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MONOCHROMATIC PARTITIONS IN RANDOM GRAPHS

En 1991 Erdős, Gyárfás y Pyber conjeturaron que para todo r-coloreo de un grafo completo
Kn este puede ser particionado en a lo más r − 1 árboles monocromáticos. Paralelamente
Gyárfás y Lehel conjeturaron un resultado similar para un tipo diferente de grafos. Ellos
propusieron que para todo r-coloreo de las aristas de un grafo bipartito completo este puede
ser cubierto por a lo más 2r − 2 árboles monocromáticos.

En 2017 Bal y DeBiasio fueron los primeros en estudiar este problema para grafos aleatorios

G(n, p) ∈ Gn,p y conjeturaron que si p�
(
rlog(n)
n

)1/r
entonces G(n, p) puede ser particionado,

casi seguramente, por a lo más r árboles monocromáticos. En esta memoria proponemos una
version de este problema para grafos bipartitos aleatorios en el caso r = 2. Conjeturamos
que para la misma cota de p podemos, casi seguramente, particionar G ∈ Bn,n,p por a lo más
3 árboles monocromáticos. Además, probamos esta conjetura aproximadamente.

Finalmente, damos un ejemplo de un 2-coloreo de las aristas tal que, casi seguramente,
necesitamos al menos tres árboles monocromáticos para particionar el grafo, y por lo tanto,
nuestra conjetura sería mejor posible.
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MONOCHROMATIC PARTITIONS IN RANDOM GRAPHS

In 1991 Erdős, Gyárfás and Pyber conjectured that every r-coloured complete graph Kn

can be partitioned by at most r − 1 monochromatic trees. Following this line, Gyárfás and
Lehel conjectured a similar result for a different host graph. They proposed that every r-
coloured complete bipartite graph can be covered by at most 2r − 2 monochromatic trees.

In 2017 Bal and DeBiasio were the first to study this problem for random graphs G(n, p) ∈

Gn,p and they conjectured that if p �
(
rlog(n)
n

)1/r
then G(n, p) could be a.a.s. partitioned

by at most r monochromatic trees. We propose a version of this problem for random bipar-
tite graphs in the case r = 2. We conjecture that for the same p we can a.a.s. partition
G ∈ Bn,n,p, the random bipartite graph, by at most 3 monochromatic trees. Also, we prove
this conjecture approximately.

Finally we give an example of a 2-colouring of the edges such that a.a.s. we need at least
three monochromatic trees to partition the graph, and therefore, our conjecture would be
best possible.

iii



iv



Why are numbers beautiful?
It’s like asking why is Beethoven’s Ninth Symphony beautiful.

If you don’t see why, someone can’t tell you.
I know numbers are beautiful.

If they aren’t beautiful, nothing is.

Paul Erdős
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Introduction

Ramsey theory dates from the end of the twenties and was named after the British mathe-
matician Frank Ramsey. Ramsey theory is a branch of mathematics which deals with finding
monochromatic structures in large complete graphs. The Ramsey number has a fundamental
role in this theory and is defined as follows. The Ramsey number R(G) of a graph G is the
smallest number n for which any 2-coloured complete graph on n vertices contains either a
red or a blue copy of G. In 1967 Gerencsér and Gyárfás [13] determined the Ramsey number
of paths with given lengths and proved that for any 2-colouring of the edges of a complete
graph Kn on n vertices there are two monochromatic paths partitioning all the vertices of the
graph. This was the beginning of countless papers and articles that have opened up a very
important line of research for graph theory and combinatorics in recent years. As in [13],
there are some Ramsey numbers that have been determined by partitioning coloured graphs
into monochromatic subgraphs [19, 37], and conversely, Ramsey numbers are a very useful
tool to partition graphs. (For more information about Ramsey theory see [14])

In 1977, Gyárfás [15] proposed that for r > 1 and every r-colouring of the edges of Kn,
there is a cover of the vertex set with r − 1 monochromatic trees. This conjecture, if true,
is best possible because if we consider a complete graph whose vertices are the points of an
affine plane of order r− 1 and then we colour the edge pq with colour i if the line through p
and q is in the i-th parallel class, we need at least r − 1 trees to cover the graph. This con-
jecture is a particular case of his formulation of Ryser’s conjecture [24], which proposes that
the maximal cardinality of a matching of an r-partite hypergraph H is at most r − 1 times
the minimal cardinality of a cover of H. Ryser’s conjecture is believed to be very difficult,
since it was raised in 1971 and so far only cases r = 2, 3 have been solved [28, 1], while the
case r ≥ 4 is still open. Therefore, it is natural to think that Gyárfás’s formulation is difficult
too, as it remains open for r ≥ 6. Also, it is worth mentioning that if we wanted to cover
the graph with r monochromatic trees (instead of r− 1) then it would be very easy to prove.
This is because if we pick any vertex of Kn and we consider all its neighbourhoods in the
r different colours, each of these neighbourhoods, together with the vertex itself induces a
monochromatic connected component and as the graph is complete we cover all vertices.

In 1991, Erdős, Gyárfás and Pyber [10] conjectured that every r-coloured Kn can not only
be covered by r− 1 but even partitioned by at most r− 1 monochromatic trees. This conjec-
ture, if true, is best possible because of the affine-plane example from the previous paragraph.
The conjecture is a strengthening of Gyárfás’s formulation of Ryser’s conjecture where the
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trees are only required to form a cover. It is easier to cover than to partition a graph by
monochromatic trees, because in a cover the trees are not required to be disjoint. That is
why generally the number of monochromatic trees required to partition an edge-coloured
graph is larger than the number of monochromatic trees needed to cover it. In 1996, it was
proved by Haxell and Kohayakawa [23] that every r-coloured Kn it can be partitioned by r
monochromatic trees if n is big enough. This bound on n was later improved by Bal and
DeBiasio [3].

In parallel, Gyárfás and Lehel [19] conjectured a similar result for the case where the
graph is a complete bipartite graph. They proposed that for every r-colouring of a complete
bipartite graph the vertex set can be covered by at most 2r − 2 monochromatic trees and
this was proved for the cases r = 2, 3, 4, 5 in [8]. Also this conjecture, if true, is best possible.

Bal and DeBiasio were the first to study this problem for random graphs in 2017. We say
a graph is a random graph G(n, p) if it is an element of the probability space generated by
fixing n vertices and letting each edge occur with probability p. Bal and DeBiasio [3] found a
lower bound for p such that for every r-coloring of G(n, p) there exists, with high probability,
a cover of at most r2 monochromatic trees. Moreover, they found an upper bound for p
such that, asymptotically almost surely, there does not exist a cover with a bounded in r
number of trees. With these two bounds they gave a range for p in which it is expected,
with high probability, to find a bounded number of monochromatic trees that cover a graph
G(n, p). While the latter results were all for covers, there are also results for partitions. They

conjectured that if p �
(
rlog(n)
n

)1/r
then G(n, p) could be a.a.s. partitioned by at most r

monochromatic trees. Kohayakawa, Mota and Schacht [27] proved the conjecture for the
case r = 2. Furthermore, they show a construction due to Ebsen, Mota and Schnitzer in [27]
which disproves the conjecture for r ≥ 3.

