance measurements, optical waveform, and microwave
synthesis, and optical spectroscopy.15–18

The paper is organized as follows. In Sec. II, we review the LLE
with the Raman response and present the reduced generic bistable
model with a Raman term. This reduction is valid close to the critical
point associated with bistability. This approach allows us to develop
a simple and clear analytical description of the front interaction
leading to the stabilization of moving LSs with a nonlocal delayed
term. The interaction law between two well-separated fronts has
been established recently.20 A detailed derivation of the interaction
law between two fronts is provided in Sec. III. This completes our
recent communication20 on this issue. Through a front interaction
approach, we characterize moving temporal LSs by calculating their
shape, width, and speed. We show that fronts interaction impacts
drastically the dynamics of these structures. In Sec. IV, we study the

bifurcation structure and stability of the LSs formed through front
interaction and locking. This numerical study completes the previ-
ous analytical work and allows us to determine the regions of the
existence of such states, allowing a classification. Finally, in Sec. V,
we present our main conclusions.

II. DESCRIPTION OF THE MODEL

We consider all-fiber ring cavities coherently driven by an
injected light beam as shown in Fig. 1. The envelope of the elec-
tric field circulating inside the optical cavity is described by the LLE1

with the Raman delayed nonlocal response19

∂A

∂ζ
= S − (1 + i#)A − ib2

∂2A

∂T2
+ i

(

1 − fR
)

|A|2 A

+ iafRA

∫ T

−∞
χ(T − T′)|A(T′)|2 dT′. (1)

Here, A = A(ζ , T) is the normalized mean-field cavity electric field
and # accounts for the normalized detuning parameter and losses
are normalized to unity. Time ζ is the slow time describing the
evolution over successive round trips, and T is the fast time in the
reference frame moving with the group velocity of the light within
the cavity. S is the input field amplitude, and b2 the second-order
chromatic dispersion coefficient. The Raman effect is described by
an integral whose strength is fR and a = τ0(τ

2
1 + τ 2

2 )/(τ1τ
2
2 ). The

delay kernel function χ(τ ) is χ(τ ) = exp (−τ0τ )/τ2 sin(τ0τ/τ1),
with τ0 = [|b2L|/2αc]

1/2, where αc is the losses parameter. The
choice of this Kernel, or influence function, has been proposed in
Refs. 33 and 34 and shows an excellent agreement with experiments

FIG. 1. Schematic representation of a fiber ring cavities coherently driven by
an injected light beam and spatiotemporal evolution in the ζ − T map of a
pulse obtained using model Eq. (1) obtained for # = 4, τ0 = 5 fs, S1 = 2.202,
(S2 = 2.223), fR = 0.18, τ1 = 12 fs, b2 = 1, and τ2 = 32 fs.
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using standard fiber. In the absence of Raman effect, i.e., fR = 0,
fronts,4 motionless LS connecting HSS solutions, and moving LSs
due to the third-order dispersion effect35–38 have been reported.
In the spatial domain, where chromatic dispersion is replaced by
diffraction, the motion of LSs can be triggered by the nonlinear
gradient term in the cubic complex Ginzburg-Landau.39,40

In what follows, we focus on the nascent optical bistabil-
ity regime originated at the critical point defined by #c =

√
3,

Ac = (3 − i
√

3)Sc/4 = Arc + iAic, where S2
c = 8

√
3/9 is the value of

the injected field at criticality. Starting from Eq. (1), the deviation
u ≡ Ar − Arc of the electric field envelope from its value at the onset
of bistability is shown to obey the generic bistable model20

∂tu = η + µu − u3 + D∂ττ u +
∫ τ

−∞
χ(τ − τ ′)u(τ ′) dτ ′, (2)

where u = u(t, τ ) is a scalar order parameter and the delay kernel
function χ(τ ) reads

χ(τ ) =
2afR

3
e

−τ0τ
τ2 sin(τ0τ/τ1) (3)

