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Resumen

La blockchain de Ethereum promete una infraestructura ideal para desarrollar sistemas
parcial o totalmente descentralizados, pero existe una diferencia fundamental entre su má-
quina virtual, y la de lenguajes como Java: es necesario pagar para ejecutar código en ella.
Como es Turing-completa, no se puede determinar a priori si es que un programa será termi-
nante o no, lo que crea un problema único en este ecosistema: estimar el costo de ejecutar un
programa. Herramientas actualmente disponibles para estimar estos costos sólo generan una
cota superior del posible costo, la que puede llegar a ser infinita y no entregarle información
útil al desarrollador del sistema.

Esta memoria tiene como objetivo general desarrollar una herramienta que genere distri-
buciones de costos de gas para las funciones de un contrato de Solidity (similar a una clase
de Java), como un acercamiento al problema de estimación de gas. Además, como objetivos
específicos se busca analizar patrones en el código fuente y cómo se relacionan a ciertas dis-
tribuciones de costos y generar recomendaciones a próximos autores de código Solidity para
escribir código más seguro.

Comienza con una etapa investigativa de Ethereum, en particular sobre la máquina virtual
en la cual se ejecutan transacciones (similares a ejecutar un método en Java), seguida por
un estudio de un lenguaje que corre en esta máquina virtual: Solidity y cómo se diferencia de
otros lenguajes populares como Java. Continúa analizando el sistema de gas implementado
para controlar el uso de recursos computacionales de cada minero, y herramientas actuales
que intentan resolver el problema de estimación de gas.

Luego se define la estructura de la herramienta desarrollada, basándose en conceptos de
fuzz testing. Para esto se desarrollan técnicas únicas para este ecosistema, como la generación
de direcciones en la blockchain y de transacciones válidas. El análisis simbólico se introduce
para fortalecer un punto débil de la herramienta: su aleatoreidad. Un experimento para
evaluar esta herramienta es diseñado para ser ejecutado en una base de datos de 94,878
contratos.

A partir de los resultados obtenidos en el experimento se genera un gráfico que resume
el consumo de gas para un servicio dado y se definen clasificaciones para cada uno basadas
en los costos obtenidos y en cómo se relacionan a la estimación estática generada por el
compilador de Solidity. Cada clasificación se correlaciona con ciertas estructuras en el código
que las generó y luego son usadas para realizar un análisis global del comportamiento de la
herramienta.
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Se concluye la memoria presentando posibles falencias en la lógica de la herramienta,
explicando el efecto de agregar análisis simbólico a esta, resumiendo puntos donde concentrar
el trabajo futuro y dando recomendaciones a autores de código Solidity para generar código
más seguro en el futuro.

Una versión resumida de este trabajo fue presentada en ICSME-NIER 2020 [11]
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Abstract

The Ethereum blockchain provides the ideal infrastructure to develop partially or com-
pletely decentralized systems, but its virtual machine has a fundamental difference with that
of a language like Java: it requires payment for code execution. Since it is Turing-complete,
it is not possible a priori to determine if a given program will halt or not, which generates
a unique problem in this ecosystem: estimating the cost of executing a program. Currently
available tools to estimate these costs only generate an upper bound for this cost, which
might be infinite and of little use to the developer of a system.

This thesis’ main objective is to develop a tool that generates distributions of gas costs for
each function in a Solidity contract (akin to a Java class), as an approach to the gas estimation
problem. Furthermore, specific objectives include analyzing patterns in source code and how
they relate to a given cost ditribution, and generating recommendations for future Solidity
code authors to write safer code.

We start by performing an investigation of Ethereum, in particular its virtual machine
on which transactions (akin to a method call in Java) are executed, followed by a study of
a language that targets this virtual machine: Solidity and how it differentiates itself from
other popular languages like Java. As a next step, we analyze the gas system implemented
to control the use of a miner’s computational resources, and current tools that attempt to
solve the gas estimation problem.

The definition of the developed tool’s structure follows, using concepts from fuzz testing.
For this purpose we develop techniques unique for this ecosystem, such as the generation of
valid blockchain addresses, and valid transactions. As a way to reinforce a weak point of the
tool, its randomness, we introduce symbolic analysis. Afterwards, we define an experiment
to evaluate the tool on a database of 94,878 contracts.

Using these results we generate a blueprint that summarizes the gas consumption for each
service and classifications are defined based on the gas costs and how they compare to the
static estimation generated by the Solidity compiler. Each classification is then correlated
with a given structure in its source code and then later used for a global analysis of the tool’s
behaviour.

The thesis concludes by presenting weak-points of the tool, explaining the effect of adding
symbolic analysis on the fuzzer, summarizing where future work should be focused and finally
making recommendations to future solidity code authors in order to generate safer code in
the future.
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A summarized version of this work was presented at ICSME-NIER 2020 [11]
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Introduction

Blockchains started their history slightly more than a decade ago, when on the 31st of
October of 2008 Satoshi Nakamoto published the first paper about a peer-to-peer electronic
cash system: Bitcoin [10]. This technology is based on the premise that every user (also known
as nodes) would contribute to keeping a decentralized ledger of the balances of all accounts
in the network. It earns its name from being updated in discrete steps, named blocks. Where
each block contains many transactions which define how each account’s balance changed.

Since the blockchain is decentralized, recent blocks can’t be trusted, since they may not be
replicated in the whole network. However, older blocks can be considered as final, thanks to
its consensus mechanism making it statistically impossible to change blocks a certain amount
behind the latest one1. This eventual consensus can be maintained as long as no single entity
controls more than 50% of the computing power of the whole chain.

