
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

THE PROBLEM OF INCOMPLETE DATA IN SPARQL

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS, MENCIÓN COMPUTACIÓN

DANIEL RICARDO HERNÁNDEZ HERNÁNDEZ

PROFESOR GUÍA:

CLAUDIO GUTIÉRREZ GALLARDO

MIEMBROS DE LA COMISIÓN:

PABLO BARCELÓ BAEZA

JUAN REUTTER DE LA MAZA

ANDREAS PIERIS

SANTIAGO DE CHILE
2020

Resumen

La información incompleta es uno de los mayores desafíos para la gestión de datos en la
Web. Los datos en son incompletos en la Web por varias razones: porque hay datos que
se desconocen, porque es ocultada por privacidad, o porque aún no ha sido agregada a
los datos, porque aún no se ha integrado con otras fuentes de datos, etc. Una pregunta
fundamental en la exploración de datos en la Web es cómo definir la semántica de las
consultas sobre datos incompletos.

Esta tesis estudia el problema de información incompleta en SPARQL, el lenguaje de
consulta definido por el W3C para los datos de la Web. Nos enfocamos en dos formas
básicas de incompletitud en SPARQL: los blancos y variables con valores no asignados
(unbound values). Su principal metodología es la aplicación de ideas y técnicas conocidas del
modelo relacional para enfrentar estos problemas en SPARQL. Con este fin, contrastamos
los nodos blancos y los valores no asignados con tres tipos de valores nulos usados en el
modelo relacional: valores que se sabe que existen, pero se desconocen; valores que se
sabe que no existen; y valores de los que no se sabe si existen.

Las contribuciones de esta tesis son las siguientes. Primero, mostramos que de acuerdo a
la especificación de RDF y el uso de los nodos blancos en la base de conocimiento Wikidata,
estos corresponden a los nulos que denotan valores que existen, pero se desconocen.
Sin embargo, las consultas SPARQL entregan respuestas que son incorrectas de acuerdo
a la semántica de los nodos blancos como valores que existen pero son desconocidos.
Nosotros exploramos la factibilidad de que SPARQL retorne solo resultados correctos
(certain answers) implementando métodos que son usados con el mismo fin en el modelo
relacional. Para entender el impacto que este cambio puede tener en SPARQL, analizamos
cómo afecta los ejemplos de consulta de usuarios de Wikidata.

En relación con la semántica de los valores no asignados, mostramos que ellos se comportan
en algunos casos como valores que no existen y en otros como valores que no se sabe que
existen. Proponemos una extensión del álgebra relacional inspirada en las tablas con tuplas
posibles de Biskup (maybe-tuples). Esta álgebra es el resultado de escoger dos operadores
para cada operador del álgebra relacional, donde uno entrega resultados correctos y el
otro resultados posibles. Este resultado mejora nuestro entendimiento de SPARQL al
hacer explícito que SPARQL es un resultado particular de escoger para cada operador uno
de los dos operadores alternativos del álgebra que proponemos.

Uno de los problemas para analizar la información incompleta en SPARQL es la falta de un
formalismo para comparar las diferentes propuestas. Nosotros abordamos este problema
proponiendo un nuevo formalismo llamado Nested Datalog, que extiende Datalog para
componer consultas. Extendiendo la codificación de SPARQL en Datalog por Angles y
Gutiérrez (después de corregir algunos de sus problemas para consultas que implican
información incompleta), mostramos cómo codificar SPARQL usando Nested Datalog, en
particular para la cláusula EXISTS y la información incompleta.

En este nuevo formalismo, describimos las tres semánticas propuestas por la comunidad
para la cláusula EXISTS (particularmente para los problemas de correlación y substitución),
mostramos los supuestos hechos en cada una de ellas y entregamos un menú de estrategias
para abordar los problemas de correlación y substitución.

ii

Abstract

Incomplete information poses a major challenge for data management on the Web. Web
data may be incomplete for a variety of reasons: the missing information may be unknown
to those who created the dataset, it may have been suppressed for privacy reasons, it may
not yet have been added to the dataset, there may be a gap left after integrating other
datasets, and so forth. A fundamental question for exploiting data on the Web is then how
to define the semantics for queries over incomplete datasets.

This thesis investigates incomplete information in SPARQL, the standard query language
defined by the W3C for querying data in the Web. We focus the study in two basic forms of
incompleteness in SPARQL: blank nodes and unbound variables. The core of the method
is to apply ideas and techniques from the relational model to address these problems in
SPARQL. To this end, we contrast the blank nodes and the unbound values with three
types of null value used in the relational model: unknown values, inapplicable values,
and no-information nulls.

As the results of this investigation, the contributions of the thesis are the following. First, we
show, according to the RDF specification and the use of blank nodes in Wikidata, that blank
nodes correspond to unknown values. However, SPARQL queries can return answers that
are uncertain regarding the semantics of blank nodes as unknown values. We explore the
feasibility that SPARQL returned certain answers by implementing the methods known
from the relational model. To understand the impact this change produced in SPARQL,
we analyze how this new semantics would affect the results of user queries in Wikidata.

Regarding the semantics of unbound values, we show that they behave in some cases as
inapplicable values and as no-information nulls in other cases. We propose an extension for
the relational algebra inspired in Biskup’s maybe-tuples, which includes the core algebra
of SPARQL. This algebra results from defining two operators for each standard relational
algebra operator in order to support null values. One of these two operators returns
certain answers and the other possible answers. This result improves our understanding
of SPARQL since it makes explicit that SPARQL is a particular result from choosing for
each operator one of the two alternative extended operators in the algebra we propose.

One of the current problems to analyze incomplete information in SPARQL is the lack of a
unified formalism to compare the different proposals. We address this problem by propos-
ing a new formalism called Nested Datalog that extends nr-Datalog¬in order to allow the
composition of queries. Extending the codification of SPARQL in nr-Datalog¬by Angles
and Gutierrez after fixing some of its issues for incomplete information, we show how
to codify SPARQL using Nested Datalog, particularly the EXISTS clause and incomplete
information.

In this new formalism, we describe the three alternative semantics proposed by the com-
munity to address the EXISTS clause (particularly the issue of correlation and substitution)
and show what they mean. We study its underlying assumption and present a menu of
possible approaches to address the current problems.

iii

Acknowledgments

First, I want to thank my advisor Claudio Gutierrez for his careful guidance and his
enthusiasm to talk about any question beyond short-term research. I can see in him, the
truly scientific curiosity, critical thinking, and humanism in the widest sense. I would
also like to acknowledge the people that contribute to my development as a researcher,
especially to Aidan Hogan and Renzo Angles that were always open to discuss new ideas
and advice. I am also grateful to Pablo Barcelo, Juan Reutter, and Andreas Pieris, who
cautiously reviewed my thesis and helped me to improve it.

My doctoral studies were funded by CONICYT Doctorates scholarship CONICYT-PCHA-
21140161, and the ANID – Millennium Science Initiative Program – Code ICN17_002.

iv

Contents

1 Introduction 1
1.1 Preliminary notions . 2
1.2 Problems, hypothesis and goals . 5
1.3 Summary of contributions of this thesis . 5
1.4 Structure of this thesis. 8

I Preliminaries 9

2 RDF and SPARQL 11
2.1 The RDF data model . 11
2.2 The SPARQL query language . 14

II Incomplete data in SPARQL 19

3 Blank nodes as unknown values 21
3.1 Naive semantics of RDF . 24
3.2 RDF graphs as V-tables . 25

3.2.1 The V-tables relational algebra . 29
3.2.2 The relational algebra of SPARQL . 30

3.3 Approximating certain answers in SPARQL 34
3.3.1 Certain answers with null values . 34
3.3.2 Under- and over-approximations . 35
3.3.3 Approximating relational algebra queries 41
3.3.4 SPARQL rewriting strategies . 48

3.4 Evaluation . 51
3.4.1 Evaluation Setting . 52
3.4.2 TPC–H experiments . 52
3.4.3 Wikidata survey . 56

3.5 Conclusions . 57

4 Unbound values as incomplete data 59
4.1 A brief review of the landscape of null values 60
4.2 Where do unbound values came from? . 61
4.3 Null values in SQL and SPARQL . 64

4.3.1 The generalized algebra . 64
4.3.2 Mapping SQL and SPARQL operators to the generalized algebra . . 67

v

4.4 Conclusions . 72

III On the semantics of EXISTS 73

5 The notion of substitution under incomplete data 75
5.1 The problem of substitution in SPARQL . 76

5.1.1 An overview of the problems of substitution in SPARQL 77
5.1.2 Existing proposals for the semantics of EXISTS 83
5.1.3 How the existing proposals solve the substituion issues 85

5.2 Environment-binding as a substitution proposal 88
5.3 Free, bound, and range restricted variables 91

5.3.1 Substitution in relational calculus . 91
5.3.2 Substitution in SQL . 91
5.3.3 Substitution in SPARQL . 94

5.4 Conclusions . 96

6 Expressing SPARQL in Datalog 97
6.1 An overview of nr-Datalog¬ . 98
6.2 Translation of the safe SPARQL-0 fragment 100
6.3 Fixing the translation of equality atoms in

filter-conditions . 104
6.4 Fixing the translation of negation in filter-conditions 106
6.5 Translation of the SPARQL-1 fragment . 111

6.5.1 SELECTION queries in nr-Datalog¬ 111
6.5.2 MINUS queries in nr-Datalog¬ . 111
6.5.3 VALUES queries to nr-Datalog¬ . 112
6.5.4 BIND queries in nr-Datalog¬ . 113
6.5.5 The translation of SPARQL-1 fragment to nr-Datalog¬ 113

6.6 Conclusion . 114

7 Nested Datalog 117
7.1 Syntax and Semantics of Nested Datalog . 118
7.2 Query atoms and external atoms . 123
7.3 The expressive power of Nested nr-Datalog¬ 123
7.4 Conclusion . 127

8 On the Nested Datalog semantics of the EXISTS clause 129
8.1 Two forms of substitution of SPARQL variables 129

8.1.1 Substitution of parameters . 130
8.1.2 Substitution of goal variables . 133

8.2 Nested Datalog with nulls . 139
8.3 Conclusions . 141

IV Conclusions 143

9 Conclusions and future work 145

vi

Bibliography 149

Appendix A The information lattice of mappings with marked nulls 155

Appendix B SQL and relational algebra 161
B.1 SQL and the generalized PRU algebra . 162
B.2 SQL and the generalized selection . 163
B.3 SQL and the generalized join . 163
B.4 SQL and the generalized difference . 164

vii

viii

Chapter 1

Introduction

In this thesis we study incomplete information in Web query languages. Incomplete
information poses a major challenge for data management on the Web. Web data may be
incomplete for a variety of reasons: the missing information may be unknown to those
who created the dataset, it may have been suppressed for privacy reasons, it may not yet
have been added to the dataset, there may be a gap left after integrating other datasets,
and so forth. A fundamental question for exploiting data on the Web is then how to define
the semantics for queries over incomplete datasets.

To take a literary example, we know that the poem “Beowulf” was written by somebody,
but nobody knows who. If we fill a table with creations and creators, an option is to simply
omit the authorship and use a dash to denote that we do not known who wrote “Beowulf”
as is depicted by Table 1.1.

Creation Creator

Beowulf –

El Ingenioso hidalgo don Quĳote de la Mancha Miguel de Cervantes Saavedra

Table 1.1: Writings and their authors

Table 1.1 presents the usual form to represent incomplete data in relational databases.
In order to see how this data could be represented in RDF [56]—the current standard
data model for the Web—, consider how the standard direct mapping from tables to
RDF (see [10]) transforms the data in the table above to the labeled digraph depicted in
Figure 1.1.

a“Beowulf”

b“El ingenioso...” “Miguel de Cervantes...”

creation

creation creator

Figure 1.1: Direct mapping of Table 1.1 into an RDF representation.

The graph in Figure 1.1 introduces the nodes a, b, c, and d to denote the identity of each
row in Table 1.1. The fields of each row are denoted by the labeled arcs connecting row

1

identities with field values. The empty field in Table 1.1 (the dash) is codified in the graph
by the lack of an arc from node a to an author. As is suggested by Figure 1.1, RDF data
can be represented as a labeled digraph (called RDF graph) where nodes are resources and
labels in arcs identify relationships between them. This is the only formalization about
RDF we need for this introduction. The standard formalization for RDF graphs will be
provided later.

This translation for the empty field in Table 1.1 is motivated by the fact that in SQL null
values imply no information about the value in the cell of a table. That is, a null value
represents an unknown value or the nonexistence of the value. However, according to
our background in the literary example that motivates this introduction, we known that
“Beowulf” has an author, but the author is unknown. Thus, we need a particular type of
null value, one that implies that the value exists but it is missing. These null values are
called unknown values. In RDF there are resources called blank nodes that are sometimes
used to denote unknown values (see Hogan et al. [42]). A relevant use case for blank
nodes to denote unknown values is Wikidata, a collaborative knowledge base [69, 24]. In
Figure 1.2 a blank node, denoted _:b, is used to refer the author of “Beowulf” in the same
way that Wikidata does.

a“Beowulf” _:b

b“El ingenioso...” “Miguel de Cervantes...”

creation

creation

creator

creator

Figure 1.2: Mapping of Table 1.1 using a blank node to denote the author of “Beowulf.”

So far, we have informally presented two example RDF graphs that codify incomplete data.
One uses the lack of a value (Figure 1.1), and the other uses a blank node (Figure 1.2). If
RDF is the standard data model of the Web, SPARQL [36] is the standard query language
defined by the World Wide Web Consortium for querying data in the Web. In this thesis
we address the problem of incomplete data in SPARQL.

1.1 Preliminary notions
We next present some examples that show how relevant incomplete data is in the design
of SPARQL and the particularities of SPARQL compared to SQL. Since we have not yet
introduced the syntax and semantics of SPARQL, we will describe queries in natural
language.

Unbound values. Consider the query “Get all literary creations and its authors”. In the
graph of Figure 1.1, this query with the intended semantics of SPARQL does not return
“Beowulf” because it has no known author. In order to include also “Belowulf” in the
answers, SPARQL allows the retrieving of optional fields. Indeed, in SPARQL we can ask
for “all literary creations and, if it is possible, their authors”. If an author is not given for
a literary creation, then the attribute is said to be unbound.

An unbound value indicates here that we do not know the author of “Beowulf” nor if the
author exists. In RDF nothing can be inferred about non-present data. This is known as the

2

open-world assumption. Unbound values act thus as null values in SQL in the sense that
they denote that we have no information about a required value. Recall that in SQL null
values also denote that there is no information about the value. However, in SQL we can
infer negative information from non-present data. For example, if the tuple (Alice, 22222)
is not in the table of contacts we can infer that Alice has no phone with number 22222.

Angles and Gutierrez [8] showed that SPARQL, like SQL, can be seen as a language that
returns tables with null values denoting the unbound values. However, SPARQL differs
from SQL in the way that null values are operated. In this thesis we show that the difference
between both languages regarding incomplete information resides in the way that they
evaluate the join and the difference in the presence of null values. Let R and S be the tables
defined as follows:

R �

A B

a −
c d

 , S �

A B

a b
c d

 .
The following table shows the results of the join and difference for these two query lan-
guages:

SQL SPARQL

R 1 S
[

A B
c d

]
A B
a b
c d

R − S

[
A B
a −

] [
A B

]
According to SQL and SPARQL the join of both tables includes the tuple (c , d). The
difference is that in SPARQL tuple (a , b) is also included in the join, while in SQL it is not
included. Intuitively, in SPARQL tuples (a ,−) and (a , b) are joined because the null value
implies no knowledge about attribute A, so there exists the possibility that both tuples
agree. On the contrary, in SQL both tuples are not merged because there is no certainty
that both tuples agree. The same reasoning applies for the difference. In SPARQL the
tuple (a ,−) is not dropped because there is a possible valuation of the null value where it
is not dropped whereas in SQL it is dropped because that valuation exists.

This issue of unbound (and null) values is closely related to the open/closed character
of the semantics. Unfortunately, there are SPARQL queries that behave contrary to the
open-world semantics, and hence to the philosophy of the Web. SPARQL is a language that
combines features that are suitable to query data in the Web (open world) with features
that come from SQL, designed for databases that assume a closed-world. The question of
whether SPARQL is suitable for querying the Web has been widely studied and discussed.
Perez et al. [59] identify a notion, namely weak monotonicity, that captures queries that
conform to the open-world semantics (i.e., weakly-monotone queries return answers that
are still true when more data is considered). Perez et al. [59] defined syntactically a
SPARQL fragment, called the well-designed queries, that are weakly-monotone. Arenas and
Ugarte [12] proved that not all weakly-monotone query is well-designed, and defines a
query language with the same expressive power than the fragment of the weakly-monotone
queries.

3

Blank nodes. Now consider the query “who is not the author of ‘Beowulf’.” According
to the standard semantics of SPARQL, the answer of this query over the graph depicted in
Figure 1.2 is Miguel de Cervantes. However, according to the information provided by the
graph there is no reason to reject the possibility of Cervantes being the author of “Beowulf”
(i.e., that the blank node _:b references Cervantes). Of course we have good reasons to
discard Cervantes as the author of “Beowulf”, but these reasons are based on knowledge
that is beyond the information provided by the graph. Thus, in this case SPARQL is giving
an answer that is not certain in the light of the available facts. Note that this does not
conform to the semantics of RDF.

Certain answers. A well-known interpretation for incomplete databases is the one that
represents them as sets of complete databases called the models of the database (see [28]).
In this formalism, µ is said to be a certain answer of a query Q over an incomplete database
D if and only if µ is an answer of Q over every model of D. Similarly, µ is said to be a
certain negative answer of Q over D if and only if µ is not an answer of Q over every model
of D. There is a third case, called maybe answer, where µ is an answer of Q in some models
of D but not an answer of Q in others. Also, µ is said to be a possible answer of Q over D
if µ is a certain or a maybe answer of Q over D. We are interested in the certain answers
of a query because they represent the facts that are true according to the database. The
problem is that computing the certain answers of a query is intractable in most query
languages. For instance, the data complexity of the standard query evaluation problem
in relational algebra is AC0; on the other hand, the analogous complexity with unknown
values is coNP-hard [2]. This complexity limitation leads to finding approximations, i.e.,
algorithms that compute not all the certain answers but only part of them with less cost.

Relational algebra and Datalog. In this thesis we study SPARQL translating it to Datalog
and to relational algebra. These query languages are well studied, have strong founda-
tion in logic and provide techniques to study the problems we addressed in this thesis.
Translations from SPARQL to Datalog have been studied with different motivations, e.g.,
Polleres [60], Schenk [66], Angles and Gutierrez [8], and Polleres and Wallner [61]. We
focus in the translation by Angles and Gutierrez because the other translations do not
generate Datalog, but expressions that are translatable to Datalog.

The SPARQL EXISTS clause. Since the version 1.1, SPARQL allows expressing the query
“get all people x where there exists a department y whose responsible is x”. This query
can be rewritten as “get all people x where there exists an answers for ‘get all departments
y whose responsible is x’.” This rewritten query consists of two queries. The first, called the
outer query, is “get all people x.” The second, called the inner query, is “get all departments
y whose responsible is x.” The specification is not clear about how to evaluate the rewritten
query [40, 57]. This ambiguity have led to differences in implementations. An essential
issue here is the scope of variables. Is variable x referring the same person in the outer
and in the inner queries? If is the case that the variable x refers to the same resource in
both queries, then it is called a correlated variable.

Another problem of the semantics of the SPARQL EXISTS clause is how to correlate
unbound variables. Should we accept as correlated a variable x bound in the outer query
and unbound in the inner query? For instance, consider the query “get all people x and

4

their emails y when there exists an answer for the (sub) query ‘gets all people z and optionally
their emails y’.” Should we to accept a person x if there exists a person z whose email is
missing? Since the unbound value can be considered a null value, this question touches
the notion of incomplete data.

1.2 Problems, hypothesis and goals
The subject addressed in this thesis is the issue of the handling of incomplete data in
SPARQL. The main hypothesis of this work is that the notions and techniques developed
to study incomplete data in the relational model can be used to study the issues regarding
incomplete data in SPARQL. The theory of relational databases is mature and has a strong
foundation in first-order logic. This foundation can provide a clear understanding of the
notions involved in the SPARQL design.

In order to address this hypothesis, we worked in the following goals regarding incomplete
data in SPARQL:

G1 Define the notions of blank nodes and unbound values in SPARQL in terms of null
values in the literature of relational databases.

G2 Provide a semantics for SPARQL based on well-known query languages (Datalog and
relational algebra), in order to address the problem of incomplete data in SPARQL.

1.3 Summary of contributions of this thesis
The main contributions of this thesis are results obtained in the process to achieve the goals
referred above. We observe that all these results are somehow touched upon by problems
introduced by the way SPARQL deals with incompleteness. We focus our study in two
forms of incompleteness, namely the blank nodes and the unbound values.

Goal G1. To address the first goal, we compare the semantics of blank nodes and
unbound values with three types of null values studied in the literature of relational
databases, namely unknown values (a value that we know exists but is missing), inapplicable
values (a value that we know does not exist), and no-information nulls (we do not know if
a value exists). According to the RDF specification [38], unknown values can be viewed
as unknown values. However, as we aforementioned (see Section 1.1), SPARQL does not
agree with the RDF semantics of blank nodes. Likewise, the semantics of unbound val-
ues results contradictory if we consider the RDF or the SPARQL design. For example, in
SPARQL we can ask for “all books and optionally its writer”. Since RDF follows the open
world assumption, if we obtain no writer for a book, we cannot assume that that book has
no writer. In other words, in that query the null value behaves as a no-information null.
In SPARQL, the query above can be rewritten equivalently as the union of “all books and
its writers” (i.e., including only books with writers), and “all books having no writers”.
In this second query an unbound value is generated for each book whose writer is not
indicated in the database. However, according to the RDF semantics this second query
must return no books having no writers, because the open world assumption. SPARQL is

5

thus following the closed world assumption in this second query and the unbound value
can be seen as an inapplicable value.

We next summarize how we address the aforementioned problems regarding the semantics
of blank nodes and unbound values.

To study the difference among SPARQL and RDF regarding blank nodes we choose a
fragment of SPARQL that does not generates unbound values. We observe that in general
the evaluation of a query Q in this fragment is not correct under the assumption that blank
nodes denote unknown values, that is, may generate answers that are not certain. We thus
address the following question: Given a query Q in this fragment, is there a query Q′ in
SPARQL that is a good approximation of the certain answers of Q? What does it mean
“good”? What is the cost paid for the approximation? Is this problem relevant for the
existing datasets? The study of these questions lead to the following contributions:

C1 We showed that by translating techniques of the approximation of certain answers
used in relational model to SPARQL we can construct an approximation of the certain
answers of SPARQL queries in the fragment studied whose data complexity remains
in the complexity of the SPARQL fragment studied. Since this fragment corresponds
to relational algebra, the data complexity of the evaluation problem of the translated
query is A0.

C2 We show that although generally querying for certain answers incur in a significant
cost, in this case query answering is still feasible.

C3 Regarding the question of whether or not querying for certain answers is important,
we studied a paradigmatic dataset, Wikidata, that uses blank nodes as unknown
values. We analyzed 446 Wikidata queries and found that only a 0.6% of these
queries return uncertain answers in practice.

We avoided SPARQL queries with unbound values when studying certain answers because
the approximation of certain answers have not been studied in the relational algebra
extended with the operators outer union or outer join. We focus thus in the problem of
what is the relation among SPARQL and relational algebra extended with unknown nulls.
The approximation we used followed the idea behind the Biskup [15] algebra of tables
with maybe tuples. The algebra he proposes combines in each operation the tuples that
represent sure facts with the tuples that represent possible facts. This idea is also used
by Guagliardo and Libkin [33] to approximate certain answers in SQL. We adapt their
techniques to SPARQL.

We then addressed the problem of what is the relation among unbound values and the
null values known from the relational algebra literature. The contributions regarding this
question are the following:

C4 We propose an algebra for tables with marked nulls based on the Biskup [15] algebra,
called the generalized relational algebra. The generalized algebra defines two variants
for each operator. The idea behind these variants is that one returns answers that
are valid in all models of the tables involved in the operation, and the other returns
answers that are valid in some models. That is, one variant returns certain answers
and the other variant returns possible answers.

6

C5 We show that SPARQL and the relational algebra corresponding to SQL are contained
in the generalized relational algebra. In fact, they take one variant for each of the
relational algebra operators, and they differ only in the join and the difference.
SPARQL returns possible answers for the join operator and returns certain answers
for the difference. On the contrary, SQL returns certain answers for the join and
possible answers for the difference.

The techniques used to address the goals aforementioned are founded in the notion of
approximation. The question that arises is how to compare different approximations. We
make the following contribution in this regard:

C6 We define the notions of under- and over-approximation among evaluation proce-
dures in SPARQL. These notions define two lattices whose respective top and bottom
are the most and least informative evaluation procedures. We can thus take advan-
tage of the properties of lattices (e.g., combine evaluation procedures to get a more
accurate one) and define a criterion to determine whether an evaluation procedure
is correct. An evaluation procedure is said to be correct if it is an element in one of
these lattices.

Goal G2. To address the second goal, we review the translations from the core of SPARQL
to relational query languages. In particular we focus in the translation by Angles and
Gutierrez [8] from SPARQL to Datalog. This translations has problems in the way that
SPARQL deals with incomplete data, particularly with the 3-valued logic used in condition
formulas to address unbound values. In fact, the main problem of their translation is that
some answers are lost because the unknown truth value is not considered.

C7 We find some problems in the translation by Angles and Gutierrez [8] from SPARQL
to Datalog and we propose a solution for them.

C8 We extend the translation by Angles and Gutierrez [8] to include the operators
MINUS, BIND and VALUES, that are introduced in the version 1.1 of SPARQL [36].

A relevant SPARQL feature is the nesting of queries inside EXISTS clauses, that we study to
address the goal G2. A nested query is evaluated as a Boolean condition over a mapping.
The condition is true if the nested query has an answer, and false otherwise. As in other
Boolean conditions, the variables in the mapping are substituted in the nested query before
the evaluation. However, as we show in this thesis, substitution (particularly in the pres-
ence of incomplete information) is a notion that have to be reviewed. This study is relevant
not only for SPARQL, but also for other query languages having outer/inner queries, such
as SQL and G-core. Regarding to this topic, we made the following contributions:

C9 We report inconsistencies and ambiguities in the semantics of the SPARQL EXISTS
clause that motivated a discussion by the community and lead to three proposals to
fix the specification, namely shallow-binding, deep-binding, and environment-binding.

C10 We describe the different ways that engines today evaluate the EXISTS clause.

C11 We show how the three proposals described above differ, and that this difference
occurs due different ways to deal with unbound values and a different definition of
variable scope.

7

C12 We propose a new formalism, namely, Nested Datalog, that extends Datalog allowing
the nesting of queries, and thus provide a simple translation for the SPARQL EXISTS
clause.

C13 We show that Nested Datalog has the same expressive power than Datalog.

C14 We show an explicit translation from the SPARQL EXISTS clause to Nested Datalog.
Currently it produces queries whose size is exponential in the size of the variables
that are substituted in the nested query.

C15 We propose an extension to Nested Datalog (Nested Datalog with null values) to
consider unbound values as a special symbol, instead of a constant as is done in the
translation by Angles and Gutierrez [8]. We show that the translation of SPARQL
to Nested Datalog with Nulls does no produce queries whose size is exponential on
the size of the variables that are substituted in the nested query.

1.4 Structure of this thesis.
We organize this thesis in the following parts:

– In Part I we present the preliminaries of this thesis. We include the definitions of the
languages RDF and SPARQL.

– In Part II we address the problem of incomplete information in SPARQL (goal G1).
This part is divided in two chapters. In Chapter 3 we present a semantics for
blank nodes based on the marked nulls that denote values that we know exists
but are missing. We thus use the techniques known from the relational model
to approximate certain answers in SPARQL. In Chapter 4 we address the problem
of formalizing unbound values in terms of null values. We explain why there is
no consistent semantics for unbound values that answer this question. Also, we
describe the relation among the algebra of Biskup [15], the SPARQL algebra, and
SQL.

– In Part III we address the problem of providing a logical foundation for incomplete
information in SPARQL. In particular, we focus in the problem of giving a semantics
to the EXISTS clause. We divide this part in four chapters. In Chapter 5 we describe
the issues arising with specification of the EXISTS clause. In Chapter 6 we show how
to give a semantics based on Datalog to SPARQL (excluding the EXISTS clause). We
base this chapter in the one proposed by Angles and Gutierrez [8]. We also report
the problems with this translation and provide a fixed translation. In Chapter 7 we
propose a new formalism called Nested Datalog that extends Datalog in order to
allow the composition of queries. In Chapter 8 we show how this formalism can be
used to formalize SPARQL, particularly the EXISTS clause.

– In part IV we present the conclusions of the thesis.

8

Part I

Preliminaries

9

Chapter 2

RDF and SPARQL

The Resource Description Framework (RDF) [56, 37, 38] was proposed by the W3C as the
main data model to share data on the Web. The initial idea was to publish RDF documents
similarly as previously was done with HTML. RDF documents are essentially a set of
claims about resources. Resources are named with Web identifiers (URLs). Data about
resources can be retrieved with the Web protocol (HTTP) by sending a request on the
resource identifier. With this design, the Web infrastructure for documents serves also to
build the Web of Data.

After the standardization of the RDF data model, several query languages were pro-
posed [13] for the RDF data model, including RQL [17], SquishQL [54], NautiLOD [25],
and SPARQL [62, 36], among others. SPARQL became a W3C Recommendation in 2008,
and it is still considered the standard language for querying RDF data.

This chapter reviews the RDF data model (Section 2.1) and the SPARQL query language
(Section 2.2). To simplify the study of SPARQL, we use the algebraic formalization by Perez
et al. [59]. Their formalization has some differences with the standard SPARQL algebra,
but as Angles and Gutierrez [6], and Kaminski et al. [44] showed, the differences do not
imply a different expressive power.

2.1 The RDF data model
RDF is based on a special type of labeled digraph called RDF graph. The labels of nodes
and edges are elements of the union of three pairwise disjoint sets, namely I, B and L,
called identifiers, blank nodes and literals, respectively. We will keep this notation along
the whole document. The structure of RDF graphs is stated by the following definition.

Definition 2.1 (RDF Syntax). An RDF graph G is a finite set of triples (s , p , o) in (I ∪ B) × I ×
(I ∪ B ∪ L) where s is called the subject, p is called the predicate, and o is called the object.

Notation. We denote identifiers as words with one or more letters (e.g., a, b, c, name,
email, and knows). We denote literals with quotation marks (e.g., “Alice” and “Bob”), except
for literals codifying numbers where we omit the quotation marks (e.g., 1, 2, and 3). We

11

denote blank nodes using the symbol⊥with a numeric subscript when there is more than
one blank node (e.g., ⊥1, ⊥2, and ⊥3).

Example 2.1. The following figure depicts an RDF graph:

a

“Alice”

“alice@a.org”

“Bob”

b ⊥
name

email

knows
name

knows

Each triple (s , p , o) of the RDF graph is depicted as an arc with label p from a node s to a node o.
In this graph, elements “Alice”, “Bob” and “alice@a.org” are literals; elements a, b, name, knows,
and email are identifiers; and ⊥ is a blank node.

Since RDF graphs are sets of RDF triples, we use the set operators ∪, ∩, and \ between
RDF graphs, with their standard meaning for sets.

Definition 2.2 (RDF vocabulary). An RDF vocabulary (or simply a vocabulary) is a finite subset
of I ∪ L. Given an RDF graph G, the vocabulary of G, denoted voc(G), is the set of all identifiers
and literals occurring in G.

Example 2.2. If G is the graph of Example 2.1 then voc(G) is composed of all labels of nodes and
arcs occurring in G, except the blank node ⊥.

We next present the semantics of RDF graphs as defined by Hogan et al. [42] based in
the definition by Hayes [37]. We will omit datatype interpretations, and the use of RDF
vocabularies with predefined semantics (e.g., RDFS [16] and OWL [55]) as they are not
directly concerned with the subject of this thesis.

Definition 2.3 (Semantics of ground triples [42]). An interpretation A over a vocabulary V
is a tuple (R, P, E, I) such that R is a non-empty set, called the domain, or the universe or the
resources ofA; P is a set (not necessarily disjoint from or a subset of R) called the properties ofA;
E : P → 2R×R is a mapping that assigns an extension, denoted pA , to each property p ∈ P; and
I : V → R ∪ P is the interpretation mapping that assigns a resource or a property to each element
of V such that I is the identity for literals.

Given a vocabulary V , an interpretation A � (R, P, E, I) over V , and a triple (s , p , o) ∈ V3, we
say thatA |� (s , p , o) if and only if I(p) ∈ P and (I(s), I(o)) ∈ E(I(p)).

Definition 2.3 provides a semantics for RDF triples without blank nodes. In order to define
the semantics of RDF graphs with blank nodes we have to consider a function that maps
blank nodes to elements in I ∪ L.

Definition 2.4 (Semantics of an RDF graph). Let G be an RDF graph, V be a vocabulary such
that V ⊇ voc(G), A � (R, P, E, I) be an interpretation over V , v : B → R be a function, and
Iv denote an extension of I that includes B as part of its domain such that Iv(b) � v(b) for b ∈ B
and Iv(x) � I(x) for x ∈ I ∪ L. We say that A is a model of G, denoted A |� G, if there exists a
function v such that for each (s , p , o) ∈ G, it holds that I(p) ∈ P and (Iv(s), Iv(o)) ∈ E(I(p)).

12

Example 2.3. Let G be the following RDF graph:

a b ⊥knows knows

Then, interpretationsA1 toA4 below are models of G.