Kohayakawa, Mota and Schacht conjectured a new lower bound for p slightly larger than
the one of Bal and DeBiasio and for the same number of monochromatic trees. This bound
for p was recently refuted by Bucić, Korándi and Sudakov [6]. They found different bounds
for the quantity of trees required to cover a random graph throughout the probability range,
specifically they showed that G(n, p) can be covered by r monochromatic trees only if p is
exponentially larger than conjectured.

The main problem studied in this thesis is a variant of the above described problem for
random bipartite graphs. We are interested in finding the minimum number m of disjoint
monochromatic trees such that we can partition, with high probability, any r-edge coloured
random bipartite graph into at most m monochromatic trees, particularly, we will focus on

the case r = 2. We conjecture that if p �
(
log(n)
n

)1/2
then a.a.s. every 2-edge coloured

bipartite random graph can be partitioned into at most 3 monochromatic trees. We found
a 2-colouring of the edges such that the graph cannot be partitioned into less than three
monochromatic trees. This proves that our conjecture is best possible. Also, we prove
that for every 2-colouring of the graph, all but at most O(1

p
) vertices can be partitioned

by three monochromatic trees. Our main proof will be inspired by Kohayakawa, Mota and
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Schacht’s [27] result for general random graphs.

The work is organized as follows. In the first chapter we will give a survey of known results
in order to present the history and the motivation behind our problem. In second chapter we
give basic concepts and notation necessary for the understanding of the problem and some
preliminary results required for our main proof, principally, random graph tools. Chapter 3
will present the proof of a lemma which consists of the random bipartite version of a lemma
for usual random graphs. In addition, in Chapter 3 we will present the example that provides
the lower bound on the number of trees required to partition the graph. Finally, Chapter 4
is devoted to the proof of the main result.
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Chapter 1

Known Results

In this chapter we will present a survey of known results which are the motivation of our
problem. We first define given an r-edge coloured graph G the tree cover number tcr(G)
as the minimum number f of monochromatic trees such that for every r-colouring of the
edges of G its vertex set can be covered by the vertices of f monochromatic trees. Also, we
write α(G) for the maximum size of an independent set in G. We will use standard notation,
for further information see Section 2.1 of Chapter 2.

1.1 Complete Graphs

There is a famous conjecture which is due to Ryser and appeared in his student Henderson’s
thesis [24]. This conjecture presents the relationship between the maximal cardinality of
a matching of a given r-partite hypergraph H and the minimal cardinality of a covering
of H. Nevertheless, we will state Ryser’s conjecture in the following form which was noted
by Gyárfás [15] to be an equivalent formulation.

Conjecture 1.1.1 (Ryser [24], Formulation by Gyárfás [15]) Let r ≥ 2. For all graphs G,
we have tcr(G) ≤ (r − 1)α(G).

If true, this conjecture is best possible when r − 1 is a prime power. For r = 2 it is
equivalent to Kőnig’s theorem1 and it was proved for the case r = 3 by Aharoni [1]. The
case r ≥ 4 is still open. Slightly more is known for the case α(G) = 1, where the conjecture
has been proved for r ≤ 5 (see [12, 20]). We present this case of Conjecture 1.1.1 separately,
since it is more relevant for our work.

Conjecture 1.1.2 (Gyárfás [15]) Let r ≥ 2. For all complete graphs G = Kn, we have
tcr(Kn) ≤ (r − 1).

Let us note that in Conjecture 1.1.2 the trees are only required to form a cover. In 1991,

1This is easy to see for the original formulation of Ryser’s conjecture, which we will not show here.
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Erdős, Gyárfás and Pyber [10] gave a strengthening of Conjecture 1.1.2 where the trees form
a partition of the vertex set and the graph is a complete graph. We define tpr(G) as the
minimum number f of monochromatic trees such that for every r-colouring of the edges of G
its vertex set can be partitioned by the vertices of f monochromatic trees.

Conjecture 1.1.3 (Erdős, Gyárfás, Pyber [10]) For all r ≥ 2, we have tpr(Kn) = r − 1.

For the case r = 2 this conjecture is equivalent to the fact that either a graph or its
complement is connected which was proved by Erdős and Rado [18]. Nagy and Szentmiklóssy
proved that tp3(KN) = 2 (see [10]), where KN is the complete graph with countably many
vertices and a path is an infinite one-way sequence of distinct vertices such that each pair of
consecutive vertices is connected by an edge.

On the other hand, for finite complete graphs, Erdős, Gyárfás and Pyber [10] showed
that tp3(Kn) = 2 and Haxell and Kohayakawa [23] showed in 1996 that the tree partition
number of Kn is at most r if n is large enough. The bound on n presented by Haxell and
Kohayakawa was improved by Bal and DeBiasio in 2017.

Theorem 1.1.4 (Bal, DeBiasio [3]) Let r ≥ 2. If n ≥ 3r2r!log(r), then tpr(Kn) ≤ r.

If we require the components to be cycles, Lehel conjectured in 1979 that the vertex set of
any 2-edge coloured complete graph Kn can be partitioned into two cycles of distinct colours.
Gyárfás [16] proved in 1983 that this is true if we allow the cycles to intersect in at most
one vertex. Many years later, in 1998, Łuczak, Rödl and Szemerédi [35] succeeded in proving
that Lehel’s conjecture is true for large n and Allen [2] gave in 2008 a simpler proof for a still
large but smaller n. Finally, in 2010, Bessy and Thomassé [4] found a short inductive proof
that works for all n.

Theorem 1.1.5 (Bessy, Thomassé [4]) The vertex set of any 2-edge coloured complete
graphs Kn can be partitioned into two cycles of distinct colours.

For the multicolor case, Erdős, Gyárfás and Pyber [10] conjectured that cpr(G) = r,
where cpr(G) is the cycle partition number defined similarly as the tree partition number tpr.

Erdős, Gyárfás and Pyber [10] also showed that there is a constant c > 0 such that
cpr(Kn) ≤ cr2log(r). And in 2006, Gyárfás, Ruszinkó, Sárközy and Szemerédi [21] found
the best known bound for the cycle partition number, namely cpr(Kn) ≤ 100rlog(r).

In 2011, Gyárfás, Sárközy and Szemerédi [20] showed that Erdős, Gyárfás and Pyber’s
conjecture is asymptotically true for r = 3, that is, apart from o(n) vertices, the vertex set
of any 3-coloured Kn can be partitioned into 3 monochromatic cycles.

Finally, Pokrovskiy [36] found a counterexample for this conjecture in the case r ≥ 3.
He gave a 3-colouring of a complete graph such that for every three disjoint monochromatic
cycles there is a vertex not covered by any of these cycles.

If we required the components to be paths, Gyárfás [17] conjectured that ppr(G) = r,
where the path partition number ppr(G) is the obvious analog to tpr.
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Conjecture 1.1.6 (Gyárfás, [17]) The vertices of every r-edge coloured complete graph can
be covered by r vertex-disjoint monochromatic paths.

Conjecture 1.1.6 is true for case r = 2 as was proved in [16]. Gyárfás also showed in [17]
that the path partition number is bounded from above by a function on r. A countably
infinite version of this conjecture is known to be true for all r and it was proved by Rado [38].