In order to update the chain, a user or miner must take the chain’s latest block, along
with a set of transactions to compute the next block. Then, the user must hash the new block
and obtain a hash that is lower than a value defined by the chain known as its difficulty. If
the problem is solved by a user, or miner, then the block is then published to the network,
and other nodes can validate the work and consider it as a valid block. As long as no ill-
intentioned entity controls over 50% of the network’s computing power, then incorrect blocks
will be safely ignored, and the rest of the chain will continue to be built upon correct blocks.
This process constitutes the consensus mechanism which allows the blockchain to be trusted.

Each transaction published in the blockchain is defined as bytecode, along with signatures
to authenticate the outgoing transfers. This bytecode is fed to a simple always-terminating
virtual machine, to compute the next block in the blockchain.

Following Bitcoin’s creation, new ideas that built upon its foundations started being pu-
blished. Among these is Ethereum [12], which differentiates itself by allowing its virtual ma-
chine to be Turing-complete. This opened the doors for programming languages that target
the Ethereum VM (henceforth EVM ), allowing it to act as more than just a decentralized
ledger. Every node could compute changes to complex decentralized systems built on the
Ethereum blockchain, making it similar to a distributed computer and database in exchange
for its cryptocurrency ether.

However, this decentralized computing power comes at a cost. Since the EVM is turing-

1For bitcoin, this is considered to be at least 6 blocks behind the most recent one.
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complete there is no guarantee that code being executed by a node will finish running. To
address this problem, the Ethereum designers came up with a gas system, which required
payment for transaction executions. This payment is measured in gas, a unit measuring
a given computational cost. Whenever a transaction is sent, it must be sent with a fixed
amount of gas. During computation each processed opcode by the VM adds gas to the total
gas spent. If this value is at any point higher than the amount sent with the transaction then
the execution stops, all side-effects are rewound, and the executing node keeps the spent gas.

One language that targets the EVM is Solidity, which is used to program smart-contracts
that act similarly to a class in regular object-oriented languages. These can be uploaded to
an address in the Ethereum blockchain to later be paid (in ether) to execute their code or
store some data. Real-world examples of Ethereum smart-contract usage include: Gods Un-
chained [2], a collectible card game where each card’s stats and ownership is stored on-chain;
Augur [1], an unlimited betting site and Golem [3], a decentralized computing framework.

An emerging problem with this decentralized computer is that, because of the halting pro-
blem, exact calculations nor upper bound estimations of how much gas any given transaction
will cost cannot be made without first executing said code. If accurate estimations of how
much gas will be spent cannot be made, final users run the risk of losing all ether and gas
sent with a transaction and getting none of the desired results. This is known as the gas
problem.

In this thesis we introduce Ethereum, the EVM, Solidity and the gas estimation problem
(Section 1), develop a tool that estimates gas costs for each of a contract’s functions using
fuzz testing (Section 2) and present the experimental results of said tool, tested on a large
database of smart-contracts (Section 3).

This thesis’ work was summarized in a paper [11], which will be presented at ICSME -
NIER 2020.
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Chapter 1

Ethereum & Gas Costs

In this chapter, all important concepts relating to blockchains, Ethereum, the Ethereum
Virtual Machine, Solidity and the gas system are explained. Afterwards the gas estimation
problem is presented, and current gas-estimation tools are analyzed.

1.1. Blockchains
A blockchain is essentially a decentralized database. Although originally designed to record

financial transactions, a blockchain can ledge transactions about anything. It does so by
taking an initial state, the genesis block, and applying more blocks on top of it. Each block is
composed of a reference to the parent block, and a list of transactions to apply. This chaining
of blocks, as seen in Figure 1.1, earns it its name.

Each block acts as a state transition, defining the changes to apply on the previous state.
In order to compute the current state of a blockchain, one would have to start at the genesis
block and apply the transactions indicated in each following block until up to date with
the latest block. Transactions often need authorizations from one or more accounts in the
blockchain. These authorizations are done using public key cryptography. Each account has
a public address in the blockchain, which is some form of their public key, and can sign a
transaction by using their private key.

Figure 1.1: Basic structure of a blockchain.

3



When a miner wants to add a new block on top of the blockchain, they must select the
transactions they want to include, ensure they are valid by executing them on a virtual
machine, and then assemble the next block using these transactions and the hash of the
previous block, which acts as its identifier. This block also includes a nonce, a positive integer.
This block is then hashed multiple times, changing the nonce each time on order to obtain a
new hash, until the result is lower than a value set by the blockchain known as its difficulty.

This process is the heart of Proof-of-Work, the consensus algorithm used in most block-
chains, and it is what allows the blockchain to be decentralized, yet trustable. Since compu-
ting a hash that is low enough is a computationally expensive problem, it is unfeasible for a
dishonest node to publish many invalid blocks to its benefit since they must compute said
hash for each one in order for other nodes to consider them valid. However, if said dishonest
node possessed more than 50% of the chain’s computational power, then they’d be able to
continue publishing invalid blocks at a faster rate than the rest of the blockchain can publish
valid nodes, losing the decentralized property characteristic of blockchains.

Since dishonest nodes can still publish invalid blocks occasionally, blocks are considered
confirmed when a certain number of blocks are published on top of them. This number
depends on the frequency of blocks being published to the blockchain. For Bitcoin, a block is
published roughly every 10 minutes, and a block is considered confirmed after 6 other blocks
are published on top of it. For Ethereum, a block is published every 10 to 19 seconds, and a
block is considered confirmed after 30 confirmations.

Blockchains can be used as a database or computing service with high availability, since
as long as there are active nodes, transactions will be able to take place. This comes at the
cost of the blockchain’s confirmation time to ensure the data’s integrity.