A1 � ({1, 2, 3}, {p}, {p 7→ {(1, 2), (2, 3)}}, {a 7→ 1, b 7→ 2,⊥ 7→ 3, knows 7→ p})
A2 � ({1}, {p}, {p 7→ {(1, 1)}}, {a 7→ 1, b 7→ 1,⊥ 7→ 1, knows 7→ p})
A3 � ({1, 2, 3}, {p}, {p 7→ {(1, 2), (2, 3), (3, 1)}}, {a 7→ 1, b 7→ 2,⊥ 7→ 3, knows 7→ p})
A4 � ({1, 2}, {p , q}, {p 7→ {(1, 1)}, q 7→ {(1, 2)}}, {a 7→ 1, b 7→ 1,⊥ 7→ 1, knows 7→ p})

The semantics of an RDF graph G is defined in terms of the interpretations of G following
a model-theoretic semantics. In this thesis we assume familiarity with the model-theoretic
and the proof-theoretic semantics of relational databases. An introduction of both ap-
proaches is given by Reiter [65]. The RDF model has some differences with the usual
model-theoretic and proof-theoretic semantics given to relational databases:

1. Interpretations of RDF graphs allow predicates to occur as elements in relations. The
main reason of this design is that RDF aims to describe not only resources (i.e., the
elements of the relations), but also notions as predicates and classes used to describe
the resources.

2. Interpretations of an RDF graph are not bounded to a specific “relational” vocabulary
as the models of a relation do. In fact, the interpretations of an RDF graph G
may contain relations that are not referred by the predicates in G. For instance, in
Example 2.3, predicate q of interpretation A4 does not represent a predicate in the
graph G. The RDF model is designed for the Web. In this context we cannot assume
that people will get a consensus over a fixed set of predicates to be used to describe
the world.

The notions of entailment and equivalence between RDF graphs are defined as usual.

Definition 2.5 (Simple entailment). An RDF graph G1 entails an RDF graph G2, denoted
G1 |� G2, if and only if every interpretation over the vocabulary of G1 ∪ G2 which satisfies G1 also
satisfies G2. We say that two RDF graphs G1 and G2 are (logically) equivalent, denoted G1 ≡ G2,
if and only if G1 |� G2 and G2 |� G1.

A notion that is closely related with entailment and the equivalence of RDF graphs is the
notion of map between graphs.

Definition 2.6 (Map between RDF graphs). A map h : I ∪ B ∪ L → I ∪ B ∪ L is a function
preserving elements in I ∪ L, i.e., h(x) � x if x ∈ I ∪ L. Given a graph G and a map h, h(G)
denotes the RDF graph {(h(s), h(p), h(o)) | (s , p , o) ∈ G}. We overloaded the meaning of map to
speak of a map h : G1→ G2 if and only if G1 and G2 are RDF graphs, h is a map, and h(G1) ⊆ G2.

Two RDF graphs G1 and G2 are said homomorphic equivalent if and only if there are maps
h1 : G1 → G2 and h2 : G2 → G1. They are called isomorphic if h1(G1) � G2 and h2(G2) � G1
(or, as RDF graphs are finite, both maps h1, h2 are one-to-one).

13

So far, we have reviewed the standard notions of entailment and map among RDF graphs.
It is well-known that these notions are equivalent (see [19, 38, 35]). This equivalence is
formalized by the following theorem:

Theorem 2.1 ([19, 38, 35]). Let G1 and G2 be two RDF graphs. Then:

• G1 |� G2 if and only if there is a map h : G2→ G1.

• G1 and G2 are (logically) equivalent if and only if G1 and G2 are homomorphic equivalent.

In this thesis we assumed familiarity with the Reiter [63] proof-theoretic semantics of the
relational model extended with null values, whose theory codifies three assumptions
over a relational database, namely the closed-domain, the unique-name, and the closed-world
assumptions. We next discuss the differences among the relational model and the RDF
model regarding these assumptions.

1. No Unique Name Assumption: As is exemplified by the model A2 of Example 2.3,
different identifiers and blank nodes may refer to the same resource (in this case a,
b, and ⊥ refer to resource 1). The lack of the unique name assumption is motivated
by the distributed nature of the Web. Data publishers in different parts of the world
may use different identifiers to refer to the same resource.

2. No Closed World Assumption: Let G be an RDF graph and (s , p , o) be a triple without
blank nodes that is not in G. Then, there exists an interpretation A of G such that
A |� (s , p , o). This follows because under the semantics provided by Definition 2.4,
all RDF graphs are satisfiable. Hence, no negative information can be inferred from
RDF graphs, and thus RDF graphs do not follow the closed world assumption in the
sense of Reiter [64].

2.2 The SPARQL query language
SPARQL is a query language designed to query RDF graphs. In this section we present the
core fragment of the SPARQL language for consideration in this thesis. This fragment is
essentially the fragment studied by Perez et al. [59]. We do not include the clauses FROM
and GRAPH as they do because those features are not related to the focus of this thesis,
but we add the clauses VALUES, BIND and EXISTS.

In order to define the syntax and semantics of SPARQL, we need to introduce some notions.
Along with the sets I, B, and L, that are used to define RDF triples, we assume a countable
infinite set V, called the set of variables, and a set F, called the set of functions, that consists
in functions of the form f : (I ∪ B ∪ L ∪ {∅})n → I ∪ B ∪ L ∪ {∅}, where sets V, F, I, B,
and L are pairwise disjoint, and ∅, called the unbound value, is an element that is not in
the set I ∪ B ∪ L. The prefix “?” is used to denote variables (e.g., ?x). A SPARQL mapping
(or simply a mapping when no confusion arises) is a partial function µ : V→ I∪B∪L. We
denote by dom(µ) the domain of µ, that is, the subset of V where the function is defined.
Two mappings µ1 and µ2 are said to be compatible, denoted µ1 ∼ µ2 if and only if for
every variable ?x in dom(µ1) ∩ dom(mu2) it holds µ1(?x) � µ2(?x). Given two compatible
mappings µ1 and µ2, the join of µ1 and µ2, denoted µ1 ⌣ µ2, is the mapping with domain
dom(µ1) ∪ dom(µ2) that is compatible with µ1 and µ2. Given a mapping µ and a finite set

14

X of variables, we write µ |X to denote the mapping µ whose domain is restricted to the
set X, that is, µ |X ∼ µ and dom(µ |X) � dom(µ) ∩ X.

Throughout this thesis we sometimes use the translation of sets of mappings to relations
used by Cyganiak [21] and Polleres [60], among others. This consists in viewing mappings
as tuples under the named perspective. However, as mappings in a set Ω of mappings
may have different domains, we need to choose one for the relation associated to Ω. The
set of variables X of the chosen domain must be big enough to contain the domains of all
mappings inΩ. Then, for each variable ?x ∈ X, we extend (“fill” in) all mappings µ where
?x < dom(µ) defining µ(?x) � ∅. The result of this procedure is a relation in the domain
I ∪ B ∪ L ∪ {∅}. This procedure is formalized as follows:

Definition 2.7 (Filled mapping). Given a SPARQL mapping µ with dom(µ) � X and a set of
variablesY such that X ⊆ Y, the filling of µ overY, denoted fill(µ,Y), is the mapping such that
dom(fill(µ,Y)) � Y and

fill(µ,Y)(?x) �
{
µ(?x) if ?x ∈ dom(µ),
∅ otherwise.

Now we are ready to define the SPARQL syntax.

Definition 2.8 (SPARQL syntax). The set of SPARQL queries (or simply queries) is defined
recursively as follows:

• An element of (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V) is a triple pattern. A set of triple
patterns is a query—called a basic graph pattern.

• If Q1,Q2 are queries, then:

– (Q1 UNION Q2) is a query—called a UNION query.

– (Q1 AND Q2) is a query—called an AND query.

– (Q1 OPT Q2) is a query—called an OPT query.

– (Q1 MINUS Q2) is a query—called a MINUS query.

• If Q is a query and X ⊂ V is a finite set of variables, then (SELECTX WHERE Q) is a
query—called a SELECT query.

• A filter-condition is an expression defined recursively as follows:

– An equality t1 � t2, where t1 and t2 are elements of I∪B∪L∪V, is a filter-condition.

– If t is an element of I ∪ B ∪ L ∪V then isBlank(t) is a filter-condition.

– If ?x is a variable then bound(?x) is a filter-condition.

– If Q is a query then EXISTS(Q) is a filter-condition.

– A Boolean combination of filter-conditions (with operators ∧, ∨, and ¬) is a filter-
condition.

If Q is a query and φ is a SPARQL buit-in condition (see below), then (Q FILTER φ) is a
query—called a FILTER query.

15

• If X ⊂ V is a finite set of variables, and Ω is a set of SPARQL mappings such that
dom(µ) ⊆ X for each µ ∈ Ω, then (VALUES X Ω) is a query—called a VALUES query.

• If Q is a query, f : (I ∪ B ∪ L ∪ {∅})n → (I ∪ B ∪ L ∪ {∅}) is a function in F, and
?y, ?x1, . . . , ?xn are variables such that ?y does not occur in Q nor in {?x1, . . . , ?xn}, then
(Q BIND f (?x1, . . . , ?xn)AS ?y) is a query—called a BIND query.

We call SPARQL-0 to the fragment of SPARQL that consists of queries composed by the operators
AND, UNION, FILTER, and OPTIONAL, and we call SPARQL-1 to the fragment that consists
of queries composed by any of the operators described in this definition.1

Historically, SPARQL queries and graph patterns were two different concepts. Polleres [60]
defines a SPARQL query as a quadruple (V, P,DS, SM) where V is the result form, P is
a graph pattern, DS is a dataset, and SM is a set of solution modifiers. In this thesis we
ignore datasets and solution modifiers, so according to Polleres notation, a query is simple
a pair (V, P). Furthermore, in this thesis we restrict result forms to the SELECT clause.
Thus, we only study SELECT queries.

Note: Since in SPARQL 1.1 graph patterns admit SELECT queries as graph patterns, and in
the fragment we are studying we do not considering modifiers, there is no need to consider
SPARQL queries and graph patterns as different concepts. Thus, throughout this thesis
we will use both terms with the same meaning.

Note on Multisets. Before presenting the semantics of SPARQL we have to discuss set and
multiset semantics. SPARQL specification uses multiset semantics by default (like SQL).
Recall that a multiset is a modification of the concept of set, that unlike sets, allows
repeated elements. In SPARQL 1.0 a SELECT query (SELECTXWHERE P), where P is a
graph pattern without another SELECT query inside, returns by default multisets. To get
sets one has to use (as in SQL) the modifier DISTINCT: (SELECT DISTINCTXWHERE P).
In SPARQL 1.1 the situation more complex. As SPARQL 1.1 admits SELECT queries as
graph patterns, queries can be evaluated as a combination of both semantics. This brings
many complexities to the theory (see the work of Angles and Gutierrez [9]). In order to
focus on incompleteness, that already in the case of set semantics it has enough interest,
in this thesis we will restrict to the set semantics of SPARQL as is done by Perez et al. [59].

According to Perez et al. [59], the semantics of SPARQL is defined using operations over
sets of mappings. These operators are presented in the following definition:

Definition 2.9 (Algebra of mappings [59]). Let Ω1 and Ω2 be two sets of mappings. Then, the
operators 1, ∪, −, and 1 are defined over sets of mappings as follows:

Ω1 1 Ω2 � {µ1 ⌣ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2},
Ω1 ∪Ω2 � {µ | µ ∈ Ω1 or µ ∈ Ω2},
Ω1 −Ω2 � {µ1 | µ1 ∈ Ω1, and there does not exist µ2 ∈ Ω2, µ1 ∼ µ2},
Ω1 1Ω2 � (Ω1 1 Ω2) ∪ (Ω1 −Ω2).

1Intuitively, the SPARQL-0 fragment corresponds to the intersection of set of the operators in this definition
with the version 1.0 of the standard [62], whereas the SPARQL-1 with the version 1.1 [36].

16

Given a query Q we write var(Q) to denote the set of variables occurring in Q. We
use this notation also for filter-conditions, i.e., var(φ) are the variables occurring in the
filter-condition φ.

Intuitively, a filter-condition φ drops all mappings µwhere µ(φ) is not true. The following
definition defines the truth value of µ(φ) for all filter-conditions without the EXISTS clause.
The semantics of the EXISTS clause is highly complex, thus it requires its own chapter. We
will study it in Chapter 5.

Definition 2.10 (Semantics of SPARQL filter-conditions). Let µ be a finite mapping from
variables to elements in I∪B∪L, φ be a SPARQL filter-condition without occurrences of EXISTS
clauses, and t1, t2 be elements in V ∪ I ∪ B ∪ L. Let ν : V ∪ I ∪ B ∪ L→ V ∪ I ∪ B ∪ L be the
function defined as

ν(t) �

µ(t) if t ∈ dom(µ),
∅ if t ∈ V \ dom(µ),
t if t < V.

The truth value of µ(φ) is defined recursively as follows:

• If φ is an equality t1 � t2 then:

1. µ(φ) is error if ν(t1) � ∅ or ν(t1) � ∅.

2. µ(φ) is true if ν(t1) , ∅, ν(t1) , ∅, and ν(t1) � ν(t2).
3. µ(φ) is false if ν(t1) , ∅, ν(t1) , ∅, and ν(t1) , ν(t2).

• If φ is an expression of the form bound(?x) then µ(φ) is true if ?x ∈ dom(µ). Otherwise,
µ(φ) is false.

• If φ is an expression of the form isBlank(t1) then:

1. µ(φ) is error if ν(t) � ∅.

2. µ(φ) is true if ν(t) , ∅ and ν(t) ∈ B.

3. µ(φ) is false if ν(t) , ∅ and ν(t) < B.

• If φ is a Boolean combination of conditions using operators ∧, ∨ and ¬, then the truth value
of µ(φ) is the given by 3-valued logic presented in Table 2.1.

We write µ |� φ to mean that φ is true over µ.

Now we are ready to present the semantics of SPARQL.

Definition 2.11 (SPARQL semantics). Let G be a RDF graph, and Q be a SPARQL query. Then,
the evaluation of Q over G, denoted JQKG, is the set of mappings recursively defined as follows:

• If Q is a basic graph pattern, then JQKG is the set of all mappings µ|var(Q) such that µ(Q′) ⊆ G,
where Q′ is the result of replacing all blank nodes in Q by fresh variables, and µ is a mapping
with dom(µ) � var(Q′).

• If Q is (Q1 AND Q2) then JQKG � JQ1KG 1 JQ2KG.

• If Q is (Q1 UNION Q2) then JQKG � JQ1KG ∪ JQ2KG.

17

Table 2.1: SPARQL Three-valued logic
p q p ∧ q p ∨ q

true true true true
true error error true
true false false true
error true error true
error error error error
error false false error
false true false true
false error false error
false false false false

p ¬p

true false
error error
false true

• If Q is (Q1 MINUS Q2) then JQKG � JQ1KG − JQ2KG.

• If Q is (Q1 OPT Q2) then JQKG � JQ1KG 1 JQ2KG.

• If Q is (SELECTXWHEREQ1) then JQKG is the set of mappings µ|X such that µ ∈ JQ1KG.

• If Q is (VALUES X Ω) then JQKG is the set of mappings Ω.

• If Q is (Q1 FILTER φ) then JQKG is the set of mappings µ ∈ JQ1KG such that µ(φ) is true
(see Definition 2.10).

• If Q is (Q1 BIND f (?x1, . . . , ?xn)AS ?y) then let µ′ be the mapping fill(µ, {?x1, . . . , ?xn}),
and yµ be the value f (µ′(?x1), . . . , µ′(?xn)). Then, JQKG is the set of SPARQL mappings

{µ ∈ JQ1KG | yµ � ∅} ∪ {µ ⌣ {?y 7→ yµ} | µ ∈ JQ1KG and yµ , ∅}.

The following definition of dom(Q) corresponds to the set of variables that in the spec-
ification [36, §18.2.1] are called the in-scope variables of a query Q. Despite the fact that
the output of a SPARQL is not a relation because its mappings can have different domains
(e.g., when Q is a union of queries with different variables), most engines use dom(Q) as
the attributes of the “relation” that result of evaluating Q.

Definition 2.12 (Domain of a SPARQL query). Let (s , p , o) be a triple pattern, Q1,Q2 be
SPARQL queries, φ be a filter condition, and X be a set of variables. The domain of a SPARQL
query Q, denoted dom(Q), is defined recursively as follows:

dom((s , p , o)) � var((s , p , o)),
dom(Q1 AND Q2) � dom(Q1) ∪ dom(Q2),

dom(Q1 UNION Q2) � dom(Q1) ∪ dom(Q2),
dom(Q1 MINUS Q2) � dom(Q1),

dom(Q1 FILTER φ) � dom(Q1),
dom(Q1 OPT Q2) � dom(Q1) ∪ dom(Q2),

dom(SELECTX Q1) � X ,
dom(VALUESX Ω) � X ,

dom(Q1 BIND(f (?x1, . . . , ?xn)AS ?y)) � dom(Q1) ∪ {?y}.

18

Part II

Incomplete data in SPARQL

19

Chapter 3

Blank nodes as unknown values

According to Hogan et al. [42, 53], blank nodes are used in RDF data for manifold reasons.
They describe a resource for which an IRI is not defined, or to indicate the existence of an
unknown value. In this chapter we study the use of blank nodes as unknown values and
describe the problem of this usage regarding certain answers in SPARQL. The material is
based on ideas presented in [34] and developed and presented in [41].

For historical reasons, the semantics of blank nodes in SPARQL do not follow the original
interpretation of blank nodes as unknown values defined in the RDF semantics.1 Our goal
(in this chapter) is not try to fix this mismatch, but to address the question of how to offer
to RDF data consumers the option to return certain answers to SPARQL queries when

1 It would be an historical investigation to clear the reasons (if any) why such a mismatch occurs, why
SPARQL was designed the way it is. Let us at least inform the reader about some facts that can help
understand this development. The Semantic Web ecosystem consists in a family of standards (SPARQL,
OWL, SHACL, and others) each one assumes a particular semantics for the underlying RDF syntax. The
editors of the standards for each of these pieces had different perspectives as they are defining their tools for
different purposes. The RDF semantics was designed with an ambitious goal in mind: to serve as universal
language over the Web. Over it, the query language SPARQL designer had the end of querying pieces of RDF
data. Their design was inspired by SQL, and thus ended with several incompatibilities with the original
RDF semantics. The most prominent are the close world assumption and the unique name assumption.
The mismatch described in Example 3.1 corresponds to the unique name assumption mismatch for the
particular case of blank nodes. As Reiter shows [63], unknown values can be interpreted as elements that
are not affected by the unique name assumption. As we already mentioned, the Semantic Web standards
were defined with different purposes in mind. Blank nodes in particular, have thus different uses: 1) RDF
publishers use blank nodes to create data structures as lists or reified statements without the overhead of
defining “unnecessary” IRIs. This is useful to reduce the publishers work and thus encourage publication in
the RDF format. In this context, blank nodes are assumed to be different entities for data consumers. 2) With
the OWL language we can define an ontology stating that a resource belongs to a class without requiring
an IRI to name that class. This is particularly useful to define complex classes as a composition of several
unnamed classes. Ontology consumers do not assume blank nodes refer to different entities unless this can
be inferred. 3) RDF datasets make sometimes additional assumptions on what blank nodes represent. For
instance, in Wikidata entities named by IRIs are assumed to be different whereas blank nodes are used to
denote unknown values. We can guess that SPARQL evaluates ⊥1 , ⊥2 as true (despite this is not certain
regarding the RDF semantics) because the SPARQL designers assume a particular use case for this formula.
And last, but not least, the SPARQL specification sometimes contradicts itself regarding the semantics of
blank nodes. For instance, blank nodes occurring in triple patterns behave as unknown values that can
match any value in the data.

21

assuming blank nodes do represent unknown values (as for example occurs in the relevant case
of Wikidata).

The following example illustrates our motivation.

Example 3.1. Let G be the following graph taken from the Wikidata [69] knowledge-base:

NicoleSimpson Female ReevaSteenkamp

OJSimpson Male OscarPistorious

⊥

gender gender

gender gender

killedBy

killedBy

and let Q1 and Q2 be the following SPARQL queries:

Q1 : (SELECT ?x WHERE ((?x, killedBy, ?y)AND (?y, gender,Male))),
Q2 : (SELECT ?x WHERE ((?x, killedBy, ?y)MINUS (?y, gender,Male))),

that ask, respectively, for persons ?x killed by somebody of gender male, and for persons ?x killed by
somebody whose gender is not male.

In the graph data shown, according to the RDF semantics, the blank node (⊥) denotes that Nicole
Brown Simpson (a victim of homicide) has a killer, but that her killer is unknown.

For Q1, SPARQL returns a single solution: {?x 7→ ReevaSteenkamp}. It is a certain answer
regarding the RDF semantics, that is, the only killer that, from the data, we are certain that is male.
On the other hand, for Q2, SPARQL again returns a single solution: {?x 7→ NicoleSimpson}.
In this case, this answer is uncertain because we do not know that Nicole Simpson’s killer was not
male; in fact, ⊥ could refer to a male in the data.

Example 3.1 is not fictional: it was taken from the Wikidata [69] knowledge-base, which
publishes data as RDF and provides a public SPARQL query interface on the Web. Wikidata
is the main case of use of blank nodes as existential variables. While the example uses real
data, for readability, we use fictitious IRIs. In reality, Wikidata uses opaque identifiers, e.g.
w:Q268018 to represent Nicole Simpson.

The use of blank nodes to represent unknown values in Wikidata agrees to the standard
semantics of blank nodes in RDF (see Definition 2.4) in the sense that we cannot infer
that, for example, ⊥ and OJSimpson are different resources in every interpretation of
the graph G. That is, we cannot assume that OJSimpson does not killed NicoleSimpson
since there is an interpretation of the graph where ⊥ and OJSimpson refer to the same
resource. However, as Example 3.1 shows, SPARQL does not follow the standard existential
semantics of blank nodes in RDF.2

2The Example 3.1 highlights a key problem in the current SPARQL semantics when dealing with unknown
values. In the first query only certain answers are returned: answers that hold no matter whom the unknown
value(s) refer(s) to. In the second query uncertain answers are returned: answers that may or may not hold
depending on whom the unknown value(s) refer(s) to.

22

The example shown motivates the need to offer certain answers in SPARQL. In this chapter
we will address the following questions: should users be offered a choice to only return
certain answers? Is such a choice important? And what would be its cost?

Regarding cost, query evaluation under certain answer semantics incurs in a significant
computational overhead; for example, considering queries expressed in the standard re-
lational algebra, if we consider only “complete databases” without unknown values, the
data complexity of the standard query evaluation problem is AC0; on the other hand,
the analogous complexity with unknown values under certain answer semantics leads to
coNP-hardness [2].3

In terms of need, a recent study of blank nodes suggests that 66% of websites publish-
ing RDF use blank nodes, with the most common use-cases being to represent resources
for which no IRI has been defined (e.g., for representing RDF lists), or to represent un-
known values [42]. The methods proposed in this thesis specifically target datasets using
blank nodes in the second sense; such datasets include Wikidata [69], as illustrated in
Example 3.1.

In terms of cost, work by Guagliardo and Libkin [33] offers promising results in terms
of the practical feasibility of approximating certain answers in the context of relational
databases, returning only (but not all) such answers. Performance results suggest that such
approximations have reasonable runtimes when compared with standard SQL evaluation.
Furthermore, their implementation strategy is based on query rewriting over off-the-
shelf query engines, obviating the need to build special-purpose engines, minimizing
implementation costs.

In this chapter, we thus tackle the question: should users be given a choice of certain
semantics for SPARQL under the assumption that blank nodes occurring in the data
represent existential variables? Along these lines, we adapt the methods of Guagliardo
and Libkin [33] in order to propose and evaluate (to the best of our knowledge) the
first approach that guarantees to return only certain answers for a fragment of SPARQL
(capturing precisely the relational algebra) over RDF datasets with existential blank nodes,
further developing a set of concrete rewriting strategies for the SPARQL setting. We
evaluate our rewriting strategies for two popular SPARQL engines—Virtuoso and Fuseki—
offering comparison of performance between base queries and rewritten queries (under
various strategies), and a comparison of our SPARQL and previous SQL results [33]. We
further analyze Wikidata user queries to see if a certain answer semantics would really
affect the answers over real-world queries and data, performing further experiments to
ascertain costs in this setting.

Ours is not the first work to explore a certain answer semantics for SPARQL. Ahmetaj et
al. [3] define a certain answer semantics for SPARQL, but their focus is on supporting OWL
2 QL entailment for queries based on well-designed patterns [58], and in particular on com-
plexity results for query evaluation, containment and equivalence. Arenas and Perez [11]
also consider a certain answer semantics for SPARQL towards studying conditions for

3Following the footnotes discussion on the design of SPARQL: One can thus hardly blame the design
committee of the SPARQL language for having chosen to initially overlook the issue of unknown values (see
footnote 1). It not only would have escalated considerably the complexity of query evaluation, but the cost
and complexity of correctly implementing the new standard would likewise have increased considerably.

23

monotonicity: a semantic condition whereby answers will remain valid as further data is
added to the system; as such, certain answers in their work are concerned with an open
world semantics. However, determining if a query is weakly monotonic—i.e., monotonic dis-
regarding unbound values—is undecidable. Hence later Arenas and Ugarte [12] proposed
a syntactic fragment of SPARQL that closely captures this notion of weak monotonicity. In
contrast to such works, we maintain SPARQL’s negation features [5] with a closed world
semantics. In many contexts, users are interested in writing SPARQL queries regarding
resources that the present dataset does/does not contain. A relevant practical use case is,
as we discuss later, queries for the Wikidata SPARQL service using difference.

To the best of our knowledge, the work on which we based this chapter [41] is the first to
investigate a certain answer semantics for SPARQL under the presence of blank nodes in
RDF data interpreted as existential variables.

Organization of this chapter

– In Section 3.1 we present a semantics, called the naive semantics of RDF, that is a sim-
plification of the standard simple entailment semantics described in Section 2.1. The
naive semantics allows the application of the results of the literature of incomplete
data in the relational model to the RDF model and SPARQL.

– In Section 3.2 we show how under the naive semantics RDF graphs can be seen as
tables with marked nulls, called V-tables by Imielinski and Lipski [43]. Also we show
how relational algebra queries can be defined over RDF and we present a SPARQL
fragment where queries can be expressed in terms of relational algebra queries.

– In Section 3.3 we study how to approximate certain answers in SPARQL by adapting
the methods from the relational algebra.

– In Section 3.4 we present an initial cost–benefit analysis of a certain answer semantics
for SPARQL. This analysis includes a study of the experimental cost of approximating
certain answers using the methods described in the previous section. We address
the problem of how the results are changed by using these approximation methods
in a real-world setting.

– In Section 3.5 we present the conclusions of this chapter.

3.1 Naive semantics of RDF
The Example 3.1 from Wikidata made some assumptions about RDF semantics. These re-
flect practical assumptions that Wikidata gives to RDF datasets, that we follow throughout
this chapter. These assumptions are the following:

1. The unique name assumption is made for IRIs and literals. For instance, in Example 3.1
we assume that Nicole Brown Simpson and Reeva Steenkap are not the same person.
However, the unique name assumption is not made for blank nodes. For instance,
in Example 3.1 the blank node ⊥ may refer to any person in the database or even
people that do not occur in the database.

24

2. The closed-world assumption is made for RDF graphs. This assumption makes more
interesting the problem of query evaluation. For example, consider the query asking
for all people that have not been killed by a male. Under the open-world assumption this
query has no certain answers because for every person a there is an interpretation
where a was killed by b and b is a male. Under the closed-world there are cases
in which a is an answer of this question. Indeed, if the only fact in the database
is “b killed a” then a is an answer since no interpretation states than b is a male.
Furthermore, b is also an answer because there is no interpretation where b has
been killed. If we extend the database with the fact “⊥ has gender male” then a
is no longer an answer since ⊥ can be interpreted as b whereas b is still an answer
since there is no interpretation where b is killed. If we extend again the database
by including the fact “b killed ⊥” then b is no longer an answer since b could have
killed himself.

The two assumptions described above motivate the semantics for RDF graphs we present
next. This semantics, called naive in what follows, restricts the standard semantics pre-
sented in Definition 2.4 to the interpretations that satisfy these assumptions.

Definition 3.1 (Naive semantics of an RDF graph). Let G be an RDF graph. A � (R, P, E, I)
is a naive model of G, denotedA |�naive G, if it is a model of G (see Definition 2.4) where:

1. I is bĳective (i.e., each name in the vocabulary represents a different element in the domain
and each element in the domain has a name in the vocabulary).

2. There exists a function v : B→ V such that:

(a) for each (s , p , o) ∈ G, it holds that I(p) ∈ P and (Iv(s), Iv(o)) ∈ E(I(p)).

(b) for each predicate p′ ∈ P and pair (s′, o′) ∈ E(p′) there exists a triple (s , p , o) ∈ G such
that Iv(s) � s′, I(p) � p′, and Iv(o) � o′.

The first condition of Definition 3.1 restricts interpretations to those that satisfy the unique-
name assumption. The injectivity of function I ensures that each element in the vocabulary
corresponds to a unique element in the domain. The surjectivity of function I is introduced
to state a one to one correspondence among elements in the domain and names in the
vocabulary.

The second condition of Definition 3.1 restricts interpretations to those that satisfy the
closed-world assumption. Interpretations A of a graph G already satisfy the existence of
a function v that holds condition (a), that is, every triple in G is interpreted by A. The
additional condition (b) ensures the closed-world assumption since it restricts the facts of
A to the facts that are interpretations of the triples in G.

3.2 RDF graphs as V-tables
To study the naive semantics of RDF graphs we use the theory of V-tables proposed by
Imielinski and Lipski [43]. Informally a V-table is a relational table that can have existential
variables (besides constants) in its entries. After the following example, we will give some
basic definitions and notation concerning to V-tables.

25

Example 3.2. Consider the following V-table:
Person Office
Alice ⊥1
Bob ⊥2
Carl ⊥1

The elements Person and Office above the horizontal line are called the attributes of the table,
whereas the elements below it are called the values of the table. The values Alice, Bob, and Carl
are called constants because represent distinguishable known elements, whereas the values ⊥1, ⊥2,
and ⊥3 are called marked nulls and represent unknown values. The offices of all persons in this
example are therefore unknown. However, because the office of Alice and Carl are denoted with the
same marked null, we know that they share office.

As the example above illustrates, V-tables are defined over three disjoint sets, namely the
set of marked nulls, the set of constants, and the set of attributes. To make explicit the relation
among V-tables and RDF data and SPARQL formalism, we assume that these sets are
defined using the base sets of RDF: the set of marked nulls corresponds to B, the set of
constants to C � I∪L, and the set of attributes corresponds to V, the variables in SPARQL.

A V-table over a finite set of attributesX ⊂ V is a finite set of functions µ : X → C. Given a
V-table R over a set of attributes X, we write dom(R) to denote the set of attributes X on
which R is defined. The elements of a V-table R are called the tuples or mappings of R. A
V-table R can thus be considered a particular type of a set of mappings that are returned
by SPARQL queries, where the mappings µ ∈ R hold that dom(µ) � dom(R). Recall that,
in general, the mappings that a SPARQL query returns do not necessarily have the same
domain.

A database schema is a pair (T, dom) where T is a finite set, called the set of table names
and, dom : T → 2V is a function that associates to each table name a finite set of attributes.
A V-database D over the database schema (T, dom) is a function that associates each table
name r ∈ T to a V-table over dom(r), denoted rD . V-tables and V-databases are said to be
regular if they have no blank nodes.

The semantics of a regular V-database D is defined as usual by the model that interprets
D. This approach, called model-theoretic semantics by Reiter [65], goes as follows. Let D
be a regular V-database over a database schema S � (T, dom), and A � (R, P, E, I) be an
interpretation over the vocabulary adom(D) ∪ T where adom(D) denotes the constants
occurring in D. A is said to be an interpretation of D, denoted A |� D, if the following
conditions hold:

1. I : adom(D) ∪T → R∪P is a bĳective function where I(adom(D)) � R and I(T) � P.

2. Let r ∈ T be a table name where I(r) � p and the attributes dom(r) in lexicographical
order are A1, . . . ,An . The function E associates each predicate p to an extension
pA ⊂ Rn where {A1 7→ a1, . . . ,An 7→ an} ∈ rD if and only if (I(a1), . . . , I(an)) ∈ pA .

So far, we presented the semantics of regular V-databases. To describe the semantics of
V-databases, we need to introduce some notions.

A blank node valuation (or simply a valuation) is a function h : B∪C→ B∪C that preserves
the constants (i.e., that only changes blank nodes).

26

Let h be a valuation. Then:

• Given a tuple µ of a V-table, we write h(µ) to denote the tuple µ′ where µ′(?x) �
h(µ(?x)) for every variable ?x in dom(µ).

• Given a V-table R, we write h(R) to denote the V-table consisting in the tuples
{h(µ) | µ ∈ R}.

• Given a V-database D over a database schema (T, dom), we write h(D) to denote the
V-database where rh(D) � h(rD) for each table name r ∈ T.

• Given two V-databases D1 and D2 over the same database schema, we say that there
exists a map h : D1→ D2 if and only if h is a valuation such that D2 � h(D1).

Now we are ready to present the semantics of V-databases.

Definition 3.2 (Semantics of V-databases). The semantics of a V-database D is given by the
set, denoted repr(D), of regular V-databases D′ where there exists a map h : D → D′. We say
that an interpretation A interprets a V-database D if A |� D′ for a database D′ ∈ repr(D). We
say that a V-database D1 entails a V-database D2, denoted D1 |� D2, if each interpretation of D1
is also an interpretation of D2.

Since the interpretations of a V-database D are defined as the interpretations of regular
databases in repr(D), given two databases D1 and D2, it holds that D1 |� D2 if and only if
repr(D1) ⊆ repr(D2).

Likewise Theorem 2.1 does for RDF graphs, Lemma 3.1 states the relation between entail-
ment and maps among V-tables.

Lemma 3.1. Let R1 and R2 be two V-tables over a set of attributes X. Then it holds: R1 |� R2 if
and only if there is a map h : R2→ R1.

Proof. This proof is structured in two parts, one for each direction of the equivalence.

Part 1. Let R1 and R2 be two V-tables over a set X of attributes where there exists a map
h : R2 → R1. Let R3 ∈ repr(R2) be a regular V-table. By definition, there exists a map
g : R3→ R2. By construction, g ◦ f : R3→ R1 is a map. Hence, R1 |� R2.