Later, in 2012, Pokrovskiy [36] settled the path version for r = 3 and showed that the
vertex set of any 3-coloured complete graph Kn can be covered by three monochromatic
paths of different colours.

There are many variations of this problem such as considering different host graphs, as
random graphs or bipartite graphs which will be presented in Section 1.2 and 1.3 respectively.
Also, considering different conditions for the graph such as large minimum degree [40], [34], a
complete graph with few edges missing or small independence number [39]. Another variant
of the problem is to consider covering the graph by other monochromatic structures such as
graphs with bounded degree.

1.2 Random Graphs

In 2017 Bal and DeBiasio [3] raised the problem of covering random graphs with monochro-
matic trees. They proved that the number of trees needed becomes bounded when p is

somewhere between
(
rlog(n)
n

)1/r
and

(
rlog(n)
n

)1/(r+1)

.

Theorem 1.2.1 (Bal, DeBiasio [3]) Let r be a positive integer and let G ∈ Gn,p.

(i) If p�
(
rlog(n)
n

)1/r
, then a.a.s. tcr(G)→∞.

(ii) If p�
(
rlog(n)
n

)1/(r+1)

, then a.a.s. tcr(G) ≤ r2.

They also conjectured that tcr(G(n, p)) ≤ r when p �
(
rlog(n)
n

)1/r
, let us notice that

where we write G(n, p) to say that the graph G is drawn from Gn,p. This conjecture was
proved by Kohayakawa, Mota and Schacht [27] for the case r = 2, as follows.

Theorem 1.2.2 (Kohayakawa, Mota, Schacht [27]) If p�
(
log(n)
n

)1/2
, then a.a.s.

tp2(G(n, p)) ≤ 2.

The condition on p is best possible. This is because if p < (1−ε)
(

2log(n)
n

)1/2
for some ε > 0

then a.a.s. G(n, p) has diameter at least three (see [5], Chapter 10), and hence, there are two
non-adjacent vertices u and v with disjoint neighbourhoods. Colouring all the edges incident
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to u and v with red and all others edges blue we produce a colouring that requires at least
three monochromatic trees to cover V (G), and therefore, to partition the vertex set.

In [27] the authors also present an example due to Ebsen, Mota and Schnitzer showing

that tcr(G(n, p)) ≥ r + 1 for p �
(
rlog(n)
n

)1/(r+1)

for r ≥ 3 which disproves the conjecture
from [3]. For simplicity they only presented the case r = 3 since the adjustments for r > 3 are
rather straightforward. This example is mostly based on the fact that by the choice of p a.a.s.
G has four independent (mutually non-adjacent) vertices having no common neighbourhood.
This allows us to build a 3-colouring of the edges where we cannot cover these four vertices by
three monochromatic trees. This lead the authors of [27] to ask whether r trees are enough

to cover G(n, p) when p is slightly larger than
(
rlog(n)
n

)1/(r+1)

.

This question was recently solved by Bucić, Korándi and Sudakov [6]. They showed that
the conjecture is wrong and obtained a good understanding of the behaviour of tcr(G(n, p)
throughout the probability range. First, they proved that tcr(G(n, p)) only becomes equal
to r when p is much larger than initially conjectured.

Theorem 1.2.3 (Bucić, Korándi, Sudakov [6]) Let r be a positive integer and G ∈ Gn,p.
Then there are constants c, C such that the following hold.

(i) If p <
(
clog(n)
n

)√r/2r−2

, then a.a.s. tcr(G) > r.

(ii) If p >
(
Clog(n)

n

)1/2r
, then a.a.s. tcr(G) ≤ r.

It is easy to see that tcr(G) ≥ r as long as α(G) ≥ r, this is because we can take an
independent set S with |S| = r and for each vertex we paint its edges with a different colour
and then we will need at least r trees to cover the graph. Therefore, Theorem 1.2.3 (ii)
implies that tcr(G(n, p)) = r for all larger values of p, as long as α(G(n, p)) ≥ r. Moreover,
the authors of [6] proved that near the threshold tcr(G) ceases to be linear in r and is of
order Θ(r2).

Theorem 1.2.4 (Bucić, Korándi, Sudakov [6]) Let r be a positive integer, let d > 1 be

a constant and let G ∈ Gn,p. There are constants c, C such that if
(
Clog(n)

n

)1/r
< p <(

clog(n)
n

)1/d(r+1)

then a.a.s. tcr(G) = Θ(r2).

Furthermore, the same authors gave a bound for the number of monochromatic trees
needed to partition G when p is between the ranges of the last two theorems. The following
theorem establishes a slightly better bound and a connection between the last two theorems.
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Theorem 1.2.5 (Bucić, Korándi, Sudakov [6]) Let k > r ≥ 2 be integers. Then there

are constants c, C such that for G ∈ Gn,p if
(
Clog(n)

n

)1/k
< p <

(
clog(n)
n

)1/(k+1)

then a.a.s.
r2

20log(k)
≤ tcr(G) ≤ 12r2log(r)

log(k)
.

To prove these theorems the authors of [6] found a strong relation between the minimum
number of vertices required to cover the edge set of an hypergraph and the number of trees
required to cover a random graph G(n, p), this relationship is also what connects this problem
with Ryser’s conjecture. With these theorems we are able to say that Bucić, Korándi and
Sudakov essentially solved the problem posed by Bal and DeBiasio. Now, it only remains to
improve the bounds in Theorem 1.2.5. This was recently done by Kohayakawa, Mendonça,
Mota and Schülke [26] for the case r = 3.

On the other hand, there is a cycle version of this problem for random graphs which
was first studied by Korándi, Mousset, Nenadov, Škorić and Sudakov [30]. They showed
that, with high probability, G ∈ Gn,p can be covered by O(r8log(r)), not necessarily disjoint,
monochromatic cycles. This bound was recently improved by Lang and Lo [31] with the
additional condition that the cycles form a partition of the vertex set, i.e., that the graph
can be partitioned, with high probability, by an even smaller number of vertex disjoint
monochromatic cycles. The authors of [31] showed that a.a.s. cpr(G) ≤ 1000r4log(r).

Theorem 1.2.1 shows that if p = o((rlog(n)/n)1/r) the number of components needed to
cover the graph is unbounded, in particular, then the number of cycles needed to cover the
graph is unbounded. Moreover, Korándi, Lang, Letzter and Pokrovskiy [29] recently found
that for ε > 0 and r sufficiently large an r-edge coloured graph on n vertices with minimum
degree (1 − ε)n which cannot be partitioned in fewer than O(ε2r2) cycles. This motivated
Lang and Lo to conjecture that for p = O((rlog(n)/n)1/r) a.a.s. cpr(G(n, p)) = o(r2).

Finally, for the path partition case there is no literature but it is easy to see that every
theorem that applies to cycles also applies to paths.

1.3 Bipartite Graphs

Gyárfás and Lehel ([15] and [33]) proposed a version of Conjecture 1.1.2 for complete bipartite
graphs. A complete bipartite graph G with vertex classes on n and m vertices will be referred
to as Kn,m.