In the limit of large τ1 and τ , Eq. (2) can be approximated by

∂tu = η + µu − u3 + D∂ττ u + γα

∫ τ

−∞
e−α(τ−τ ′)u(τ ′) dτ ′, (4)

where α = τ0/τ2 and γ = 2τ1fR/(3τ2) account for the characteristic
correlation time and the strength of the nonlocal delayed response,
respectively. The above model corresponds to the universal model
of bistability, the imperfect pitchfork bifurcation normal form, plus
a nonlocal coupling term that accounts for the Raman effect. Note
that exponential nonlocal delay is the most common kernel used in
neuroscience.30

The HSS solution u0 satisfies

η = −(µ + γ )u0 + u3
0,

which depends on the strength of time-delayed nonlocal response,
i.e., γ . In the bistable regime (i.e., for µ + γ > 0), three solution
branches ub, um, and ut coexist. The region of coexistence is limited
by the folds or saddle-node bifurcations SNb and SNt occurring at
ub

0 =
√

µ + γ /3 and ut
0 = −

√
µ + γ /3, respectively.

In the absence of the Raman effect, Eq. (4) possess a Lyapunov
functional

∂tu = −∂uV(u) with V (u) = −ηu − µu2/2 + u4/4. (5)

At the Maxwell point, i.e., η = 0, Eq. (4) admits exact nonlinear
front solutions

u±(τ ) = ±
√

µ tanh[
√

µ/2(τ − τp)], (6)

where

τp ≡
∫ ∞

−∞
τ∂τ u±(τ ) dτ/

∫ ∞

−∞
∂τ u±(τ ) dτ (7)

is the front position. The front solution u± is indexed by “+” and
“−” that account, respectively, for the increasing and decreasing
monotonous solution as a function of τ . Examples of such types
of solutions are shown in Figs. 2(a) and 2(b) at the Maxwell point
(η = 0) and just below it (η = −0.03), respectively. When η &= 0,
the front drifts with a constant speed as shown in Fig. 2(b).

FIG. 2. (a) Front profile and spatiotemporal evolution at the Maxwell point γ = 0,
α = 0.1, µ = 1, and η = 0. (b) Front profile and spatiotemporal evolution with
γ = 0, α = 0.1,µ = 1, and η = −0.03. (c) Pulse propagation with γ = −0.4,
α = 0.1,µ = 1, and η = −0.03. Schematic representation of the interaction of
fronts. d and ) account for the width and centroid between fronts. u+ and u−
stand for the increasing and decreasing front, respectively.

III. FRONT INTERACTION

Due to the Raman effect, and when two fronts are
well-separated from each other, they interact through their over-
lapping tails. We shall see that the nature of the interaction is
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strongly affected by the Raman response leading to the stabilization
of traveling LSs like those shown in Fig. 2(c), which otherwise are
excluded.20

To describe the interaction between two fronts, we consider the
regime close to the Maxwell point and assume that the two fronts are
sufficiently separated, that is,

u(t, τ ) = u+(τ − ) + d/2) + u−(τ − ) − d/2) −
√

µ + w, (8)

where d = d(t) and ) = )(t) account for the width and cen-
troid between well-separated fronts (d(t)

√
µ ' 1) as indicated in

Fig. 2(c) such that the distance between the fronts d is greater than
the typical size of the core of fronts 1/

√
µ. We add to the superposi-

tion of the two fronts, the asymptotic value of the fronts (
√

µ) and a
small perturbation function w = w(τ , ), d), with w ( 1. Replacing
the previous ansatz (8) in Eq. (4) and linearizing in w, we get

−
[

µ − 3(u+ + u− −
√

µ)
2 + ∂zz

]

w

= #̇(∂zu+ + ∂zu−) −
ḋ

2
(∂zu+ − ∂zu−) + µ

(

u+ + u− −
√

µ
)

η −
(

u+ + u− −
√

µ
)3 + ∂zzu+ + ∂zzu−

+ αγ

∫ τ

−∞
e−α(τ−τ ′)

(

u+ + u− −
√

µ
)

dτ ′, (9)

where the symbol ∂z accounts for the partial derivative with respect
to the argument of the respective function. The above equation cor-
responds to a linear equation for w, where the equations for # and
d are unknown.