Part 2. Let RX be the set of all V-tables over the set X of attributes, and ≤ be the relation
over RX such that Ra ≤ Rb if and only if there exists a map h : Ra → Rb . Let ≡ be the
equivalency relation defined as Ra ≡ Rb if and only if Ra ≤ Rb and Rb ≤ Ra . Let ≤ be
the relation over RX/≡ defined as usual, i.e., [Ra]≡ ≤ [Rb]≡ if and only if Ra ≤ Rb . Let ⌢
be the operation over RX/≡ defined as [Ra]≡ ⌢ [Rb]≡ � max{Rc | Rc ≤ Ra and Rc ≤ Rb}.
By construction, ⌢ is commutative ([Ra]≡ ⌢ [Ra]≡ � [Rb]≡ ⌢ [Ra]≡), associative ([Ra]≡ ⌢
([Rb]≡ ⌢ [Rc]≡) � ([Ra]≡ ⌢ [Rb]≡) ⌢ [Rc]≡), idempotent ([Ra]≡ ⌢ [Ra]≡ � [Ra]≡), and
monotone ([Ra]≡ ⌢ [Rb]≡ ≤ [Ra]≡). Given a subset A � {R1, . . . , Rn} of RX , let ∩A denote
[R1]≡ ⌢ · · · ⌢ [Rn]≡. The properties of ⌢ already mentioned imply that, for every relation
R ∈ RX , the equality [R]≡ � ∩ repr(R) holds. Let R1 and R2 be two V-tables in RX where
R1 |� R2. It thus holds that [R2]≡ � ∩(repr(R2) \ repr(R1)) ⌢ ∩R1. Since ⌢ is monotone,
[R2]≡ ≤ [R1]≡ holds. Hence, R2 ≤ R1 and thus there exists a map h : R2→ R1.

27

An RDF graph G can be seen as a V-database D. We next formalize the translation of an
RDF graph as V-database.

Definition 3.3. The V-database of an RDF graph G, denoted vdb(G), is the one composed by a
single V-table named triples, dom(triples) � {?s, ?p, ?o}, and triplesvdb(G)

� {{?s 7→ s , ?p 7→
p , ?o 7→ o} | (s , p , o) ∈ G}.

Example 3.3. Let G be the following graph of Example 3.1 that we reproduce here to help the reader:

NicoleSimpson Female ReevaSteenkamp

OJSimpson Male OscarPistorious

⊥

gender gender

gender gender

killedBy

killedBy

The V-database D of the RDF graph G is the one composed by the following V-table:

triplesD
�

?s ?p ?o
NicoleSimpson gender Female
NicoleSimpson killedBy ⊥

ReevaSteenkamp gender Female
ReevaSteenkamp killedBy OscarPistorious

OJSimpson gender Male
OscarPistorius gender Male

.

Similarly, an interpretation of an RDF graph G in the naive semantics can be seen as an
interpretation of the V-database vdb(G) as follows.

Definition 3.4. Let AG � (R, P, E, I) be an interpretation of an RDF graph G. The V-database
interpretation corresponding to the interpretation AG, denoted vdb(AG), is the interpretation
(R′, P′, E′, I′) where R′ � R ∪ P, P′ � {triples}, E′(triples) � {(s , p , o) | p ∈ Pand(s , o) ∈
E(p)}, and I′ is the identity over R ∪ P.

So far, we have defined a translation from the RDF data model to the V-database model
(including databases and interpretations). We next show some properties of the naive
semantics of RDF graphs that correspond to similar properties of V-databases.

Lemma 3.2. Let G be an RDF graph, and A an interpretation over the vocabulary V ⊇ voc(G).
Then,A |�naive G if and only if vdb(A) |� vdb(G).

Proof. We prove this lemma in one direction of the equivalence. The inverse direction is
omitted since it follows the same argument. Let G be an RDF graph and A � (R, P, I ,G)
be an interpretation over a vocabulary V such that A |�naive G, and v : B → V be the
function described in Definition 3.1. By Lemma 3.1, v(vdb(G)) |� vdb(G). By construction,
vdb(A) |� v(vdb(G)). Hence, vdb(A) |� vdb(G).

28

Likewise Theorem 2.1 does for the simple entailment semantics of RDF graphs, Lemma 3.3
shows the relation between the naive semantics of simple graphs and the maps among
them.

Lemma 3.3. Let G1 and G2 be RDF graphs. G1 |�naive G2 if and only if there is a map h : G2→ G1
where h(G2) � G1.

Proof. We prove this lemma in one direction of the equivalence. The inverse direction
is omitted since it follows the same argument. Let G1 and G2 be RDF graphs such that
G1 |�naive G2, andA be an interpretation over the vocabulary V � voc(G1) ∪ voc(G2) such
that A |�naive G1. By definition, A |�naive G2. By Lemma 3.2, vdb(A) |� vdb(G1) and
vdb(A) |� vdb(G2) hold. Since vdb(A) is an arbitrary interpretation of the V-database
vdb(G1), it holds that vdb(G1) |� vdb(G2). By Lemma 3.1, it holds that there is a map
h : vdb(G2) → vdb(G1). By construction, h : G2→ G1.

Corollary 3.1. Let G1 and G2 be two simple RDF graphs. It holds then that G1 |�naive G2 implies
G1 |� G2.

Proof. It follows from Theorem 2.1 and Lemma 3.3.

Since the naive semantics of RDF graphs introduces the unique name assumption over
IRIs and the closed world assumption, the certain answers of a query under the naive
semantics are not necessarily certain over the simple entailment semantics. For instance,
the query “get the male people that have not been killed” over the graph of Example
3.1 has OJSimpson and OscarPistorious as certain answers under the naive semantics.
According to the simple entailment semantics (Definition 2.5) these answers are not cer-
tain because the world is open. On the contrary, the certain answers under the simple
entailment semantics are also certain under the naive semantics (as Corollary 3.1 states),
because the interpretations of an RDF graph G under the naive semantics is a subset of the
interpretations of G under the simple entailment semantics.

3.2.1 The V-tables relational algebra
We assume familiarity with the operators join (1), selection (σφ), renaming (ρA/B), union (∪),
and difference (−) of the named perspective of the relational algebra [1]. We also assume
familiarity with the naive evaluation of relational algebra queries over V-tables, that operate
null values as if they were constants [43]. We next present the syntax and semantics of
relational algebra of V-tables to summarize the notations used in this thesis.

Definition 3.5 (Relational algebra of V-tables). The notion of relational algebra query Q over
a database schema (T, dom), the attributes of Q, denoted dom(Q), and the semantics of Q over a
database D over (T, dom), denoted JQKD , are defined recursively as follows:

1. If Q is a table name r ∈ T then Q is a relational algebra query, dom(Q) � dom(r), andJQKD � rD .

2. If Q is a V-table R then Q is a relational algebra query, dom(Q) � dom(R), and JQKD � R.

29

3. If Q is a relational algebra query andX is a set of attributes whereX ⊆ dom(Q), then πX(Q)
is a relational algebra query called the projection of Q in the attributesX, dom(πX(Q)) � X,
and JQKD � {µ |X | µ ∈ JQKD}.

4. If Q1 and Q2 are relational algebra queries, then Q1 1 Q2 is a relational algebra query called
the join of Q1 and Q2, dom(Q1 1 Q2) � dom(Q1) ∪ dom(Q2), and

JQ1 1 Q2KD � {µ1 ⌣ µ2 | µ1 ∈ JQ1KD , µ1 ∈ JQ1KD , and µ1 ∼ µ2},

where µ1 ∼ µ2 denotes that µ1 and µ2 are compatible (i.e., agree in the common attributes),
and µ1 ⌣ µ2 denotes the tuple that is compatible with µ1 and µ2 and has dom(µ1)∪dom(µ2)
as domain.

5. If Q1 and Q2 are relational algebra queries where dom(Q1) � dom(Q2) � X, then Q1 ∪Q2
and Q1 −Q2 are relational algebra queries, dom(Q1 ∪Q2) � dom(Q1 −Q2) � X, and:

JQ1 ∪Q2KD � {µ | µ ∈ JQ1KD or µ ∈ JQ2KD},JQ1 −Q2KD � {µ | µ ∈ JQ1KD and µ < JQ2KD}.

6. A term is an attribute name, a constant or a marked null. An atom is an equality t1 � t2
where t1 and t2 are terms. A selection formula φ is a Boolean combination of atoms (i.e., given
two selection formulas φ and ψ, then ¬φ, φ∧ψ and φ∨ψ are selection formulas). Given a
relational algebra query Q and a selection formula φ where every attribute name occurring in
φ is in dom(Q), the expression σφ(Q) is a relational algebra query, dom(σφ(Q)) � dom(Q),
and Jσφ(Q)KD � {µ ∈ JQKD | µ(φ) is true}, where the relation µ(φ) is defined recursively
as follows:

• If φ is an atom t1 � t2, then µ(φ) is true if the result of replacing in φ every variable
?x by µ(?x) is an equality where both sides have the same value (i.e., the same constant
or the same marked null). Otherwise, µ(φ) is false.

• If φ is non-atomic, then µ(φ) is evaluated according to the standard semantics of the
Boolean connectors ¬, ∧, and ∨ (e.g., µ(ψ1∧ψ2) is true if and only if µ(ψ1) and µ(ψ2)
are true).

It is necessary to emphasize that the V-tables algebra evaluates selection formulas accord-
ing to two-valued logic, where marked null values are evaluated as if they were constants.
To see this, consider the query σ¬(?x�a)(R). If a mapping µ � {?x 7→ ⊥} is a tuple of
relation R, then µ(¬(?x � a)) is true since µ(?x � a) is false because ⊥ and a are differ-
ent values (constants). An alternative, followed by SQL, is to evaluate null values using
three-valued logic (i.e., using true, false and unknown as the truth values). According to
the three-valued logic evaluation, µ(?x � a) is unknown because ⊥ denotes an unknown
value. We therefore cannot know if ⊥ and a have the same value or different values. By
the same argument, according to the three-valued logic evaluation, µ(¬(?x � a)) is also
unknown.

3.2.2 The relational algebra of SPARQL
In this section we present a fragment of SPARQL that precludes the occurrence of unbound
values, that is, for every query Q in this fragment and every graph G, it holds that

30

dom(µ) � dom(Q) for each solution µ ∈ JQKG. Since all solution mappings have the same
domain, the queries of this fragment can be expressed using the algebra of V-tables.

The syntax of the relational fragment of SPARQL is defined as follows.

Definition 3.6 (Relational fragment of SPARQL). The syntax of queries in the relational frag-
ment of SPARQL is defined as follows:

1. A triple pattern is a query in the relational fragment.

2. Given a SPARQL query Q in the relational fragment and a set of variables X where X ⊆
dom(Q), the query (SELECTXWHERE Q) is a query in the relational fragment.

3. A query (VALUES X Ω) where dom(µ) � X for each µ ∈ Ω is a query in the relational
fragment.

4. Given a SPARQL query Q in the relational fragment and a filter-condition φ where var(φ) ⊆
dom(Q) and φ is a Boolean combination of equality atoms, the query (Q FILTER φ) is a
query in the relational fragment.

5. Given two SPARQL queries Q1 and Q2 in the relational fragment, the queries (Q1 AND Q2)
and (Q1 MINUS Q2) are queries in the relational fragment.

6. Given two SPARQL queries Q1 and Q2 in the relational fragment where dom(Q1) �
dom(Q2), the query (Q1 UNION Q2) is a query in the relational fragment.

As we already mentioned, all solution mappings of a query in the relational fragment have
the same domain. This is formalized as follows.

Lemma 3.4. Let Q be a SPARQL query in the above relational fragment. Then, for every graph G
it holds that dom(µ) � dom(Q) for each mapping µ ∈ JQKG.

Proof. It can be shown by induction on the structure of the query Q.

If Q is a triple pattern then, by definition, dom(Q) is the set of variables occurring in Q,
and dom(µ) � µ for every solution µ of Q.

If Q has the form (SELECTXWHERE P) then, by induction, each solution µ′ of query P
holds that dom(µ′) � dom(P). Since X ⊆ dom(P), it holds that for every solution µ of Q
there exists a solution µ′ of P such that µ′|X � µ. Hence, dom(µ) � dom(µ′|X) � X. By
definition, dom(Q) � X. Hence, dom(µ) � dom(Q).
If Q has the form (VALUESXΩ) then, by definition, dom(µ) � X � dom(Q), for each
solution µ of Q.

If Q has the form (P FILTER φ) then each solution µ of Q is also a solution of query P. By
induction, dom(µ) � dom(P). Since dom(Q) � dom(P), it holds that dom(µ) � dom(Q).
If Q has the form Q1 AND Q2 then for each solution µ of Q there exists two solutions µ1 of
Q1 and µ2 of Q2 such that µ � µ1 ⌣ µ2. By induction, dom(µ1) � dom(Q1) and dom(µ2) �
dom(Q2). By definition, dom(Q) � dom(Q1) ∪ dom(Q2). Hence, dom(µ) � dom(Q).
If Q has the form Q1 MINUS Q2 then for each solution µ of Q, µ is also a solution of
Q1. By induction, dom(µ) � dom(Q1). By definition, dom(Q) � dom(Q1). Hence,
dom(µ) � dom(Q).

31

If Q has the form Q1 UNION Q2 then for each solution µ of Q it holds that µ is a solution
of Q1 or µ is a solution of Q2. Without loss of generality, assume that µ is a solution
of Q1. By induction, dom(µ) � dom(Q1). By definition, dom(Q) � dom(Q1). Hence,
dom(µ) � dom(Q).

The important property of the SPARQL relational fragment is that its queries are ex-
pressible as relational algebra queries. We next present the translation procedure from a
SPARQL query Q in the relational fragment to a relational algebra query, denoted ra(Q).
The schema of the relational query ra(Q) is the relational schema of the V-database that
results from translating Q according to Definition 3.3. This translation is mostly based in
the translation from SPARQL to relational algebra by Cyganiak [21]. The difference is that
we restrict his translation to the relational fragment of SPARQL.

If Q is the query (VALUESX Ω) in the relational fragment of SPARQL, then ra(Q) is the
V-table R where dom(R) � X and the tuples of R are the mappings in Ω. Recall that
dom(µ) � X for each µ ∈ Ω because the query Q is in the relational fragment of SPARQL.

The translation of a triple pattern to a relational algebra query is the result from applying
the following operators over the relation containing the triples:

1. A constant c in a triple pattern implies a selection with an equality formula among c
and the attribute where c occurs. For instance, if the constant c occurs in the subject
position of the triple pattern then the operator σ?s�c is be applied.

2. A variable ?x occurring twice in a triple implies a selection with an equality among
the positions where ?x occurs. For instance, if ?x occurs in the subject and in the
object of a triple pattern, then the operator σ?s�?o is applied.

3. A variable ?x in a triple pattern implies a renaming of the attribute where ?x occurs
by ?x. For instance, if variable ?x occurs in the subject position of the triple pattern
then the operator ρ?s/?x is applied.

4. The variables occurring in a triple pattern are the attributes in the result. For instance,
if the variables of the triple pattern are ?x and ?y then π?x ?y is applied.

Example 3.4. The following are translations for triple patterns:

ra((?x, p , ?y)) � ρ?s/?x(ρ?o/Y(π?s,?o(σ?p�p(triples)))),
ra((?x, p , o)) � ρ?s/?x(π?s(σ?p�p∧?o�o(triples))),

ra((?x, p , ?x)) � ρ?s/?x(π?s(σ?p�p∧?o�?s(triples))).

Let Q ,Q1,Q2 be queries in the relational fragment of SPARQL, X ,Y be sets of variables
where X ⊆ dom(Q) and Y � type(Q1) ∩ type(Q2), and φ be a Boolean combination of
equality formulas. The translation for the rest of operators of the relational fragment of

32

SPARQL is defined recursively by the following equalities:

ra(SELECTXWHERE Q) � πX(ra(Q)),
ra(Q FILTER φ) � σφ(ra(Q)),
ra(Q1 AND Q2) � ra(Q1) 1 ra(Q2),

ra(Q1 UNION Q2) � ra(Q1) ∪ ra(Q2),
ra(Q1 MINUS Q2) � ra(Q1) 1 (πY(ra(Q1)) − πY(ra(Q2))).

Now we are ready to present the correspondence among SPARQL queries in the relational
fragment and the V-tables relational algebra.

Theorem 3.1. For every SPARQL query Q in the relational fragment and RDF graph G, it holds
that JQKG � Jra(Q)Kvdb(G).

Proof. It can be shown by induction on the structure of the query Q.

If Q is a triple pattern then, by simple inspection in all possible combinations for constants
and variables, it holds that JQKG � Jra(Q)Kvdb(G).

If Q has the form (SELECTXWHERE P) then, by induction, µ′ is a solution of JPKG if and
only if µ′ is a solution of Jra(P)Kvdb(G). By definition, for every solution µ of JQKG there is
a solution µ′ of JPKG such that µ′|X � µ. Hence, µ is a solution of Jra(Q)Kvdb(G). Since this
argument can be used in the contrary direction, we conclude that JQKG � Jra(Q)Kvdb(G).

If Q has the form (VALUESXΩ) then, by definition JQKG � Jra(Q)Kvdb(G).

If Q has the form (P FILTER φ) then each solution µ of JQKG is also a solution of query
P. By induction, JPKG � Jra(P)Kvdb(G). Since µ satisfies the condition φ, it holds that µ is
a solution of Jra(P)Kvdb(G). Since this argument can be used in the contrary direction, we
conclude that JQKG � Jra(Q)Kvdb(G).

If Q has the form Q1 AND Q2 then for each solution µ of JQKG there exists two solutions
µ1 of JQ1KG and µ2 of JQ2KG such that µ � µ1 ⌣ µ2. By induction, µ1 is a solution
of Jra(Q1)Kvdb G and µ2 is a solution of Jra(Q2)Kvdb G. By definition, µ is a solution ofJra(Q)Kvdb G. Since this argument can be used in the contrary direction, we conclude thatJQKG � Jra(Q)Kvdb(G).

If Q has the form Q1 MINUS Q2 then for each solution µ of JQKG, µ is also a solution ofJQ1KG and there not exist a solution µ2 of JQ2KG such that µ1 ∼ µ2. By induction, µ is
also a solution of Jra(Q1)Kvdb(G) and there not exist a solution µ2 of Jra(Q2)Kvdb(G) such that
µ1 ∼ µ2. Let Y be the set dom(Q1) ∩ dom(Q2). Then, µ|Y is a solution of the relational
algebra expression πY(ra(Q1)) − πY(ra(Q2)). Since µ ∼ µY , it holds that µ is a solution of
the relational algebra expression Q1 1 (πY(ra(Q1)) − πY(ra(Q2))). By definition, µ is then
a solution of Jra(Q)Kvdb(G). Since this argument can be used in the contrary direction, we
conclude that JQKG � Jra(Q)Kvdb(G).

If Q has the form Q1 UNION Q2 then the set of solutions of JQKG is the union of the setsJQ1KG and JQ2KG. By induction, this set is the union of the respective sets Jra(Q1)Kvdb(G)
and Jra(Q2)Kvdb(G). By definition, this set is Jra(Q)Kvdb(G). Hence, it holds that JQKG �Jra(Q)Kvdb(G).

33

In the remainder of this section we will use relational algebra queries to query RDF graphs
viewed as V-databases. That is, given a relational algebra query Q we write JQKG to denote
the result of evaluating JQKvdb(G).

3.3 Approximating certain answers in SPARQL
So far, we proposed a semantics where the RDF graphs can be understood in terms of
V-databases. Recall that a V-database is a database composed by tables with marked
nulls called V-tables (see Section 3.2). Also, we identify a SPARQL fragment where
queries can be codified as relational algebra queries over V-databases. Our motivation
to show this correspondence among the RDF/SPARQL and V-tables/relational algebra is
to use the techniques to compute certain answers from the relational algebra to SPARQL.
In this section we define conceptually the problem and the techniques that we evaluate
experimentally in the next section.

3.3.1 Certain answers with null values
Consider the RDF graph of Example 3.1 that we replicate here:

NicoleSimpson Female ReevaSteenkamp

OJSimpson Male OscarPistorious

⊥

gender gender

gender gender

killedBy

killedBy

and the SPARQL query

(SELECT ?x WHERE ((?x, killedBy, ?y)MINUS (?y, gender,Male)))

that asks for people whose killer is not a male. The answer Nicole Simpson—given
according to the standard SPARQL semantics—is uncertain because we do not known if
the killer was not male; the blank node ⊥ could refer to a male in the data.

Formally, a tuple µ is said to be a certain answer of a relational algebra query Q over a
V-database D if for every database D′ ∈ repr(D) it holds that µ ∈ JQKD′. The translation of
the notion of certain answer from relational algebra to the relational fragment of SPARQL
under the naive semantics of RDF graphs is straightforward. Given a SPARQL query Q in
the relational fragment and a graph G, a solution mapping µ is a certain answer of Q on G
if for every graph G′ without blank nodes where G′ |�naive G it holds that µ ∈ JQKG′.

Lipski [50] generalizes the notion of certain answers to incorporate answers having null
values. Libkin [48] called certain answers with nulls to this notion. Given a V-database D
and a relational algebra query Q over the schema of D, a tuple µ is a certain-answer with
nulls of Q on D if and only if for every map h : D → D′ where D′ ∈ repr(D), it holds that
h(µ) is a certain answer of Q on D′. This notion is defined in the context of SPARQL as
follows.

34

Definition 3.7 (Certain-answers with nulls [48]). Let G be an RDF graph and Q be a SPARQL
algebra query in the relational fragment. Then, the set of certain-answers with nulls, denoted
cert(Q ,G), is the set of mappings defined as follows:

cert(Q ,G) � {µ | h(µ) ∈ JQKG′ for every map h : G→ G′ where h(G) � G′ and
G′ has no blank nodes}.

Example 3.5. Consider the graph G of Example 3.1 (we replicate above to help the reader) and
the SPARQL query (NicoleSimpson, killedBy, ?x) that asks for the person ?x who killed Nicole
Simpson. The mapping µ � {?x 7→ ⊥} is not a certain-answer of Q on G because µ has the blank
node ⊥. On the other hand, µ is a certain-answer with nulls of Q on G because for every map
h : G→ G′ it holds that the mapping µ � {?x 7→ h(⊥)} is a certain-answer of Q on G.

To understand the difference between these two notions, let A � (R, P, E, I) be an interpre-
tation of G, and let h : G → G′ be a map where G′ has no blank nodes and A |� G′.
The logic statement A |� killedBy(NicoleSimpson,⊥) does not hold because, by definition,
⊥ < dom(I). On the other hand, the statement A |� killedBy(NicoleSimpson, h(⊥)) holds be-
cause (NicoleSimpson, killedBy, h(⊥)) ∈ G′. The notion of certain-answer with nulls therefore
captures some correct information that the notion of certain-answer losses.

The notion of possible-answer is a complementary notion to that of certain-answer. An
answer µ is said possible for a query Q on a V-database D if µ ∈ JQKD′ for some V-
database D′ ∈ repr(D). Unlike certain-answers, admitting null values in possible answers
do not capture more meaning. To see this, consider the query Q that ask for the killer of
Nicole Simpson. For any person a the mapping µ � {?x 7→ a} is a possible answer of Q.
The mapping µ � {?x 7→ ⊥} does not add information to set of possible-answers since it
is subsumed by all of them.

We next provide the definition of possible-answers in terms of SPARQL queries and RDF
databases.

Definition 3.8 (Possible-answers). Let G be an RDF graph, and Q be a SPARQL query on the
relational fragment. The set of possible-answers, denoted poss(Q ,G), is the set of mappings defined
as follows:

poss(Q ,G) � {µ | µ ∈ JQKG′ for some map h : G→ G′ where h(G) � G′ and
G′ has no blank nodes}.

3.3.2 Under- and over-approximations
Computing certain- and possible-answers implies a significant computational overhead.
If we consider relational algebra, the data complexity of the standard query evaluation
problem is AC0; on the other hand, the analogous complexity with unknown values is
coNP-hard [2]. Since in practice we cannot return the exact set of certain- and possible-
answers we require approximated evaluation procedures. In this section we formalize
what we mean by approximated.

If we ask for the certain-answers of a query, we face two types of error. The first type, called
false positive, consists in returning an answer that is not certain. This error is equivalent to

35

make a false claim. The second type, called false negative, consists in not returning a certain-
answer. This error is equivalent to make an omission. False positives are considered worse
errors than false negatives [49]. Evaluation procedures with no false positives are said to
be sound, while evaluation procedures with no false negatives are said to be complete. Since
sound and complete evaluation procedures for certain answers are intractable, it is widely
accepted to define approximations that are always sound but sometimes incomplete [63].
On the other hand, if we ask for the possible-answers of a query, false negatives are
considered worse errors than false positives. An approximation of possible-answers must
therefore include all possible answers, and sometimes some answers that are impossible.

The question that arises is how good is an approximation. Regarding the accuracy of the
approximations for certain-answers, in one extreme we can simply choose an evaluation
procedure returning no answers. This choice is trivially correct and without computational
cost. However, it gives no useful information. On the other extreme, we can define a
procedure that is complete, but it implies in some cases an intractable complexity. In
general, we want an evaluation procedure that returns “many” or “enough” answers with
the computational resources we have. However, there is no consensus in what we exactly
mean by “many” or “enough” answers.

An evaluation procedure is a function Eval that receives a SPARQL query Q in the relational
fragment, and an RDF graph G, and returns a possibly infinite set Ω of mappings. The
functions cert and poss (see definitions 3.7 and 3.8), that compute the certain- and possible-
answers, are therefore evaluation procedures. We next present the notions of under- and
over-approximation among evaluation procedures. These notions allow a comparison of
evaluation procedures in terms of their accuracy with respect to cert and poss.

The notion of under-approximation is the simplest of the two notions because it expresses
the order given by the relation of subset among answer sets. On the other hand, the notion
of over-approximation is based on the order of informativeness among mappings with the
same domain. The notion of informativeness depends on the idea, called null-substitution
principle by Codd [20], that constants provide more information than null values, so the
substitution of a null value by a constant implies more information.

Definition 3.9 (Informativeness of mappings). Given two mappings µ1 and µ2 where
dom(µ1) � dom(µ2), the mapping µ2 is said to be as informative as the mapping µ1, denoted
µ1 ≤ µ2, if there exists a map h such that h(µ1) � µ2.

Grahne [28] shows that the informativeness order of tuples with nulls defines a lattice. The
extension of his lattice to tuples with marked nulls is straightforward. We present such
lattice using the notation of SPARQL mappings in Appendix A.

Now we present the notions of over- and under-approximation. They define when an
approximation is correct in terms of soundness and completeness, and present an order
for the informativeness of solutions.

Definition 3.10 (Under- and over-approximation). Let Eval1 and Eval2 be evaluation proce-
dures.

1. We say that Eval1 under-approximates Eval2, denoted Eval1 ≤under Eval2, if and only if
for every graph G and every SPARQL query Q in the relational fragment, it holds that
Eval1(Q ,G) ⊆ Eval2(Q ,G).

36

2. We say that Eval1 over-approximates Eval2, denoted Eval1 ≤over Eval2, if and only if for
every graph G, and every SPARQL query Q in the relational fragment, it holds that for every
mapping µ2 ∈ Eval2(Q ,G) there exists a mapping µ1 ∈ Eval1(Q ,G) such that µ1 ≤ µ2.

We write Eunder and Eover to denote the set of evaluations procedures over SPARQL queries in the
relational fragment that under-approximate cert and over-approximate poss, respectively.

Example 3.6. Let G be an RDF graph, Q be a SPARQL query in the relational fragment, and
Eval1 and Eval2 be two evaluation procedures where:

Eval1(Q ,G) � {{?x 7→ ⊥1}},
Eval2(Q ,G) � {{?x 7→ ⊥1}, {?x 7→ ⊥2}}.

Considering only this query and this graph, it seems that Eval1 is strictly less accurate than
Eval2 regarding to under-approximations (i.e., Eval1 ≤under Eval2, but not Eval2 ≤under Eval1).
On the other hand Eval1 and Eval2 over-approximate each other (i.e., Eval1 ≤over Eval2 and
Eval2 ≤over Eval1). Intuitively, the mapping {?x 7→ ⊥2} adds more information when considering
the partial order defined by under-approximations, but not when considering over-approximations.

Lemma 3.5. (Eunder, ≤under) is a lattice.

Proof. To show that (Eunder, ≤under) is a lattice we have to show that (Eunder, ≤under) is a
partial order and there exists an algebra (Eunder,∧,∨) where for any pair of evaluation
procedures Eval1 and Eval2 in Eunder it holds that:

1. Eval1 ∨Eval2—the lattice join—is the minimal evaluation procedure in Eunder such
that Eval1 and Eval2 under-approximate Eval1 ∨Eval2, and

2. Eval1 ∧Eval2—the lattice meet—is the maximal evaluation procedure in Eunder such
that Eval1 and Eval2 are under-approximated by Eval1 ∧Eval2.

(Eunder, ≤under) is a partial order because the reflexivity, antisymmetry, and transitivity of
(Eunder, ≤under) follow from the same properties in ⊆.

Throughout this proof, we will assume that G is an arbitrary graph, and that Q is an
SPARQL query in the relational fragment.

The lattice join: Given two evaluation procedures Eval1 and Eval2 in Eunder, let the join be
defined as follows:

(Eval1 ∨Eval2)(Q ,G) � Eval1(Q ,G) ∪ Eval2(Q ,G).

Since Eval1 ∈ Eunder and Eval2 ∈ Eunder, it holds that:

Eval1(Q ,G) ⊆ cert(Q ,G),
Eval2(Q ,G) ⊆ cert(Q ,G).

It holds then that:

Eval1(Q ,G) ∪ Eval2(Q ,G) ⊆ cert(Q ,G).

37

Thus, it holds that Eval1 ∨Eval2 ∈ Eunder. Hence, ∨ is closed in Eunder.

By simple inspection, it holds that Eval1 and Eval2 under-approximate Eval1 ∨Eval2.

Let Eval1, Eval2 and Eval3 be evaluation procedures in Eunder such that Eval1 and Eval2
under-approximate Eval3. By definition, it holds that:

Eval1(Q ,G) ⊆ Eval3(Q ,G),
Eval2(Q ,G) ⊆ Eval3(Q ,G).

It holds then that Eval1(Q ,G)∪Eval2(Q ,G) ⊆ Eval3(Q ,G). Thus, it holds that Eval1 ∨Eval2
under-approximates Eval3. Hence, Eval1 ∨Eval2 is the minimal evaluation procedure in
Eunder that is under-approximated by Eval1 and Eval2.

The lattice meet: Given two evaluation procedures Eval1 and Eval2 in Eunder, let the meet
be defined as follows:

(Eval1 ∧Eval2)(Q ,G) � Eval1(Q ,G) ∩ Eval2(Q ,G).

Let Eval1, Eval2 and Eval3 be evaluation procedures in Eunder such that Eval1 and Eval2
are under-approximated by Eval3. By definition, it holds that:

Eval1(Q ,G) ⊇ Eval3(Q ,G),
Eval2(Q ,G) ⊇ Eval3(Q ,G).

It holds then that Eval1(Q ,G) ∩Eval2(Q ,G) ⊇ Eval3(Q ,G). Thus, it holds that Eval3(Q ,G)
under-approximates Eval1 ∧Eval2. Hence, Eval1 ∧Eval2 is the maximal evaluation proce-
dure in Eunder that under-approximates Eval1 and Eval2.

The top of the lattice (Eunder, ≤under) is cert and the bottom is the evaluation Eval∅ where
Eval∅(Q ,G) � ∅ for every graph G and query Q over the schema of G.

We next show that one can obtain an interesting lattice from over-approximations. How-
ever, unlike under-approximations, over-approximations do not define a partial order
over evaluation procedures. To see this, consider the evaluation procedures Eval1 and
Eval2 where Eval1(Q ,G) � Eval2(Q ,G) for every graph G and SPARQL query Q in the
relational fragment, except a query Q′ and graph G′ where Eval1(Q′,G′) � {(⊥1)} and
Eval2(Q′,G′) � {(⊥2)}. It is not difficult to see that Eval1 ≤over Eval2 and Eval1 ≤over Eval2.
However, Eval1 , Eval2. Hence, since over-approximations do not define antysimetric rela-
tions, they do not define partial orders. Theorem 3.2 below states that over-approximations
define preorders. We will show later that over-approximations define a lattice, but over
equivalence classes of evaluation procedures.

Theorem 3.2. (Eover, ≤over) is a preorder.

Proof. Let Eval be an evaluation procedure in Eover. Given a graph G and a SPARQL query
Q in the relational fragment, Eval ≤over Eval because for each mapping µ ∈ Eval(Q ,G) it
holds that µ ≤ µ. Hence, (Eover, ≤over) is reflexive.

38

Let Eval1, Eval2, and Eval3 be evaluation procedures in Eover where Eval1 ≤over Eval2 and
Eval2 ≤over Eval3. Let G be a graph, Q be a relational algebra query for graphs, and µ
be a mapping where µ3 ∈ Eval3(Q ,G). Since Eval2 ≤over Eval3, there exists a mapping
µ2 ∈ Eval2(Q ,G) such that µ2 ≤ µ3. Since Eval1 ≤over Eval2, there exists a mapping
µ1 ∈ Eval1(Q ,G) such that µ1 ≤ µ2. Since ≤ is transitive (see Appendix A), it holds that
µ1 ≤ µ3. Thus, Eval1 ≤over Eval3. Hence, (Eover, ≤over) is transitive.

Since (Eover, ≤over) is reflexive and transitive, it is a preorder.

We require to consider equivalence classes over Eover to build a partial order from the
preorder (Eover, ≤over). We next define the equivalence relation as usual.

Definition 3.11 (Over-approximation equivalence classes). Given two evaluation procedures
Eval1 and Eval2 in Eover, we say that they are equivalent, denoted Eval1 � Eval2, if and only if
Eval1 ≤over Eval2 and Eval1 ≤over Eval2.

We next present the lattice for over-approximations.

Theorem 3.3. (Eover/�, ≤over) is a lattice.