1.2. Ethereum & Solidity
Ethereum’s main differentiation as a blockchain is its Turing-complete virtual machine,

which allows it to not only store data, but allow arbitrary code to run on the blockchain.
This enables users to develop smart systems that run on the blockchain. For example, the
trading card game Gods Unchained [2] stores all of the information for its cards in the
blockchain, including all their properties and owners. Another example is Golem [3], which
provides a decentralized computation framework where computationally hard problems, such
as rendering a video, can be uploaded to outsource the work to the chain’s nodes.

Each account in the Ethereum blockchain contains the following information:

• Its balance.
• A nonce, to count how many transactions have been executed from the account’s ad-

dress.
• A storage section, which can store arbitrary data.
• The hash of the EVM bytecode belonging to the account. Cannot be changed after

construction.

Solidity is a programming language that targets the EVM. Its code, and that of other
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languages that target the EVM, is known as smart-contracts. Solidity is an object-oriented,
strongly typed language, similar to Java in many aspects. For example, a Solidity contract
roughly corresponds to a Java class and a Solidity function is similar to a Java method. These
may be executed either by another function, or through a transaction. As such, a transaction
is similar to the classical remote method call.

Solidity’s primitive types are much like those of Java, with the addition of primitive types
for maps, lists and addresses. The last one stores the identifier for a given account, and can
be used to call transactions on it, or transfer some ether.

Differences start to be noticeable upon a closer inspection of Solidity code. Solidity has
no standard library, so most computation must be written by the developer. Since Solidity
code is immutable, i.e., after being uploaded to the blockchain no changes can be made to
it, references to external contracts are rare because of the tight coupling they produce. If an
error were found in a contract that acts as a dependency, the depending contract cannot be
updated to change the dependency.

Here is an example of a simple contract, which stores how much ether has been deposited
into it over its lifetime:

Listing 1.1: Contract which allows for deposits to be made by its owner
1 contract SimpleStorage {
2 address owner;
3 uint amount;
4 constructor() public {
5 owner = msg.sender;
6 }
7 function pay() public payable {
8 require(owner == msg.sender);
9 amount += msg.value;

10 }
11 }

Lines 4 - 6 are the contract’s constructor, which gets executed when the contract is deplo-
yed on a blockchain. Line 5 records the sender of the transaction that deployed the contract
into a variable called owner. As such, the owner variable references an address in the block-
chain that uniquely identifies the owner of the contract.

Lines 7 - 10 define a payable public function, otherwise known as a service. These special
functions receive ether sent with a transaction and store it to the contract’s address. Line 8
has a require statement, which verifies that the transaction’s sender is the same address as
the contract’s owner. If this validation were to fail, then the service’s execution would stop,
and the executing node would keep all of the sent gas with the transaction. Finally, line 9
adds the paid amount to a counter within the contract. It is important to note that this
assignment does not need to be made to transfer the funds, its sole purpose is to track all of
the received ether in the contract’s history.
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1.3. The Gas System
In a public blockchain, anyone can publish a transaction for any public service. A public

service may be designed to produce and store valuable data (e.g., a record of a financial
transactions, as in Listing 1.1) in the blockchain. As an incentive for network members
(called miners) to execute transactions, Ethereum offers a system which allows miners to be
paid for each executed transaction. This system operates around a unit called gas.

Gas is a unit describing elementary computational steps. A unit of gas corresponds to the
cost of executing one atomic instruction: a bytecode. For example, multiplying is a simple
operation that requires few computational units (5 gas) while a significantly more complex
operation, such as getting the balance of an account costs 400 gas1.

The system sets a few restrictions upon transactions, which must be satisfied for a miner
to attempt their computation:

• It must include a fixed amount of ether in order to pay for the execution (e).
• It must include a rate of conversion between ether and gas, called the gas fee (f).
• It must include a threshold called gas limit (gL), that represents the maximum amount

of gas the author is willing to pay to the computing miner for the spent resources during
execution (both CPU cycles and time).

After executing a transaction, the miner earns ether depending on the execution’s result.
If g is the amount of consumed gas:

• If the execution failed because of a runtime error, then the miner gets all of the ether
intended to pay for the gas in the transaction: e.

• If the execution failed because of an out-of-gas error (i.e., the consumed gas was greater
than the gas limit), then the miner gets an amount equal to: gL · f .

• If the execution completed without errors, then the miner gets an amount equal to:
g · f , and the author is refunded e − g · f ether. Where g is the amount of gas consumed
during the execution.

As such, whenever a transaction is published it should set these values such that e = g · f .

1.4. Gas Estimations
Estimating how much gas will be spent by any given transaction has always been in the

interests of developers to ease the optimization of their contract’s gas expenditure. For a
contract’s user knowing how much gas needs to be sent along with a transaction is also very
important, since the gas exceeds should be minimized in order to lose less gass in case a
runtime error happens, and all ether to be paid for gas-coverage is lost. On the other hand,
it is of the utmost importance to set a gas-limit that manages to cover the costs of the
transaction’s execution, since as soon as the consumed gas surpasses said limit, all effects
produced by the transaction are disposed, and all sent gas is lost.

1https://github.com/crytic/evm-opcodes
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Solidity designers predicted this and included within their compiler a simple gas estimation
system.

1.4.1. Static Opcode Analysis
Solidity estimates the upper limit of the gas cost of a given contract by performing static

analysis on the contract’s compiled bytecode and returns an upper bound for each function’s
gas-consumption. These estimations do not take any contract state into account, which causes
frequent mis-estimations. This approach estimates infinite upper bounds in the following
cases:

1. If some part of the contract’s state with variable size is used in the function.
2. If unavailable bytecode is called, for example a call to an external contract’s function.
3. If any ether transfers are made within the function’s call tree.

In particular, Item 2 has led Solidity developers to heavily rely on code duplication. Sharing
common interfaces and contracts to be later bundled with the rest of the contract’s code,
and finally reuploaded to some address in the blockchain.