From Eq. (9), we can derive one equation describing the veloc-
ity of the pulse centroid, and another one for the front interaction
and locking. In the following, we show the main step of such
derivations.20

Considering the standard inner product 〈f|g〉 =
∫ ∞

−∞ fg dτ , the

linear operator L ≡ µ − 3(u+ + u− −
√

µ)2 + ∂zz is self-adjoint

(i.e., L = L
†). This operator has two specific modes |T〉 ≡

∂zu+ + ∂zu− and |I〉 ≡ ∂zu+ − ∂zu− corresponding to translational
and interaction mode, respectively. Furthermore, these modes are
orthogonal 〈T|I〉 = 0 by simple symmetry arguments. When fronts
are far apart, the self-adjoint operator L

† tends to have two ele-
ments in the kernel, the translation mode, and the interaction mode,
L

†|I〉 ≈ 0 and L
†|T〉 = 0. Notwithstanding, the translation mode

is always an element of the kernel.
Let us first obtain the equation describing the speed of the

pulse centroid. To do so, we multiply the equation by the translation
mode |T〉 and integrate the resulting equation considering symmetry
properties. Proceeding in this way, we eventually get

)̇〈T|∂zu+ + ∂zu−〉 = )̇〈T|T〉

= αγ

∫ ∞

−∞
dτT(τ )

∫ τ

−∞
e−α(τ−τ ′)

(

u+ + u− −
√

µ
)

dτ ′. (10)

To calculate the integral in the previous equation, we use the
approximation

u+ + u− −
√

µ =























−
√

µ τ ! ) −
d

2
,

√
µ ) −

d

2
< τ < ) +

d

2
,

−
√

µ τ " ) +
d

2
.

(11)

Replacing expression (11) in Eq. (10), integrating into the respective
regions where the approximation is constant, and using symmetry
arguments, we obtain the following equation the pulse centroid (i.e.,
its speed):

)̇ = v ≡
2γ

√
µ

||T||2

∫ ∞

−∞
∂zu+e−α|τ | dτ , (12)

where ||T||2 ≡ 〈T|T〉. The integral in Eq. (12) does not depend on
), and, therefore, the pulse centroid moves with constant speed v.
Numerical simulations show that the pulse spreads with constant
speed and confirm the validity of Eq. (12). Figure 3(a) shows a com-
parison between the above formula and numerical evolution of pulse
solution of model Eq. (4). Hence, we can conclude that the moving
LSs speed is well described by the expression (12).

To derive the equation describing the interaction of fronts, we
follow a procedure similar to the previous one, that is, we multiply
Eq. (9) by the interaction mode |I〉, and then integrate it taking into
account symmetry properties, considering that u± are stationary
solutions of Eq. (4). Proceeding in this way, we obtain

ḋ

2
〈I|∂zu+ + ∂zu−〉 =

ḋ

2
||I||2 = 〈∂zu+ − ∂zu−|η〉

+ −3〈I|(u+ −
√

µ)(u− −
√

µ)(u+ + u−)〉

+ αγ

∫ ∞

−∞
dτ I(τ )

∫ τ

−∞
e−α(τ−τ ′)

(

u+ + u− −
√

µ
)

dτ ′. (13)

Replacing approximation (11) in Eq. (13) and integrating into
the respective regions, we obtain, after considering symmetry argu-
ments, the following front interaction law:

ḋ = a − be−2
√

2µd + c e−αd, (14)

where

a ≡ 2η

∫ ∞
−∞ ∂zu+dτ

||I||2
, (15)

b ≡ 6
√

µ

∫ ∞
−∞ e−

√
2µτ (u− −

√
µ)u−∂zu−dτ

∫ ∞
−∞ (∂zu−)2 dτ

, (16)

c ≡
2γ

√
µ

||I||2

∫ ∞

−∞
∂zu+e−ατ dτ . (17)

Kinetic equation [i.e., Eq. (14)] governing the time evolution of the
LSs width d contains three contributions: the first term on the right
side is constant that accounts for the energy difference between the
states,
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FIG. 3. The speed and the width of moving localized struc-
tures of the bistable model with nonlocal time-delayed Eq. (4)
by α = 0.1, µ = 1, and η = −0.03. (a) Speed of moving
localized structures as a function of the strength of nonlo-
cal coupling γ . The diamonds and continuous curve are the
speed obtained numerically and analytically using formula (12).
(b) Width of moving localized structures as a function of the
strength of nonlocal coupling γ . The square symbols, dashed,
and continuous curve are obtained by numerical simulation of
model Eq. (4) and numerically solving formula (18). (c) Front
speed as a function of the strength of the Raman effect for
different values of γ and α.

which is proportional to η; the second term describes the interaction
between fronts generated by the effect of the tail, which is always
attractive since b is positive; and the last term is attributed to the
Raman effect, which is, on the contrary, always repulsive because c
is positive.

The fronts lock at the stationary separations ds satisfying the
equation

a − be−2
√

2µds + ce−αds = 0, (18)

which, despite its simplicity, does not support explicit analytical
solutions. For this reason, we characterize the pulse width and speed
numerically and show the main results in Fig. 3(b). We find that
the system has two solutions, one stable and one unstable created
by means of a saddle-node bifurcation. In order to understand the

origin of this instability, we numerically calculated ḋ as a function of
the width d for a fixed value of either η [see Fig. 4(a)], or γ param-
eters [see Fig. 4(d)]. The profile of unstable (stable) LSs having a
large (small) width is plotted in Fig. 4(b) [Fig. 4(c)]. Figures 4(a)
and 4(d) have been obtained from direct simulations of the non-
local bistable model (4) and using Eq. (14). Indeed, these two results
show an excellent agreement. From this perspective, we could say
that the moving LSs appear through a saddle-node bifurcation.

Despite the complexity of the nonlocal bistable model (4), the
dynamics of moving LSs can be described by the set of simple cou-
pled Eqs. (12) and (14). Note that the interaction of fronts describes
coarse LSs since it requires the condition d(t)

√
µ ' 1.

IV. BIFURCATION STRUCTURE OF LOCALIZED STATES

In the Kerr cavity nonlinear optics, LSs can be classified into
two categories. When the cavity is operating in the anomalous dis-
persion regime, and close to the subcritical modulational instability
(MI), the resulting temporal LSs undergo homoclinic snaking.4,45–48

In this case, the bifurcation diagram consists of two snaking curves:
one describing LSs with odd number of peaks and the other related
to those with an even number of peaks. In that case, the formation of
LSs do not require HSS bistability, and they can arise in the monos-
table regime.2,49 However, when the optical cavity is operating in
the normal dispersion regime, HSSs are stable with respect to the
MI. In this case, the interaction between switching waves and fronts
connecting the two stable HSS ub and ut stabilizes dark LSs.50,51

In this section, we investigate the effect of the Raman nonlo-
cal delayed response on the bifurcation structure of LSs. The study
presented here provides information about the origin, in terms of
bifurcations, existence, and stability of the different types of states
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FIG. 4. Panel (a) shows the front interaction Eq. (14) for
η = −0.03 and several values of γ . Solid and dashed curves

account for the instantaneous rate of variation of ḋ as a func-
tion of d obtained using Eq. (14) and by direct simulations of
the non-local bistable model Eq. (4). Panels (b) and (c) show
the stable (ds) and the unstable (du) moving LSs, respectively.
Panel (d) shows the front interaction law (14) for γ = −0.2 and
different values of η. This diagram corresponds to the bifurca-
tion diagram shown in Fig. 5. In both cases, we chose α = 0.1
and µ = D = 1.