Proof. To show that (Eover/�, ≤over) is a lattice we have to show that (Eover/�, ≤over) is a
partial order and that for any pair Eval1, Eval2 ∈ Eover/� they have a join and a meet:

1. [Eval1]� ∨ [Eval2]�—the lattice join—is the minimal equivalence class of evaluation
procedures in Eover/� such that [Eval1]� and [Eval2]� over-approximate [Eval1]� ∨
[Eval2]�, and

2. [Eval1]�∧[Eval2]�—the lattice meet—is the maximal equivalence class of evaluation
procedures in Eover/� such that [Eval1]� and [Eval2]� are over-approximated by
[Eval1]� ∧ [Eval2]�.

The lattice (Eover/�, ≤over) is a partial order because the reflexivity and the transitivity
follow from the fact that Eover/, ≤over is a preorder; and the antysimetry follows from the
definition of equivalence.

Throughout this proof, we will assume that G is an arbitrary graph, and Q is a SPARQL
query in the relational fragment.

The join: Given two evaluation procedures Eval1 and Eval2 in Eover, let the join of them,
denoted Eval1 ∨Eval2, be defined as follows:

(Eval1 ∨Eval2)(Q ,G) � {µ1 ∨ µ2 | µ1 ∈ Eval1(Q ,G) and µ2 ∈ Eval2(Q ,G)},

where µ1∨µ2 denotes the least informative mapping that is more informative than µ1 and
µ2 (see Appendix A).

Given two equivalence classes of evaluation procedures [Eval1]� and [Eval2]� in Eover/�,
let the join of them, denoted [Eval1]� ∨ [Eval2]�, be defined as follows:

[Eval1]� ∨ [Eval2]� � [Eval1 ∨Eval2]� .

39

To see that the equivalence class of evaluation procedures [Eval1 ∨Eval2]� is over-
approximated by [Eval1]� and [Eval2]�, let µ be a mapping in (Eval1 ∨Eval2)(Q ,G). By
construction, there exists mappings µ1 and µ2 where µ1 ∈ Eval1(Q ,G), µ2 ∈ Eval2(Q ,G),
and µ � µ1 ∨ µ2. Since µ1 ≤ µ and µ2 ≤ µ, it holds that Eval1 and Eval2 over-approximate
Eval1 ∨Eval2. Hence, also [Eval1]� and [Eval2]� over-approximate [Eval1]� ∨ [Eval2]�.

To see that [Eval1]� ∨ [Eval2]� is the minimal equivalence class of evaluation proce-
dures that is over-approximated by [Eval1]� and [Eval2]�, let [Eval3]� be an equiva-
lence class of evaluation procedures in Eover/� such that [Eval1]� and [Eval2]� over-
approximate [Eval3]�, and µ be a mapping in Eval3(Q ,G). Then, there exists mappings
µ1 ∈ Eval1(Q ,G) and µ2 ∈ Eval2(Q ,G) such that µ1 ≤ µ and µ2 ≤ µ. By definition,
µ1 ∨ µ2 ∈ (Eval1 ∨Eval2)(Q ,G). Because µ1 ∨ µ2 is the least informative mapping that is
more informative than µ1 and µ2 (see Appendix A), it holds that µ1 ∨ µ2 ≤ µ3. Hence,
Eval1 ∨Eval2 ≤over Eval3, so [Eval1]� ∨ [Eval2]� ≤over [Eval3]�.

The fact that the operator∨ is closed in the set Eover/� follows from that [Eval1]�∨[Eval2]�
is the minimal equivalence class of evaluation procedures that is over-approximated by
[Eval1]� and [Eval2]�. The equivalence classes of evaluation procedures [Eval1]� and
[Eval2]� over-approximate [poss]� because they are in Eover/�. Since [Eval1]� ∨ [Eval2]�
is minimal, it follows that [Eval1]�∨[Eval2]� over-approximates [poss]�. Hence, [Eval1]�∨
[Eval2]� ∈ Eover/�.

The meet: Given two evaluation procedures Eval1 and Eval2 in Eover, let the meet of Eval1
and Eval2, denoted Eval1 ∧Eval2, be defined as follows:

(Eval1 ∧Eval2)(Q ,G) � Eval1(Q ,G) ∪ Eval2(Q ,G).

Then, the meet of the equivalence classes of evaluation procedures [Eval1]� and [Eval2]�,
denoted [Eval1]� ∧ [Eval2]�, is defined as follows:

[Eval1]� ∧ [Eval2]� � [Eval1 ∧Eval2]� .

The fact that the equivalence classes of evaluation procedures [Eval1]� and [Eval2]� over-
approximate [Eval1]�∧[Eval2]� is direct from the definition. Without loss of generality, let
µ be a mapping in Eval1(Q ,G). By definition, mapping µ is also in (Eval1 ∧Eval2)(Q ,G),
thus [Eval1]� ∧ [Eval1]� ≤over [Eval1]�.

To see that [Eval1]� ∧ [Eval2]� is the maximal equivalence class of evaluation procedures
that over-approximates [Eval1]� and [Eval2]�, let [Eval3]� be an equivalence class of eval-
uation procedures in Eover/� that over-approximates [Eval1]� and [Eval2]�, and µ be a
mapping in (Eval1 ∧Eval2)(Q ,G). Then, by definition, tuple µ ∈ Eval1(Q ,G)∪Eval2(Q ,G).
Without loss of generality assume that µ ∈ Eval1(Q ,G). Since Eval3 ≤over Eval1, there exists
a mapping µ′ ∈ Eval3(Q ,G) such that µ′ ≤ µ. Hence, [Eval1]� ∧ [Eval2]� ≤over [Eval3]�.

The fact that the operator ∧ is closed on Eover/� follows from the transitivity of ≤over.
Indeed, [Eval1]� ∧ [Eval2]� ≤over [Eval1]� and [Eval1]� ≤over [poss]� implies [Eval1]� ∧
[Eval2]� ≤over [poss]�.

To conclude the discussion about over-approximations, we will recall the expected prop-
erties of their lattice: it has a top and a bottom element.

40

The top element of (Eover/�, ≤over) is the equivalence class of the evaluation poss, because
by definition, every element in Eover over-approximates poss.

The bottom element of (Eover/�, ≤over) is the equivalence class of the evaluation procedure
Eval∅ where, for every graph G and SPARQL query Q in the relational fragment, it holds
that:

1. If poss(Q ,G) is empty, then Eval∅(Q ,G) � ∅.

2. otherwise, if poss(Q ,G) has an tuple µ, then Eval∅(Q ,G) � {µ′} where µ′ is the
mapping that associates a different fresh blank node to each variable ?x ∈ dom(Q).

In fact, for every evaluation procedure Eval′ ∈ Eover it holds that Eval∅ ≤over Eval′. The
relation is trivial if poss(Q ,G) is empty. Otherwise, if poss(Q ,G) has an answer µ, the
relation follows from that [µ′]� is the bottom of the lattice (Ωµ/�, ≤), whereΩµ is the set of
mappings with domain dom(Q) that are less informative than µ, and � is the equivalence
relation for the informativeness preorder ≤ among mappings (see Appendix A).

Lattices of incomplete data were studied by Grahne [28]. In this section we extended his
work by introducing two lattices for approximations. An approximation is more accurate
when it is closer to the top of its corresponding lattice. Since the complexity of the standard
query evaluation of the top of these lattices is coNP-hardness [2], and the evaluation of the
bottom are trivial, defining a practical evaluation procedure in between implies a trade-off
between complexity and accuracy. The problem is that there is no objective measure about
“how good” is an approximation. The study of the lattice of approximations may serve
for this purpose.

3.3.3 Approximating relational algebra queries
In this section we present an under- and an over-approximation for relational algebra
queries based on the combination of both types of approximation. The combination of
under- and over-approximations was proposed by Biskup [15] when defining tables having
maybe tuples, that we will call M-tables (for "Maybe") in what follows. Intuitively, an M-
table R is a table where each tuple µ ∈ R is marked either as sure or maybe. Biskup’s tables
also admit nulls to represent values that are unknown. Biskup considered non-marked
nulls (i.e., Codd nulls [20]), however in this chapter we assume that M-tables admit marked
nulls because they allow expressing blank nodes. As we show herein, this extension is
straightforward.

Formally, an M-table R over a set of attributes X, is defined by a pair of V-tables, denoted
(R2, R1) where R1 ⊆ R2 and dom(R1) � dom(R2) � X. We write sure(R) and poss(R) to
denote the first and second components of an m-table R, respectively. We write dom(R)
to denote the set of attributes X on which the M-table R is defined. Intuitively, sure(R)
denotes the sure tuples of R and poss(R) to denote all tuples of R (i.e., the tuples that
are marked as sure or maybe). Tuples in poss(R) \ sure(R) are said maybe-tuples of R. An
M-database over a database schema (T, dom) is a function that associates each table name
r ∈ T to a M-table over dom(r), denoted rD .

41

Example 3.7. Consider that the employees of a company are registered in the following M-table:

?person ?office
Alice 221
Bob ⊥1

Carl ⊥1
Denis ⊥2

. (3.1)

The dashed line divides the sure-tuples (above) from the maybe-tuples (below). The sure tuples are
interpreted as in V-tables. The first tuple states that Alice works in office 221, and the second tuple
that bob works in an office, but that the office is unknown. The first maybe-tuple states that we do
not known if Carl works in the company, but in the case Carl works there, it works in the same office
as Bob. The second maybe-tuple states that we do not know if Denis works in the company nor the
room where Denis works. Moreover, we know that no more people than the specified as possible by
the table (i.e., Alice, Bob, Carl and Denis) work in the company.

Definition 3.12 (Semantics of M-databases). A regular table R′ (i.e., with neither null values
nor maybe-tuples) is said to be an instance of an M-table R if there exists a V-table R′′ where
sure(R) ⊆ R′′ ⊆ poss(R), and there exists a map h : R′′ → R′, and dom(R) � dom(R′) �
dom(R′′).

An M-database D′ is said to be an instance of an M-database D over a database schema (T, dom)
if D′ is an M-table over (T, dom) and for every table name r ∈ T the table rD′ is an instance of rD .

The semantics of an M-database D is given by the set, denoted repr(D), of instances of D. We say
that an interpretation A interprets a M-database D if A |� D′ for a database D′ ∈ repr(D). We
say that an M-database D1 entails an M-database D2, denoted D1 |� D2, if each interpretation of
D1 is also an interpretation of D2.

Observe that M-tables generalize V-tables. In fact, a V-table R has the same interpretations
that the M-table R′ where R � sure(R′) � poss(R′).

Biskup [15] proposed an algebra for M-tables that includes the usual operators of rela-
tional algebra in the named perspective: selection, projection, renaming, join, union, and
difference. The main property of this algebra is, roughly speaking, that it defines an under-
and an over-approximation of the evaluation procedures that compute the certain answers
with null values and the possible answers evaluation procedures, respectively. We next
present an example to illustrated the idea behind the Biskup algebra and how this property
holds.

Example 3.8. Consider the following M-tables:

R1 �

?x ?y
a b
⊥ c

, R2 �

?x ?z
a d
e f

, R3 �

?z
d

 ,
42

where the dashed line separate the sure tuples (above) from the maybe tuples (below). Let Q be the
relational algebra query (R1 1 R2) 1 R3. We start with the first join:

R1 1 R2 �

?x ?y ?z
a b d
a c d
e c f

.

The sure tuple is obtained of joining the tuples where no null values are involved. The two maybe
tuples are obtained of instancing the null value as a or c, respectively. These tuples resulting of
instancing null values are marked as maybe because they are not true in all instances.

We next evaluate second join:

(R1 1 R2) 1 R3 �

?x ?y ?z
a b d
a c d

 .
In this example the set {(a , b , d)} marked as sure coincides exactly with the certain answers of the
query. Similarly, the set {(a , b , d), (a , c , d)} coincides with the possible answers of the query. In
general there are no coincidences, but approximations.

Gugliardo and Libkin [33] proposed an approximation for certain answers that follows the
Biskup idea of combining the answers that are sure with the answers that are possible.
They use this approximation to show experimentally the feasibility of computing certain
answers for SQL with no much overhead.

Greco et al. [30, 29] showed that the approximation by Guagliardo and Libkin can be im-
proved in terms of accuracy by using conditional tables. Conditional tables are essentially
V-tables extended with formulas restricting the interpretations of the null values. For
instance, a conditional table can be extended with the formula ⊥1 , ⊥2 that excludes the
interpretations of the table where ⊥1 and ⊥2 are interpreted as the same element of the
domain. The use of conditional tables is out the scope of this thesis.

In this section we present an under- and an over-approximation that is based in the
Biskup [15] algebra of M-tables and in the approximation of certain answers by Guagliardo
and Libkin [33]. We present these approximations in terms of relational algebra queries of
RDF graphs. Recall that every SPARQL query in the relational fragment can be codified
as a relational algebra query (see Theorem 3.1) so we can study approximations in this
SPARQL fragment by using relational algebra queries. For simplicity, for now on, given a
relation algebra query Q and an RDF graph G, we write JQKG to denote JQKvdb(G) (recall
that vdb(G) is the graph G codified as a V-table).

The advantage of the Guagliardo an Libkin [33] approximation is that it consists in rewrit-
ing a SQL query Q into a SQL query Q′ that approximates Q. The relational algebra
does not provide an operator to distinguish blanks from constants. Hence to rewrite a
relational algebra query, we need a built-in predicate in the form isBlank(?x) in the target
algebra, which evaluates to true for a mapping µ if µ(?x) ∈ B, or false otherwise. In the
remainder of this section we will present two translations of a relational algebra query Q
into relational algebra extended with the operator isBlank, denoted (·)under and (·)over.

43

Approximated selection

The translation of the under-approximation was developed by Guagliardo and Libkin [33].

Definition 3.13 (Under- and over-approximated filter-conditions [33]). Let φ be a filter-
condition whose atoms are equality atoms. Then, the under-approximated (φunder) and the over-
approximated (φover) filter-conditions for φ are defined recursively as follows:

(?x � ?y)under � (?x � ?y),
(?x � a)under � (?x � a),
(?x , ?y)under � (?x , ?y) ∧ ¬ isBlank(?x) ∧ ¬ isBlank(?y),
(?x , a)under � (?x , a) ∧ ¬ isBlank(?x),
(ψ1 ∨ ψ2)under � (ψ1)under ∨ (ψ2)under,

(ψ1 ∧ ψ2)under � (ψ1)under ∧ (ψ2)under,

(?x � ?y)over � (?x � ?y) ∨ isBlank(?x) ∨ isBlank(?y),
(?x � a)over � (?x � a) ∨ isBlank(?x),
(?x , ?y)over � (?x , ?y),
(?x , a)over � (?x , a),
(ψ1 ∨ ψ2)over � (ψ1)over ∨ (ψ2)over,

(ψ1 ∧ ψ2)over � (ψ1)over ∧ (ψ2)over,

where a is a constant, ?x and ?y are variables, and ψ1 and ψ2 are filter-conditions.

According to Guagliardo and Libkin, given a relational algebra query Q and a filter-
condition φ with only equalities as atoms, the result of Jσφunder(Q)KG under-approximates
cert(σφ(Q),G), for every graph G. Likewise, the result of Jσφover(Q)KG over-approximates
poss(σφ(Q),G). This result justifies the definition of the approximation of the under- and
over-approximations as follows.

Definition 3.14 (Approximated translation of the select). Let Q be a relational algebra query
and φ be a filter-condition with only equities as atoms. Then, the under- and over- approximated
translations of σφ(Q) are defined as follows:

(σφ(Q))under � σφunder(Qunder),
(σφ(Q))over � σφover(Qover).

Approximated join

Based on the ideas of Biskup [15], and Guagliardo and Libkin [33] the approximation of
the join operator can be done by expressing them in term of equalities. This translation
process is described in the following example.

Example 3.9. Let R(?x, ?y) and S(?y, ?z) be two V-tables. Since variable ?y is the only common
attribute between these tables, it holds that:

R 1 S ≡ π?x,?y,?z(σ?y�?y2
(R 1 S[?y/?y2])).

Keep in mind that S[?y/?y2] denotes the renaming in table S of attribute ?y as ?y2. Since tables R
and S[?y/?y2] have no common attributes, the evaluation of query R 1 S[?y/?y2] is simply a cross

44

product, where there are no issues when joining unknown values. In fact, the issue is moved to the
filter-condition. Since we already have a translation for the filter condition, an over-approximation
of R 1 S is defined as follows:

(R 1 S)over � π?x,?y,?z(σ(?y�?y2)over(R 1 S[?y/?y2])). (3.2)

The over-approximation in (3.2) is correct, but it can be improved. To see this, consider the case
when ?y is a blank node ⊥ in a tuple of R and ?y1 is a constant c in a tuple of S. In this case the
approximation in (3.2) produces a tuple where ?y is set to the blank node ⊥. However, it would be
more accurate to return a tuple where ?y is set to the constant c, since the join assumed that ⊥ � c.

To compute the most accurate value from two attributes ?y1 and ?y2 of the previous
example in a simple form, we adapt the SPARQL clause BIND that computes a set of
predefined functions F to the relational algebra (see Definition 2.8).

Definition 3.15 (Relational algebra BIND operator). If Q is a relational algebra query over
RDF graphs, f : (I ∪ B ∪ L ∪ {∅})n → (I ∪ B ∪ L) is a function in F, and ?y, ?x1, . . . , ?xn are
variables such that ?y does not occur in Q nor in ?x1, . . . , ?xn , then BIND?y:� f (?x1 ,...,?xn)(Q) is a
relational algebra query whose semantics is defined for a graph G as follows:

JBIND?y:� f (?x1 ,...,?xn)(Q)KG � {µ ⌣ {?y 7→ f (µ(?x1), . . . , µ(?xn))} | µ ∈ JQKG}.

Observe that Definition 3.15 is restricted to do not have unbound values in the image. This
restriction ensures that this operation is closed (i.e., the answers are V-tables).

Definition 3.16 (If-functions). Let φ(?̄x) be a filter-condition whose variables are indicated in the
parenthesis, f and g be two functions in F, and Ȳ and Z̄ be two lists of variables whose respective
lengths are the arities of f and g. Then, an if-function, denoted IF(φ(?̄x), f (Ȳ), g(Z̄)), is the
function that requires instancing the variables ?̄x ∪ Ȳ ∪ Z̄ to be evaluated. The if-function returns
the value computed by function f if the evaluation of φ is true, and the value computed by a function
g, if the evaluation of φ is false.

Example 3.10. Consider the relation

R �

A B

1 1
2 1

 .
Then:

BINDC�IF(A�B,A+B,A−B)(R) �

A B C

1 1 2
2 1 1

 .
Using the BIND operator the over-approximation in (3.2) can be improved as follows:

(R 1 S)over � π?x,?y,?z(BIND?y:�IF(isBlank(?y1), ?y1 , ?y2)(σ(?y1�?y2)over(R[?y/?y1] 1 S[?y/?y2]))).
(3.3)

45

The same reasoning can be applied to get to an under-approximation for the join. However,
since (?y1 � ?y2)under � (?y1 � ?y2)we can conclude simply that:

(R 1 S)under � R 1 S. (3.4)

The translation described in equations 3.3 and 3.4 is generalized as follows:

Definition 3.17 (Approximated translation of the join). Let Q be a relational algebra query of
the form R 1 S where dom(R) ∩ dom(S) � X, r : X → V and s : X → V be functions that
assign a fresh variable to each variable in X. Then, the under- and over-approximations of the join
are defined as follows:

(R 1 S)under � Runder 1 Sunder,
(R 1 S)over � πdom(R)∪dom(S)(BINDX̄:�IF(r(X̄),s(X̄))(σ(∧?x∈X̄ r(?x)�s(?x))over((r(R)over 1 (s(S))over))),

where r(R) and s(S) denote the results of replacing in R and S each variable ?x ∈ ?x by r(?x) and
s(?x), respectively, and BINDX̄:�IF(r(X̄),s(X̄)) denotes the algebraic operation that assigns to each
variable ?x ∈ X the value IF(isBlank(r(?x)), s(?x), r(?x)) (i.e., the most informative value given
to variable ?x).

The question that arises is whether we can avoid using the operator BIND to approximate
the join operator. The following lemma answers this question.

Lemma 3.6. Let f and g be two functions such that BIND with these functions is expressible in
relational algebra. Then, the operator BIND with if-functions of the form IF(φ(X̄), f (Ȳ), g(Z̄)) is
expressible in relational algebra.

Proof. Let Q be a relational algebra query, andφ be a selection formula whose free variables
are X̄. Let X̄ ∪ Ȳ ∪ Z̄ ⊆ dom(Q) and V be a variable such that V < dom(Q). Then, the
following equivalence shows that the operator BIND with this function is expressible in
the relational algebra:

BINDV :�IF(φ(X̄), f (Ȳ),g(Z̄))(Q) ≡ BINDV :� f (Ȳ)(σφ(Q)(X̄)) ∪ BINDV :�g(Z̄)(σ¬φ(X̄)(Q)).
Since the BIND operator with functions f and g do not add expressive power to the
algebra, we conclude that the operator BIND with function IF(φ(X̄), f (Ȳ), g(Z̄)) does not
add expressive power to the algebra.

Approximated difference

Likewise the approximated join, the translation for the approximated difference can be
done by rewriting the checking of the tuples to be joined as a separated filter condition.
This process is described in the following example.

Example 3.11. Let R(?x) and S(?x) be two tables. Then, it holds that:

R − S ≡ R −Π?x(σ?x�?x′(R 1 S[?x/?x′]). (3.5)

Since tables R and S[?x/?x′] have no common attributes, the evaluation of R 1 S[?x/?x′] is simply
a cross product. Likewise the case of the join, we moved the issues to the selection operator. The
under-approximation of this query can thus be computed as follows:

R − S ≡ R −Π?x(σ(?x�?x′)over(R 1 S[?x/?x′]). (3.6)

46

Intuitively, we are dropping from R all elements of Q that are possibly joinable to an element of S.
Because we want to compute the elements that are “possible” joinable, we use the over-approximation
of the filter-condition.

The same reasoning can be applied to get to an over-approximation for the difference. However, since
(?y1 � ?y2)under � (?y1 � ?y2) we can conclude simply that:

(R − S)over � R − S. (3.7)

The translation described in the previous example is generalized as follows:

Definition 3.18 (Approximated translation of the difference). Let Q be a relational algebra
query of the form R − S where dom(R) � dom(S) � X, s : X → V be a function that assigns
a fresh variable to each variable in X. Then, the under- and over-approximations of the join are
defined as follows:

(R − S)under � Runder − πX(σ∧?x∈X(?x�s(?x))over((R)under 1 (s(S))over),
(R − S)over � Rover − Sunder,

where s(S) denotes the results of replacing in S each attribute ?x ∈ X by s(?x).

The translation to approximate certain- and possible-answers

The following definition describes the summary of the translation for queries Q in re-
lational algebra into queries (with the isBlank Boolean built-in atom as extension) that
approximate Q.

Definition 3.19 (Approximations for relational algebra queries queries). The translations
of a relational algebra query Q to its under- and over-approximation, denoted respectively Qunder
and Qover are defined recursively as follows. Let Q, Q1 and Q2 be relational algebra queries,
r : dom(Q2) ∩ dom(Q2) → V and s : dom(Q2) ∩ dom(Q2) → V be functions that assign each
variable ?x ∈ dom(Q2) ∩ dom(Q2) to a fresh variable, and r(Q1) and s(Q2) denote the results of
replacing in Q1 and Q2 each variable ?x ∈ dom(Q2) ∩ dom(Q2) by r(?x) and s(?x), respectively.

(p)under � p (if p is a predicate)
(R)under � R (if R is a v-table)

(σφ(Q))under � σφunder(Qunder)
(πX̄(Q′))under � πX̄(Q′under)

(ρ?x/?y(Q′))under � ρ?x/?y(Q′under)
(Q1 ∪Q2)under � (Q1)under ∪ (Q2)under

(Q1 1 Q2)under � (Q1)under 1 (Q2)under

(Q1 −Q2)under � (Q1)under − πX̄(σ∧?x∈X̄(?x�s(?x))over((Q1)under 1 (s(Q2))over)
(where X̄ � dom(Q1) � dom(Q2))

(p)over � p (if p is a predicate)
(R)over � R (if R is a v-table)

(σφ(Q))over � σφover(Qover)

47

(πX̄(Q′))over � πX̄(Q′over)
(ρ?x/?y(Q′))over � ρ?x/?y(Q′over)
(Q1 ∪Q2)over � (Q1)over ∪ (Q2)over

(Q1 1 Q2)over � πȲ(BINDX̄:�IF(r(X̄),s(X̄))(σ(∧?x∈X̄ r(?x)�s(?x))over((r(Q1)over 1 (s(Q2))over)))
(where X̄ � dom(Q1) ∩ dom(Q2) and Ȳ � dom(Q1) ∪ dom(Q2))

(Q1 −Q2)over � (Q1)over − (Q2)under.

Theorem 3.4. Let Evalunder and Evalover be the evaluation procedures defined as follows:

Evalunder(Q ,G) � JQunderKG ,

Evalover(Q ,G) � JQoverKG .

Then, Evalunder and Evalover under- and over-approximate the evaluation procedures cert and
poss, respectively.

Proof. It can be shown by induction on the structure of the query. The proof is straightfor-
ward and a proof sketch is provided by Guagliardo and Libkin [33].

3.3.4 SPARQL rewriting strategies
We now explore alternatives in SPARQL to express the rewriting of Definition 3.19. We
will later study these alternative strategies in terms of the their performance over SPARQL
query engines.

To simplify the notations we introduce some notions used by Libkin [49]. We first define
the notion of unification, which joins tuples with unknown values. We say that µ1 and µ2
unify, denoted µ1 ⇑ µ2, if and only if for every common attribute ?x that they share, it
holds that µ1(?x) � µ2(?x) or µ1(?x) ∈ B or µ2(?x) ∈ B; in other words, µ1 ⇑ µ2 holds if and
only if there is a valuation v such that v(µ1(?x)) � v(µ2(?x)) for every common attribute
?x.

Definition 3.20 (Over-approximated semi-join and anti-semi-join). Let R and S be two V-
tables. Then, the generalized operators semi-join (⋉⇑) and anti-semi-join (⋉⇑) are defined as
follows:

R ⋉⇑ S � {µ1 ∈ R | ∃µ2 ∈ S : µ1 ⇑ µ2},
R ⋉⇑ S � {µ1 ∈ R | ∄µ2 ∈ S : µ1 ⇑ µ2}.

With these operators we can write the under-approximation of the difference in a simpler
form by using the following rules:

(Q1 −Q2)under � (Q1)under ⋉⇑ (Q2)over

� (Q1)under − ((Q1)under ⋉⇑ (Q2)over),
(Q1 ⋉⇑ Q2) � πX(σ∧?x∈X ?x�s(?x)(Q1 1 s(Q2))),

48

where X � dom(Q1) � dom(Q2), s : X → V is a function that maps each variable ?x ∈ X
to a fresh variable, and s(Q2) denotes the result of renaming in Q2 each variable ?x ∈ X as
s(?x).
The base case in the SPARQL translation is the graph G, which refers to a ternary relation
with fixed attributes S, P and O. The basic unit of querying in SPARQL is a triple pattern,
e.g., (?x, p , ?y). In RDF, the predicate attribute cannot take blanks, and hence we do not
need to consider unification on that attribute directly. A basic graph pattern Q in SPARQL
is a join over triple patterns T1 1 · · · 1 Tk where each Ti (1 ≤ i ≤ k) is a triple pattern.

The most complex case to consider is the difference operator P − Q, where certain an-
swers are under-approximated by the unification anti-semĳoin Punder ⋉⇑ Qover. The direct
application of the translation rules produces complex queries that can be rewritten to a
“friendlier” form for SPARQL engines, as now described. First, given a difference P − Q
we say that the attribute of the difference ?x is correlated if ?x is shared by P and Q. In the
following we will assume that P −Q is a difference with at least a correlated variable and
that Q is a basic graph pattern.

CNF/DNF rewritings: In the difference P−Q, let Q � T1 1 T2 (a common case). Accord-
ing to Definition 3.19, the base translation evaluating the required over-approximation of
Q is then given as

(T1 1 T2)over � πȲ(BINDX̄:�IF(r(X̄),s(X̄))(σ(∧?x∈X̄ r(?x)�s(?x))over((r(T1))over 1 (s(T2))over))), (3.8)

where X̄ � dom(T1) ∩ dom(T2), Ȳ � dom(T1) ∪ dom(T2), and r and s are the functions
used to rename the shared variables as is specified in Definition 3.19.

In order to simplify the notation, we will write respectively U1 and U2 instead of (r(T1))over
and (s(T2))over, we will write β to denote the operation BINDX̄:�IF(r(X̄),s(X̄))(·) that is needed
to return constants over blank nodes, and θ to denote the filter condition in (3.8). With
this notation, we will then write the approximation in (3.8) as follows:

(T1 1 T2)over � πvar(Q)(β(σθ(U1 1 U2))), (3.9)

These definitions can be extended naturally (but verbosely) to the case where the basic
graph pattern Q is T1 1 · · · 1 Tk . To gain intuition on that extension, let us consider the
case where k � 3, and var(T1) � {?x, ?y}, var(T2) � {?x, ?y}, and var(T3) � {?x}. Also,
assume that variable ?x has been replaced by the fresh variables ?x1, ?x2 and ?x2 in the
respective triple patterns T1, T2 and T3, and variable ?y have been replaced by the fresh
variables ?y1 and ?y2 in the respective triple patterns T1 and T2. Then the translation of
the basic graph pattern Q has the form:

(T1 1 T2 1 T3)over � π{?x,?y}(β1(σθ1(π{?x4 ,?y}(β2(σθ2(U1 1 U2))) 1 U3))), (3.10)

where:

θ1 � (?x4 � ?x2 ∨ isBlank(?x4) ∨ isBlank(?x2)),
β1 � BIND?x:�IF(?x4 ,?x2)(·),
θ2 � (?x1 � ?x2 ∨ isBlank(?x1) ∨ isBlank(?x2)) ∧ (?y1 � ?y2 ∨ isBlank(?y1) ∨ isBlank(?y2)),
β2 � BIND?x4:�IF(?x1 ,?x2)(BIND?y:�IF(?y1 ,?y2)(·)).

49

The translation in (3.10) follows the order in which triple patterns occur. The expression
can be arranged to be independent of the order of triple patterns:

(T1 1 T2 1 T3)over � π?x,?y(β(σθ(U1 1 U2 1 U3))), (3.11)

where:

θ � θ?x1 ,?x2 ∧ θ?x1 ,?x3 ∧ θ?x2 ,?x3 ∧ θ?y1 ,?y2
,

θ?x1 ,?x2 � (?x1 � ?x2 ∨ isBlank(?x1) ∨ isBlank(?x2))
θ?x1 ,?x3 � (?x1 � ?x3 ∨ isBlank(?x1) ∨ isBlank(?x3))
θ?x2 ,?x3 � (?x2 � ?x3 ∨ isBlank(?x2) ∨ isBlank(?x3))
θ?y1 ,?y2

� (?y1 � ?y2 ∨ isBlank(?y1) ∨ isBlank(?y2)),
β � BIND?x:�IF(IF(?x1 ,?x2),?x3)(BIND?y:�IF(?y1 ,?y2)(·)).

The translation in (3.11) implies taking the Cartesian product of all triple patterns, filtering
by a conjunction of unification conditions, and then selecting constants over blanks. The
advantage is that the Cartesian product U1 1 U2 1 U3 is a basic graph pattern that can
be computed in an SPARQL engine without concerns regarding to incomplete data. It is
expected that computing the whole basic graph pattern is better than computing several
basic graph patterns of size two, as is done in (3.10). The disadvantage of the translation
in (3.11) with respect to the translation in (3.10) is the size of the filter conditions. If a
variable ?x occurs in all triple patterns, then in translation (3.10) an unification condition
θ?xi ,?xi+1 is required for each pair of consecutive triple patterns Ti , Ti+1 in the basic graph
pattern Q, while in translation (3.11) an unification condition θ?xi ,?x j is required for each
pair triple patterns Ti , T j where variable ?x occurs. Thus, the size of filter-conditions goes
from linear in (3.10) to quadratic in (3.11). The experimental comparison between the both
strategies is out of the scope of this thesis. In the remaining of this section we focus on the
strategy exemplified in (3.11).

The filter-condition θ in (3.11) is in conjunctive normal form (CNF): θ1 ∧ · · · ∧ θn where
for 1 ≤ i ≤ n, each term θi is a disjunctive clause. An alternative solution is to rewrite
the unification condition to its equivalent disjunctive normal form (DNF) ϕ1 ∨ · · · ∨ ϕm
per a standard conversion. The result is potentially exponential in size; though this
does not affect the data complexity, it may have a significant effect on performance in
practice. However, this DNF conversion leads to further rewritings that may lead to better
performance. First, we can express disjunctions using union (∪) or using disjunctive (∨)
selection conditions. Second, since this expression falls on the right-hand side of an anti-
semĳoin operator, we can also express it as a sequence of such operators. Thus, for the
translation of (P −Q)under into Punder ⋉⇑ Qover, we can consider:

Punder ⋉⇑ Qover � Punder ⋉⇑ σ∧1≤ j≤m θj (Q′) , (CNF)
Punder ⋉⇑ Qover � Punder ⋉⇑ σ∨1≤ j≤m ϕ j (Q′) , (DNF1)

Punder ⋉⇑ Qover � Punder ⋉⇑
⋃

1≤ j≤m

σϕ j (Q′) , (DNF2)

Punder ⋉⇑ Qover � Punder ⋉⇑ σϕ1(Q′) · · ·⋉⇑ σϕm (Q′) . (DNF3)

50

where Q′ denotes the rewriting of join variables X̄ in Q to produce Cartesian products on
all join patterns and the subsequent application of βX̄ , ¯?x1 ,..., ¯?xk

to perform unification over
those variables. Note, however, that in the cases of DNF2 and DNF3, some terms in the
disjunction will not require a Cartesian product; for example, when we rewrite P−(T1 1 T2)
to DNF, a disjunctive term on the right of the anti-semĳoin will be (T1 1 T2) itself (the
others will cover the case that join variables in T1 or T2 are bound to blanks). This suggests
that these options may be more efficient despite a potential exponential blow-up.