As an example, consider the contract in Listing 1.2. It requires payment in wei, which is
equal to 10−17 ether, and for each wei transferred, it computes the next fibonacci number.
This service is estimated with an infinite gas cost, which gives no information to its users
about how much gas should be sent along with the transaction.

Listing 1.2: Contract with gas-estimation problems
1 contract FibonacciCalculator {
2 uint previous;
3 uint number;
4 constructor() public {
5 previous = 0;
6 number = 1;
7 }
8 function increase() public payable returns (uint fibonacci) {
9 return doWork(msg.value);

10 }
11 function doWork(uint amount) private returns (uint fibonacci) {
12 for (uint i = 0; i < amount; i++){
13 uint t = number;
14 number = number + previous;
15 previous = t;
16 }
17

18 return number;
19 }
20 }

7



1.4.2. GASTAP
GASTAP [8] also operates on the bytecode of a contract but does not generate a number

for their upper-bound. Instead it produces two functions, parametrized over the contract’s
state to generate an always accurate, never infinite, upper-bound. One of these functions
estimates the gas costs associated with memory consumption, and the other the gas costs
associated with opcode processing.

This is achieved by processing the bytecode through 5 distinct processes, which consist of:

1. Transforming the smart-contract’s bytecode into a control flow graph through a modi-
fied version of Oyente [4].

2. Using a modified version of EthIR [7] to transform said control flow graph into its
rule-based representation.

3. Generating size relations for the smart-contract’s different state variables from its rule-
based representation, using SACO [5].

4. Defining gas equations from said size relations.
5. Solving the gas equations using PUBS [6]

The contract found in Listing A.1 was processed through GASTAP. The output estima-
tions can be found in table Table 1.1

Function Name Memory Cost Opcode Cost
delegate(address) 9 656 + max(108, 1 + failed(no_rf))
winningProposal() 15 1312 · nat(proposals)

chairperson() 26 471
voters(address) 24 1496
vote(uint256) 24 61587
winnerName() 15 1150 + 1312 · nat(proposals)

giveRightToVote(address) 27 21367
proposals(uint256) 18 1028

Table 1.1: Resulting estimations from a sample contract

Most results are simple to interpret, but in some complex cases such as in delegate(
address) it depends on functions that are not intuitive, nor defined anywhere in the docu-
mentation.
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Chapter 2

Estimating Gas Costs

This chapter introduces the fundamental concept behind our gas-estimation tool: Fuzz Tes-
ting. We then explain the technologies used for the tool’s development and describe the design
of the fuzzer’s architecture. The chapter ends by presenting the designed experiment to eva-
luate the tool.

2.1. Fuzz Testing
Fuzz testing [13] is a technique used to automatically test software’s robustness against

different inputs. It consists of automatically executing a program many times with randomly
generated inputs in an attempt to find logic or runtime errors. More advanced variants include
improved argument-generating processes, like argument mutation or machine learning, that
enable the fuzzer to maximize a certain metric like code coverage.

Since fuzz testing can be used to maximize metrics such as code coverage, we applied
these techniques to the gas-estimation problem, by attempting to maximize the consumed
gas for each function. An initial approach generated a naïve fuzzer that: (i) randomly and
uniformly produced values for primitive types and (ii) created transactions that randomly
invoke Solidity services.

2.2. Argument Generation
Since Solidity shares many common constructions with any general-purpose programming

language such as Java or Python, the fuzzer we designed and implemented for Solidity follows
the traditional guidelines to build fuzzers [13]. This included randomly generating primitive
values such as integers or characters and using probability distributions to create complex
types like byte arrays or strings. We used a geometric distribution in order to generate these
size-variable types.

Most primitive types in Solidity are easily fuzzed through traditional techniques like ge-
nerating a random integer within a given range or choosing a random character from an
available dictionary. However, types like addresses need a special procedure in order to pro-
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vide valid values. Since transactions are sent from an address in the blockchain, the owner of
said address needs to prove their ownership. This is done through public key cryptography,
where the address is a representative version of the public key and the secret key is used to
sign transactions to authorize them. As such, generating a random 20-byte integer proves
insufficient for transaction publication because of the lack of a matching private key. As an
additional restriction, most services store their information using addresses as identifiers, for
example, storing the amount of ether deposited into the contract by each account, in order
to later allow its retrieval.

The designed procedure consists of storing within the fuzzer state containing all known
key pairs and whenever a transaction needs to be created, a weighed coin toss determines if:
(i) a new address will be returned by generating the corresponding key pair, storing it, and
then returning the address related to the generated public key, or (ii) an address related to
one of the previous key pairs is used. By reusing previous addresses, we achieve the effect of
the same user calling multiple services from a single contract.

When an account is initially generated, it needs a non-0 ether balance in order to pay
for gas-costs and potential payable services. As it is customary while developing and testing
Ethereum applications, a special faucet address exists, which has an infinite amount of ether
and gives ether to any address that requests it. Using this faucet, newly created accounts
receive an initial deposit of ether to carry out their transactions.

Whenever a payable service is fuzzed, the procedure also needs to determine how much
ether to send along with the transaction. The fuzzer achieves this by recording all of the
ether balances of the created accounts, and sends with the transaction a random amount of
ether, discounted from the chosen account’s balance.

Fuzzer procedures for every type in Solidity are documented in Appendix B.

2.3. Transaction Execution
To execute the transactions generated by the fuzzer, an EVM implementation is needed.

Many implementations of the EVM are available, however we chose py-evm [9] because it
passes all standard VM tests and is well documented. Each transaction is then executed as
follows:

• A contract is randomly selected.
• A public service within the contract is randomly chosen.
• The arguments for the services and the calling address are generated by the fuzzer.
• The generated transaction is sent to the blockchain for execution, along with around 107

wei to pay for any possible gas costs. Wei is a small fraction of ether, the cryptocurrency
coin used to express account balances.