Conjecture 1.3.1 (Gyárfás, [15]) For r > 1 and every r-colouring of the edges of Kn,m the
vertex set of Kn,m can be covered by the vertices of at most 2r − 2 monochromatic trees.

This conjecture was proved in [8] by Chen, Fujita, Gyárfás, Lehel and Tóth for the cases
r = 2, 3, 4, 5. Also, it is demonstrated in [8] that if the conjecture is true it is best possi-
ble. Finally, it was shown in [8] that if we allow the number of trees to be 2r − 1, then
Conjecture 1.3.1 holds.
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This is because for any edge uv of the graph Kn,m we take the monochromatic double
star consisting of all the edges incident with u or v and having the same colour as uv. In
the other colours we consider the monochromatic stars with centers u and v, of which there
are at most 2(r − 1). This gives at most 2r − 1 monochromatic trees covering the vertices
of Kn,m.

In 2012, Pokrovskiy [36] suggested the following conjecture for path partitions of the Kn,n.

Conjecture 1.3.2 (Pokrovskiy, [36]) For r > 0 and for every r-coloured complete bipartite
graph Kn,n there is a vertex partition into 2r − 1 monochromatic paths.

Pokrovskiy showed his conjecture for r = 2. This conjecture would be optimal, since there
exists an r colouring of the edges of the complete bipartite Kn,n such that the graph cannot
be partitioned into 2r − 2 monochromatic paths. This is because we can partition X into
X1, . . . , Xr and Y into Y1, . . . Yr such that |Xi| = 10i + i and |Yi| = 10i + r − i, and then we
colour the edges between Xi and Yj in colour i + j (mod r). It is possible to prove that this
coloured graph cannot be partitioned into 2r − 2 monochromatic paths.

If we require the components to be cycles, Erdős, Gyárfás and Pyber [10] raised the
question whether the cycle partition number for Kn,m is also independent of n. Haxell [22]
proved in 1997 that the cycle partition number of an r-edge coloured Kn,m is O((rlogr)2).
This bound was improved in 2017 by Lang and Stein [32] to O(r2). Also, we note that
if the requirement that the cycles be disjoint is dropped, then, we can cover any r-edge
coloured Kn,m by O(r2) monochromatic cycles, which was proved in 1991 by Erdős, Gyárfás
and Pyber [10].

Finally, in 2018, Bürger and Pitz [7] showed an infinite version of Conjecture 1.3.2.

1.4 Random Bipartite Graphs

We are interested in finding the number of monochromatic trees required to partition a
random bipartite graph. The random bipartite graph B(n,m, p) is a bipartite graph whose
edges occur with some probability p independently of each other (The graph B(n,m, p) will
be defined properly in the next chapter).

Inspired by the results of [27] and taking into account the results from the previous section
we suggest an analogue of Conjecture 1.3.1. for the random case.

Conjecture 1.4.1 If p �
(
log(n)
n

)1/2
, then for every 2-colouring of the edges of a random

bipartite graph B(n, n, p) a.a.s. tp2(B(n, n, p)) ≤ 3.

We prove in this thesis that for every 2-colouring of the edges of the random balanced
bipartite graph we can cover all but at most O(1

p
) vertices by three disjoint monochromatic

trees.
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Theorem 1.4.2 Let G = B(n, n, p) ∈ Bn,n,p with p(n) �
(
log(n)
n

) 1
2 then a.a.s. for every

2-colouring of the edge set of G, all but at most O(1
p
) vertices can be covered by at most

three vertex disjoint monochromatic trees.

Also, we prove that there exists a 2-colouring of the edges where we need at least three
monochromatic trees to partition the random balanced bipartite graph, and consequently, if
Conjecture 1.4.1 is true, it is best possible. The following theorem establishes a lower bound
for the tree partition number of a random balanced bipartite graph.

Theorem 1.4.3 For 1 − 1
n
� p(n) �

(
log(n)
n

) 1
2 a.a.s. G ∈ Bn,n,p has a 2-colouring of the

edges such that G cannot be covered by two monochromatic trees.

This theorem allows us to say that the if the condition to form a partition is dropped
we still need at least three monochromatic trees to cover the graph and, therefore, the tree
cover number will have the same lower bound. Also, for general r, if we raise the bound of p

to p�
(
log(n)
n

)1/2r
as in Theorem 1.2.3, and following Conjecture 1.3.1, it is natural to think

that we would need 2r − 1 trees to cover the graph with high probability.

In addition, it would be interesting to study the case where components are cycles or

paths. For the path partition, keeping the bound p�
(
log(n)
n

)1/2r
, due to Conjecture 1.3.3,

we think that the path partition number for the random bipartite graph could be 2r − 1
a.a.s. as in the previous case. For the cycle partition number is harder to say as there is
a big difference between the random graph bound which is O(r4log(r)) and the bound for
deterministic bipartite graph which is O(r2). Also, it is worth noting that none of these
bounds are linear, so our understanding of cpr is not as good as our understanding of tpr
or ppr.

Finally, it would be interesting to vary the range of p so we could understand the behavior
of this property throughout the probability range as in [6].
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Chapter 2

Random Graphs

2.1 General Notation

We begin with some standard graph theory notation. Given a graph G we let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. Given U,W ⊆ V (G), we write
eG(U,W ) for the number of edges uv ∈ E(G) such that u ∈ U and v ∈ W . Also, we
write eG(U) for e(U,U). Given v ∈ V (G) we write NG(v) for the neighbourhood of v, that
is, the set of vertices that form an edge with v and we denote by dG(v) = |NG(v)| the degree
of v. Similarly, given S ⊆ V (G) we write NG(v, S) for the neighbours of v in the set S
and dG(v, S) for the number of neighbours that v has in S. If the underlying graph is clear
we omit the subscript. We write δ(G) = min

v∈V (G)
d(v) for the minimum degree of G. Given a

set U ⊆ V (G) we denote by G[U ] the graph induced by the vertices of U .

An r-edge colouring of the graph G is a function c : E(G)→ [r] which assigns to each edge
one of the r colours in [r] = {1, · · · , r}. We denote by Gi the graph induced by the i-coloured
edges. We write Ni(v) for the set of vertices that v sees in colour i and set di(v) = |Ni(v)|.
Also, given U,W ⊆ V (G) we write ei(U,W ) for the number of edges of colour i between U
and W . We say a subgraph C of G is monochromatic if there exists an i ∈ [r] such that C is
subgraph of Gi. Given a set S ⊆ V (G) we write N∩(S) =

⋂
v∈S

N(v) and N∪(S) =
⋃
v∈S

N(v).

Similarly, given two sets L, S ⊆ V (G) we write N∩(S, L) =
⋂
v∈S

N(v, L). Given an r-edge

coloured graphG, we define the tree partition (cover) number tpr(G) (tcr(G)) as the minimum
number f of monochromatic trees such that for every r-colouring of the edges of G its vertex
set might be partitioned (covered) by the vertices of f monochromatic trees. (We remark
that it is equivalent to ask for monochromatic connected subgraphs or for monochromatic
trees, because every connected graph has a spanning tree). Analogously we write ppr(G)
and cpr(G) (pcr(G), ccr(G)) when we require the elements of the partition (cover) to be
paths or cycles.
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We write an � bn to mean that given an we can choose bn small enough so that bn sat-
isfies all of necessary conditions throughout the proof. More precisely, we say an � bn if
there exists a constant C > 0 such that an ≥ C · bn. Analogously we write an � bn. In
order to simplify the presentation, we will not determine these constants. We say c = a± b
ifa − b ≤ c ≤ a + b. We will ignore floors and ceilings when they are not crucial for the
calculation. Logarithms are assumed to be base e.