Removing explicit unification: Given a base query of the form P−Q, if the join variables
of Q do not correlate with P, we do not need to perform unification on them. Consider a
query

(?x, p , a) − ((?x, p , ?y) 1 (?y, p , b)).

This can be rewritten to

(?x, p , a)⋉⇑ (BIND ?y:�IF(isBlank(?y2),?y1 ,?y2)(σθ⇑((?x, p , ?y1) 1 (?y2, p , b)))).

However since ?y does not appear on the left of the difference, we can simplify to

(?x, p , a)⋉⇑ (σθ⇑((?x, p , ?y1) 1 (?y2, p , b))).

Converting anti-semĳoins to difference: Given a base query of the form P − Q, we can
consider cases where the correlating variable(s) of P and Q may or may not yield blanks
on either side. In particular, if Q returns a tuple with blanks for all correlating variables,
then the entire difference P − Q must be empty. On the other hand, if P returns a tuple
with blanks for all correlating variables and Q is non-empty, then that tuple is removed
from P. Finally, in cases where we know that the correlating variable(s) of P and Q cannot
yield blanks4, we can convert the anti-semĳoin to standard difference. These ideas yield
possible optimizations when we know more about which attributes can yield nulls.

3.4 Evaluation
Our evaluation presents an initial cost–benefit analysis of a certain answer semantics for
SPARQL by addressing the following research questions:

RQ1: How do the proposed SPARQL query rewriting strategies compare in terms of perfor-
mance with the base query, with themselves, with similar results in an SQL setting,
and for different SPARQL implementations?

RQ2: Does a certain answer semantics significantly change query results in a real-world
setting?

4In standard relational settings, this might be if the correlating variables is a primary key of a table, for
example. In RDF, we may detect such a case for subjects or objects of a given property that do not give blanks
in a given dataset, for example.

51

3.4.1 Evaluation Setting
In this section, we describe the SPARQL query engines selected, the machines and con-
figurations, as well as the datasets and queries used. Supporting material can be found
online:

https://users.dcc.uchile.cl/~dhernand/revisiting-blanks

Engines and machines: The query rewriting strategy allows certain answers to be ap-
proximated on current SPARQL implementations. We test with two popular engines, with
the added benefit of being able to cross-check that the solutions generated by both produce
the same answers: Virtuoso (v.7.2.4.2) and Fuseki (v.2.6.0). The machine used is an AMD
Opteron Processor 4122, 24GB of RAM, and a single 240 GB Kingston SUV400S SSD disk;
Virtuoso is set with NumberOfBuffers = 1360000 and with MaxDirtyBuffers = 1000000;
Fuseki is initialized with 12GB of Java heap space.

Rewriting strategies: We consider various strategies: [B|CNF|DNF1,...,3] where B denotes
base queries, CNF queries in conjunctive normal form, and DNF queries in disjunctive normal
form; we denote these variations as Γ in the following. By [Γ∄ |Γ−] we denote queries that
use either FNE (∄) or MINUS (−) in SPARQL. By [Γ|Γ∗] queries that rather than use isBlank
to check if a node is blank or not, in case an engine cannot form an index lookup to satisfy
such a condition, we also try adding a triple (⊥, a , Blank) to the data for each blank ⊥ and
a triple pattern to check for that triple in the query (denoted Γ∗); this does not apply to
base queries. In total, this leads to 18 possible combinations. Rather than present results
for all, we will highlight certain configurations in the results.

3.4.2 TPC–H experiments
To address RQ1, we follow the experimental design of Guagliardo & Libkin [33] who
provide experiments for PostgreSQL using the TPC-H benchmark. Their results compare
the performance of approximations for certain answers with respect to four queries with
negations. For this, they modified the TPC-H generator to produce nulls in non-primary-
key columns with varying probabilities (1–5%) to generate more/less unknown values.
They also use scale factors of 1, 3, 6, and 10, corresponding to PostgreSQL databases of size
1GB, 3GB, 6GB and 10GB, respectively. We follow their setting as closely as possible to
later facilitate comparison. We wrote a conversion tool (similar to the Direct Mapping [10])
to represent TPC-H data as RDF, and convert the TPC-H SQL queries to SPARQL.

Unifications: We first evaluate the proposed rewriting strategies of unifications in the
difference operator for SPARQL. The base format of the queries used is P − (Q 1 R)where
each P, Q, and R is a triple pattern. We then generate between 1,000 and 10,000 triples
matching each triple pattern to perform tests at various scales. For the data matching
the join variable on Q and R, we generate blanks with a rate of 1, 2, 4 and 8%. These
experiments allow us to estimate the costs of unifications in difference without other
query operators interfering.

Figure 3.1 presents performance results. For clarity, we present only a selection of config-
urations: CNF is equivalent to DNF1 in this case and we only show the aforementioned

52

https://users.dcc.uchile.cl/~dhernand/revisiting-blanks

104 105

100

101

102

103
V
ir
tu

o
so

T
im

e
(s
)

Blank Rate 1

104 105

100

101

102

103

Blank Rate 2

104 105

100

101

102

103

Blank Rate 4

104 105

100

101

102

103

Blank Rate 8

104 105

100

101

102

103

Scale Factor

F
u
se
k
i

T
im

e
(s
)

104 105

100

101

102

103

Scale Factor

104 105

100

101

102

103

Scale Factor

104 105

100

101

102

103

Scale Factor

B@ B− CNF@ DNF@
2 DNF@

3 DNF@∗
3 DNF−

3 DNF−∗
3

Figure 3.1: Unification results for Virtuoso and Fuseki, varying scales and blank rates

[·∄/·∗] variations for the base query and DNF3 (other variations performed analogously).
The first row pertains to Virtuoso while the second pertains to Fuseki. All eight sub-plots
are presented with log–log axes (base 10) at the same scale permitting direct comparison
across plots (comparing horizontally across engines and comparing vertically across blank
rates). The y-axis maximum represents a timeout of 25 minutes (reached in some cases by
Fuseki).

The base queries whose performances are depicted in Figure 3.1 are the following:

B− � (SELECT ?x WHERE((?x, q , a)MINUS ((?x, px , ?z)AND (?y, py , ?z)))),
B∄

� (SELECT ?x WHERE((?x, q , a) FILTER (¬ EXISTS ((?x, px , ?z)AND (?y, py , ?z))))).

The CNF∄ variant of these queries is the following:

(SELECT ?x
WHERE ((?x, q , a)

FILTER (¬ EXISTS (((?x, px , ?z1)AND (?y, py , ?z2))
FILTER (?z1 � ?z2 ∨ isBlank(?z1) ∨ isBlank(?z2)))))),

and the DNF∄∗
3 variant is

(SELECT ?x
WHERE ((((?x, q , a)

FILTER (¬ EXISTS (((?x, px , ?z)AND (?y, py , ?z)))))
FILTER (¬ EXISTS (((?x, px , ?z1)AND (?y, py , ?z2))

FILTER (isBlank(?z1)))))
FILTER (¬ EXISTS (((?x, px , ?z1)AND (?y, py , ?z2))

FILTER (isBlank(?z2)))))).

53

(RQ1) The performance of the rewritten queries is (as could be expected) worse than the
two base queries for all blank rates, scale factors and engines. In the case of Virtuoso, the
base queries generally run in under one second; however, the fastest rewritten queries take
at least a second and there is at least an order of magnitude difference between the base
query and the fastest rewritten query. Looking at Fuseki, the fastest base query is slower
than Virtuoso, but does generally tend to execute within one second (except at the larger
scales). However, we see a number of rewriting strategies in the case of Fuseki where the
difference is within half-an-order of magnitude of the fastest base case. Otherwise, we see
that the choice of strategy is generally not sensitive to the blank rates considered (i.e., lines
generally maintain the same ordering across plots), nor is it sensitive to scale (i.e., lines do
not generally cross within plots).

Queries: The previous experiments looked at “atomic” unifications. We now run the
four TPC-H queries used by Guagliardo and Libkin [33] considering a blank rate of 5%,
four scale factors, and two engines. We employ a timeout of 10 minutes. We also choose
one base query (B∄) to be compared against the rewritten queries for approximating certain
answers. Fuseki repeatedly times out for these experiments hence here we rather focus on
the results of Virtuoso.

In Table 3.1, we present a comparison of the performance results for Virtuoso’s fastest
rewritten query and the results as presented by Guagliardo and Libkin [33]. More specif-
ically, for a blank rate of 5%, the table shows the range of relative performance between
the base query and the best rewritten query execution for that query; since Guagliardo
and Libkin do not present absolute runtimes, our comparison is limited to relative per-
formance. Note that due to differences in how SPARQL and SQL treat inequalities over
nulls/blanks, Q3 did not need rewriting for Virtuoso. For Q2 in PostgreSQL, the actual
results drop below the presented numeric precision, returning almost instantaneously for
PostgreSQL once a null is found (which confirms that the results are empty).

(RQ1) We see that for Q1, Virtuoso performs better in relative performance than Post-
greSQL, for Q2 PostgreSQL performs (much) better, for Q3 there is little difference, while
for Q4 Virtuoso initially performs better than PostgreSQL but then at SF≥3, Virtuoso be-
gins to throw an error stating that an internal limit of 2,097,151 results has been reached
(we could not resolve this). Aside from this latter issue, these results show that Virtuoso
with our rewriting strategies is competitive with PostgreSQL under SQL-based rewritings
for relative performance between base and rewritten queries. Furthermore, unlike in the
previous experiments, we observe that in the case of Q1 and Q2, Virtuoso is now sometimes
faster for the rewritten queries than the base queries: by removing uncertain answers, the
number of intermediary solutions to be processed is reduced.

(RQ2) We observe three of the four base queries returning uncertain answers in SPARQL
that do not hold under some valuations: for Q1, 59% of answers are uncertain; for Q2, all
answers are uncertain; whilst for Q4, 7% of answers are uncertain; we further highlight
that these results are present for a blank rate of 5%. These results suggest that for queries
with negation, evaluation under standard SPARQL semantics may in some cases return
a significant ratio of uncertain/unsound answers even for modest levels of blanks in the
dataset; this is to be expected given that, e.g., even a single blank tuple returned from the
right-side of a difference can render all results uncertain (as per Q2),

54

Table 3.1: Ranges of average relative performance for scale factor (SF) 1, 3, 6 and 10 on a
fixed blank rate of 5%.

Q. SF=1 SF=3 SF=6 SF=10

Virtuoso
Q1 0.95–0.96 0.95–0.96 0.97–0.99 0.94–0.95
Q2 0.76–1.07 0.73–0.99 0.89–1.06 0.55–0.77
Q3 1.00–1.00 1.00–1.00 1.00–1.00 1.00–1.00
Q4 1.55–1.56 error error error

PostgreSQL (G&L [33])
Q1 1.01–1.03 0.99–1.01 0.98–1.01 1.00–1.02
Q2 0.00–0.00 0.00–0.00 0.00–0.00 0.00–0.00
Q3 1.01–1.04 1.01–1.04 0.99–1.02 1.00–1.06
Q4 1.75–1.86 1.80–1.93 2.05–2.25 3.54–3.89

Table 3.2: Numbers of Wikidata use-case queries (from a total of 446) that could be affected
by a certain answer semantics

Feature A B C D

MINUS 13 9 9 2
FILTER NOT EXISTS 23 15 10 1
OPTIONAL w/!BOUND 5 1 0 0
!= 7 5 3 0
Total 47 29 21 3

55

Table 3.3: Query execution times (ms) for the three Wikidata queries with uncertain
answers, and ratio of uncertain answers to total answers

Local (Virtuoso) Public (Blazegraph) Uncertain/Total
T1 T2 T2/T1 T1 T2 T2/T1

Q1 144464 142989 0.99 53012 to – 20/5487
Q2 7038 521 0.07 1013 2045 2.02 42/42
Q3 1266326 1419269 1.12 to to – 12/27221

3.4.3 Wikidata survey

Since the previous experiments are based on a synthetic benchmark converted from a
relational setting, we analyzed the user-contributed SPARQL queries on the Wikidata
Query Service, which offers a more native Semantic Web setting.5 As previously described,
Wikidata uses blanks to represent unknown values; our goal now is to determine whether
or not a choice of certain answer semantics could impact a current, real-world setting.

(RQ2) We first inspect the 446 queries to see which could potentially be affected by a certain
answer semantics. We provide a summary in Table 3.2 according to the query features that
may cause uncertain answers, with columns helping to indicate why queries with such
features do not give uncertain answers in this context: A applies no assumptions, counting
queries using the pertinent feature; B counts the queries that could still give uncertain
answers knowing that Wikidata only uses blanks in a single object position; C counts the
queries that could give uncertain answers further knowing which predicates have blanks;
finally, D counts the queries whose solutions do change under certain answers. Hence, we
see that 10.5% of the queries contain features that could cause uncertain answers, 6.5% of
queries could cause uncertain answers even though Wikidata only uses blanks in a single
object position, 4.7% of queries could cause uncertain answers knowing which predicates
have blank values and which do not, while finally 0.6% of queries actually return uncertain
answers.

We provide some statistics on the three Wikidata queries generating uncertain answers in
Table 3.3. First for performance, we run the original query (T1) and a rewritten version
for certain answers (T2) over both a local Virtuoso index of Wikidata, as well as the public
Wikidata Query Service (running Blazegraph). (RQ1) While the performance of the first
query is comparable under both standard and certain answer semantics for Virtuoso, the
latter times out on Blazegraph. On the other hand, the second query is faster on Virtuoso
for certain answer semantics, possibly because it is anticipated that all answers will be
discarded. This is not the case for Blazegraph, where the rewritten query takes twice the
time. In Virtuoso Q3 takes slightly longer in the rewritten query. Blazegraph times out in
all runs of Q3. We also look at the ratio of uncertain answers the queries would return.
(RQ2) The ratio for Q1 and Q3 are relatively low, but on the other hand, for Q2, the ratio is
100%: all answers are uncertain.

5https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

56

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

3.5 Conclusions
In this chapter, we studied the semantics of SPARQL with respect to RDF graphs that use
blank nodes as existential variables encoding unknown values. In particular, we have in-
vestigated the feasibility of approximating certain answers in SPARQL, proposing various
rewriting strategies. Our initial results suggest that querying for certain/possible answers
generally does incur in a significant cost, but that at least for Virtuoso, query answering is
still feasible (and in some cases faster than under standard semantics). We showed that the
relative performance results for Virtuoso under certain answer semantics are competitive
with results published for PostgreSQL. In general, we saw that although some queries are
executed faster under certain semantics with current SPARQL implementations, for other
queries there can be a significant performance cost. It is important to highlight, how-
ever, that experiments were run using off-the-shelf SPARQL implementations; dedicated
SPARQL implementations for approximating certain answers may further improve on the
performance observed here.

Regarding the question of whether or not offering users a choice of certain answer seman-
tics is important, we analyzed 446 Wikidata queries. Although 10.5% use negation and
inequality features that could cause uncertain answers in principle, only 0.6% of these
queries return uncertain answers in practice. However, Wikidata only uses unique blanks
(acting similarly to unmarked nulls) in the object position. That is, the Wikidata dataset
does not offer conclusive practical motivations—considering the pros and cons—to intro-
duce certain answer features to SPARQL engines. It would be interesting to do similar
studies for other datasets using existential blanks (we are not immediately aware of such
a dataset having a set of SPARQL queries to analyze).

57

58

Chapter 4

Unbound values as incomplete data

Let us begin with an example to give the intuition of what unbound values are in SPARQL.
Let G be the graph

Alice

alice@example.org

Bob

Person
type type

email

and let Q be the query

((?x, type, Person)OPT (?x, email, ?y)).

Intuitively, query Q ask for people, and optionally their emails if they are available. The
answer to this query is then the following:

JQKG �

?x ?y

Alice alice@example.org
Bob −

 .
The dash in Bob’s email denotes an unbound value.

As is stated by Lemma 3.4, solutions µ of a SPARQL query Q in the relational fragment
hold dom(µ) � dom(Q). But in general, answers of a SPARQL query can have different
domains, i.e., dom(µ) ⊆ dom(Q). Intuitively an unbound value denotes a wildcard to
indicate the absence of a value in a the solution µ and thus, can be considered incomplete
data. Unbound values allow to express SPARQL solutions as full fledged rows under a
regular relational schema, as is shown in the example above.

In this chapter we study unbound values in SPARQL and their rationale, by mapping
the SPARQL algebra to an extension of the relational algebra that supports unbound

59

values. This extended version of relational algebra, called the generalized relational algebra,
is the focus of this chapter. It is one where its operators simulate the under and over
approximation operators that are implicit in the Biskup M-tables described in Chapter 3.
For example, the join will have two versions. Recall that the result of the join of two
M-tables defines two sets of tuples, namely the sure and possible tuples. Thus, we can
define two alternative versions for the join operator, where one returns the sure tuples
and the other the possible tuples. Additionally, it turns out that it is possible to define an
SQL fragment that simulates this extended algebra. Thus, by mapping the corresponding
fragments of SPARQL and SQL to the generalized relational algebra, we contribute to the
understanding of the differences in the design of both query languages.

To study the semantics of unbound values in SPARQL, in this chapter we consider the
SPARQL-1 fragment without the BIND operator. We exclude the BIND operator because
arbitrary functions can express operations that are not explainable by an interpretation of
unbound values as one of the null types we considered in this thesis, namely unknown
values, inapplicable values, and no-information nulls.

Organization of this chapter

– In Section 4.1 we briefly review the landscape of null values to help the reader better
understand the place that unbound values have in it.

– In Section 4.2 we show the origin of unbound values in SPARQL. They are not present
explicitly in the database, but are generated by operators in the query language.

– In Section 4.3 we propose a generalized relational algebra inspired by the Biskup [15]
algebra of tables with maybe tuples in order to explain the behavior of null values in
SQL and SPARQL. Furthermore, the core of SQL and SPARQL can be seen as different
subsets of the generalized relational algebra. Each operator of SQL and SPARQL is
mapped to an operator in the generalized relational algebra. We conclude that SQL
and SPARQL differ only in two operators, namely the join and the difference.

– We conclude in Section 4.4.

4.1 A brief review of the landscape of null values
As we discussed in the introduction of this thesis, a null value may have different meanings.
According to Biskup [14] “In ANSI [1975], p. IV-28/29, there is a list of 13 ‘manifestations of null’
in stored database relations (the 14th manifestation results from processing nulls).” In Chapter 3
we studied blank nodes under a semantics where blank nodes denote values that exist but
are unknown. In SQL a null value can also denote a value that does not exist, or represents
the lack of information about the value. These three semantics can be ordered in terms of
informativeness as is depicted in Figure 4.1 below.

We next informally summarize the semantics of these three types of null value. As an
example, consider that Alice is applying to a public benefit. Many things are asked by
the form, and she has to provide them to the best of her knowledge. However, in some
cases her knowledge is not enough. For example, she may be asked for the appraisal of the
apartment where she is living. Since she does not know the value, she cannot fill in that

60

dnea1 · · · an

⊥

ni

Figure 4.1: Ordering of null values according to Lerat and Lipski [45] and to Libkin [47].
Above is more informative than below. Values a1, . . . , an are the constants; ni denotes that
we do not known if the value exists; ⊥ denotes that we known that the value exists though
is unknown; and dne that the value does not exist.

field. The form asks for her surname, however, in Chile most people have two surnames,
one for each parent. But Alice comes from a country where people have a single surname,
so one of the required surnames must be left blank.

Unknown values. In the motivation of this section Alice’s apartment has an appraisal,
but she does not known the value. This type of null value is called unknown value or
existential null value, because it is a value that there exists but is unknown. These are
the types of null values that have been studied most. Some studies on unknown values
include, among many, those by Codd [20], Biskup [14, 15], Maier [52], Imielinski and
Lipski [43], Reiter [63], and Grahne [28].

Inapplicable values. In the motivation of this section Alice’s apartment does not have a
second surname. The blank in the field for the second surname denotes then the nonex-
istence or non-applicability of the value. This type of null value is called inapplicable null,
non-applicable null, or non-existing null. This type of null value is studied by Vassiliou [68],
and Lerat and Lipski [45].

No information nulls. No information nulls are a combination of the unknown and
inapplicable value. If a field in a table is left blank without explaining why it was not filled
in, then we will not be able to determine if either the value exists though is unknown, or
if it is inapplicable. This type of null value is studied by Zaniolo [70], and by Lerat and
Lipski [45].

4.2 Where do unbound values came from?
Unbound values are not present in the RDF data model—as is the case of with blank nodes.
Instead, they appear when querying RDF graphs with SPARQL. Unbound values are in-
troduced into the language by the UNION of queries of different schemas (in what follows
the outer UNION), the OPTIONAL operator, the VALUES operator, or the BIND operator.
Operators outer UNION and OPTIONAL correspond respectively to the operators outer
union and left outer join of the relational algebra that were studied by Galindo-Legaria [27].
As shown in Chapter 3, we cannot produce unbound values in the SPARQL fragment
consisting of the operators FILTER, AND, MINUS, and UNION restricted to queries of the

61

same schema (in what follows the regular UNION). In fact, this fragment can be expressed
using standard relational algebra (see Theorem 3.1).

Though the OPTIONAL operator can be formally expressed by a combination of AND,
MINUS, and the outer UNION, the unbound values that they produce have a different
semantics, depending on what operators produce them. To see this, consider the following
example.

Example 4.1. Let G be the graph at the beginning of this chapter that we show here again to easy
reading:

Alice

alice@example.org

Bob

Person
type type

email

and let Q be the query

((?x, type, Person)OPT (?x, email, ?y)).

Intuitively, query Q ask for people, and optionally their emails if they are available. The answer to
this query is then the following:

JQKG �

?x ?y

Alice alice@example.org
Bob −

 .
The dash in Bob’s email denotes an unbound value, and can be interpreted with the meaning that
Bob’s email is not available.

The semantics of the unbound node in Example 4.1 depends on if we either follow the
open or the closed world semantics for the RDF graph.

Under the open world semantics, the unbound node means a lack of information about
Bob’s email. We cannot ensure that Bob has or does not have an email. To see this,
consider the graph G′ resulting from adding the triple (Bob, email, bob@email) to G. In
the evaluation of Q over G′ the unbound value is filled by a known email. Since G entails
G′, interpretations of G′ are also interpretations of G. Thus, the unbound node can be
understood as a no-information null value, because there are interpretations where the
value exists and interpretations where the value does not exist.

On the contrary, under the closed world assumption we can infer that Bob does not have
an email, so the null value can be understood as an inapplicable null value.

The interpretation of the null values generated by the outer UNION are more involved.
The following example presents the complications of the outer UNION regarding the
meaning of the unbound values it produces.

62

Example 4.2. Consider the graph G depicted as follows:

Alice

alice@example.org

Person

type

email

Let Q be the query

((?x, type, Person)AND (?x, email, ?y))UNION (?x, type, Person).

Intuitively, query Q asks for people and their emails, but also asks for people without considering
their emails. The answer to this query is then the following:

JQKG �

?x ?y

Alice alice@example.org
Alice −

 .
In Example 4.2 the semantics of the unbound value is confusing. The two sides of the
UNION correspond to queries that have no incomplete data. One can thus argue that the
unbound value is added in a contrived way. To continue reasoning about the semantics of
this unbound value, let us turn a blind eye on the meaning of the operation UNION and
let us address the question of whether the unbound value has the meaning of one of the
three types of null values described in the introduction of this section (i.e., unknown-value,
inapplicable value, or no-information null value).

If the unbound value means an inapplicable value, then the two tuples in the evaluation
output are contradictory. One of them is stating that Alice has an email, while the other
that she has not.

If the unbound value means a no-information null value, then we have two options, either
a value exists or not. If it does not exist a value, then for the same reasoning as in the
previous case, both tuples are contradictory. Thus, if we restrict the result to be consistent,
the only option is that the unbound value means an unknown value. However, in this
case the information provided by the second tuple is redundant, since it is subsumed by
the first tuple. This sort of redundancy has been studied in several works. Zaniolo [70,
71] noticed these redundancies for relations with no-information nulls and defines the
notion of minimal representation as the result of eliminating each tuple that is subsumed
by another one. Galindo-Legaria [27] writes R! to denote the result of removing tuples
of a table R that are subsumed by another tuple in R. Arenas and Ugarte [12] define
a similar operator in SPARQL, denoted NS, to remove subsumed mappings in a set of
mappings. Extending SPARQL with the NS operator allows them to capture syntactically
the fragment of weakly-monotone queries.

63

4.3 Null values in SQL and SPARQL
Recall that the core of both, SQL and SPARQL, can be described using relational algebra
when no null values are allowed. The translation from SQL to relational algebra is well
known. The translation from the relational SPARQL fragment to relational algebra is given
in Section 3.2.2. Table 4.1 summarizes these translations.

Algebra SQL SPARQL
R ∪ S R UNION S (R UNION S)
πȲ(R) SELECT Ȳ FROM R (SELECT Ȳ WHERE R)
ρA/B(R) SELECT A AS B, X̄ \ {A} FROM R (SELECT ((X̄ \ {A}) ∪ {B})WHERE (R BIND(A AS B)))
σC(R) SELECT X̄ FROM R WHERE C (R FILTER C)
R 1 S SELECT * FROM R NATURAL JOIN S (R AND S)
R − S SELECT * FROM R (R MINUS S)

WHERE NOT EXISTS (
SELECT *
FROM S)
WHERE R.X1 � S.X1 AND

...
R.Xn � S.Xn)

Table 4.1: Translations between relational algebra and SQL and SPARQL queries with no
null values (i.e., with no SQL nulls nor SPARQL unbound values).

In this section we address the question of how relational algebra can be extended with
null values to preserve the aforementioned translations of SPARQL and SQL to relational
algebra, and thus contribute to the understanding of the design of both query languages.
As we already mentioned, we define an algebra, based on the Biskup algebra of M-tables
(see Section 3.3.3), where operators are generalized in two alternative forms. Intuitively,
one alternative returns the elements that are sure tuples in the Biskup algebra, and the
other alternative returns the possible tuples. In this section we show that to express the core
of both, SQL and SPARQL, in this generalized algebra it is sufficient choosing one of the
generalized operators described to replace the standard operator used for the translation
that does not consider null values. For instance, for SQL we replace the join operator by
the alternative that returns the sure answers in the translation, and for SPARQL we replace
the join operator by the alternative that returns the possible answers. We can therefore
describe the join in each query language in terms of certain and possible answers. In the
case of SQL, a null value and a constant are not joinable because there exists the possibility
that the null represents a value distinct to the constant. On the other hand, in SPARQL an
unbound value is always compatible with a constant. In the remainder of this chapter we
formalize and study the design of SPARQL unbound values and SQL null values regarding
possible and certain answers.

4.3.1 The generalized algebra
A ∅-table R is a table that admits the symbol ∅ in cell values to denote nulls. Unlike
V-tables (see Section 3.2), nulls in ∅-tables are unmarked. Formally, the tuples of a ∅-table
are mappings µ : dom(R) → C ∪ {∅}, called ∅-mappings, where C denotes the set of

64

constants and ∅ denotes the null value. If ?x < dom(R) we say that ?x is unbound in µ.
Otherwise, if ?x ∈ dom(R) and µ(?x) � ∅, we said that ?x is bound to a null value in µ.

We next define an algebra that generalizes relational algebra for ∅-tables. We call this
algebra the generalized algebra. This algebra is based on the Biskup algebra for tables with
maybe tuples we briefly referred to in Section 3.3.3.

To define the generalized algebra we need some notions.

Definition 4.1 (Certainly and possibly compatible ∅-mappings). Two ∅-mappings µ1 and
µ2 are said to be certainly compatible, denoted µ1 ∼under µ2, if for every common variable ?x it
holds that µ1(?x) � µ2(?x), µ1(?x) , ∅, and µ2(?x) , ∅. Similarly, two ∅-mappings µ1 and µ2
are said to be possibly compatible, denoted µ1 ∼over µ2, if for every common variable ?x it holds
that µ1(?x) � µ2(?x), µ1(?x) � ∅, or µ2(?x) � ∅.

Polleres [60] called bravely-compatible mappings to possibly compatible mappings, and
strictly-compatible mappings to certainly compatible mappings. He described a third type
of compatible mappings, called cautiously compatible, that are out the scope of this thesis.
We restrict our study to these forms of compatibility because they resemble the modals
certainly and possibly we used when approximating certain answers.

Intuitively, two ∅-mappings are certainly compatible if all their instances (instancing the
nulls) are compatible. Observe that the instance of a ∅-mapping is a standard SPARQL
mapping, and recall that two mappings µ1 and µ2 are said to be compatible, denoted
µ1 ∼ µ2 if and only if for every common variable ?x holds µ1(?x) � µ2(?x). Two ∅-
mappings µ1 and µ2 must therefore have no null values in their common variables to be
certainly compatible, because null values can be instanced to different values. Similarly,
two ∅-mappings are possibly compatible if there exists an instance that makes them
compatible.

The compatibility of ∅-mappings determines the pairs of mappings that can be joined.
The join of two ∅-mappings has also to be generalized. Since µ1 ∼under µ2 implies that
µ1 ∼over µ2, it suffices defining the join for ∅-mappings that are possibly compatible.

Definition 4.2 (Join of compatible ∅-mappings). Let µ1 and µ2 be two possibly compatible
∅-mappings. The join of µ1 and µ2, denoted µ1 ⌣ µ2, is the ∅-mapping where dom(µ1 ⌣ µ2) �
dom(µ1) ∪ dom(µ2) and for every variable ?x ∈ dom(µ1 ⌣ µ2) it holds that:

(µ1 ⌣ µ2)(?x) �

µ1(?x) if ?x ∈ dom(µ1) \ dom(µ2),
µ2(?x) if ?x ∈ dom(µ2) \ dom(µ1),
µ1(?x) if ?x ∈ dom(µ1) ∩ dom(µ2) and µ1(?x) , ∅,
µ2(?x) if ?x ∈ dom(µ1) ∩ dom(µ2) and µ2(?x) , ∅,
∅ otherwise.

Selection formulas of relational algebra do not admit null values. As usual, the general-
ization to include null values uses 3-valued logic instead of 2-valued logic as relational
algebra does.

Definition 4.3 (Selection formulas). A selection formula, recursively defined, is an equality
t1 � t2 where t1, t2 ∈ C ∪ V ∪ {∅}, or a Boolean combination of selection formulas (with the

65

connectives∧, ¬ and∨). Let φ be a selection formula, µ be a ∅-mapping where var(φ) ⊆ dom(µ),
and µ′ : C ∪V ∪ {∅} → C ∪V ∪ {∅} be the function defined as:

µ′(x) �
{
µ(x) if x ∈ dom(µ),

x otherwise.

The truth value of φ in µ, denoted µ(φ), is defined recursively as follows:

1. If φ has the form t1 � t2 then:

(a) µ(φ) is true if µ′(t1) � µ′(t2), µ′(t1) , ∅ and µ′(t1) , ∅;

(b) µ(φ) is false if µ′(t1) , µ′(t2), µ′(t1) , ∅ and µ′(t1) , ∅;

(c) µ(φ) is unknown, otherwise.

2. If φ is a Boolean combination of selection formulas then the truth value of µ(φ) is defined
using 3-valued logic as usual.

Now we are ready to define the generalized algebra.

Definition 4.4 (Generalized algebra). Let R, R1 and R2 be∅-tables,X be a set of variables where
X ⊆ dom(R), ?x, ?y be variables where ?x ∈ dom(R) and ?y < dom(R), and φ be a selection
formula. The generalized algebra is defined recursively as follows:

1. πX(R) � {µ|X | µ ∈ R};

2. ρ?x/?y(R) is the table resulting from replacing attribute ?x by attribute ?y in table R;

3. R1 ∪ R2 � {µ | µ ∈ R1 or µ ∈ R2};

4. σunderφ(R) � {µ ∈ R | µ(φ) is true};

5. σoverφ(R) � {µ ∈ R | µ(φ) is true or unknown};

6. R1 1under R2 � {µ1 ⌣ µ2 | µ1 ∈ R1, µ2 ∈ R2, and µ1 ∼under µ2};

7. R1 1over R2 � {µ1 ⌣ µ2 | µ1 ∈ R1, µ2 ∈ R2, and µ1 ∼over µ2};

8. R1 −under R2 � {µ1 ∈ R1 | for all µ2 ∈ R2 does not µ1 ∼over µ2};

9. R1 −over R2 � {µ1 ∈ R1 | for all µ2 ∈ R2 does not µ1 ∼under µ2}.

We next explain how the generalized algebra is based on the Biskup algebra for tables with
maybe tuples (see Section 3.3.3). In the previous chapter, we defined M-tables as pairs of V-
tables because we view blank nodes as marked nulls. Now we define m-tables (lower case
m)1 as pairs of ∅-tables because in this chapter we are studying unbound values. An m-
table M is a pair (M1,M2)where M1 and M2 are ∅-tables and M1 ⊆ M2. We write sure(M)
and poss(M) to denote the first and second components of an m-table M, respectively.
Given a ∅-table R we write Rm to denote the m-table where sure(Rm) � poss(Rm) � R.
The tuples µ ∈ poss(M) \ sure(M) are said to be the maybe-tuples of the m-table M.

1We use upper and lower case to distinguish the tables that are extended with marked nulls (M-tables)
from the tables that are extended with unbound values (m-tables).

66

It is not difficult to see that for each operator ◦ of the Biskup algebra for m-tables we define
two operators ◦under and ◦over such that the following relations hold:

◦under(R) � sure(◦(Rm))
◦over(R) � poss(◦(Rm))

}
if ◦ is unary, (4.1)

R1 ◦under R2 � sure(Rm
1 ◦ Rm

2)
R1 ◦over R2 � poss(Rm

1 ◦ Rm
2)

}
if ◦ is binary. (4.2)

We omit the subscripts “under” and “over” in Definition 4.4 for operators ◦ where ◦under
and ◦over are equivalent. Formulas 4.1 and 4.2 are true for all operators of the generalized
algebra except for the operators σunderφ and σoverφ. The truth of these equalities follow
from simple inspection and the fact that we translate the definitions from the Biskup [15]
algebra to Definition 4.4 following these equalities. The difference regarding the opera-
tors σunderφ and σoverφ is due to the fact that Biskup considered only atomic equalities
as selection formulas φ, while we considered also Boolean combinations of selection for-
mulas. Unfortunately, as the following example shows, our alternative selection operators
produce results that are less informative than the Biskup ones.