After the transaction’s execution, the consumed gas cost measured by py-evm is recorded,
along with the estimation made by the solidity compiler. This data is then used to generate
a distribution of gas costs for each service provided by a contract.
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Figure 2.1: Frequency of each kind of operation found within require statements

2.4. Symbolic Analysis

Since the fuzzing is done naïvely, it is probable for it to never execute some branches
of the source code. In order to avoid this problem, we added symbolic analysis on require
statements with numerical conditions found within. We conjectured this simple restriction
would be enough to help our fuzzer reach further into most functions with these assertions.

Beforehand, we performed some analysis on the abstract syntax trees belonging to a set
of 94,878 contracts, in order to corroborate this conjecture. Figure 2.1 reveals that 82% of
operations performed within require statements are binary operations. Figure 2.2 shows
that 88% of said operations use operators that apply to numeric arguments. Optimistically,
our symbolic analysis could help the fuzzer pass up to 72% of require statements found
within the contract. A more detailed breakdown of contract composition can be found in
Appendix C.

To implement the symbolic analysis, we first preprocessed the input contract to find all of
the contract’s private variables. We then inserted new public functions into the source code
that returned said variables. This allowed our fuzzer to read the contract’s state at run-time,
which in turn provided it with most of the information necessary to satisfy the targeted
numerical conditions.

During the initial fuzzer setup, each function’s body would be parsed to extract every
require statement and the boolean expression that would satisfy it. These expressions would
then be transformed into a set of restraints for each parameter of the function. For example,
Listing 2.1 shows a function with a simple restriction, that would cause the generated value for
number to always be greater than 15. Since only the expression inside the require statement
is processed, inaccurate constraints for the generated arguments might be generated if any
function’s parameter is reassigned in its body.

11



Figure 2.2: Frequency of each operator used within binary operations

Listing 2.1: Simple function that generates a single static constraint for number
1 function addToCount(uint8 number) public {
2 require(number > 15);
3 this.count += number;
4 }

In the case a condition referenced part of the contract’s state, we would execute a transac-
tion to obtain the latest value of said state. This function always existed thanks to our
preprocessing that created functions for private fields, and public fields generating said fun-
ctions by default. Listing 2.2 has a function similar to that of Listing 2.1, but the require
statement forces the value for number to always be greater than the value of the contract’s
state variable count.

Listing 2.2: Simple function that generates a single dynamic constraint for number
1 function addToCount(uint8 number) public {
2 require(number > this.count);
3 this.count += number;
4 }

It is important to note that we did not add symbolic analysis on if-then-else statements
because we cannot know on which branch the code would generate a larger gas cost, so
choosing a branch to execute would be an arbitrary decision.

2.5. Implementation Design
The implementation divided the fuzzer into three distinct layers, a preprocessing layer, a

blockchain layer and a fuzzing layer as illustrated in figure Figure 2.3.
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Figure 2.3: Architecture of the developed tool.
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Figure 2.4: Structure used to store fuzzers in the fuzzing layer.

The preprocessing layer is in charge of parsing the input file in search of private fields, for
which it would then insert public accessors into the source file in order to make them accesible
through the blockchain layer. Afterwards the modified source code is compiled, which resulted
in the bytecode that would be uploaded to the blockchain. During the compilation, the
modified source code’s abstract syntax tree would be parsed to find the require statements
and transform them into constraints for the fuzzer.

The blockchain layer manages the blockchain state. During initialization, it receives the
constraints found during parsing in the previous layer, and forwards them to the fuzzer,
stating which function they belong to. It creates the faucet address and begins each fuzzing
step by choosing a function randomly and requesting its arguments from the fuzzing layer.

The fuzzing layer uses a tree structure (Figure 2.4) to store a set of fuzzers dedicated
to every one of a function’s arguments. As explained in Appendix B, some fuzzers have
child fuzzers which generate the composing sub-types for the parent. For example, the fuzzer
for type uint[] has a child fuzzer for the type uint. Each fuzzer would also store the
constraints defined in the preprocessing layer and would use them to attempt to generate
values that passed said constraints. Whenever a constraint needs to access the contract’s
current state, the fuzzer would request the blockchain to execute a transaction that would
return the required value. This executed a public accesor function, which is generated during
the preprocessing stage for private variables.

Each fuzzer is derived from a base type which managed the execution flow during argument
generation, where each derived type specified how to generate its own argument. The final
class structure is displayed in Figure 2.5.

The tool was implemented using python and py-evm for EVM emulation. The fuzzing
and symbolic analysis systems were implemented from scratch. The biggest challenges in
these implementations was the symbolic analysis and how constraints would interact with

14



Figure 2.5: Class hierarchy defined by all the implemented fuzzers.

the fuzzing mechanism, as well as keeping the codebase simple.

2.6. Contracts and Experiment Execution
We evaluated our fuzzer on a large number of contracts obtained from http://EtherScan.

io. We ran our fuzzer on 19,325 Solidity files. A file may contain more than one contract.
These files define 94,878 contracts, 233,369 public services, totaling 6,075,210 lines of code.
The analyzed contracts were all written in version 0.4 of solidity.

The experiment is designed as follows. We iterate over the Solidity files. For each file,
we create a new blockchain. We upload to that new blockchain the bytecode produced by
compiling the contracts of the file. Each service is then executed 15 times on average, using
the fuzzer without symbolic execution. The whole process is repeated 10 times, to total 150
executions per service, for each file in the dataset.