arising in the system. To do so, it is convenient to define a frame
moving at speed v of the LS. By introducing the transformation
τ → x = τ − vt and setting ∂tu = 0 in Eq. (4), we obtain

η + µu − u3 + v∂xu + D∂2
x u + γα

∫ ∞

0

e−α(x−s)u(s) ds = 0. (19)

In this new frame, the LS appears stationary, and we can track them
numerically as a function of a given parameter (e.g., η). The result
is shown in the bifurcation Fig. 5. The continuation algorithm is
based on a predictor–corrector method,51,52 which allows us to cal-
culate not only the stable but also the unstable LSs as a function of
η. Together with the LS profile, we have to compute its speed, and
to do so an extra constraint C(u) = 0 must be considered in the cal-
culation. Here, we force the maximum of LS to be at a fixed position
x∗ by defining

C(u) =
(

du

dx

)

x∗

= 0. (20)

Note that more elaborated phase constraints can be also implem-
ented.52 To start with the computation, we consider a LS state
obtained previously by numerical integration of Eq. (4).

The diagram plotted in Fig. 5 shows L1-norm of the LS solu-
tions

||u||L1 =
1

L

∫ L/2

−L/2

u(x) dx,

as a function of η, and we fix the rest of the parameters to
γ = −0.2, α = 0.1, and µ = D = 1. For the domain length, we
fix L = 100. The green lines in Fig. 5 represent the HSS solution
branches ut, um, and ub, where stable (unstable) branches are plotted
using solid (dashed) lines. The blue lines are those correspond-
ing to the LSs, and we use the same criterion for the stability. To
obtain the linear stability of the LSs, we calculate the eigenvalues and
eigenfunctions of the linear operator associated with (19). Some rep-
resentative examples of LSs along the bifurcation diagram are shown
in panels (i)–(vi). The symmetry of the diagram is a result of the
invariance of Eq. (4) under the transformation (η, u) → −(η, u). A
small amplitude LS like the one depicted in (i) arise unstable from
SNb, increases its amplitude while decreasing η, and becomes sta-
ble after passing the fold SNl [see (ii)]. By increasing again η the
structure develops a plateau corresponding to the HSS ut [see (iii)].
Further increasing η the solution branch collapses to the Maxwell
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FIG. 5. Bifurcation diagram associated with the LSs formed through front locking. The green lines correspond to the HSS solution and those in blue are the LSs solution
branches. Some examples of the modification of the LSs along the diagram are shown in panels (i)–(vi). Stable (unstable) solutions are marked using solid (dashed) lines.

SNb,t correspond to the fold of the HSS, and SN
l,r are the saddle-node bifurcation of the LSs. The Maxwell point ηM of the system is marked using a dashed gray vertical

line. Here, we consider γ = −0.2, α = 0.1, µ = D = 1, and L = 100.

point of the system ηM where the LS broadens until reaching the
limits of the domain. At this stage, the same process repeats for a LS
related with the previous one by the inversion u → −u.

The bifurcation diagram shown in Fig. 5 is a direct consequence
of the front interaction and locking described by Eqs. (14) and (18),
respectively. For a η value between SNl and ηM, Eq. (14) shows two
equilibria, solutions of Eq. (18), namely, du, which is unstable, and
ds which is stable [see Fig. 4(d)]. These two equilibria correspond,
respectively, to the dashed and solid blue lines in Fig. 5. Increas-
ing |η|, du and ds approach each other until they, eventually, collide
in the saddle-node bifurcation SNl. This collision occurs when the
maximum of the curve shown in Fig. 4(d) becomes tangent to ḋ = 0.
Bellow this point no LSs exist. Increasing |η|, the separation of du

and ds increases exponentially, and with it their norm difference [see
Fig. 5]. As a result, the stable branch of LSs approaches asymptot-
ically ηM. The description of the bifurcation diagram around SNr

follows the same reasoning. As a consequence, LSs remain stable all
along the Maxwell point in-between SNb and SNt.