Example 4.3. Let R be the ∅-table with a single tuple {?x 7→ ∅} and Q be the query σ?x�a(R).
According to the generalized algebra the following equalities hold:

σunder ?x�a(R) � {},
σover ?x�a(R) � {{?x 7→ ∅}}.

On the other hand, according to Biskup a selection of tuples in the m-table Rm that pass a formula
?x � a is evaluated as a join among Rm and the m-table consisting in a single sure tuple {?x 7→ a}.
The result is thus:

sure(σ?x�a(Rm)) � {},
poss(σ?x�a(Rm)) � {{?x 7→ a}}.

The result obtained in this example by the Biskup algebra is strictly more informative than the result
obtained with the generalized algebra.

4.3.2 Mapping SQL and SPARQL operators to the generalized algebra
Table 4.2 presents the generalized operator that is used to extend the relational algebra
to support null values according to the languages SQL and SPARQL. They agree in all
operators except join and difference.

To show the correspondence among SQL and the generalized algebra operators we present
the results given by example queries in popular implementations in Appendix B. These
correspondences are not conclusive. One could try to prove the correspondence by using
a formal semantics of SQL as e.g., the one provided by Guagliardo and Libkin [32] in order
to provide a more conclusive correspondence. However, we do not include such validation
here because we concentrate in SPARQL.

Regarding the correspondence among SPARQL and the generalized algebra operators,
notice that SPARQL operators can return set of mappings with different domains, while the

67

Standard Algebra Generalized Algebra
SQL SPARQL

Union ∪ ∪
Projection π π
Renaming ρ ρ
Selection σunder σunder
Join 1under 1over
Difference −over −under

Table 4.2: The generalized relational algebra operators for SQL and SPARQL.

Ω1, . . . ,Ωn R1, . . . , Rn

Ω R

fill(·,Z)

fill(·,Z)
Q Q′

Figure 4.2: Diagram for SPARQL and the generalized relational algebra. Ω,Ω1, . . . ,Ωn are
sets of SPARQL mappings, and R, R1, . . . , Rn are the corresponding ∅-tables that result
from padding the unbound values in mappings with null values to conform tables with a
set of attributes Z that is big enough to include all the variables referred in the queries.
Query Q′ is said to correspond to a query Q if the diagram is commutative.

generalized algebra operators return tables. To make these two types of output comparable
we require a map among them. This map is provided by the function fill that fills unbound
variables with null values (see Definition 2.7). A generalized relational algebra query Q′ is said
to correspond to a SPARQL query Q if the diagram in Figure 4.2 is commutative.

In general, SPARQL queries cannot be translated to the generalized relational algebra by
defining a correspondence among SPARQL operators and generalized relational algebra
operators. For instance, the union operator in the SPARQL query (Q1 UNION Q2) cannot
be directly interpreted as a union operator in the generalized relational algebra operator
because unlike relational algebra, SPARQL allows the union of queries that return tuples
with different domains. To translate SPARQL queries to the generalized relational algebra
we present a normalization that generate queries, called tabular.

Definition 4.5. Tabular SPARQL queries are defined recursively as follows:

1. A triple pattern is a tabular SPARQL query.

2. A query of the form VALUESXΩ is tabular.

3. If Q1 and Q2 are tabular SPARQL queries, then (Q1 AND Q2) is a tabular SPARQL query.

4. If Q1 and Q2 are tabular SPARQL queries with dom(Q1) � dom(Q2), then (Q1UNIONQ2)
and (Q1 MINUS Q2) are tabular SPARQL queries.

5. If Q1 is a tabular SPARQL query andX is a finite set of variables, then (SELECTXWHERE
Q1) is a tabular SPARQL query.

68

6. If Q1 is a tabular SPARQL query and φ is a filter-condition whose variables are in dom(Q1),
then (Q1 FILTER φ) is a tabular SPARQL query.

Lemma 4.1. For every SPARQL-1 query without the BIND operator there exists an equivalent
tabular SPARQL query.

Proof. It can be shown by induction in the structure of the query.

1. If Q is a triple pattern or has the form (VALUESXΩ) then by definition Q is tabular.
These are the base cases of the induction.

2. If Q has the form (Q1 AND Q2) then, by induction, there exist the tabular queries
Q′1 and Q′2 that are equivalent with Q1 and Q2. By definition, the query Q′ �
(Q1 AND Q2) is tabular. Since Q′ and Q are equivalent, the inductive hypothesis
holds for this case.

3. If Q has the form (Q1 UNION Q2) then, by induction, there exist the tabular queries
Q′1 and Q′2 that are equivalent with Q1 and Q2. LetX be the set of variables dom(Q1)∪
dom(Q2), and Q′ be the query

((SELECTXWHERE Q1)UNION (SELECTXWHERE Q1)).

By definition, Q′ is tabular. Since Q′ and Q are equivalent, the inductive hypothesis
holds for this case.

4. If Q has the form (Q1 MINUS Q2), then the inductive hypothesis holds by the same
argument as the used in the previous case.

5. If Q has the form (SELECTXWHERE Q1) then, by induction, there exists a tabular
query Q′1 equivalent to Q1. By definition the query Q′ � (SELECTXWHERE Q′1) is
tabular. Since Q′ and Q are equivalent, the inductive hypothesis holds for this case.

6. If Q has the form (Q1 FILTER φ) then, by induction, there exists a tabular query Q′1
that is equivalent to Q1. By definition, Q′ � (Q′1 FILTER φ) is tabular. Since Q′ and
Q are equivalent, the inductive hypothesis holds for this case.

Lemma 4.1 shows that every SPARQL query can be normalized as a tabular SPARQL
query. Moreover, since the proof of the lemma is inductive, a normalization algorithm
is provided. We next show that tabular queries can be expressed using the generalized
relational algebra. Recall that in the previous chapter, given a SPARQL query Q in the
relational fragment, we defined the relational algebra query ra(Q) equivalent to Q. We
next extend this translation to translate an arbitrary SPARQL query Q into a generalized
relational algebra query, denoted gra(Q).
Definition 4.6. Let Q be the set of tabular SPARQL queries. Then the generalized relational
algebra is the set of gra(Q) together with the relational operations defined recursively as follows:

1. If Q is a triple pattern then gra(Q) � ra(Q).
2. If Q has the form (VALUESXΩ) then gra(Q) � RΩ, where RΩ is the ∅-table fill(Ω,X).
3. If Q has the form (Q1 AND Q2) then gra(Q) � gra(Q1) 1 gra(Q2).

69

4. If Q has the form (Q1 UNION Q2) then gra(Q) � gra(Q1) ∪ gra(Q2).

5. If Q has the form (Q1 MINUS Q2) then gra(Q) � gra(Q1) −under gra(Q2).

6. If Q has the form (SELECTXWHERE Q1) then gra(Q) � fill({µ∅},Y) 1 πZ gra(Q1),
where µ∅ denotes the solution mapping with empty domain, Y � X \ dom(Q1), and
Z � X ∩ dom(Q1).

7. If Q has the form (Q1 FILTER φ) then gra(Q) � σφ(gra(Q1)).

So far, we have described the generalized relational algebra, and a translation from SPARQL
to the generalized relational algebra. To define the results of a SPARQL query in terms of
the results of a generalized algebra query, we need a function unfill that removes the null
values introduced by the generalized relational algebra.

Definition 4.7. Giving a mapping admitting null values as values µ, we write unfill(µ) to
denote the mapping µ|X where X is the set of variables {?x ∈ dom(µ) | µ(?x) , ∅}. Given
a set of mappings Ω admitting null values, we write unfill(Ω) to denote the set of mappings
{unfill(µ) | µ ∈ Ω}.

The following theorem gives a semantics for tabular SPARQL queries trough the general-
ized relational algebra.

Theorem 4.1. Let Q be a tabular SPARQL query, G be an RDF graph, and D � vdb(G) be the
relational database that codifies the graph G. Then, JQKG � unfill(Jgra(Q)KD).

Proof. Let Q be a query, G be an RDF graph, and D be the ∅-database for G. The equalityJQKG � unfill(Jgra(Q)KD) is equivalent to the equality Jgra(Q)KD � fill(JQKG , dom(Q)), so
we will show that this second equation holds by induction in the structure of Q.

1. If Q is a triple pattern then Jgra(Q)KD � fill(JQKG , dom(Q)) follows from Theorem 3.1
because no unbound values are involved.

2. If Q has the form (VALUESXΩ) then, by construction, it holds that Jgra(Q)KD �

fill(JQKG , dom(Q)).

3. If Q has the form (Q1 AND Q2) then it holds that

fill(J(Q1 AND Q2)KG , dom(Q))
� fill({µ1 ⌣ µ2 | µ1 ∈ JQ1KG , µ2 ∈ JQ2KG , µ1 ∼ µ2}, dom(Q))
� {µ′1 ⌣ µ′2 | µ′1 ∈ fill(JQ1KG , dom(Q1)), µ′2 ∈ fill(JQ2KG , dom(Q2)), µ′1 ∼over µ

′
2}

� fill(JQ1KG , dom(Q1)) 1over fill(JQ2KG , dom(Q2))
� Jgra(Q1)KD 1over Jgra(Q2)KD

� Jgra(Q1) 1over gra(Q2)KD

� Jgra(Q)KD .

70

4. If Q has the form (Q1 UNION Q2) then it holds that

fill(J(Q1 UNION Q2)KG , dom(Q))
� fill(J(Q1KG ∪ JQ2KG , dom(Q))
� fill(JQ1KG , dom(Q)) ∪ fill(JQ2KG , dom(Q))
� Jgra(Q1)KD ∪ Jgra(Q2)KD

� Jgra(Q1) ∪ gra(Q2)KD

� Jgra(Q)KD .

5. If Q has the form (Q1 MINUS Q2) then it holds that

fill(J(Q1 MINUS Q2)KG , dom(Q))
� fill({µ1 | µ1 ∈ JQ1KG , ∄µ2 ∈ JQ2KG , µ1 ∼ µ2}, dom(Q))
� {µ′1 | µ′1 ∈ fill(JQ1KG , dom(Q1)), ∄µ′2 ∈ fill(JQ2KG , dom(Q2)), µ′1 ∼over µ

′
2}

� fill(JQ1KG , dom(Q1)) −under fill(JQ2KG , dom(Q2))
� Jgra(Q1)KD −under Jgra(Q2)KD

� Jgra(Q1) −under gra(Q2)KD

� Jgra(Q)KD .

6. If Q has the form (SELECTX WHERE Q1) then let Y be the set of variables X \
dom(Q1), andZ be the set of variables X ∩ dom(Q1). Then, it holds that

fill(J(SELECTXWHERE Q1)KG , dom(Q))
� fill(J(VALUESY{µ∅})AND (SELECTZWHERE Q1)KG , dom(Q))
� fill(J(VALUESY{µ∅})KG ,Y) 1 fill(J(SELECTZWHERE Q1)KG ,Z)
� Jfill({µ∅},Y)KD 1 JπZ gra(Q1)KD

� Jfill({µ∅},Y) 1 πZ gra(Q1)KD

� Jgra(SELECTXWHERE Q1)KD

� Jgra(Q)KD .

7. If Q has the form (Q1 FILTER φ) then it holds that

fill(J(Q1 FILTER φ)KG , dom(Q))
� fill({µ ∈ JQ1KG | µ(φ) � true}, dom(Q))
� {µ ∈ fill(JQ1KG , dom(Q)) | µ(φ) � true}
� {µ ∈ Jgra(Q1)KD , dom(Q)) | µ(φ) � true}
� Jσφ(gra(Q1))KD

� Jgra(Q1 FILTER φ)KD

� Jgra(Q)KD .

71

The previous theorem is restricted to tabular queries. Since every SPARQL query in the
SPARQL-1 fragment that does not have a BIND operator can be expressed as a tabular
SPARQL query (see Lemma 4.1), this theorem can be generalized for SPARQL-1 queries
without a the BIND operator.

Corollary 4.1. For every SPARQL-1 query Q without the BIND operator, and RDF graph G,
there exists a relational algebra query Q′ such that for every RDF graph G, it holds that JQKG �

unfill(JQ′Kvdb(G)).

Proof. It follows from Lemma 4.1 and Theorem 4.1.

4.4 Conclusions
In this chapter, we have studied the semantics of unbound values in SPARQL. In particular,
we addressed the question of whether unbound values can be understood by using the
classical classification of null values into unknown values, inapplicable values, and no-
information nulls.

In order to formalize our approach, we introduced a generalized relational algebra. The
generalized algebra consists in defining two variants for each operator. The first, denoted
with the subscript “under”, returns answers that are valid for all models. The second,
denoted with the subscript “over”, returns answers that are valid for some models.

With this machinery, we were able to understand the rationale behind the unbound values
in SPARQL and how this rationale is related with the one of SQL. The picture goes as
follows: shows that SPARQL is characterized by a join that computes the answers that
are valid in some interpretation of the joined tables, whereas SQL is characterized by a
join that computes certain answers. This characterization is inverted for the difference.
The SPARQL difference computes certain answers whereas the SQL difference computes
possible answers.

As an aside, let us note that generalized relational algebra can be viewed therefore an
extension of relational algebra by introducing the modals necessary and possible of modal
logic. Since there is a natural translation from the standard relational algebra to first order
logic, it arises the question of whether we can translate generalized algebra queries to
first order modal logic [26]. We do not address this question in this thesis, however, we
conjecture that a positive answer to this question could lead to an elegant semantics for
SPARQL and SQL based on first order modal logic.

72

Part III

On the semantics of EXISTS

73

Chapter 5

The notion of substitution under
incomplete data

Several query languages as SQL, SPARQL, and recently G-Core [4], allow us to define a
query, called the inner query or the subquery, inside another query, called the outer query.
Usually, they are evaluated once for each answer of the outer query. Attributes X that
occur in both, the outer query and the inner query, are said to be correlated if X has to be
substituted in the inner query by the value of X in the outer-query each time that the inner
query is evaluated.

Let us present an example to show how this works in SPARQL:

Example 5.1. Consider the following SQL query:

1 SELECT orders.id
2 FROM orders
3 WHERE NOT EXISTS (
4 SELECT *
5 FROM items
6 WHERE orders.id = items.order_id
7)

Intuitively, this query asks for orders having no items. Lines 1–3 codify the outer query, and lines
4–6 codify the inner query. The inner and the outer query each separately are not complete queries.
They do not compile, and thus they cannot be evaluated. The outer query is not complete until an
inner query inside the parenthesis of the NOT EXISTS clause is present. The inner query is not
complete since the attribute orders.id is not defined in it. The attribute orders.id is here the
correlated variable, because it has to be substituted by the value provided by the outer query each
time the inner query is evaluated.

75

In SPARQL two forms of nesting are usually referred as subqueries:

1. when a query occurs inside a WHERE clause as a graph pattern—called a subselect—
to be combined with other graph patterns with the operations AND, MINUS,
UNION, and OPT; and

2. when a query occurs inside an EXISTS clause.

In this chapter we focus on the study of the EXISTS clause in SPARQL. The EXISTS clause
occurs inside the FILTER clause as an atomic Boolean condition. The EXISTS clause
contains a query, called the inner query, that is evaluated against a mapping that is a
solution of another query, called the outer query. The FILTER clause takes answers from
the outer and uses them to evaluate the filter-condition, and thus, evaluate the inner query.

The semantics of the EXISTS clause has been a matter of discussions in the Web Semantic
community. We [40], and Patel-Schneider and Martin [57] reported several issues with the
semantics the EXISTS clause. Most of the discussion boils down to the subtleties behind
the notion of substitution.

In this chapter we study the notion of substitution (in the EXIST clause) in SPARQL and
its issues. We present three proposals made by the community to approach the semantics
of the SPARQL EXISTS operator. We conclude illustrating the relation among the different
semantics of substitution and the notion of range-restricted variables of predicate calculus.

Organization of this chapter

– In Section 5.1 we describe the problem of substitution in SPARQL. We observe several
issues regarding ambiguities and contradictions in the specification, and the differ-
ent forms in which substitution is implemented. In particular, we describe three
proposals, called shallow-binding, deep-binding and environment-binding.

– The environment-binding proposal differs from the other two in that it is based on the
notion of environment (a mapping that associates variables with their current values)
instead of the notion of substitution (the transformation of a query by substituting
variables by values in it). In Section 5.2 we show that the environment-binding
proposal can be formalized equivalently using the notion of substitution.

– In Section 5.3 we show that to define a semantics for substitution we have to decide
what variables are replaceable. Also, we show the relation of the replaceable vari-
ables in query languages as SQL and SPARQL with the notions of free, bound, and
range restricted variables in first-order logic.

– We conclude this chapter in Section 5.4.

5.1 The problem of substitution in SPARQL
The semantics of the EXISTS clause in SPARQL is strongly related to the form how values in
correlated queries are treated. This amounts to the notions of correlation and substitution
of values (e.g. the values of the outer query into the inner query to be evaluated).

76

As we show throughout this section, in the current SPARQL specification the notions of
correlation and substitution are not well defined. This known problem (as we discuss
below) triggers several ambiguities and contradictions in the semantics, and different
semantics in implementations as Fuseki, Blazegraph, Virtuoso and rdf4j. In this section
we summarize the issues of substitution in SPARQL and describe three existing proposals
to solve these issues.

5.1.1 An overview of the problems of substitution in SPARQL
The anomalies in the W3C Specification of SPARQL 1.1 were detected early and reported
no later than 2014, when two erratas were registered.1 2 We published in 2016 a technical
report [40] where we analyzed the reported issues and other we found in the specification.
This report gained some attention and a W3C Community group (called the EXISTS CG
in what follows) was created to address the issue.3 In this section we present the problems
of substitution in SPARQL we reported in [40].

The W3C SPARQL Specification [36] gives two definitions that are relevant for the seman-
tics of the EXISTS clause we are discussing:

Definition 5.1 (Standard substitution, W3C Spec., §18.6). Let µ be a solution mapping and
P be a graph pattern. substitute(P, µ) is the graph pattern formed by replacing, for each X in
dom(µ), every occurrence of a variable X in P by µ(x).

Definition 5.2 (Evaluation of Exists, W3C Spec. §18.6). Let µ be the current solution map-
ping for a filter and P a graph pattern: The value EXISTS(P), given G, is true if and only if
Eval(G, substitute(P, µ)) is a non-empty sequence.

We have adapted Definition 5.2 to follow the notation used in this thesis. The original
definition writes D(G)where we simply write G. We simplify the notation since we do not
consider datasets composed from multiple RDF graphs as the specification does.

Before presenting the issues of substitution in SPARQL, we present an example where the
semantics is neither ambiguous nor contradictory. The following example help under-
standing the rationale behind Definitions 5.1 and 5.2.

Example 5.2. Let G be the graph depicted as follows:

Alice

Bob

Personchild

type

type

1https://www.w3.org/2013/sparql-errata#errata-query-8
2https://www.w3.org/2013/sparql-errata#errata-query-10
3https://www.w3.org/community/sparql-exists/

77

https://www.w3.org/2013/sparql-errata#errata-query-8
https://www.w3.org/2013/sparql-errata#errata-query-10
https://www.w3.org/community/sparql-exists/

Let Q be the following SPARQL query:

(?x, type, Person)︸ ︷︷ ︸
Q1

FILTER (¬ EXISTS (?x, child, ?y))︸ ︷︷ ︸
Q2

.

Intuitively, query Q asks for people having no children. Query Q1 is the outer query, and query
Q2 is the inner query.

The answers of the outer query on G query are:
?x

Alice
Bob

 .
To evaluate the inner query we have to consider each mapping that is an answer of the outer query
to apply the substitution.

For the first answer (Alice), the result of substituting the variable ?x by Alice is the triple pattern
(Alice, child, ?y) whose results on G are: [

?y
Bob

]
.

Thus, the ¬EXISTS clause is evaluated as false, so the tuple (Alice) of the outer query is discarded.

For the second answer to the outer query (Bob), the result of substituting the variable ?x by Bob
is the triple pattern (Bob, child, ?y). This triple pattern return no answers when evaluated on G.
Thus, this tuple of the outer query is not discarded.

Hence, the evaluation of query Q on graph G returns the following answers:[
?x

Bob

]
.

Though definitions 5.1 and 5.2 seem clear and simple, they have several issues and even
contradictory pieces we next describe. The issues we describe herein were reported in [40]
and [57].

Issue 1: Top-down or bottom-up evaluation?

Definitions 5.1 and 5.2 present a top-down evaluation for inner queries. An inner query
cannot be evaluated until the outer query is evaluated. In a previous report [40] we
showed that the substitution notion contradicts the statement “Due to the bottom-up
nature of SPARQL query evaluation, the subqueries are evaluated logically first, and the
results are projected up to the outer query” of the specification [36].

Example 5.3. Let G be the graph depicted in Example 5.2, and Q be the following SPARQL query:

(?x, type, Person) FILTER (¬ EXISTS ((?z, child, ?y) FILTER (?z � ?x))).

78

Intuitively, this query aims to be equivalent to the query in Example 5.2. However, this query
depends on the evaluation being done either top-down or bottom-up.

If query Q is evaluated top-down, then variable ?x must be substituted in the inner query. For
instance, for the solution where ?x is Alice, the inner query becomes the query

(?z, child, ?y) FILTER (?z � Alice)).
This query returns: [

?y ?z
Bob Alice

]
.

Thus, this solution where ?x is Alice is dropped from the solutions of Q.

On the contrary, if query Q is evaluated bottom-up, then the inner query is not modified. Thus, the
inner query is:

(?z, child, ?y) FILTER (?z � ?x).
Like in the previous case, the triple pattern (?z, child, ?y) returns:[

?y ?z
Bob Alice

]
.

However, the filter-condition ?z � ?x returns unknown because variable ?x is unbound when the
filter-condition is evaluated. Hence, the solution is dropped. Since the inner query returns no
answers, all answers of the outer-query are accepted. In particular, the solution where ?x is Alice is
accepted as a solution of query Q.

Hence, this example shows that the top-down an bottom-up evaluations of query Q produce different
answers.

Issue 2: Substitution can break the grammar

The SPARQL specification states that if a variable ?x is in the domain of the current
mapping µ, then every occurrence of ?x must be replaced by µ(?x). However, in some
cases we cannot replace a variable ?x by a constant, because the place where the variable
?x occurs admits only variables. We reported this issue in the Jena’s mailing list.4 This
issue was included in the SPARQL 1.1 errata.5

Example 5.4. Variable ?x cannot be substituted by a constant because it would break the SPARQL
grammar:

1. (SELECT ?x WHERE Q)
2. (Q BIND (F AS ?x))
3. (VALUES {?x}{{?x 7→ a}})

For instance, if we substitute ?x by a constant b in the last query produces the query
(VALUES {b}{b 7→ a}) that has no sense because {b 7→ a} is not a valid RDF mapping.

4http://mail-archives.apache.org/mod_mbox/jena-users/201412.mbox/<1419368102.2824.10.
camel@ruil.local>

5https://www.w3.org/2013/sparql-errata#errata-query-10

79

http://mail-archives.apache.org/mod_mbox/jena-users/201412.mbox/<1419368102.2824.10.camel@ruil.local>
http://mail-archives.apache.org/mod_mbox/jena-users/201412.mbox/<1419368102.2824.10.camel@ruil.local>
https://www.w3.org/2013/sparql-errata#errata-query-10

Issue 3: MINUS behaves different if solution domains are disjoint

The SPARQL specification has a different semantics for the difference operator that the one
used in this thesis. Patel-Scheneider and Martin [57] noticed that according to the standard
semantics the difference operator produces counterintuitive results when combined with
EXISTS. Given two sets of mappings Ω1 and Ω2, according to the standard a query
Ω1 MINUS Ω2 is translated as the algebraic operation Minus(Ω1,Ω2), that is defined by
the SPARQL specification [36] as follows:

Minus(Ω1,Ω2) � {µ1 ∈ Ω1 | for all µ2 ∈ Ω2 : µ1 ≁ µ2, or dom(µ1) ∩ dom(µ2) � ∅}.

Example 5.5 ([57]). Consider the following query

{?x 7→ a} FILTER (EXISTS((?x, p , o)MINUS (?x, p , o))).

To check if the mapping {?x 7→ a} is an answer of the query we have to check if the inner query has
answers. However, according to the standard we first have to substitute ?x by a in the inner query.
The result of the substitution is the query:

(a , p , o)MINUS (a , p , o).

According to the W3C semantics of the difference, since both sides of the MINUS operator share
no variables, the result is (a , p , o) if the graph where the query is evaluated has that triple. This is
conterintuitive since both sides of the difference are the same.

Issue 4: The scope of variables is unclear

Definitions 5.1 and 5.2 state that if a variable ?x is in the current mapping µ then all occur-
rences of variable ?x in the inner query must be replaced by µ(?x). This statement implies
that the scope of variable ?x includes all its occurrences in the inner query. However,
Section 12 of the Specification states the contrary: “Note that only variables projected out
of the subquery will be visible, or in scope, to the outer query”.

In the specification the word “visible” is used to indicate the variables in the inner query
that can be substituted by the values carried by the current mapping from the outer query.
Visible variables are also called connected variables in the EXISTS CG’s report [31]. In the
introduction of this chapter we used the term of correlated variables to refer to connected
variables.

This contradictory definition of the scope of variables in SPARQL leads to differences
among implementations. We show in a report [40] that the queries described in the
following example have different answers in popular implementations.

Example 5.6. Let G � {(a , p , a), (a , q , a)}, and consider the following queries:

Q1 : {?x 7→ a} FILTER (¬ EXISTS ((?y, p , ?z) FILTER ?z � ?x)),
Q2 : {?x 7→ a} FILTER (¬ EXISTS ((SELECT ?y WHERE(?y, p , ?x)))),
Q3 : {?x 7→ b} FILTER (EXISTS(((?y, p , ?z)MINUS (?z, q , ?x)))).

80

If in the queries above we assume that variable ?x in the inner query is correlated, then the solutions
are:

JQ1KG � ∅,JQ2KG � ∅,JQ3KG � ∅.

On the contrary, if we assume that in the queries above variable ?x is not correlated, then the
solutions are:

JQ1KG � {{?x 7→ a}},JQ2KG � {{?x 7→ a}},JQ3KG � {{?x 7→ b}}.

Issue 5: Blank nodes are variables in basic graph patterns

According to Patel-Schneider and Martin [57], if we substitute a variable ?x occurring in a
basic graph pattern by a blank node, then the blank node will act as an existential variable.
This can produce counterintuitive results.

Example 5.7. Let G � {(⊥, p , o), (a , q , o)} be an RDF graph and Q be the following query:

(?x, p , o) FILTER (EXISTS(?x, q , o))

The evaluation of the outer query produces the solution mapping {?x 7→ ⊥}. According the W3C
semantics the inner query is thus substituted as (⊥, q , o). Since ⊥ acts as an existential variable,
pattern (⊥, q , o) matches the triple (a , q , o), so there exists a solution for the inner query, and the
mapping {?x 7→ ⊥} is an answer to the whole query.

According to Patel-Schneider and Martin [57] and also the EXISTS CG [31], the inner query
must return no answer since ⊥ and a represent different identities. This assumption is
arguable, because a blank node represents an existential value according the RDF semantics
(see Chapter 3). However, to the best of our knowledge SPARQL engines do not return the
mapping {?x 7→ ⊥} as an answer to the query in Example 5.7.

Issue 6: Substitution of unbound variables

The presence of unbound values in the answers of the outer and inner queries complicates
the substitution in SPARQL. Informally, the substitution of a variable ?x in an inner query
by the value provided by current mapping µ is understood as restricting the value of ?x
in the inner query to µ(?x). However it is not clear how to apply such restriction if ?x is
unbound in the inner query or if it is unbound in the outer query.

The following example expresses the sort of problems that can be found in the evaluation
of EXISTS subqueries in SPARQL.

Example 5.8. Let Q be the following SPARQL query:

((?id, a, Person)OPT (?id, corpMail, ?email)) FILTER (EXISTS(
((?id, a, Person)OPT (?id, privMail, ?email)) FILTER (?email � *.com)))

81

This query roughly asks for the ID of persons and optionally their corporate email, subject to some
conditions given by the expression in the FILTER EXISTS.

Some of the most popular implementations of SPARQL do not agree on how to evaluate this query.
For example, consider the following database of persons

id 1 2 3 4 5 6
corpMail *.com *.net *.com *.net
privMail *.net *.com *.com *.net

Fuseki, Blazegraph, Virtuoso and rdf4j give almost all of different results.6 Fuseki and Blazegraph
give

?id ?email
1 ∗.com
3 ∗.com
5 −

 ,
Virtuoso gives

?id ?email
1 ∗.com
3 ∗.com

 ,
and finally rdf4j gives

?id ?email
3 ∗.com
5 −

 .
In order to simplify the discussion of this example we will denote mappings of the form
{?id 7→ a , ?email 7→ b} as tuples (a , b).
The main question that a semantics must answer is how to assign the variables in order
to evaluate the inner and outer expressions. Let us attempt to understand why not all
systems agree in showing up person 1. With this person the outer query produces the
tuple ν � (1, ∗.com).
If we evaluate first the inner query then the variable ?email is bound to ∗.net for person 1,
thus the filter ?email � ∗.com fails, and so the whole expression inside the first filter fails,
hence person 1 is not shown in the output.

Now, if the inner query is evaluated after binding the variable ?email to ∗.com, then the
optional part of the inner query does not match and thus the inner query returns the tuple
µ � (1,−). Does this tuple pass the filter of the inner query? This depends on what is the
value we assign to variable ?email in the filter condition ?email � ∗.com. If we take the
value from the tuple µ then this condition fails, hence person 1 is not shown in the output.
On the contrary, if the value is taken from the mapping ν produced in outer query, where
the email is bound to ∗.com, then the filter passes, hence person 1 is outputted.

6The engines studied in this example are Fuseki 2.5.0, Blazegraph 2.1.1, Virtuoso 7.2.4.2, and rdf4j 2.2.1.

82

Example 5.8 shows that unbound values introduce an ambiguity in the source of a value.
The value of variable ?email in the filter condition ?email � ∗.com can be taken from two
sources, namely the variable ?email in the outer pattern (contributed by the mapping ν)
and the ?email in the inner pattern (contributed by the mapping µ).

5.1.2 Existing proposals for the semantics of EXISTS
As we already said, to solve the aforementioned issues of the EXISTS semantics, a W3C
Community group (called the EXISTS CG from now on) was created.7 At the moment the
EXISTS CG was created, there were already three proposals of semantics for the EXISTS
clause, namely shallow-binding, deep-binding, and environment-binding. The EXISTS CG
focused in the shallow- and deep-binding proposals but did not reach a consensus and
published a report describing both semantics [31].8 These two proposals can be viewed
as two extremes of a range of possible semantics. The existence of a third proposal, the
environment-binding, illustrates the fact that it was possible to define multiple alternative
semantics between these two extremes. This multiplicity motivates the approach we
follow in this thesis: Instead of proposing an additional semantics for the EXISTS clause,
we study the problem of substitution that is at the core of them. In this section we describe
these three aforementioned proposals because they serve as examples for our study of the
substitution problem.

For the sake of readability, in what follows we will omit the keyword VALUES when using
mappings to substitute variables. For instance, given a mapping µ, we write µ AND Q
instead of the verbose expression (VALUES dom(µ) {µ})AND Q.

Deep-binding proposal

The deep-binding semantics was proposed by Seaborne in the EXISTS CG mailing list [67]
and summarized in EXISTS CG report [31]. The main idea of this proposal is to restrict the
values of a variable at the point where it is bound. According to Seaborne, the replacement
must not be done by substituting a variable, but by restricting the values that the variable
binds. This is not done in all places where a variable occurs, but in the leafs of the
syntactical tree of a query, i.e., at the level of basic graph patterns.

Definition 5.3. Given a mapping µ and a query Q, the result of substituting µ in Q according to
the deep-binding substitution is the query resulting from:

1. renaming consistently by fresh variables all variables in Q that are not in dom(Q); and then

2. substituting in Q each basic graph pattern P by the graph pattern (µ|dom(P) AND P).

Example 5.9. If Q is the query (?x, p , ?z)OPT (?x, q , ?y) and µ � {?x 7→ a , ?y 7→ b}, then the
result of substituting µ in Q is the query

({?x 7→ a} AND (?x, p , ?z)) OPT ({?x 7→ a , ?y 7→ b} AND (?x, q , ?y)).
7https://www.w3.org/community/sparql-exists/
8The reason of why the EXISTS CG ignored the environment-binding proposal were not technical, but

practical: the authors of this proposal did not participate in the EXISTS CG as the authors of the shallow-
and deep-binding proposals did.

83

https://www.w3.org/community/sparql-exists/

Example 5.10. If Q is the query (?x, p , ?z)MINUS (?x, q , ?y) and µ � {?x 7→ a , ?y 7→ b}, then
the result of substituting µ in Q is the query

({?x 7→ a} AND (?x, p , ?z)) MINUS ({?x 7→ a} AND (?x, q , ?u)).

Observe that, unlike the previous example, in this case variable ?y is renamed as ?u because
?y < dom(Q).

Shallow-binding proposal

The shallow-binding semantics was proposed by Patel-Schneider and Martin [57] to fix
problems in the specification. Its aim was to avoid results that, according to the authors
are counter intuitive.

In the shallow-binding semantics no substitution is done in the inner query. Instead, the
inner query is evaluated independently of the outer query. To check if a mapping µ from
the outer query satisfies the EXISTS clause, it suffices to check if µ is compatible with at
least a solution mapping of the inner query. Following this idea, the substitution is defined
as follows:

Definition 5.4. Given a mapping µ and a query Q, the result of substituting µ in Q according to
the shallow-binding substitution is the query (µ AND Q).
Example 5.11. If Q is the query (?x, p , ?z)MINUS (?x, q , ?y) and µ � {?x 7→ a , ?y 7→ b}, then
the result of substituting µ in Q is the query

({?x 7→ a , ?y 7→ b} AND ((?x, p , ?z)MINUS (?x, q , ?y))).