After the initial run of experiments, the same process is repeated using the fuzzer with
symbolic execution to see if the result estimations changed.
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Chapter 3

Results

This chapter presents the results obtained from the experiment’s execution, and draws
conclusions based on the obtained data. Suggestions are made for smart-contract authors to
make solidity code safer for their users.

3.1. Blueprints
We designed a visual support to summarize the result of our fuzzing algorithm on an

individual service. The blueprint is composed of a histogram of the gas cost, represented by
the frequency of the service invocation for a given gas cost range. A vertical dashed red line
indicates the assessment made by the Solidity compiler using static analysis of the gas cost
of the service, and a vertical green line displays the average cost measured throughout the
experiment.

Listing 3.1: Source code of the Essence.buy service.
1 function buy() payable public {
2 uint amount = msg.value / buyPrice;
3 transferFrom(this, msg.sender, amount);
4 }
5 function transferFrom(
6 address _from,
7 address _to,
8 uint256 _value
9 ) returns (bool) {

10 var _allowance = allowed[_from][msg.sender];
11 balances[_to] = balances[_to].add(_value);
12 balances[_from] = balances[_from].sub(_value);
13 allowed[_from][msg.sender] = _allowance.sub(_value);
14 Transfer(_from, _to, _value);
15 return true;
16 }
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Figure 3.1: Gas cost of a service in the less than, constant, category

Figure 3.1 illustrates the blueprint of a service with a constant consumption during the
fuzzing test. However, the expected gas cost, as predicted by Solidity, is significantly lower.
This example reflects a runtime error. Having an error at runtime has dramatic consequence,
in particular, all gas sent within a transaction is consumed when the transaction fails. Our
simulation sends a very large amount of gas with each transaction, thus emphasizing the
wrong estimation made by Solidity. The source code of the service illustrated in the figure
can be found in Listing 3.1.

The runtime error stems from the fact that the code tries to make a transfer towards
an invalid address in the simulation blockchain. The service transferFrom is a user-defined
wrapper to transfer transaction amount that performs particular checks.

Since the service buy() leads to an error if any of the two provided addresses are inade-
quate, the gas sent along with the transaction is consumed. As a result, this error causes
a higher gas cost than what Solidity estimated. Solidity estimates a service cost based on
summing the individual gas cost of each bytecode contained in the contract, and does not
consider possible errors, such as the one illustrated above.

3.2. Cost trend
The gas consumption histogram may display an overall trend. Consider Figure 3.2. The

figure shows three buckets in which the frequency is decreasing for higher costs. Such a trend
may be due to the presence (i) of a conditional statement in which our fuzzer is struggling
to let the execution go through, or (ii) the service exiting early to avoid runtime errors.

17



Figure 3.2: Gas cost of a service in the less than, constant, category

The blueprint given in Figure 3.2 does not have the Solidity estimation (i.e. the dashed
vertical line), this is because Solidity estimated the consumption as infinite, indicating a
situation for which Solidity cannot determine an upper bound. Such a situation may happen
if the contract has to invoke another contract on the blockchain, for which static analysis is
not possible.

A cost trend may decrease (e.g. Figure 3.2), be stable (e.g. Figure 3.1), or increase, and
it is a simple, albeit expressive visual support to indicate the amount of branches the code
contains and how restrictive their associated conditions are.

3.3. Classification
The cost estimation blueprint displays three distinct aspects of the fuzzing (i) the average

gas cost, (ii) the gas cost estimation made by Solidity, and (iii) the general trend in the
frequency of gas costs. As such, each blueprint can be classified along two dimensions, the
average cost and the cost trend:

• Average cost: Comparing the average gas cost obtained during the fuzzing against
the Solidity estimation, four situations may happen: (i) the estimation is less than the
average cost, (ii) it is equal, (iii) it is greater, and (iv) Solidity cannot statically estimate
the cost and merely states that the service may have an infinite gas consumption.

• Cost trend: The cost trend may belong to one of the following four categories: decreasing
(greater gas costs have a lower frequency than lower gas costs), constant, increasing
(greater gas costs have a higher frequency than lower gas costs), and other (gas costs
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Figure 3.3: Heatmap indicating the obtained classifications

do not establish a monotonic trend).

If for a given function we have only both of these classifications, we can already get a good
idea of its general behavior, and a glimpse into its control flow structures.

Manually inspecting the less category for the average costs reveals that this category is
likely due to runtime errors (for which the gas fee associated with a transaction is lost when
an error occurs).

3.4. Quantitative analysis
Our fuzzer has produced 233,369 blueprints (one per public service), and each is classified

in the categories described above. Figure 3.3 shows how the blueprints are distributed across
the categories.

Our results indicate that only 36.12% of the public services have a gas cost equal
to the estimate made by Solidity from a static analysis. A manual inspection on a
representative sample of the source codes indicates that services with a constant cost are
mostly variable accessors or calls to external services and operations which might result in
an error. Note that these methods are often automatically generated by the Solidity compi-
ler. Service accessors for fields having a dynamically-sized type, such as maps, strings, and
dynamic arrays, have an infinite gas cost.

The none category, defined by services whose estimation was infinity, are mostly composed
of services where one of the following happens:
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1. A function call to an external contract is made;
2. A transfer is made;
3. A dynamically-sized field is returned;
4. The code contains a loop whose length depends on the state of the contract.

The decreasing case of the none category mostly corresponds to cases (3) and (4). This
is caused by a bias in how the fuzzer generates dynamically sized fields, where the value
generator uses a geometric distribution to determine the length of the sequences, hence the
tendency for such functions to be classified as decreasing.