2.2 Random Graphs

In this section we will present some basic and standard notation and definitions following [9].
Let n be a positive number and p = p(n) ∈ [0, 1] a function, and set [V ] = {v1, · · · , vn}.
We define for every potential edge e = vivj ∈ [V ]2 with i 6= j its own probability space
Ωe = {0e, 1e}, choosing Pe(1e) = p and Pe(0e) = 1 − p. Therefore, we define the probability
space Gn,p as the following product space

Ω =
∏

e∈[V ]2

Ωe,

where the probability measure P on Ω is the product measure of all the measures Pe and
an element in Ω is a map w assigning to every e ∈ [V ]2 either 1e or 0e. We identify w with a
graph G on V whose edge set is

E(G) = {e : w(e) = 1e}

and we call G a random graph on V with probability p. We call any set of graphs on V
an event in Gn,p. In particular, for every e ∈ [V ]2 we call Ae the event that e is an edge of G.
These events occur with probability p and are independent.

In the context of random graphs, any graph invariant may be interpreted as a non-negative
random variable in Gn,p, that is, a function

X : Gn,p → [0,∞).

Then the expected value of X will be

E(X) =
∑

G∈Gn,p

P({G})X(G).

Computing the expected value of a random variable X may be a simple and effective
way to establish the existence of a graph G with some desired property P . This is due to

12



Markov’s inequality which is used in the proof of some of the preliminary results. We present
this inequality for completeness.

Lemma 2.2.1 (Markov’s inequality) Let X ≥ 0 be a random variable on Gn,p and let a > 0
be a constant. Then

P(X ≥ a) ≤ E(X)

a
.

In addition, we shall work with asymptotic properties. This means that given p = p(n)
and a graph property P we ask how the probability P(G ∈ P) behaves for G ∈ Gn,p as
n→∞. If this probability tends to 1, that is, if

lim
n→∞

P(G(n, p) ∈ P) = 1,

then we say that given G ∈ Gn,p asymptotically almost surely (a.a.s.) G ∈ P .

Finally, let us make a general frame of the thresholds for some properties when p varies
along n as shown in [9]. For edge probabilities p lying below n−2, a random graph G ∈ Gn,p
almost surely has no edges at all. As p grows from about

√
nn−2 onward, G ∈ Gn,p almost

surely has a component with more than two vertices, these components grow into trees and
around n−1 a cycle appears. Then, as p continues to grow around (logn)n−1 the graph
becomes connected, and hardly later, at p = (1 + ε)(logn)n−1, the graph almost surely has a
Hamilton cycle.

2.3 Random Bipartite Graphs

In this section we will present the definitions required to work with random bipartite graphs,
we will follow the formulations given in Section 2.2. Given numbers n,m ∈ N and p(n,m) ∈
[0, 1], we fix X, Y such that |X| = n, |Y | = mm and V = X ∪ Y is the vertex set of our
random bipartite graph Bn,m,p. We define for every potential edge e ∈ X × Y its probability
space Ω̂e = {0e, 1e} where Pe(1e) = p and Pe(0e) = 1 − p. Then, we define the probability
space Bn,m,p as follows

Ω̂ =
∏

e∈X×Y

Ω̂e ,
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with probability measure being the product of the measures Pe. Let us note that the only
difference between this space and the space Gn,p given in Section 2.2 is that here we only
allow edges between X and Y .

Therefore, each element in Ω̂ is an assignment ŵ of 1e or 0e for every possible edge
e ∈ X × Y . As we did before, we identify each assignment with a graph G that we call a
random bipartite graph on V with probability p whose edge set is

E(G) = {e ∈ X × Y : ŵ(e) = 1e}.

2.4 Chernoff Bound

The Chernoff bound is useful as part of a technique to obtain exponentially decreasing bounds
on tail probabilities. It is a sharper bound than Markov’s inequality. We will use the follow-
ing version of the Chernoff bound (see Corollary 21.7 in [11]).

Theorem 2.4.1 (Chernoff) Let X be a binomially distributed random variable. Then for
1 > α > 0

P
(
X ≤ (1− α)E(X)

)
≤exp

(
−α2E(X)

2

)
, and (2.1)

P
(
X ≥ (1 + α)E(X)

)
≤exp

(
−α2E(X)

3

)
. (2.2)

The following results in this section are corollaries of the Chernoff bound version from [25].

Corollary 2.4.2 If X ∈ Bin(n, p) and ε > 0, then

P
(
|X − E(X)| ≥ εE(X)

)
≤2exp

(
− φ(ε)E(X)

)
, (2.3)

where φ(x) = (1 + x)log(1 + x)− x (φ(x) =∞ for x < −1). In particular, if ε ≤ 3
2
,

P
(
|X − E(X)| ≥ εE(X)

)
≤2exp

(
−ε

2

3
E(X)

)
. (2.4)
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Corollary 2.4.3 If X ∈ Bin(n, p), λ = np and c > 1, then

P(X ≥ x) ≤2exp (−c′x) , x ≥ cλ, (2.5)

where c′ = log(c)− 1 + 1
c
> 0. In particular,

P(X ≥ x) ≤2exp (−x) . if x ≥ 7λ. (2.6)
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Chapter 3

Preliminaries

3.1 Preliminary Lemma

To prove Theorem 1.2.2, Kohayakawa, Mota and Schacht used the following lemma on ran-
dom graphs.

Lemma 3.1.1 If p�
(
log(n)
n

)1/2
, then for every ε > 0 a.a.s. G ∈ Gn,p satisfies the following

properties.

(i) Every vertex v ∈ V (G) has degree dG(v) = (1± ε)pn and every pair of distinct vertices
u,w ∈ V (G) has |NG(u) ∩NG(w)| = (1± ε)p2n joint neighbours.

(ii) For every vertex v ∈ V (G) and all disjoint subsets U ⊆ V and W ⊆ NG(v) with
|U | ≥ 100/p and |W | ≥ pn/100 we have eG(U,W ) > p|U ||W |/2.

(iii) For every vertex v ∈ V (G) and J ⊆ NG(v) with |J | ≥ pn/100, we have that all but at
most 100/p vertices x ∈ V (G) \ J satisfy |NG(x) ∩ J | > p2n/100.

(iv) Every subgraph H ⊆ G with minimum degree δ(H) ≥ (1/2 + ε)pn is connected.

We now state a bipartite version of Lemma 3.1.1 and give its proof. Most of the proof
is similar to the proof of the previous lemma but we will give all the details because these
properties are fundamental to our argument.