Environment-binding proposal

Kaminski et al. [44] proposed a semantics for the EXISTS clause that aims to follow the
spirit of the current specification. The semantics they proposed is based on the notion of
environment variables. According to this semantics, each query Q is evaluated in an RDF
graph G and in a SPARQL mapping ν. The result of this evaluation is denoted JQKG,ν. The
mapping ν is called the evaluation environment. The semantics of queries is defined as
follows:9

Definition 5.5 (SPARQL semantics with environment [44]). Given an RDF graph G, and
SPARQL mapping ν, the semantics of a query Q is defined recursively as follows:

1. If Q is a basic graph pattern, then:

JQKG,ν � {ν ⌣ µ | µ ∈ JQKG and µ ∼ ν}.

2. If Q is combination of queries Q1 and Q2, then:

JQ1 UNION Q2KG,ν � JQ1KG,ν ∪ JQ2KG,ν ,JQ1 AND Q2KG,ν � JQ1KG,ν 1 JQ2KG,ν ,JQ1 MINUS Q2KG,ν � JQ1KG,ν − JQ2KG,ν .

9We fixed the definition of the semantics for the SELECT clause by Kaminski et al. [44]. In their definition
solution mappings of an expression (SELECTX WHERE P) were not restricted to the domain X. The
important point from their definition is that the environment is restricted when evaluating the query P.

84

3. If Q has the form (SELECTXWHERE P) then:

JQKG,ν � {µ|X | µ ∈ JPKG,ν |X }.

4. If Q is has the form P FILTER φ then the answers of Q are all solutions of JPKG,ν such that
the truth value of φ against µ ⌣ ν and G, denoted (µ ⌣ ν)(φ,G), is true. This truth value
defined recursively as follows:

(a) If φ is a clause of the form EXISTS(P) then the truth value of (µ ⌣ ν)(φ,G) is true if
and only if JPKG,µ⌣ν has an answer.

(b) If φ has the form t1 � t2, bound(X), or isBlank(t) then (µ ⌣ ν)(φ,G) � (µ ⌣ ν)(φ)
where the right side denotes the truth value stated by Definition 2.10.

(c) If φ has is a Boolean combination of filter-conditions then the truth value of (µ ⌣
ν)(φ,G) is the usual for 3-valued logic (see Table 2.1).

The proposal by Kaminski et al. [44] described in Definition 5.5, called environment-binding
proposal in what follows, does not consider the VALUES nor the BIND operators. However,
it can be easily extended to cover them.

The deep-binding and the environment-binding proposals, join the current mapping
to the basic graph patterns of the inner query. Unlike the deep-binding proposal, the
environment-binding proposal also substitutes variables in filter-conditions.

Example 5.12. Let G � {(a , p , b)} be an RDF graph, and Q be the following query:

{?x 7→ a , ?z 7→ b} FILTER (EXISTS(((?x, p , ?y) FILTER (?x � c ∨ ?y � ?z)))).

Then, according to the deep-binding proposal the inner query is instantiated by the values produced
in the outer query before being evaluated. This substitution produces the following query:

({?x 7→ a} AND (?x, p , ?y)) FILTER (?x � c ∨ ?y � ?z). (5.1)

The result of evaluating the graph pattern on the left side of the filter in query (5.1) has as its unique
answer the mapping {?x 7→ a , ?z 7→ b}. Thus, the filter condition on the right side of the filter
in (5.1) is evaluated against this mapping. ?x � c evaluates as false and ?y � ?z evaluates as
unknown because ?z is unbound. Then this solution is dropped and the whole query Q has no
answers in G.

According to the environment-binding proposal, the inner query is evaluated against the environ-
ment ν � {?x � a , ?z � b}. Then, J(?x, p , ?y)KG,ν has a unique solution µ � {?x 7→ a , ?z 7→ b}.
The evaluation of the filter-condition ?x � c∨?y � ?z is done against the mapping ν ⌣ µ � {?x 7→
a , ?y 7→ b , ?z 7→ b}. Since ?y � ?z is true against ν ⌣ µ, then µ is a solution of the inner query,
and thus, unlike the deep-binding proposal, the evaluation of Q on G has an answer.

5.1.3 How the existing proposals solve the substituion issues
In this section we describe how each proposal described in Section 5.1.2 solves the afore-
mentioned problems of substitution in SPARQL.

85

Issue 1: Top-down or bottom-up evaluation?

The shallow-binding proposal follows the bottom-up evaluation because the inner query is
evaluated without substitution. On the contrary, the deep-binding and the environment-
binding proposals follow the top-down evaluation.

Issue 2: Substitution can break the grammar

Since the three proposals (shallow-binding, deep-binding and environment-binding) do
not replace variables by constants, but restrict the values in the inner query to agree with
the values provided by the outer-query, they are not affected by this issue as the current
specification is. Thus, the three proposals fix the current specification regarding this issue.

Issue 3: MINUS behaves different if solution domains are disjoint

The three proposals solved this issue. Since there is no replacement of variables by
constants, the domain of answers is not reduced by the substitution, and thus the minuend
and the subtrahend do not lose the common variables.

Issue 4: The scope of variables is unclear

Consider the queries

Q1 : {?x 7→ a} FILTER (¬ EXISTS ((?y, p , ?z) FILTER ?z � ?x)),
Q2 : {?x 7→ a} FILTER (¬ EXISTS ((SELECT ?y WHERE(?y, p , ?x)))),
Q3 : {?x 7→ b} FILTER (EXISTS(((?y, p , ?z)MINUS (?z, q , ?x))))

from Example 5.6.

According the shallow-binding proposal the variable ?x in these queries is not correlated
because it does not occur in the answers of the inner query. Since the shallow-binding
proposal asks for solutions of the inner query that are compatible with the current solution
from the outer query, there is no way to connect variable ?x in the outer and inner queries.

The deep-binding proposal renames variables that are assumed to not be “visible” from
the outer query. This renaming is done before doing the substitution in order to avoid
the substitution of variables that are not connected. To determine what variables must
be renamed, the deep-binding proposal [31] uses the notion of in-scope, described in the
SPARQL specification [36]. In-scope variables are the variables that can occur in the
output of a query (see Definition 2.12). Hence, according the deep-binding proposal the
occurrences of ?x in the inner query of queries Q1, Q2 and Q3 are not visible from the outer
query, so they have to be renamed before applying the substitution.

The unique form to define local variables according to the environment-binding proposal
is using a SELECT clause. All variables that are not listed in the SELECT are considered
“local” (i.e., not visible from the outer query). The scope of variables is implemented
by restricting the environment when a SELECT clause is evaluated in an inner query (see
Definition 5.5). The environment-binding proposal follows this design due the instructions

86

given in the SPARQL 1.1 errata.10 Under this semantics, the variable ?x is correlated in
queries Q1 and Q3 but not in query Q2.

Issue 5: Blank nodes are variables in basic graph patterns

The three proposals do not produce the counterintuitive answers—that according to Patel-
Schneider and Martin [57] are returned when variables are substituted by blank nodes—
because do not substitute variables by constants in a basic graph pattern.

Issue 6: Substitution of unbound variables

Let Q be the following SPARQL query of Example 5.8:

((?id, a, Person)OPT (?id, corpMail, ?email)) FILTER (EXISTS(
((?id, a, Person)OPT (?id, privMail, ?email)) FILTER (?email � *.com)))

and consider the following database of persons

id 1 2 3 4 5 6
corpMail *.com *.net *.com *.net
privMail *.net *.com *.com *.net

Let us describe how each proposal resolves the question of whether person 1 is an answer
of the query. In order to simplify the discussion we will denote mappings of the form
{?id 7→ a , ?email 7→ b} as tuples (a , b). With person 1 the outer query produces the tuple
ν � (1, ∗.com).
According to the shallow-binding proposal, the inner query is evaluated first, producing
for person 1 the tuple µ � (1, ∗.net). Since tuples ν and µ are incompatible, person 1 is not
returned.

According to the deep-binding proposal, the variables in the mapping ν are substituted in
the inner query producing the following query as the result of the substitution:

(({?id 7→ 1} AND (?id, a, person)) OPT
({?id 7→ 1, ?email 7→ ∗.com} AND (?id, privMail, ?email)))
FILTER ?email � ∗.com

Since the triple pattern (?id, privMail, ?email)has no solution compatible with the mapping
{?id 7→ 1, ?email 7→ ∗.com}, this query produces the tuple (1,−) that fails the filter ?email �
∗.com. Hence, person 1 is not returned.

According to the environment-binding proposal, the answers of the triple patterns
(?id, a, Person) and (?id, privMail, ?email) have to be compatible with the mapping ν pro-
duced in the outer join. This result in the value ?id bound to 1 in the first triple pattern
and no bindings in the second triple pattern. According to the environment-binding pro-
posal (see Definition 5.5), given a basic graph pattern P, a graph G, and a mapping ν, the
result of evaluating JPKG,ν is the set {µ ⌣ ν | µ ∈ JPKG , and ν ∼ µ}. Intuitively, for each
biding produced of matching the pattern against the graph, the result is extended with

10https://www.w3.org/2013/sparql-errata#errata-query-8

87

https://www.w3.org/2013/sparql-errata#errata-query-8

the bindings in the environment. Since in our example the evaluation of the first triple
pattern against the graph is the mapping {?id 7→ 1}, the result of evaluating that triple
pattern against the environment ν is the tuple µ � (1,−) ⌣ ν � (1, ∗.com). Hence, the filter
condition ?email � ∗.com returns true, and the person 1 is returned by the query.

Let us to analyze why the deep-binding and the environment-binding proposals differ.
In the case of the deep-binding the mapping ν � (1, ∗.com) is used to restrict the variable
values in the inner query, but not in its filter-condition. Indeed, the variable values in
the filter condition are given by the tuple µ � (1,−) that is less informative than tuple
ν. On the contrary, the environment-binding proposal defines a clear stratification in the
environments where each level increases the informativeness of the levels above. Kaminski
et al. [44] proved that when a SPARQL query Q is evaluated against an environment ν and
a graph G, then for each solution µ ∈ JQKg ,ν it holds that ν ⊆ µ. This fact guaranties the
aforementioned monotony in the information.

5.2 Environment-binding as a substitution proposal
The environment-binding proposal by Kaminski et al. [44] differs from the other proposals
in that it does not generates a query result of the substitution. However, it also can be
understood in terms of substitutions. In this section we will show how the environment-
binding proposal can be understood in terms of substitutions.

Definition 5.6 (Environment-binding substitution). Given a SPARQL mapping ν, and a
SPARQL query Q, the semantics of the resulting SPARQL query that results of the substitution
subs(Q , ν) is defined recursively as follows:

1. If Q is a basic graph pattern, then:

subs(Q , ν) � (ν AND Q).

2. If Q is combination of queries Q1 and Q2, then:

subs(Q1 UNION Q2, ν) � (subs(Q1, ν)UNION subs(Q2, ν)),
subs(Q1 AND Q2, ν) � (subs(Q1, ν)AND subs(Q2, ν)),

subs(Q1 MINUS Q2, ν) � (subs(Q1, ν)MINUS subs(Q2, ν)).

3. If Q has the form (SELECTXWHERE P) then:

subs(Q , ν) � (SELECTXWHERE subs(P, ν |X)).

4. If Q is has the form P FILTER φ, then;

subs(Q , ν) � (subs(P, ν) FILTER subs(φ, ν)),

where the substitution of a filter-condition is defined recursively as follows:

(a) If φ is an equality formula t1 � t2 then

subs(t1 � t2, ν) � ν(t1 � t2).

88

(b) If φ is a Boolean combination of formulas, then:

subs(φ1 ∧ φ2, ν) � subs(φ1, ν) ∧ subs(φ2, ν),
subs(φ1 ∨ φ2, ν) � subs(φ1, ν) ∨ subs(φ2, ν),

subs(¬φ1, ν) � ¬ subs(φ1, ν).

(c) If φ is a clause of the form EXISTS(P) then:

subs(φ, ν) � EXISTS(subs(P, ν)).

Example 5.13. Let ν � {?x 7→ a , ?z 7→ b} be a SPARQL mapping, and Q be the following
SPARQL query:

((?x, p , ?y) FILTER (?x � c ∨ ?y � ?z)).
The query Q is the inner query of the query in Example 5.12 and mapping ν is the mapping provided
by the outer query. The result of subs(Q , ν) then can be used to revisit Example 5.12, where the
environment-binding proposal is compared with the deep-binding proposal. The following are the
results of the substitution subs(Q , ν) according to these two proposals:

((ν |?x,?z AND (?x, p , ?y)) FILTER (a � c ∨ ?y � b)), (environment-binding)
((ν |?x AND (?x, p , ?y)) FILTER (?x � c ∨ ?y � ?z)). (deep-binding)

Example 5.13 shows the two differences between both proposals:

1. In the environment-binding proposal the mapping ν is operated without removing
variable ?z, as is done in the deep-biding proposal. This ensures that solutions µ of
the pattern (ν |?x,?z AND (?x, p , ?y)) satisfy ν ⊆ µ. In fact, Kaminski et al. [44] proved
that for every query Q, database D, mapping ν, and mapping µ ∈ JQKD ,ν, it holds
that ν ⊆ µ. Thus it is unnecessary to replace ν in the filter-condition ?x � c ∨ ?y � ?z
of the example, since subs(subs(C, µ), ν) � subs(C, µ) for every condition C.

2. Unlike the environment-binding proposal, in the deep-binding proposal variable ?z
is not considered correlated. This is due to the fact that in the deep-binding proposal
ν is restricted to the variables of the basic graph pattern where the substitution is
applied.

Theorem 5.1. The semantics of SPARQL according to the environment-binding proposal in Defi-
nitions 5.5 and 5.6 are equivalent.

Proof. It can be shown by induction on the structure of the query. Let Q be an SPARQL
query, G be an RDF graph, and ν be an RDF mapping. Let EvalA(Q ,G, ν) denote the result
of evaluating JQKG,ν according the semantics stated in Definition 5.5, and EvalB(Q ,G, ν)
denote the result of evaluating Jsubs(Q , ν)KG according to the semantics stated in Defini-
tion 5.6.

1. If Q is a basic graph pattern P, then:

EvalA(Q ,G, ν) � {µ ⌣ ν | µ ∈ JQKG , ν ∼ µ},
EvalB(Q ,G, ν) � Jν AND QKG .

By simple inspection, it holds that EvalA(Q ,G, ν) � EvalB(Q ,G, ν).

89

2. If Q has the form (Q1 UNION Q2)

EvalA(Q ,G, ν) � EvalA(Q1,G, ν) ∪ EvalA(Q2,G, ν),
EvalB(Q ,G, ν) � Jsubs(Q , ν)KG

� Jsubs(Q2, ν)UNION subs(Q2, ν)KG

� Jsubs(Q2, ν)KG ∪ Jsubs(Q2, ν)KG

� EvalB(Q1,G, ν) ∪ EvalB(Q2,G, ν),

By induction, both semantics return the same answers.

3. If Q has the form (Q1 AND Q2) then the equivalence can be shown by the same
arguments than for the UNION operator, replacing UNION by AND, and ∪ by 1.

4. If Q has the form (Q1 MINUS Q2) then the equivalence can be shown by the same
arguments than for the UNION operator, replacing UNION by MINUS, and ∪ by −.

5. If Q has the form (SELECTXWHERE Q1) then

EvalA(Q ,G, ν) � {µ|X | µ ∈ JPKG,ν |X }
� {µ|X | µ ∈ EvalA(P,G, ν |X)},

EvalB(Q ,G, ν) � J(SELECTXWHERE subs(P, ν |X))KG

� {µ|X | µ ∈ EvalB(P,G, ν |X)}.

By induction, both semantics return the same answers.

6. If Q has the form (Q1 FILTER φ) then

EvalA(Q ,G, ν) � {µ ∈ EvalA(Q1,G, ν) | (µ ⌣ ν)(φ,G) � true},
EvalB(Q ,G, ν) � J(subs(Q1, ν) FILTER subs(φ, ν))KG

� {µ ∈ EvalB(Q1,G, ν) | µ(subs(φ, ν)) � true}.

Since by induction EvalA(Q1,G, ν) � EvalB(Q1,G, ν), to finish the proof we have to
prove that (µ ⌣ ν)(φ,G) � true if and only if µ(subs(φ, ν)) � true. This can be
shown by induction on the structure of the filter-condition φ.

(a) If φ has the form EXISTS(P) then the formula is true according to the first
semantics if and only if EvalA(P,G, ν) has an answer whereas it is true according
to the second semantics if and only if EvalB(P,G, ν) has an answer. Since by
induction EvalA(P,G, ν) � EvalB(P,G, ν), it holds that the truth value of φ is
the same in both semantics.

(b) If φ has the form t1 � t2, bound(?x), or isBlank(t) then both semantics are
equivalent because assign the same values to the variables occurring in φ.

(c) If φ is a Boolean combination of filter-conditions then the truth value in both
semantics is the same, because by induction is a combination of filter-conditions
with the same truth values.

90

5.3 Free, bound, and range restricted variables
The variable scope in SPARQL is a source of differences in SPARQL implementations of
the EXISTS clause. In this section we will contrast the variable scope in SPARQL with the
variable scope in the relational calculus and SQL. The problem with the variable scope
in SPARQL was briefly described in Section 5.1.1. This section describes this problem in
detail.

5.3.1 Substitution in relational calculus
Substitution in first-order logic is based on the precise notion of free variable. The variables
that can be substituted are called free, and the variables that are not free are called bound.
Free variables are determined syntactically and the semantics of formulas relies on the
definition of free variables.

Example 5.14. Consider the following statement:

A |�v q(x , y) ∧ ∃x p(x , y), (5.2)

where v is the valuation {x 7→ a , y 7→ b}. This statement means than structure A models the
result of subsituting variables x and y in the formula. However, not all occurrences of these variables
can be substituted. In fact, variable x cannot be substituted in formula ∃xp(x , y), because x is not
free. By applying substitution we can infer that:

A |� q(a , b) ∧ ∃x p(x , b). (5.3)

Let Q be the first-order query

(r(x , y), q(x , y) ∧ ∃x p(x , y)). (5.4)

The answers of Q againstA are all facts of the form r(v(x), v(y))where v is a valuation that makes
the statement in (5.2) true. Intuitively, the free variables x and y carry the values from the query
to the answers.

Example 5.14 illustrates that to compute the answers of a relational calculus query we
need a precise notion of substitution. This notion is built upon the concept of free and
bound variables. A variable can occur in both forms, in a formula. All free occurrences
are substituted, and bound occurrences are not substituted.

5.3.2 Substitution in SQL
In SQL there are three places where a subquery can occur:

1. as a relation in the FROM clause;

2. as a relation with a single attribute in clauses IN, SOME, and ALL; and

3. as a relation in an EXISTS clause.

Despite the fact that this thesis does not focus on SQL, we review SQL subqueries formed
by clauses IN and EXISTS to show aspects of substitution that are also present in the
SPARQL EXISTS clause.

91

Example 5.15. The following SQL query contains a subquery nested in a IN clause:

1 SELECT orders.id
2 FROM orders
3 WHERE orders.id NOT IN (
4 SELECT items.order_id
5 FROM items
6)

Like the query of Example 5.1, this query asks for orders having no items. Lines 1–3 codify the
outer query, and lines 4–5 codify the inner query. Like the query of Example 5.1, the outer is not a
complete query, but the inner is complete since it does not contain a correlated attribute defined in
the outer query.

In the query of Example 5.15 there is no correlated attribute. Instead the value of attribute
order.id in the outer query must not be one of the values associated to the attribute
items.order_id in the inner query. Intuitively, there is a form of correlation between
these two attributes.

SQL IN clauses can also include correlated attributes. The following example shows a
query where correlation occurs.

Example 5.16. Consider the following SQL query selecting orders without items attached to the
order less than 31 days after the creation of the order:

1 SELECT orders.id
2 FROM orders
3 WHERE orders.id NOT IN (
4 SELECT items.order_id FROM items
5 WHERE items.created_at - orders.created_at < 31
6)

In this example the inner query must be evaluated once for each tuple of the outer query. In fact, the
subquery is open because attribute orders.created_at must be substituted before the evaluation
of the inner query.

Likewise relational calculus, SQL divides attributes in those that can be replaced and those
that cannot be replaced. However, this notion does not coincide exactly with the variables
that are free and bound in first-order formulas. As we discover, whether a variable is range
restricted is also necessary to identify what variables are replaceable. To compare the two
languages we will show how SQL queries can be expressed as first-order formulas.

Example 5.17. Consider the SQL query taken from Example 5.1:

1 SELECT orders.id
2 FROM orders
3 WHERE NOT EXISTS (
4 SELECT *
5 FROM items
6 WHERE orders.id != items.order_id
7)

92

In the nested query the attribute orders.id is replaceable. Furthermore, it must be substituted
before evaluating the inner query by the value from the outer query. On the contrary, the attribute
items.order_id is not replaceable.

When there is no nesting, a SQL query of the form SELECT X̄ WHERE C can be translated
as a predicate calculus query of the form (q(x̄), φ(ȳ)), where X̄ is the list of attributes that
the SQL query returns, x̄ is the list of first-order variables corresponding to the attributes
of the SQL query, φ is the first-order formula corresponding to the clause C, ȳ are the free
variables of φ, and x̄ ⊆ ȳ. For instance, we codify the inner query of Example 5.17 as the
following first-order query:

(q(x̄), items(x̄) ∧ x , y), (5.5)

where variables x̄ correspond to the attributes of table items, x is a variable in x̄, and
variable y represents the attribute items.order_id.

In the formula of the query in (5.5) variables x and y are said to be free (according to the
standard definition of free variable in first-order logic). This implies that both variables
can be replaced in first-order logic. However, SQL states in a different way what variables
can be replaced. In this case, only variable y (corresponding to an attribute defined in the
outer query) can be replaced according to the SQL semantics.

Observe that the query in (5.5) is not safe because the range of variable y is not restricted.
One may think therefore that in an SQL query Q the replaceable attributes correspond to
the variables that are not range restricted in the corresponding relational calculus query
for Q. However, in Example 5.17 we added the inequality (x , y) intentionally to make
the variable y not range restricted. If we had used an equality x � y the variable y would
be range restricted, and still replaceable in the corresponding SQL query. The notion of
range restricted variables is thus an approximation to the criteria needed to determine
what variables are replaceable in SQL. To precisely characterize the replaceable variables
in SQL we require limiting the variables that are assumed to be range restricted. To do
this, we can translate the SQL equality not as the standard equality x � y in logic, but as a
Datalog built-in E(x , y) that evaluates true if x and y are equal (see Ceri et al. [18]). With
this convention we can obtain a query of the form (q(x̄), items(x̄) ∧ E(x , y)) where y is
not range restricted since E(x , y) is not a regular predicate atom, but a built-in. However,
built-ins are not part of the standard first-order logic. We thus require an alternative
definition of range restricted variables. We next provide that definition based on a normal
form, called Safe Range Normal Form (SRNF), and described by Abiteboul et al. [1].

Definition 5.7 (Safe queries with the built-in equality). The function rr defined recursively by
rules below is the one such that receives a query φ in SRNF (see Abiteboul et al. [1]) and returns
a subset of the variables occurring in φ or ⊥. In this definition we assume that for each value T in
the range of rr, T operated with ⊥ gives ⊥ (e.g., ⊥ ∪ T � ⊥).

1. If φ is a predicate atom then rr(φ) � var(φ).
2. If φ an equality atom, then rr(φ) � ∅.

3. If φ is a conjunction ψ1 ∧ ψ2 where ψ1 and ψ2, then rr(φ) � rr(ψ1) ∪ rr(ψ2).
4. If φ is a disjunction ψ1 ∨ ψ2 then rr(φ) � rr(ψ1) ∩ rr(ψ2).

93

5. If φ is a negation ¬ψ then rr(φ) � ∅.

6. If φ is ∃X̄ψ then

rr(φ) �
{

rr(ψ) \ X̄ if X̄ ⊆ rr(ψ),
⊥ otherwise.

We say that a query ψ is safe if and only if rr(SRNF(ψ)) � free(ψ). If rr(SRNF(ψ)) , ⊥, then we
say that a variable X in free(ψ) \ rr(SRNF(ψ)) is not range restricted in ψ.

The problem of whether a variable is range restricted in a first-order formula is undecid-
able. Hence, like the definition described by Abiteboul et al. [1], Definition 5.7 gets an
approximate response to the problem.

Lemma 5.1. The algorithm described in Definition 5.7 to determine the range restricted variables
in a first-order formula is sound but not complete.

Proof. It follows from the fact that Definition 5.7 is based on the one described by Abiteboul
et al. [1]. The difference is that our definition does not take advantage of the transitivity of
the equality to allow more variables be considered range restricted. The variables that are
labeled as range restricted by our algorithm is thus a subset of the variables labeled range
restricted by their algorithm.

5.3.3 Substitution in SPARQL
There is no consensus in what variables are replaceable in SPARQL. Each of the three
proposals we discuss in this thesis uses a different criteria. An example of how dif-
ferent interpretations of the standard are, are the works of Kostylev et al. [44] and An-
gles and Gutierrez [7]. The former called free variables to the variables X in the query
(SELECTXWHERE P). The latter assume exactly the contrary, that is, free variables are
those that do not occur in X. In this thesis we do not analyze the interpretation of Angles
and Gutierrez, because it is not completely specified and because it differs in this point
with all the three proposals.

The variables that are replaceable depend on the semantics used for the substitution. For
the sake of the simplicity, we next present a translation from SPARQL queries to first-order
formulas restricted to a reduced set of SPARQL operators.

Definition 5.8 (Translation from SPARQL to first-order queries). A SPARQL query Q is said
to be an AFV-query if and only if:

1. Q is conformed by the operators VALUES, AND and FILTER with an equality or an
inequality as filter condition.

2. If a expression (Q1 FILTER θ) occurs in Q and a variable ?x occurs in θ but not in Q1, then
all occurrences of ?x in Q are in θ. Intuitively, this second condition guarantees that the
name of variables coincide with their scope.

Let Ω be a set of mappings X be a set of variables where dom(µ) ⊆ X for every mapping µ ∈ Ω,
Q1 and Q2 be two AFV-queries, θ be an equality or an inequality. Assume that every SPARQL
variable ?x is associated to a first-order variable x, and let δ(θ) denote the result of replacing each
SPARQL variable in θ by its corresponding first-order variable. Assume a predicate equal(·, ·) to

94

denote the equality. The first-order query that corresponds to an AFV-query Q, denoted δ(Q), is
defined recursively as follows:

δ(VALUES X Ω) � ∨
µ∈Ω

∧
?x∈dom(µ) equal(x , µ(?x)),

δ(Q1 AND Q2) � δ(Q1) ∧ δ(Q2),
δ(Q1 FILTER θ) � δ(Q1) ∧ δ(θ).

Observe that in the translation above we model the equality with the predicate equal(·, ·)
instead of using the equality relation “�”. We do that in order to ensure that variables that
are bound in a VALUES clause are range restricted according to Definition 5.7.

Now we are ready to discuss the relation of the variables that are replaceable in a SPARQL
query Q and the variables that are range-restricted in the first-order query δ(Q).
Example 5.18. Let Q be the following SPARQL query:

{?x 7→ a , ?y 7→ b} FILTER ((?x, p , ?z) FILTER ?z , ?y).

The translation of the inner query is the following first-order query:

(q(x , z), triple(x , p , z) ∧ z , y). (5.6)

Variables ?x and ?z are range restricted in (5.6) according to Definition 5.7, and variable ?y is not.

To evaluate Q we have to substitute the mapping ν � {?x 7→ a , ?y 7→ b} in the inner query.
The substitution depends on the semantics followed. We have therefore three alternative queries
resulting from the substitution according the three proposals we study herein:

shallow-binding: ν |?x,?y AND ((?x, p , ?z) FILTER ?z , ?u), (5.7)
deep-binding: (ν |?x AND (?x, p , ?z)) FILTER ?z , ?y, (5.8)
environment-binding: (ν |?x,?y AND (?x, p , ?z)) FILTER ?z , b. (5.9)

Observe that ?y is replaced by ?u in (5.7) to get an AFV-query. This replacement does not change
the semantics of the query. As these queries are AFV-queries, we can apply the translation δ on
them. The translation produces the following first-order queries:

equal(x , a) ∧ equal(y , b) ∧ (triples(x , p , z) ∧ z , u), (5.10)
(equal(x , a) ∧ triples(x , p , z)) ∧ z , y , (5.11)
(equal(x , a) ∧ equal(y , b) ∧ triples(x , p , z)) ∧ z , b. (5.12)

Queries (5.7) and (5.10) are not equivalent. In fact, the filter-condition in (5.7) returns always error
because ?y is unbound in it. On the contrary, in (5.10) variable y is non-range restricted.

Despite the fact that translation δ does not produce equivalent queries, it provides some intuition
on the relation among the replaceable variables in a SPARQL inner query Q and the variables that
are range-restricted in δ(Q). According to the shallow-binding and deep-binding proposals, only
variables that are free and range restricted in (5.6) are replaceable (i.e., x and z). On the other hand,
according to the environment-binding proposal, all free variables can be replaced (i.e., x, y, and z).

95

Language Free variables
Range restricted Non-range restricted

SQL X
SPARQL (shallow-binding) X
SPARQL (deep-binding) X
SPARQL (environment-binding) X X

Table 5.1: Replaceable variables in queries that are nested EXISTS clauses according to SQL
and three alternative semantics of SPARQL. Free variables are divided in range restricted
and non-range restricted.

5.4 Conclusions
The findings of what variables are replaceable in relational calculus, SQL and SPARQL are
summarized in Table 5.1. However, in the case of SPARQL the results of Example 5.18 are
far from being conclusive. This is because that, even in a reduced fragment, unbound val-
ues make it difficult to define a simple and intuitive translation from SPARQL to predicate
calculus that produce equivalent queries. In fact, translations from SPARQL to Datalog
are possible [60, 8, 66] but complicated by the processing of unbound values.

The lesson we learned from SQL is that (at least in this example) replaceable variables
do not correspond to free variables of relational calculus, but to variables that are not
range restricted according to Definition 5.7. The motivation of the SQL design is to make
unambiguous the source of the value for each attribute. In SQL the value of each attribute
is given in a specific FROM clause. On the contrary, in SPARQL the source of the value
of a variable can be ambiguous. For instance, this ambiguity occurs in the last occurrence
of variable y in the first-order query (5.6). The variable y is substituted by b in (5.12) but
y also is restricted to be equal to b by the atom equal(y , b). Recall that in Example 5.8 we
showed that the question of what is the source of the value of a variable gets relevant when
some of these sources can produce unbound values.

96

Chapter 6

Expressing SPARQL in Datalog

In the previous Chapter we presented a translation from SPARQL to first-order queries in
order to explore the relation of replaceable and range restricted variables. However, the
translation proposed in Definition 5.8 is not completely faithful due to the peculiar behavior
of unbound variables. In this chapter, in order to use a logical foundation to study SPARQL,
we use another approach, namely the translation from SPARQL to Datalog by Angles and
Gutierrez [8] adapted to the SPARQL fragment we study herein (see Definition 2.8). The
clause EXISTS, due to the particularities it poses, is addressed in the next chapter.

Translations from SPARQL to Datalog have been studied by several authors. Polleres [60]
proved that the SPARQL fragment including the operators AND, UNION, FILTER, OPT,
and MINUS is expressible in Answer Set Programming (an extension of Datalog), by
providing an equivalent Answer Set Programming query for each query in that SPARQL
fragment. Schenk [66] provides a translation of queries in the SPARQL fragment including
the operators AND, UNION, FILTER, and OPT to Datalog in order to study the complexity
of SPARQL. Actually, Schenk translations does not directly generate Datalog, but first order
formulas that can be translated to Datalog using the Lloyd-Torop transformation [51].
Angles and Gutierrez [8] define a translation from the same SPARQL fragment as Schenk
to Datalog in order to study the expressive power of SPARQL. Actually, these three
translations consider also the operator GRAPH that we do not consider in this thesis.

In this thesis, we use the translation by Angles and Gutierrez because it directly trans-
forms SPARQL queries to the least expressive language, whereas to generate Datalog, the
other two translations require a transformation afterwards. The election of a particular
translation does not affect the result our analysis of the SPARQL EXISTS operator because,
as we show in the end of this chapter, these three translations produce mostly the same
Datalog programs.

The goal of this chapter is to extend, improve and fix errors in the the translation by Angles
and Gutierrez [8]. We identify families of queries where the translation did not work and
fix them. We also extend their translation with the operators MINUS, VALUES and BIND,
that they did not consider because it was made before the introduction of these operators
to the standard.

97

Throughout this chapter we use the names SPARQL-0 and SPARQL-1 to denote the frag-
ments described in Definition 2.8. SPARQL-0 consists of queries that include the operators
AND, UNION, FILTER, and OPT whereas SPARQL-1 consists of queries that include also
the operators SELECT, MINUS, VALUES, and BIND.

Organization of this chapter

– In Section 6.1, we present an overview of nr-Datalog¬.

– In Section 6.2, we present the translation by Angles and Gutierrez [8] for AUFO
queries. Their translation is in general correct, except two problems that we describe
and fix in the following two sections.

– In Section 6.3, we describe and fix the problem of the translation by Angles and
Gutierrez [8] with equality atoms in filter-conditions.

– In Section 6.4, we describe and fix the problem of the translation by Angles and
Gutierrez [8] with negation in filter-conditions.

– In Section 6.5, we extend the fixed translation to AUSFODVB queries.

– We conclude this chapter in Section 6.6.

6.1 An overview of nr-Datalog¬

In this section we provide a short description of non-recursive Datalog with safe negation
(nr-Datalog¬ in what follows). We follow the formalization presented by Levene and
Loizou [46]. More details about nr-Datalog¬ can be found in the works of Abiteboul et
al. [1], and Ceri et al. [18].