The greater than category is made up mostly of services that have some kind of error
checking with if statements, and simply returning if some condition is not true. These services
naturally have an average cost which is lower than the estimation, since they are called with
essentially random arguments. As such there is a very low probability that the execution
would pass through the error checking statements. Because Solidity gives an upper bound
for the expected gas cost, then the actual gas cost is lower than the estimation because the
execution took a shorter branch of the code, mostly exiting early to avoid errors. Listing 3.2
displays an example of code that generates this behavior. Figure 3.4 contains the blueprint
generated for this service.

Listing 3.2: Function sample that is classified in the greater than category
1 function transferOwnership(address _newOwner) public ownerOnly {
2 if(owner != _newOwner) {
3 owner = _newOwner;
4 }
5 }

Decreasing, increasing and other trends are tightly tied to the greater than and none
classifications. Decreasing and increasing trends generally check for errors in their code,
but their trend is defined by how restrictive this check is. In increasing trends, most of
the executions manage to pass through the require statements. In decreasing trends, the
opposite happens. The other classification is also closely related to them since both definitions
take strictly decreasing or increasing frequencies. It takes only a single outlier to break the
pattern and make the function be classified as other.

We repeated the same experiment after adding symbolic execution for numeric require
statements to our fuzzer. Figure 3.5 illustrates the results of said experiments. No statistically
significant remark can be made by comparing them to the original experiment, other than
the equal constant category having a larger frequency after applying symbolic execution.
This might be due to the fact that less runtime errors were encountered, and so the solidity
compiler did not underestimate in the said cases.
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Figure 3.4: Gas cost of the service transferOwnership.

Figure 3.5: Heatmap displaying the results of the experiment with symbolic analysis.
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Conclusion

We have developed a fuzz testing tool that allows one to classify each service of a contract
using two criteria: performance against the estimation made by Solidity, and the trend of the
gas cost exhibited during the testing. Each classification offers us some insight about what
the associated code might do, including the restrictiveness of the error checking, possible
optimizations and encountered runtime errors. Note that we designed our testing tool for
ease of use, as such, no configuration is necessary to employ it.

Our fuzzer gives a pragmatic approach to gas estimations, by executing the code multiple
times and checking how much each transaction cost. The estimates however are not as useful
as we would like, because the tool does not take into account what kind of arguments are
expected by the services. Since the fuzzing is done completely at random, it might violate
some implicit contract expected by the service. This might explain the large amounts of
services that exit during error checks.

Adding basic symbolic execution on require statements with numeric conditions did not
generate any statistically significant difference in our results, so a more sophisticated alter-
native might be necessary for detecting better gas limits and trends.

Future work will explore wether improving the fuzzer with more advanced techniques
allows for faster and better estimations, and generating better metrics to ease comparison
between the fuzzer and other tools for gas estimation.

We also make a simple recommendation for safer solidity code. Early returns with if
statements should be chosen over runtime errors caused by require calls, in order to minimize
lost gas.

All the work developed throughout this thesis was compiled into a paper [11], which was
presented at ICSME - NIER 2020.
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Appendix A

Example Ballot Contract

Listing A.1: An example Ballot contract provided by the Solidity Documentation
1 pragma solidity ^0.4.22;
2

3 /// @title Voting with delegation.
4 contract Ballot {
5 // This declares a new complex type which will
6 // be used for variables later.
7 // It will represent a single voter.
8 struct Voter {
9 uint weight; // weight is accumulated by delegation

10 bool voted; // if true, that person already voted
11 address delegate; // person delegated to
12 uint vote; // index of the voted proposal
13 }
14

15 // This is a type for a single proposal.
16 struct Proposal {
17 bytes32 name; // short name (up to 32 bytes)
18 uint voteCount; // number of accumulated votes
19 }
20

21 address public chairperson;
22

23 // This declares a state variable that
24 // stores a "Voter" struct for each possible address.
25 mapping(address => Voter) public voters;
26

27 // A dynamically-sized array of "Proposal" structs.
28 Proposal[] public proposals;
29

30 /// Create a new ballot to choose one of "proposalNames".
31 constructor(bytes32[] proposalNames) public {
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32 chairperson = msg.sender;
33 voters[chairperson].weight = 1;
34

35 // For each of the provided proposal names,
36 // create a new proposal object and add it
37 // to the end of the array.
38 for (uint i = 0; i < proposalNames.length; i++) {
39 // "Proposal({...})" creates a temporary
40 // Proposal object and "proposals.push(...)"
41 // appends it to the end of "proposals".
42 proposals.push(Proposal({
43 name: proposalNames[i],
44 voteCount: 0
45 }));
46 }
47 }
48

49 // Give "voter" the right to vote on this ballot.
50 // May only be called by "chairperson".
51 function giveRightToVote(address voter) public {
52 // If the first argument of "require" evaluates
53 // to "false", execution terminates and all
54 // changes to the state and to Ether balances
55 // are reverted.
56 // This used to consume all gas in old EVM versions, but
57 // not anymore.
58 // It is often a good idea to use "require" to check if
59 // functions are called correctly.
60 // As a second argument, you can also provide an
61 // explanation about what went wrong.
62 require(
63 msg.sender == chairperson,
64 "Only chairperson can give right to vote."
65 );
66 require(
67 !voters[voter].voted,
68 "The voter already voted."
69 );
70 require(voters[voter].weight == 0);
71 voters[voter].weight = 1;
72 }
73

74 /// Delegate your vote to the voter "to".
75 function delegate(address to) public {
76 // assigns reference
77 Voter storage sender = voters[msg.sender];
78 require(!sender.voted, "You already voted.");
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79

80 require(to != msg.sender, "Self-delegation is disallowed.");
81

82 // Forward the delegation as long as
83 // "to" also delegated.
84 // In general, such loops are very dangerous,
85 // because if they run too long, they might
86 // need more gas than is available in a block.
87 // In this case, the delegation will not be executed,
88 // but in other situations, such loops might
89 // cause a contract to get "stuck" completely.
90 while (voters[to].delegate != address(0)) {
91 to = voters[to].delegate;
92