16



Lemma 3.1.2 If p = p(n)�
(
log(n)
n

) 1
2 then for every ε > 0 and G = G(X, Y ) ∈ Bn,n,p a.a.s

G satisfies the following properties:

(i) For every v ∈ X, we have d(v) = (1± ε)pn and for every u,w ∈ X we have
|N(u) ∩N(w)| = (1± ε)p2n.

(ii) For every v ∈ X and all disjoint subsets U ⊆ X and W ⊆ N(v) with |U | ≥ 100
p
, and

|W | ≥ pn
100

we have e(U,W ) > p
2
|U ||W |.

(iii) For every v ∈ X and J ⊆ N(v) with |J | ≥ pn
100

we have that all but at most 100
p

vertices
x ∈ X satisfy |N(x) ∩ J | > p2n

200
.

(iv) Every H ⊆ G with δ(H) ≥ (1
2

+ ε)pn is connected.

Remark Let us notice that we may exchange the roles of X and Y .

Proof. This proof is mainly a consequence of the binomial concentration and the Chernoff
bound.

(i) By the fact that d(v) follows a Bin(n, p) distribution. We have

P
(
∃v ∈ X : d(v) < (1− ε)pn

)
=
∑
v∈X

P
(
d(v) < (1− ε)pn

)
≤ n · e−ε2pn/2 → 0.

The second inequality is due to (2.1) from Theorem 2.4.1 and the fact that p2n �
log(n).

Similarly we can prove that P(∃v ∈ X : d(v) > (1 + ε)pn) goes to zero using (2.2)
instead of (2.1). Also, for u,w ∈ X we have that |N(u) ∩ N(w)| follows a Bin(n, p2)
distribution. Therefore we may apply Chernoff’s inequality to obtain

P
(
∃(u, v) ∈ X ×X :|N(u) ∩N(v)| /∈ (1± ε)p2n

)
≤

∑
(u,v)∈X×X

P
(
|N(u) ∩N(v)| /∈ (1± ε)p2n

)
≤
(
n

2

)
(e−ε

2p2n/2 + e−ε
2p2n/3)

≤ 2e2log(n)e−ε
2p2n/3

≤ 2

n
→ 0.

As p2n� log(n) we obtain that p2n ≥ 18log(n)/2ε2.
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(ii) This property follows from Chernoff’s bound by the following argument. For disjoint
subsets U,W ⊆ V (G) we observe that e(U,W ) follows a Bin(|U ||W |, p) distribution
and we easily note that E(e(U,W )) = p|U ||W |. Applying Theorem 2.4.1 with α = 1/2
we have

P(e(U,W ) ≤ 1

2
p|U ||W |) ≤ e

−p
8
|U ||W | .

Now, summing over all the possibilities for v, U and W we obtain

P
(
∃v, U,W : e(U,W ) ≤ 1

2
p|U ||W |

)
≤ n

∑
u≥100/p

∑
w≥pn/100

(
n

u

)(
n

w

)
pwe−puw/8

≤ n
∑

u≥100/p

∑
w≥pn/100

eu·log(n)
(en
w

)w
pwe−puw/8

≤ n
∑

u≥100/p

∑
w≥pn/100

eu·log(n)+6w−puw/8 .

The last two inequalities are due to the usual bounds on the binomial coefficient
(
n
u

)
≤

nu = eu·log(n) and
(
n
w

)
≤ nw

w!
≤
(
en
w

)w, and a simple calculation using the fact that
w ≥ pn/100 ≥ pn/e5. Therefore we have

P
(
∃v, U,W : e(U,W ) ≤ 1

2
p|U ||W |

)
≤ n

∑
u≥100/p

∑
w≥pn/100

e−w/4 → 0 ,

since u ≥ 100/p we have puw/16 − 6w ≥ w/4 and for w ≥ pn/100 we get puw/16 ≥
up2n/1600� u · log(n). Finally the last sum goes to zero since e−w/4 ≤ e−pn/400 which
converges to zero because p2n� log(n) and this concludes the proof.

(iii) Let us define

U = {x ∈ X : |N(x) ∩ J | ≤ p2n

200
}.

If we assume that |U | > 100
p

we infer from (ii) that a.a.s.

e(U, J) >
p

2
|U ||J | ≥ p|U | pn

200
=
p2n|U |

200
,

a contradiction to the definition of U .

(iv) Let U be a connected component of H and set Ux = U ∩ X and Uy = U ∩ Y . We
shall show that both |Ux|, |Uy| > n

2
which implies that any connected component has at

least n/2 + 1 vertices in X. Then, if there is a second component it must have n/2 + 1
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vertices in X, and consequently |X| ≥ n + 2 which is false. We conclude that there is
only one connected component meaning H is connected.

First, we show that for every fixed δ > 0 that a.a.s.

e(U) <|Ux||Uy|p+ δn|Uy|p and (3.1)
e(U) <|Ux||Uy|p+ δn|Ux|p. (3.2)

To see these two inequalities we define β = δn
|Ux| for inequality (3.1) and β = δn

|Uy | for
inequality (3.2). Next, we consider the cases β < 3

2
, 3

2
≤ β ≤ 7 and β > 7 and we use

Corollary 2.4.2 for the first two cases and (2.6) from Corollary 2.4.3 for the third case
to conclude.

On the other hand, we have that

e(Ux, Uy) =
∑
u∈Ux

d(u, Uy) =
∑
u∈Uy

d(u, Ux).

Therefore, using our condition on the minimum degree of H implies that a.a.s. we get

e(U) ≥|Uy|(
1

2
+ ε)pn and

e(U) ≥|Ux|(
1

2
+ ε)pn.

Taking δ = ε and combining these inequalities with (3.1) and (3.2) we get

|Uy|(
1

2
+ ε)pn ≤ e(U) <|Ux||Uy|p+ εn|Uy|p and

|Ux|(
1

2
+ ε)pn ≤ e(U) <|Ux||Uy|p+ εn|Ux|p.

This implies that |Ux|, |Uy| > n/2 which finishes the proof.

3.2 Lower Bound

In this section we show Theorem 1.4.3 by exhibiting an example of a 2-colouring of the random
bipartite graph, which a.a.s. does not have a cover of the vertex set in two monochromatic
trees. First we note that if we cannot cover the graph by two monochromatic trees we cannot
partition it with two monochromatic trees either. Also we note that this theorem is not true
for the case p = 1. In this case we would have a complete bipartite graph which can always
be partitioned into two monochromatic trees (see Section 1.3).
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Proof of Theorem 1.4.3. By our choice of p we can assume that G satisfies a.a.s. the prop-
erties of Lemma 3.1.2 for every ε > 0.

First, we pick randomly any vertex r ∈ X. By Lemma 3.1.2 (i) a.a.s. d(r) ≤ (1+ε)pn < n,
thus, there exists a vertex b ∈ Y such that b /∈ N(r). We define N(b) = X \ (N(b) ∪ r) and
N(r) = Y \ (N(r)∪ b). Since p� 1− 1

n
we know that a.a.s. N(r) is not empty, that is, this

condition ensures that there are at least 2 vertices in Y that are not neighbours of r.

Secondly, we colour by red all the edges between r and N(r) and the ones between N(r)
and N(b). Also, the edges between N(r) and N(b) will be coloured red. Next, we colour by
blue all the edges between b and N(b), the edges between N(r) and N(b) and also the ones
between N(r) and N(b).