This bifurcation scenario shares some similarities with the
collapsed snaking reported in previous works,41–44 where LSs possess
damped oscillatory tails. This type of bifurcation structure has been
also characterized following a front interaction approach in various
contexts.53–56

To complete the diagram plotted in Fig. 5, we show how the
width d of the structure (at half of its maximum) modifies with
η [see Fig. 6(a)]. Figure 6(b) shows the velocity as a function of

FIG. 6. In (a), we plot the same bifurcation diagram than in Fig. 5 but showing
the width d of the LS as a function of η. In (b), we plot the width vs the velocity v
of the LSs. The vertical dashed line in (a) shows the Maxwell point ηM .
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FIG. 7. Phase diagram in the (η, γ )—parameter space, showing the main bifur-

cations lines of the system, namely, ηM , SN
l , and SNr . The horizontal dashed

gray line corresponds to the diagrams shown in Figs. 5 and 6. Here α = 0.1,
µ = D = 1.

d. Comparing both panels, we can observe that v increases with
d and saturates to a constant value at the Maxwell point of the
system ηM.

Figure 7 shows the phase diagram in the (η, γ )− parameter
space for a fixed values of α, and µ = D = 1, where SNl and SNr

are plotted in blue, and the Maxwell point ηM in green. The light
gray shadowed area corresponds to the region of existence of LSs,
and the horizontal gray line to the bifurcation diagrams shown in
Figs. 5 and 6 for γ = −0.2. The η → −η symmetry of the system is
also reflected in this phase diagram, where the left (right) part cor-
responds to the bottom (top) part of the diagram shown in Fig. 5.
Localized structures persist when modifying the strength of the non-
local delay response |γ |. Decreasing |γ |, SNl,r approach one another
until they collide with the ηM at γ = 0. At this point, the LSs dis-
appear. Increasing |γ |, however, the region of existence of the LSs
broadens as SNl,r separate from ηM. This result is consistent with the
one predicted by Eq. (18).

V. CONCLUSION

We have considered an optical resonator filled with a Kerr
medium such as fibers with a Raman nonlocal delay response. Nor-
mal dispersion regime has been investigated where HSS are stable
with respect to the modulational or Turing type of instabilities. We
have focused our analysis on a regime close to the critical point asso-
ciated with bistability where the dynamics is described by a generic
bistable model. In this regime, moving temporal LSs resulting from
front interaction are described in a more detailed way with respect
to recent investigations of this issue.20 Through front interaction, we
have characterized these structures by deriving their shape, width,
and speed. We have shown that front interaction modifies drasti-
cally the dynamics of bistable systems. The nonlocal delay effect is
originated from temporal correlations that are inherent not only to
optical and magnetic systems but also relevant to biological systems.
This study is obviously relevant to other nonlinear systems with a
nonlocal time delay. The normal form reduction of the problem

makes our analysis very general and one may expect that moving
temporal LSs constitute a dominant dynamical behavior in many out
of equilibrium systems. One may expect that, owing to its general
character, the moving states reported in our analysis may, therefore,
be observed experimentally. We have characterized the moving LSs
by computing their bifurcation structure and stability. This analysis
has revealed that the nature of the bifurcation structure belongs to a
class similar to the collapsed snaking type.

To understand the bifurcation structure, dynamics, and stabil-
ity of moving temporal LSs, we have followed two complementary
approaches: one analytical describing the front interaction and lock-
ing, and the other numerical to characterize stationary LSs and their
stability.

Further investigations are necessary to clarify the interaction
between two or more moving LSs, as well as the effect of noise on
front propagation.57 Front interaction under the combined influ-
ence of the noise and the Raman response will be a subject of future
works.
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