93 // We found a loop in the delegation, not allowed.
94 require(to != msg.sender, "Found loop in delegation.");
95 }
96

97 // Since "sender" is a reference, this
98 // modifies "voters[msg.sender].voted"
99 sender.voted = true;

100 sender.delegate = to;
101 Voter storage delegate_ = voters[to];
102 if (delegate_.voted) {
103 // If the delegate already voted,
104 // directly add to the number of votes
105 proposals[delegate_.vote].voteCount += sender.weight;
106 } else {
107 // If the delegate did not vote yet,
108 // add to her weight.
109 delegate_.weight += sender.weight;
110 }
111 }
112

113 /// Give your vote (including votes delegated to you)
114 /// to proposal "proposals[proposal].name".
115 function vote(uint proposal) public {
116 Voter storage sender = voters[msg.sender];
117 require(!sender.voted, "Already voted.");
118 sender.voted = true;
119 sender.vote = proposal;
120

121 // If "proposal" is out of the range of the array,
122 // this will throw automatically and revert all
123 // changes.
124 proposals[proposal].voteCount += sender.weight;
125 }
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126

127 /// @dev Computes the winning proposal taking all
128 /// previous votes into account.
129 function winningProposal() public view
130 returns (uint winningProposal_)
131 {
132 uint winningVoteCount = 0;
133 for (uint p = 0; p < proposals.length; p++) {
134 if (proposals[p].voteCount > winningVoteCount) {
135 winningVoteCount = proposals[p].voteCount;
136 winningProposal_ = p;
137 }
138 }
139 }
140

141 // Calls winningProposal() function to get the index
142 // of the winner contained in the proposals array and then
143 // returns the name of the winner
144 function winnerName() public view
145 returns (bytes32 winnerName_)
146 {
147 winnerName_ = proposals[winningProposal()].name;
148 }
149 }
150
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Appendix B

Fuzzer Procedures for Solidity Types

B.1. Fixed Size Types

B.1.1. Booleans
Boolean values are the most straightforward to generate. The implementation chooses

between true and false with a 50% chance for each.

B.1.2. Integers
In Solidity, integers come in two main variants: int and uint, both 256 bits long. Each of

these types can be further typed to describe how many bits it should use. Valid bit-sizes are
multiples of 8, and go from 8 to 256 bits. For example, the type uint64 is a 64-bit unsigned
integer, with values ranging from 0 to 264 − 1. The implementation determines the minimum
and maximum values for the type, and then returns a value inbetween the limits.

In summary:

• Given the type uintN a value is generated within the range
[
0, 2N

[
.

• Given the type intN a value is generated within the range
[
−2N−1, 2N−1

[
.

B.1.3. Addresses
Addresses have two different generation procedures, depending on what it will be used

for. If the address is to be received by a service as an argument a uint160 fuzzer is used to
generate a random value. If the address is needed for transaction creation (i.e., the address
of the transaction’s author), then the procedure described in section 2.2 is followed.

B.1.4. Fixed-Point Numbers
In Solidity, fixed-point numbers are declared as fixedNxM or ufixedNxM, where N is the

number of bits used by the number, and M is the number of decimal points available. M
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must be divisible by 8, and at most 256 bits. N must be an integer in the range [0, 80]. If not
specified, the values for N and M are 128 and 18 repectively.

The implementation is as follows:

• Given the type ufixedNxM a value v is generated within the range
[
0, 2N

[
.

• Given the type ufixedNxM a value v is generated within the range
[
−2N−1, 2N−1

[
.

The fuzzer then returns v/10M .

B.1.5. Characters
The implementation chooses a random character from a whitelisted set, composed of all

digits, all ASCII letters, all punctuation marks and whitespace.

B.1.6. Fixed-size Byte Arrays
Solidity includes types for byte arrays with a fixed size. These are declared as bytesN

, where N is the number of bytes to include in the array, and ranges from 0 to 32. The
implementation is straightforward, and generates N times 8 random bits, which are later
inserted into a byte array.

B.1.7. Function Pointers
Function pointers are equivalent to a 20-byte array, and as such uses the bytes20 fuzzer.

Even though they do not point to a real function’s pointer this did not prove to be a problem,
since it is a rarely used feature in Solidity.

B.1.8. Fixed-size Arrays
Arrays can be declared as T[N], where T is the array’s underlying type, and N is the

amount of elements in the array. The implementation simply uses the underlying fuzzer’s
type to generate N values, and returns an array containing said values.

B.2. Dynamic Size Types
These types include arrays without a defined size (declared as T[]), arrays of bytes without

a defined size (bytes), strings and tuples. All array-based types use the underlying type’s
fuzzer a variable amount of times n. This value is obtained from a geometric distribution, so
it tends to have a bias for shorter arrays.

Finally tuples are declared as a comma-separated list of internal types inside parentheses.
(e.g., (uint64, bytes16, bool)). This fuzzer uses each of the internal types’ fuzzers to
generate the final value.
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Appendix C

Contract Composition

During the development of the symbolic analysis for our fuzzer, we perfomed analysis on
our database of 19,089 solidity files, defining in total 94,878 unique contracts.

Figure C.1 illustrates the versions of solidity with which the contracts were written.

Within these contracts, 480,276 unique functions were defined. Overall, 37% of contracts
contained require statements, and 15% of functions contained at least one require state-
ment.

On average, each file contained 7,58 contracts, each contract defined 1,53 functions,
and each function had 0,30 require statements. Ignoring contracts and functions without
require statements, each contract defined 4,13 functions, and each function contained 2,06
require statements.

Figure C.1: Frequency of solidity versions used in the contract database.
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