With this colouring is not possible to cover the vertex set of the graph by two monochro-
matic trees. Indeed, that is, suppose that we can cover the graph by two monochromatic
trees. Let us note that r only is incident to red edges and b only sees blue edges, and there-
fore, these two vertices must lie in different trees. Since there is no monochromatic path
from N(r) to either r or b, N(r) is not covered either by the tree containing r or by the tree
containing b which is a contradiction.
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Chapter 4

Proof of the Main Theorem

In this section we will provide a proof for Theorem 1.4.2 which is the main result of this thesis.

Proof. Let us note that if p1 < p2 and G(n, p1) can be partitioned by a certain number of
trees, then G(n, p2) will fulfill that too. Therefore, and as (log(n)/n)1/2 goes to zero, we may
assume during this proof that p < 1

200
for large enough n.

Let G ∈ Bn,n,p and assume we are given a 2-colouring of the edges of G in colours red and
blue. We define Gb as the graph induced by the blue edges and Gr as the graph induced by

the red edges. Since p �
(
log(n)
n

)1/2
we may assume that G satisfies a.a.s the properties of

Lemma 3.2.2. We set ε = 1
100

.

We first note that as p < 1
200

we have that

max

{
(1 + ε)p2n,

100

p

}
≤ pn

100
(4.1)

for large enough n.

Let us define R = {v ∈ V (G) : dr(v) > 1
3
d(v)} and B = {v ∈ V (G) : db(v) > 1

3
d(v)}.

Clearly, R ∪B = V (G) and the two sets are not necessarily disjoint.

If one of the sets R or B, say R, is empty, it follows from Lemma 3.1.2 (i) that for every
v ∈ V (G) we have that db(v) > 2

3
(1 − ε)pn > (1

2
+ ε)pn. Consequently by Lemma 3.1.2

(iv), the blue graph Gb is connected. Thus G has a monochromatic spanning tree and we
are done. We may thus assume that R and B are both not empty. After possibly swapping
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colours, we may also assume that there exist r ∈ X ∩R and b ∈ Y ∩B.

We shall build two monochromatic trees having r and b as their respective roots. To this
end, we consider a preference function ρ : V (G)→ {red, blue} which assigns each vertex v the
color ρ(v) if there exist "many" monochromatic paths to the roots with colour ρ(v) (we shall
explain below what "many" means). In this process of assigning ρ(v) to each vertex it might
happen that some vertices are needed to connect vertices in the tree with the other colour,
and for this reason preferences are not definitive and we will show the definitive assignment
in a second step.

Let us note that although we are going to assign colours to the vertices, in order to
establish monochromatic paths we will consider the colour of the edges.

First, we set ρ(r) = red and ρ(b) = blue. Next we consider Nr(r) ⊆ Y and Nb(b) ⊆ X and
we set

ρ(v) =

{
red if v ∈ Nr(r)

blue if v ∈ Nb(b).

Since we have r ∈ R and b ∈ B, it is not hard to see that their neighbourhoods have at
least pn

100
vertices. Also, by (4.1), we have pn

100
� 100

p
for large enough n. Then, Nr(r) and

Nb(b) are big enough to satisfy the conditions of Lemma 3.1.2 (ii) and using this property we
deduce that a.a.s.

e(Nr(r), Nb(b)) ≥
p

2
|Nr(r)||Nb(b)|,

with at least half of these edges having the same colour. Without loss of generality, we
may assume this colour is red, and hence we have

er(Nr(r), Nb(b)) ≥
p

4
|Nr(r)||Nb(b)|. (4.2)

We define

J1 =

{
v ∈ Nb(b) : |Nr(v) ∩Nr(r)| >

p2n

25

}
.

Observe that each of the vertices from J1 can be connected to r by a red path of length two
and to b by a blue edge. Hence, the vertices from J1 may serve either for connecting all their
blue neighbours to the blue tree rooted in b or their red neighbours to the red tree rooted in r.
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Next, we will present a claim and its proof.

Claim 4.1 There are a.a.s. at least pn
100

vertices v ∈ J1.

Proof. First, we define

L =
{
v ∈ Nb(b) : |Nr(v) ∩Nr(r)| ≤

p

8
|Nr(r)|

}
,

M =
{
v ∈ Nb(b) : |Nr(v) ∩Nr(r)| ≥

p

8
|Nr(r)|

}
.

Therefore, we have that

er(L,Nr(r)) ≤
p

8
|Nr(r)||Nb(b)|.

Let us recall that we have (4.2). So, considering the other p
8
|Nr(r)||Nb(b)| red edges and

since by Lemma 3.2.2 (i) we have that for every vertex v ∈ V, |N(v) ∩N(r)| < (1 + ε)p2n,
there are at least

p
8
|Nr(r)||Nb(b)|
(1 + ε)p2n

vertices in M . As r ∈ R satisfies dr(r) ≥ 1
3
(1− ε)pn we have

p
8
|Nr(r)||Nb(b)|
(1 + ε)p2n

≥ p(1− ε)pn|Nb(b)|
24(1 + ε)p2n

>
1

25
|Nb(b)| ≥

pn

100
.

The last two inequalities are due to the fact that |Nb(b)| ≥ 1
3
(1− ε)pn and a simple calcu-

lation replacing ε = 1
100

. Hence, we have at least pn
100

vertices in M wich means that there are
at least pn

100
with more than p

8
|Nr(r)| > p2n

25
red neighbours in Nr(r) which concludes the proof.

Let us set

V1 =

{
x ∈ Y \ (Nr(r) ∪ {b}) : |N(x) ∩ J1| ≥

p2n

200

}

and

23



K1 = Y \ (Nr(r) ∪ V1 ∪ {b}).

Note that for each x ∈ V1 we have that |N(x) ∩ J1| ≥ p2n
400

in at least one of the colours.
For x ∈ V1 we set,

ρ(x) =

{
red if |Nr(x) ∩ J1| ≥ p2n

400

blue otherwise.

Note that for every vertex v ∈ V (G), to which a preference ρ(v) has been assigned, there
are at least p2n

400
paths of colour ρ(v) from v to either b or r.

Because of Lemma 3.1.2 (iii) we know that a.a.s.

|K1| ≤
100

p
. (4.3)

Also, we define,

V r
1 ={v ∈ V1 : ρ(v) = red}, and

V b
1 ={v ∈ V1 : ρ(v) = blue}.

Up to this point we have assigned the colour ρ to every vertex in V (G) except for X \
(Nb(b) ∪ {r}) and K1, and this assignment was made in a way that every vertex v has a
monochromatic path of colour ρ(v) to its respective root. In order to define the trees we will
also need this paths to be disjoint, but we will find an issue with the vertices in J1. This
is because we assigned them all blue and we will need some of them to be red in order to
connect vertices from V r

1 to r by a red path.

This problem has a simple solution. For every vertex v in J1 we decide randomly and
independently with probability 1

2
whether we attach it to the red tree rooted in r or to the

blue tree rooted in b and then we redefine ρ(v) according to this result. Since every vertex in
V1 has at least p2n

400
� log(n) neighbours in J1 and in its preferred colour, with high probability

at least one of those neighbours will obtain that preferred colour in the random assignment.
To see this, we consider v ∈ V r

1 a vertex connected to J1 by red, and bound the probability
that every u ∈ Nr(v, J1) was assigned ρ(u) = blue as follows.

P
(
∀u ∈ Nr(v, J1) : ρ(u) = blue

)
=

∏
u∈Nr(v,J1)

P(ρ(u) = blue) ≤
p2n/400∏

i=1

P(ρ(ui) = blue).

The last inequality holds because |Nr(v, J1)| ≥ p2n
400

. Thus, due to the fact that P(ρ(u) =

blue) = 1
2
and that p2n

400
� log(n) we have
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P
(
∀u ∈ Nr(v, J1) : ρ(u) = blue

)
≤

log(n)∏
i=1

1

2
=

(
1

2

)log(n)

which tends to zero. We conclude that with positive probability every vertex v ∈ V r
1 has

at least one neighbour with assigned colour red.

Now we will assign ρ for the vertices in X \ (Nb(b)∪ {r}), so as to finish the construction
of our trees and thus conclude the proof. In order to do that we will separate the proof in
two cases, in the first case we will suppose that there exists a vertex v ∈ X \ (Nb(b) ∪ {r})
such that |Nb(v) ∩ V r

1 | ≥
pn
100

or |Nr(v) ∩ V b
1 | ≥

pn
100

. In the second case there will be no such
vertex.

• Case 1: There exists a vertex v ∈ X \ (Nb(b) ∪ {r}) such that |Nb(v) ∩ V r
1 | ≥

pn
100

or |Nr(v) ∩ V b
1 | ≥

pn
100

. We first suppose that |Nb(v) ∩ V r
1 | ≥

pn
100

. The case where
|Nr(v) ∩ V b

1 | ≥
pn
100

is analogous. We define b̃ = v and

J2 = Nb(b̃) ∩ V r
1 .

We have that |J2| ≥ pn
100

. The vertex b̃ will be a root for a third tree and it is important
to note that the vertices from J2 could be attached either to the red tree rooted in r
or to the blue tree rooted in b̃. We define

V2 =

{
x ∈ X \ (Nb(b) ∪ {r, b̃}) : |N(x) ∩ J2| ≥

p2n

200

}
.

Then, for every x ∈ V2, we have |N(x) ∩ J2| ≥ p2n
400

in at least one of the colours. For
x ∈ V2 we set

ρ(x) =

{
red if |Nr(x) ∩ J2| > p2n

400

blue otherwise.

We define

K2 = X \ (Nb(b) ∪ V2 ∪ {r, b̃}),

and as above we have |K2| < 100
p
. At this point the only vertices u that have not been

assigned ρ(u) are the vertices from K1 and K2, which together are at most 200
p
. Finally,

we will have the same issue we had with J1 with J2 and we can solve it in the same way.

Let us note that every vertex u but the vertices in K1 ∪K2 has been assigned a colour
ρ(u) such that u has a monochromatic path to one of the roots r, b or b̃. So now we can
define the trees T1, T2 and T3 such that

T1 = ρ−1(red)
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T2 = {u ∈ ρ−1(blue) : u has a monochromatic path to b}

T3 = {u ∈ ρ−1(blue) : u has a monochromatic path to b̃}

We obtained three vertex disjoint monochromatic trees that partition all but at most
O(1

p
) vertices which concludes the proof of Theorem 1.4.2.

• Case 2: There is no vertex v ∈ X \ (Nb(b) ∪ {r}) such that |Nb(v) ∩ V r
1 | ≥

pn
100

or
|Nr(v) ∩ V b

1 | ≥
pn
100

. In other words, every v ∈ X \ (Nb(b) ∪ {r}) has at most pn
100

blue
neighbours in V r

1 and at most pn
100

red neighbours in V b
1 . Let us note that each vertex

v ∈ X \ (Nb(b) ∪ {r}) satisfies

d(v, V r
1 ∪ V b

1 ) = d(v)− d(v,K1)− d(v,Nr(r))− 1.

Also, by (4.3) and given that property (i) in Lemma 3.1.2 implies that d(v,Nr(r)) ≤
(1 + ε)p2n and d(v) > (1− ε)pn we can see that:

d(v, V r
1 ∪ V b

1 ) > (1− ε)pn− 100

p
− (1 + ε)p2n− 1.

Moreover, by (4.1) we conclude that

d(v, V r
1 ∪ V b

1 ) >
99pn

100
− pn

100
− pn

100
− pn

100
=

96pn

100
.

Therefore, any v ∈ X \ (Nb(b) ∪ {r}) has at least 48pn
100

neighbours in one of the sets V r
1

or V b
1 . If most of these neighbours are in V r

1 then, as |Nb(v) ∩ V r
1 | ≤

pn
100

, we have that

|Nr(v) ∩ V r
1 | ≥

47pn

100

and we define ρ(v) = red. If most of the neighbours are in V b
1 we proceed similarly and

we obtain |Nb(v) ∩ V b
1 | ≥

47pn
100

so we define ρ(v) = blue. This means that we are able to
connect all the vertices in X \ (Nb(b) ∪ {r}) in red to V r

1 or in blue to V b
1 .

Now we can define the trees T1 and T2 such that

T1 = ρ−1(red)

T2 = ρ−1(blue)

This ends Case 2 and the only vertices that ρ(v) has not been assigned to are the vertices
in K1 which size is at most 100

p
. This finishes the proof of Theorem 1.4.2.
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Conclusion

As we have previously said, this work is the study of the monochromatic partition problem
in the particular case where the host graph is a random bipartite graph. Moreover, this work
can be seen as a continuation of the problem raised by Erdős, Gyárfás and Pyber [10] and a
new variation of the case studied by Bal and DeBiasio [3].

As we have seen in Section 3.3, Theorem 1.4.3 establishes a lower bound for the tree par-

tition number in the case r = 2 and p�
(
log(n)
n

) 1
2 . In this theorem we built and example of

a 2-colouring of the edges of our graph where we need a.a.s. at least three monochromatic
trees to cover, and therefore, to partition a random bipartite graph. Theorem 1.4.2 shows
that for this same case for r and p we can partition a.a.s. all but at most O

(
1
p

)
vertices

by three monochromatic trees. This proof was inspired by Kohayakawa, Mota and Schacht’s
proof [27] for general random graphs. The key of the demonstration lies in the bound for p
which assures us that we have enough edges to connect the vertices to some of the monochro-
matic trees. This last property was further studied in Lemma 3.1.2 of Section 3.1. where we
presented the properties that are due to the chosen bound for p. This bound for p seems to
be accurate since if we slightly decreases it we will not have these desired properties. Nev-
ertheless, a possible extension of our presented work would be varying the range for p and
trying to obtain better bounds for the tree partition number.

Another possible extension to this work would consist in studying this problem considering
more colours. We believe it is possible to find a correct bound for p such that we can partition
a.a.s. the random bipartite graph by 2r− 1 monochromatic trees which would coincide with
the conjecture bound for the deterministic case [36].
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