The nr-Datalog¬ syntax is defined assuming three disjoint sets: variables, constants and
predicate names.1 A term is either a variable or a constant. An atom is either an expression
p(t1, . . . , tn) where p is a predicate name and each ti is a term, called predicate atom, or
an expression t1 � t2 where t1 and t2 are terms, called equality atom. A literal is either an
atom (i.e. a positive literal A) or the negation of an atom (i.e. a negative literal ¬A). We write
t1 , t2 as an abbreviation for ¬(t1 � t2).

A rule is an expression Ln+1← L1, . . . , Ln where Ln+1 is a positive predicate atom with no
constants called the head, and L1, . . . , Ln is a set of literals called the body. A program Π is
a finite set of rules. A database D is a finite multiset of atoms without variables.

A variable X occurs positively in a rule R if and only if X occurs in a positive predicate
atom in the body of R, in a positive equality atom of the form X � c where c is a constant,
or in a positive predicate atom of the form X � Y where Y is variable occurring positively
in R. A rule R is said to be safe if all the variables occurring in R occur positively in R. A
program Π is safe if all the rules of Π are safe.

1The syntax of SPARQL and nr-Datalog¬ are defined using arbitrary disjoint sets. To simplify the
translation from SPARQL to nr-Datalog¬ we assume that the set of variables is V (i.e., the set of SPARQL
variables), and the set of constants is B ∪ I ∪ L (i.e., the set of constants in SPARQL).

98

The dependency graph of a program Π is a digraph (N, E) where the set of nodes N is the
set of predicates that occur in the literals of Π, and there is an arc (p1, p2) in E if there is
a rule in Π whose body contains predicate p1, and whose head contains predicate p2. A
program is said to be non-recursive if its dependency graph is acyclic.

In what follows, restrict programs to safe and non-recursive Datalog programs, that,
among other good properties, in their evaluation always return a finite set of facts [1, 18].

Programs are defined over databases having a fixed schema, called the vocabulary. A
vocabulary τ is a pair (P, α) where P is a finite set of predicate names and α is a function
defining an arity for each predicate name. An atom is extensional if its predicate name
is in P, otherwise is called intensional. A database over vocabulary (P, α) is a multiset of
facts p(a1, . . . , an) where p is extensional and α(p) � n. A query over a vocabulary τ is a
pair (L,Π)where L is a positive predicate atom, called the goal, and Π is a program where
the head of every rule is an intensional atom.

We assume a proof-theoretic semantics for nr-Datalog¬ programs.

A substitution is a partial function θ from variables to constants. Hence, a nr-Datalog¬
answer is a set of substitutions with the same domain.

Let D be a database andΠ a program. The derivation trees ofΠwith respect to D, denoted
dt(Π,D), are defined recursively as follows:

1. For each fact f ∈ D, there is a derivation tree in dt(Π,D) having f as unique node.

2. Let R ∈ Π be a rule of the form Ln+1 ← L1, . . . , Lm , Lm+1, . . . , Ln where L1, . . . , Lm
are positive predicate literals, and Lm+1, . . . , Ln are not positive predicate literals, θ
be a substitution such that the domain of θ is the set of variables occurring in R, and
(t1, . . . , tm) be a tuple of derivations trees in dt(Π,D) such that conditions hold for
1 ≤ i ≤ n:

(a) If Li is a positive predicate atom then the root of ti is θ(Li).

(b) If Li is a negative predicate atom then there is no derivation tree ti ∈ dt(Π,D)
such that the root of ti is θ(Li).

(c) If Li is a positive equality atom then θ(Li) is an equality of the form a � a where
a is a constant.

(d) If Li is a negative equality atom then θ(Li) is an inequality of the form a , b
where a and b are different constants.

If the conditions above hold then there is a derivation tree t ∈ dt(Π,D) consisting of:

• Root θ(Ln+1);

• Ordered edges θ(Ln+1) → ri with label R, where for 1 ≤ i ≤ m, ri is the root of
ti and for j > m, r j � θ(L j).

3. No more derivations trees are in dt(Π,D).

LetΠ be a program, D a database and f a fact. A tree t ∈ dt(Π,D) is said to be a proof for
f if the root of t is f .

99

Given a nr-Datalog¬ query Q � (L,Π) over a vocabulary τ, and a database D over τ, we
write JQKD to denote the set of substitutions θ such that dom(θ) is the set of variables
occurring in L and there is a proof for the fact θ(L) in dt(P,D).
Example 6.1. Let D be the database consisting in the following facts:

address(alice, h1, home), address(alice, h2,work), address(bob, h1, home),
address(carl, h1, home), address(daisy, h3, home), relative(alice, carl),

and Π be the program that computes non-relative cohabiting people and consists in the following
rules:

R1 : nonRelativeCoahabiting(X,Y) ← livesIn(X, Z), livesIn(Y, Z),X , Y,¬ relative(X,Y)
R2 : livesIn(X,Y) ← address(X,Y, home)

The proof for the fact nonRelativeCohabiting(alice, bob) in dt(Π,D) is the derivation tree depicted
as follows:

nonRelativeCohabiting(alice, bob)

livesIn(alice, h1) livesIn(bob, h1) alice , bob ¬ relatives(alice, bob)

address(alice, h1, home) address(bob, h1, home)

R1 R1 R1 R1

R2 R2

6.2 Translation of the safe SPARQL-0 fragment
The fragment of SPARQL consisting of the operators AND, UNION, FILTER, and OPT
(SPARQL-0 in short), is at the core of SPARQL. In what follows we present its translation
to Datalog. The “safe” adjective refers to the allowed scope of the variables inside filter
fragments.

According Perez et al. [59], given a query (Q FILTER φ), it is desirable for reasons of
simplicity for the user and cleanness of the semantics, that the scope of the variables inside
φ should be the expression Q which φ filters. This notion is referred as safe FILTER and
defined by Angles and Gutierrez [8] as follows:

Definition 6.1 (Safe SPARQL-0 query [8]). A query Q in the SPARQL-0 fragment is safe if for
each filter query (R FILTER φ) occurring in Q it holds that var(φ) ⊆ var(R).

Note on unsafe SPARQL queries. Angles and Gutierrez [8] showed that the
SPARQL-0 fragment (that is, including unsafe queries) is expressible in nr-Datalog¬ by
providing first, a translation from unsafe queries to safe queries, and then, from safe

100

SPARQL-0 queries to nr-Datalog¬. Observe that in Definition 6.1 var(R) denotes the
variables that occur in the query, and because the fragment does not include the op-
erators SELECT nor MINUS, var(R) coincides with dom(R) (see Definition 2.12). By
introducing the SELECT operator into the SPARQL algebra, the translation of unsafe to
safe queries results straightforward. Given an unsafe SPARQL query (R FILTER φ), the
query ((SELECT dom(R) ∪var(φ) R)FILTERφ) is safe and equivalent to the previous one.

In this section we present their translation from safe SPARQL-0 queries to nr-Datalog¬.
The translation of SPARQL to nr-Datalog¬ requires first translating each SPARQL Dataset
(i.e., RDF graph) into a set of facts. The following definition describes this translation.

Definition 6.2 (RDF dataset as nr-Datalog¬ facts [8]). Given an RDF graph G, facts(G) is the
set with

– a fact triple(s , p , o) for each triple (s , p , o) ∈ G, and

– a fact bn(⊥) for each blank node ⊥ occurring in G.

In order to express SPARQL using nr-Datalog¬ it is needed to translate the output of
SPARQL queries —set of mappings— into the output of relational algebra queries —
relations. A natural translation consists in viewing mappings as tuples under the named
perspective. The domain of a mapping µ is thus dom(µ). The difference between set of
mappings and relations is that mappings have no unique domain, but tuples in a relation
do have. Thus, mappings must be filled with the unbound value ∅ using the method
described in Definition 2.7.

Angles and Gutierrez [8] uses a special predicate atom comp(X,Y, Z) to codify the compat-
ibility between values Y and Z. Since unbound values are filled with the special constant
∅, two terms are said to be compatible if they are the same constant or if one of them is ∅.
The program defining the compatibility is the following:

comp(X,X,X) ← adom(X) (6.1)
comp(X,X,Y) ← adom(X),Y � ∅ (6.2)
comp(X,Y,X) ← adom(X),Y � ∅ (6.3)
comp(Y,Y,Y) ← Y � ∅ (6.4)

The predicate atom adom(a) codifies the fact that constant a is in the active domain of the
database. A graph database is modeled with a single ternary relation with predicate triple
so the active domain of the database is obtained by the following program:

adom(X) ← triple(X,Y, Z) (6.5)
adom(X) ← triple(Y,X, Z) (6.6)
adom(X) ← triple(Y, Z,X) (6.7)

Definition 6.3 (Compatibility program [8]). We writeΠcomp to denote the nr-Datalog¬ program
with the rules specified in (6.1) to (6.7). Thus, Πcomp its the program to check the compatibility.

We next present the translation of the SPARQL-0 fragment to nr-Datalog¬.

Definition 6.4 (SPARQL-0 to nr-Datalog¬ translation [8]). In the definition of each rule we will
assume the following conventions:

101

(i) Given a set of SPARQL variables X and a predicate p, then p(X̄) denotes the predicate atom
with predicate p and where X̄ is the list of the Datalog variables that corresponds to the
variables in X in lexicographic order.

(ii) Q , R, S are SPARQL-0 queries. In all rules, the query Q is the query whose translation is
being defined. In some cases the query Q is defined using queries R and S as parameters (i.e.,
R and S occur in Q).

(iii) X̄, Ȳ, Z̄, and W̄ are lists of Datalog variables corresponding to the sets of SPARQL variables
whereX � dom(Q),Y � dom(R),Z � dom(S), andW � Y∩Z. These sets of variables
are recursively defined in Definition 2.12.

(iv) The result of translating Q, R, and S are respectively (q(X̄),ΠQ), (r(Ȳ),ΠR), and (s(Z̄),ΠS).
The rules we present here will be of the form Q 7→ ΠQ where q(X̄) is the head of at least
one of the rules of ΠQ . The values of the nr-Datalog¬ queries (r(Ȳ),ΠR) and (s(Z̄),ΠS) are
given recursively.

(v) Given a finite set of variables V̄ ⊂ V a predicate of the form p(V̄) denotes the predicate atom
resulting from writing between the parenthesis the variables in the set V̄ in lexicographic
order. This assumption is needed because attributes in SPARQL mappings have no order,
while values in predicate atoms have.

(vi) hY : W̄ → VY and hZ : W̄ → VZ are two bĳective functions preserving the lexicographic
order, where VY and VZ are two disjoint sets of fresh variables. In other words, these functions
rename common variables between queries R and S by distinct fresh variables.

(vii) We write Comp(W̄) to denote the list of literals of the form comp(X, hY(X), hZ(X)) for each
variable X ∈ W̄ . For instance, if W̄ � {W1,W2} then

Comp(W̄) � comp(W1, hY(W1), hZ(W1)), comp(W2, hY(W2), hZ(W2)).

(viii) Given a partial function h : V → V and a set of variables V̄ ⊂ V then h(V̄) denotes the
result of replacing in V̄ each variable X ∈ dom(h) by h(X).

The translation of a SPARQL-0 query Q into a nr-Datalog¬ query is defined recursively as follows:

1. Triple Patterns: Let Q � (t1, t2, t3) be a triple pattern without blank nodes. Then:

(t1, t2, t3) 7→ q(X̄) ← triple(t1, t2, t3).

The case when a triple pattern has blank nodes is not needed because a triple pattern is always
inside a basic graph pattern, and the rule that translates basic graph patterns replaces blank
nodes by variables before translating each triple pattern.

2. Basic Graph Patterns: Let Q be the basic graph pattern {T1, . . . , Tn}, and {T′1, . . . , T′n}
be the result of replacing consistently every blank node occurring in Q by a fresh variable.
Then, the translation of Q to nr-Datalog¬ is done with the following rule:

{T1, . . . , Tn} 7→ q(X̄) ← t1(X̄1), . . . , tn(X̄n) ; Π1 ; . . . ; Πn

where the nr-Datalog¬ query (ti(X̄i),Πi) is the translation of T′i , for 1 ≤ i ≤ n. Observe
that X̄ does not include the fresh variables that replaced the blank nodes occurring in the basic
graph pattern, so those variables are excluded from dom(Q).

102

3. Filter: Let Q � (R FILTERφ) be an SPARQL-0 query where φ is a built-in condition. Then,
the translation of Q is given by the following rules:

(R FILTER t1 � t2) 7→ q(X̄) ← r(Ȳ), t1 � t2 ; ΠR

(R FILTER isBlank(t)) 7→ q(X̄) ← r(Ȳ), bn(t) ; ΠR

(R FILTER bound(X)) 7→ q(X̄) ← r(Ȳ),X , ∅ ; ΠR

(R FILTER ¬φ) 7→ q(X̄) ← r(Ȳ),¬r′(Ȳ) ; ΠR ; Π′R
(R FILTER φ1 ∧ φ2) 7→ q(X̄) ← r1(X̄), r2(X̄) ; Π1 ; Π2

(R FILTER φ1 ∨ φ2) 7→ q(X̄) ← r1(X̄) ; q(X̄) ← r2(X̄) ; Π1 ; Π2

where the nr-Datalog¬ queries (r′(Ȳ),Π′R), (r1(Ȳ),Π1), and (r2(Ȳ),Π2) are the respective
translations for the SPARQL queries (R FILTER φ), (R FILTER φ1), and (R FILTER φ2).

4. And: If Q is an AND query then Q is translated using the following rule:

(R AND S) 7→ q(X̄) ← r(hY(Ȳ)), s(hZ(Z̄)),Comp(W̄) ; ΠR; ΠS ; Πcomp

The main idea of this translation is to rename all common variables X in predicate atoms r(Ȳ)
and s(Z̄) using functions hY and hZ to then check the compatibility of the values that were
assigned to variable X. Without that renaming, the values assigned to X in both predicate
atoms would be forced to be equal, instead of compatible as occurs in the AND operator.

5. Union: If Q is a UNION query then Q is translated using the following rule:

(R UNION S) 7→ q(X̄) ← r(Ȳ),Xr
1 � ∅, . . . ,Xr

n � ∅
q(X̄) ← s(Z̄),Xs

1 � ∅, . . . ,Xs
m � ∅

ΠR; ΠS

where {Xr
1 , . . . ,X

r
n} � X̄ \ Ȳ and {Xs

1 , . . . ,X
s
m} � X̄ \ Z̄. Values ∅ are added to fill in non

common attributes of tuples.

6. Optional: If Q is an OPT query then it is translated using the following rule:

(R OPT S) 7→ q(X̄) ← r(hY(Ȳ)), s(hz(Z̄)),Comp(W̄)
q(X̄) ← r(hY(Ȳ)),¬t(hZ(W̄)),Comp(W̄),X1 � ∅, . . . ,Xm � ∅
t(W̄) ← s(Z̄)
ΠR ; ΠS ; Πcomp

where {X1, . . . ,Xm} � Z̄ \ W̄ and t is a fresh predicate introduced to ensure safeness. As in
the translation of operator AND, compatibility is checked. Values∅ are added to fill attributes
in dom(S) \dom(R) in solution mappings of R with no compatible solution mappings in S.

Angles and Gutierrez [8] define the translation of a SPARQL query Q as the nr-Datalog¬
query (q(X̄),Π)where the programΠ includes both the program that computes the query
(described in Definition 6.4) and the database corresponding to the RDF graph. Unlike
Angles and Gutierrez, we choose to maintain the code of the query separate from the
database where the query is evaluated. This design allows a simpler checking of whether
the translation of a query is correct, independently of the database given.

103

Given a SPARQL query Q whose translation is the nr-Datalog¬ query q(X̄), the evaluation
of Q is a set of mappings and the evaluation of q(X̄) is a set of facts. Also, the database
where Q is evaluated is an RDF graph, and the database where q(X̄) is evaluated is a set
of facts. In order to compare the semantics of SPARQL queries and nr-Datalog¬ queries,
Definition 6.5 below defines the answers of a nr-Datalog¬ query over an RDF graph in
terms of Datalog mappings.

Definition 6.5 (Evaluation of a nr-Datalog¬ query on an RDF graph). Given a nr-Datalog¬
query q(X̄) and an RDF graph G, we write Jq(X̄)KG to denote the set of facts Jq(X̄)KDG where DG
is the Datalog database correspoding to the graph G (see Definition 6.2).

By an abuse of notation, given a nr-Datalog¬ query q(X̄), an RDF graph G, and a SPARQL
mapping µ where dom(µ) ⊆ X̄, we say that µ is a solution of Jq(X̄)KG, denoted µ ∈ Jq(X̄)KG, to
mean that the fact fill(µ,X)(q(X̄)) is a solution of Jq(X̄)KG. Recall that fill(µ, X̄) is the mapping
that results from extending the domain of µ to X̄ by adding the symbol ∅ (see Definition 2.7).

Now we can define when a translation from SPARQL to nr-Datalog¬ is correct.

Definition 6.6 (Correct translation from SPARQL to nr-Datalog¬). A translation function
δ from SPARQL to nr-Datalog¬ is correct if and only if for all SPARQL query Q the following
properties hold:

1. δ(Q) is a nr-Datalog¬ query of the form q(X̄) where X̄ � dom(Q).
2. For all SPARQL mapping µ with dom(µ) ⊆ X̄, and all RDF graphs G, µ ∈ JQKG if and

only if µ ∈ Jq(X̄)KG.

Thus, we have the following theorem:

Theorem 6.1 (Angles and Gutierrez [8]). The translation described in Definition 6.4, is correct
for all queries in the safe SPARQL-0 fragment restricted to queries having neither equality atoms
nor negations inside FILTER conditions.

Proof. The proof is given by Angles and Gutierrez [8] using induction in the structure of
queries in the SPARQL-0 fragment.

Observe that the translation described in Theorem 6.1 explicitly excludes equality formulas
and negations in FILTER conditions. In Section 6.3 and Section 6.4, we address the prob-
lems translation in Definition 6.4 has with equality formulas and negation respectively,
and extend the translation to include them.

6.3 Fixing the translation of equality atoms in
filter-conditions

The problem of the Angles and Gutierrez [8] translation (see Definition 6.4) with equality
formulas in built-in SPARQL conditions is illustrated in the following example.

Example 6.2. Let G � {(a , p , b)} be an RDF graph, and Q be the SPARQL query

(R FILTER Y � Z).

104

where R is the following SPARQL query:

(((X, p , b)OPT (X, q ,Y))OPT (X, r, Z)).

Then,

JRKG � {{X 7→ a}},JQKG � {}.

Solution {X 7→ a} is dropped by the filter-condition because Y � Z raises an error when Y or Z
are unbound.

According to Definition 6.4, the translation of Q to datalog is the query (q(X,Y, Z),Πq) whereΠQ
the following nr-Datalog¬ program:

q(X,Y, Z) ← r(X,Y, Z),Y � Z ; ΠR ,

where (r(X,Y, Z),ΠR) is the translation of query R.

If we assume that translation of R is correct, then:

J(r(X,Y, Z),ΠR)KG � {r(a ,∅,∅)},J(q(X,Y, Z),ΠQ)KG � {r(a ,∅,∅)}.

Here, the fact q(a ,∅,∅) is not dropped because ∅ � ∅ is true according to the semantics of equality
formulas in nr-Datalog¬.

The problem described in Example 6.2 is solved by ensuring that terms in the equality are
bound. This idea is formalized in the following Definition.

Definition 6.7 (Translation of FILTER queries with equality formulas). Given a SPARQL
query Q of the form (R FILTER X � Y), the translation of Q is given by the following rule:

(R FILTER X � Y) 7→ q(X̄) ← r(X̄),X � Y,X , ∅,Y , ∅ ; ΠR

where X̄ � dom(Q) � dom(R) and (r(X̄),ΠR) is the translation of query R.

The correctness of Definition 6.7 is stated in the following theorem.

Theorem 6.2. The translation resulting from replacing in Definition 6.4 the rule for equality
atoms in filter-conditions by the rule provided by Definition 6.7, is correct for all queries in the safe
SPARQL-0 fragment restricted to queries having no negations inside FILTER conditions.

Proof. We will prove this theorem by induction on the structure of queries, assuming that
all other rules of the translation are correct.

Let Q � (R FILTER X � Y) be a safe SPARQL query and G be a graph pattern. According
to Definition 6.7 the translation of query Q is a nr-Datalog¬ query of the form q(X̄) over
the following program:

q(X̄) ← r(X̄),X � Y,X , ∅,Y , ∅ ; ΠR

where X̄ � dom(Q) � dom(R) and (r(X̄),ΠR) is the translation of the SPARQL query R.

105

Let µ be a SPARQL mapping, and µ′ be fill(µ, X̄). By induction, µ ∈ JRKG if and only
if µ′(r(X̄)) ∈ Jr(X̄)KG. According to Definition 2.10 µ |� t1 � t2 if and only if µ(t1 � t2)
has the form a � a where a is a constant. This condition is equivalent to that Datalog
literals µ′(t1 � t2), µ′(t1 , ∅), and µ′(t2 , ∅) be true. Thus, µ ∈ JQKG if and only if
µ′(q(X̄)) ∈ Jq(X̄)KG. Hence, µ ∈ JQKG if and only if µ ∈ Jq(X̄)KG.

6.4 Fixing the translation of negation in filter-conditions
In this section we address the problem with negation in filter-conditions that the translation
by Angles and Gutierrez [8] has. The following example shows that their translation fails
when a filter-condition is evaluated as error.

Example 6.3. Let R be the SPARQL query

((s , p ,X)OPT (X, q ,Y)),
Q be the query (R FILTER ?x , ?y), and G � {(s , p , a), (a , q , b), (s , p , c)} be an RDF graph.
Then: JRKG � {{X 7→ a ,Y 7→ b}, {X 7→ c}},JQKG � {{X 7→ a ,Y 7→ b}}.
The solution mapping µ � {X 7→ c} of the query R is discarded in the query Q because X , Y is
evaluated as error since variable Y is unbound in µ.

According to the translation by Angles and Gutierrez [8], the SPARQL query Q is translated as
the nr-Datalog¬ query q(X,Y) over the following program:

q(X,Y) ← r(X,Y),¬s(X,Y)
s(X,Y) ← r(X,Y),X � Y
ΠR

where the nr-Datalog¬ query (r(X,Y),ΠR) is the translation of the SPARQL query R. Since the
solutions of the nr-Datalog¬ query r(X,Y) are the equivalent to the solutions of the SPARQL query
R, then: Jr(X,Y)KG � {{q(a , b), q(c ,∅)},Js(X,Y)KG � {},Jq(X,Y)KG � {{q(a , b), q(c ,∅)}.
Hence, the translation does not work because it returns the fact q(c ,∅) that does not correspond to
a solution in JQKG.

The main idea to fix the translation of negation in filter-conditions is to separate the solution
mappings of a query in three disjoint sets, namely the solutions that make the condition
true, false or error. Formally, given a SPARQL query R, a filter-condition φ, and a graph
G, these sets are:

Ωtrue � {µ ∈ JRKG | µ(φ) is true}, (6.8)
Ωfalse � {µ ∈ JRKG | µ(φ) is false}, (6.9)
Ωerror � {µ ∈ JRKG | µ(φ) is error}. (6.10)

106

Then, it holds:

J(R FILTER ¬φ)KG � JRKG \ (Ωtrue ∪Ωerror), (6.11)

that is, are all solutions mappings of the filtered query, except the mappings where the
filter condition ¬φ is not evaluated as true (i.e., where φ is evaluated as true of error).

On the contrary, the translation by Angles and Guttierrez [8] computes JRKG \Ωtrue. To see
this, recall that they translate the SPARQL query (R FILTER ¬φ) to a query q(X̄) over the
rules:

q(X̄) ← r(X̄),¬s(X̄) ; ΠR (6.12)

where the nr-Datalog¬ query (s(X̄),ΠR) is the translation of the SPARQL query (R FILTER
φ). Thus, Datalog rules in (6.12), correspond to the set difference JRKG \ J(R FILTER φ)KG.
Since, Ωtrue � J(R FILTER φ)KG the translation by Angles and Gutierrez [8] computesJRKG \Ωtrue.

The problem with the translation by Angles and Gutierrez [8] is that it misses one of
the three truth values that filter-conditions return, the error value. In order to fix the
translation of negations in filter-conditions we will express Ωerror in nr-Datalog¬.

Definition 6.8 (Datalog query for mappings raising errors). Given a predicate p, a SPARQL
query R equivalent to a nr-Datalog¬ query (r(X̄),ΠR), and a filter-condition φ, we will write
Errorp

φ(R) to denote the nr-Datalog¬ program defined recursively as follows:

1. If φ has the form t1 � t2 or isBlank(t) then Errorp
φ(R) is the program

p(X̄) ← r(X̄),X1 � ∅
...

p(X̄) ← r(X̄),Xn � ∅
ΠR

where X1, . . . ,Xn are the variables occurring in φ.

2. If φ has the form bound(X) then Errorp
φ(R) is the program

p(X̄) ← false
ΠR .

(We do not get errors in this case.)

3. If φ has the form ¬φ′ then Errorp
φ(R) is the program Errorp

φ′(R).

4. If φ has the form φ1 ∧ φ2 then Errorp
φ(R) is the following program:

p(X̄) ← p1(X̄)
p(X̄) ← p2(X̄)
ΠR ; Errorp1

φ1(R); Errorp2
φ2(R)

107

5. If φ has the form φ1 ∨ φ2 then Errorp
φ(R) is the following program:

p(X̄) ← p1(X̄), p2(X̄)
ΠR ; Errorp1

φ1(R); Errorp2
φ2(R)

The nr-Datalog¬ program Errorp
φ(R) is defined with the intention to return all facts p(c̄)

corresponding to the solution mappings of query R such that µ(φ) is error. The correctness
of the construction of Errorp

φ(R) is stated by the following theorem.

Theorem 6.3. Let R be a SPARQL query equivalent to a nr-Datalog¬ query (r(X̄),ΠR), φ be a
filter-condition, G be an RDF graph, µ be a solution mapping in JRKG, and Ωerror be the set

{µ ∈ JRKG | µ(φ) is error}.

Then, µ ∈ Ωerror if and only if µ ∈ J(p(X̄), Errorp
φ(R))KG where Errorp

φ(R)) is the nr-Datalog¬

program defined using the query (r(X̄),ΠR) (recall that the definition of Errorp
φ(R)) depends on

the existence of a translation for the SPARQL query R to nr-Datalog¬).

Proof. We will prove this theorem by induction in the structure of filter-conditions.

Let R be a SPARQL query, X̄ be dom(R), φ be a filter-condition, G be an RDF graph, µ be
a mapping in JRKG, µ′ be fill(µX̄), and p be a fresh predicate.

1. If φ has the form t1 � t2 or isBlank(t) then Errorp
φ(R) is the program

p(X̄) ← r(X̄),X1 � ∅
...

p(X̄) ← r(X̄),Xn � ∅
ΠR

where X1, . . . ,Xn are the variables occurring in φ. In this case µ(φ) is error iff µ(Xi)
is unbound for one of the variables Xi occurring in φ. This is equivalent to say that
µ′(Xi) � ∅. Hence, in this case the theorem holds.

2. If φ has the form bound(X) then Errorp
φ(R) is the program

p(X̄) ← false
ΠR .

Since is not possible to generate an error in this case, the theorem holds.

3. If φ has the form ¬φ′ then Errorp
φ(R) is the program Errorp

φ′(R). Since the negation
of error is error, and the negation of a truth value distinct of error is not error, then
in this case the theorem holds.

4. If φ has the form φ1 ∧ φ2 then Errorp
φ(R) is the following program:

p(X̄) ← p1(X̄)
p(X̄) ← p2(X̄)
ΠR ; Errorp1

φ1(R); Errorp2
φ2(R)

108

By the definition of the connective ∧, µ(φ1 ∧φ2) is error iff µ(φ1) or µ(φ2) are errors.
By induction, µ(φ1 ∧ φ2) is error if and only if µ′(p1(X̄)) ∈ J(p1(X̄), Errorp1

φ1(R))KG or
µ′(p2(X̄)) ∈ J(p2(X̄), Errorp2

φ2(R))KG. Thus, µ(φ1 ∧φ2) is error if and only if µ′(p(X̄)) ∈J(p(X̄), Errorp
φ(R))KG. Hence, in this case the theorem holds.

5. If φ has the form φ1 ∨ φ2 then Errorp
φ(R) is the following program:

p(X̄) ← p1(X̄), p2(X̄)
ΠR ; Errorp1

φ1(R); Errorp2
φ2(R)

By the definition of the connective ∨, µ(φ1∨φ2) is error iff µ(φ1) and µ(φ2) are error.
By induction, µ(φ1 ∨ φ2) is error if and only if µ′(p1(X̄)) ∈ J(p1(X̄), Errorp1

φ1(R))KG

and µ′(p2(X̄)) ∈ J(p2(X̄), Errorp2
φ2(R))KG. Thus, µ(φ1 ∨ φ2) is error if and only if

µ′(p(X̄)) ∈ J(p(X̄), Errorp
φ(R))KG. Hence, in this case the theorem holds.

Since the theorem holds in all cases, it is proved.

So far, given a SPARQL query R, a filter-condition φ, and a graph G, we have that

J(R FILTER ¬φ)KG � JRKG \ (Ωtrue ∪Ωerror)

where Ωtrue and Ωerror are defined respectively in (6.8) and (6.10). Also, we have a nr-
Datalog¬ codification for the queries that return Ωtrue and Ωerror . Thus, we are ready to
present a correct translation for the query (R FILTER ¬φ).
Definition 6.9 (Translation of negation in filter-conditions). Let R be a SPARQL query and φ
be a filter-condition. Then the translation of the SPARQL query (R FILTER φ) is the nr-Datalog¬
query (q(X̄),ΠQ) where ΠQ is the following program:

(R FILTER ¬φ) 7→ q(X̄) ← r(X̄),¬s(X̄)
s(X̄) ← t(X̄),
s(X̄) ← p(X̄)
ΠT ; Errorp

φ(R)

where (t(X̄),ΠT) is the translation of the query (R FILTER φ).
Example 6.4. Let Q be the SPARQL query of Example 6.3, that we repeated here:

(R FILTER X , Y),

where R is the query defined as follows:

((s , p ,X)OPT (X, q ,Y)).

Let G be the RDF graph of Example 6.3, that is composed by the following triples:

{(s , p , a), (a , q , b), (s , p , c)}.

109

Then, according to Definition 6.9, query Q is translated as the nr-Datalog¬ query q(X,Y) over the
following program:

q(X,Y) ← r(X,Y),¬s(X,Y)
s(X,Y) ← t(X,Y),
s(X,Y) ← p(X,Y)
ΠT ; Errorp

φ(R)

where (t(X̄),ΠT) is the translation of the query (R FILTER X � Y).
Then:

Jr(X,Y)KG � {r(a , b), r(c ,∅)},Jt(X,Y)KG � {},Jp(X,Y)KG � {p(c ,∅)},Js(X,Y)KG � {s(c ,∅)},Jq(X,Y)KG � {q(a , b)}.

Thus, the result of the SPARQL query Q coincides with the result of the nr-Datalog¬ query q(X,Y).
The correctness of the translation proposed in Definition 6.9 is stated in the following
theorem.

Theorem 6.4. The translation resulting from replacing in Definition 6.4 the rule for negation
in filter-conditions by the rule provided by Definition 6.9, is correct for all queries in the safe
SPARQL-0 fragment.

Proof. We will prove this theorem by induction on the structure of queries, assuming that
all other rules of the translation are correct.

Let Q � (R FILTER ¬φ) be a safe SPARQL query and G be a graph pattern. According to
Definition 6.9 the translation of the SPARQL query Q is a nr-Datalog¬ query of the form
q(X̄) over the following program:

(R FILTER ¬φ) 7→ q(X̄) ← r(X̄),¬s(X̄)
s(X̄) ← t(X̄),
s(X̄) ← p(X̄)
ΠT ; Errorp

φ(R)

where (t(X̄),ΠT) is the translation of the query (R FILTER φ).
Let µ be an SPARQL mapping in JRKG. Then, by induction, µ(φ) is true if and only if µ ∈Jt(X̄)KG. By Theorem 6.3, µ(φ) is error if and only if µ ∈ JErrorp

φ(R)KG. Thus, µ ∈ Js(X̄)KG

if and only if µ(φ) is true or error. Hence, µ ∈ JQKG if and only if µ ∈ Jq(X̄)KG.

As conclusion, in this section we described and fixed the problem of the translation by
Angles and Gutierrez [8] for SPARQL queries of the form (R FILTER ¬φ).

110

Theorem 6.4 shows that the aforementioned translation of SPARQL-0 queries is correct.
Since the translation of a query of the form (R FILTER φ) is based on the fact that we
know a translation for query R without requiring R being in the SPARQL-0 fragment, this
translation for filter-conditions is also valid for the extensions of the SPARQL-0 fragment
presented in the next section.

6.5 Translation of the SPARQL-1 fragment
So far, we have a translation for SPARQL queries in the safe SPARQL-0 fragment to nr-
Datalog¬ queries. In this section we will extend that translation to include the operators
SELECT, MINUS, VALUES and BIND. We call SPARQL-1 to the resulting fragment, by
the capital letters of the operators included. The SPARQL-1 fragment includes all SPARQL
queries we can express in the core fragment we study in this thesis (see Definition 2.8),
except queries including the EXISTS clause inside filter-conditions. As we already stated,
the translation of the EXISTS operator to nr-Datalog¬ will be studied in Chapter 7.

6.5.1 SELECTION queries in nr-Datalog¬

The operator SELECTION was not considered in the translations from SPARQL to nr-
Datalog¬ by neither Polleres [60], Schenk [66], nor Angles and Gutierrez [8], because
SELECT was not included as an operator of graph patterns in SPARQL 1.0. The possi-
bility of including SELECT queries inside other queries is present in SPARQL only since
version 1.1.

The translation of a SELECT query (SELECT X̄ R) to a nr-Datalog¬ query is straightfor-
ward. It requires producing facts of the form q(X̄) from the solutions of R. This implies
discarding values from variables in dom(R) that are not in X̄ and setting variables in X̄
that are not in dom(R)with the value ∅.

Definition 6.10 (Translation of SELECT queries to nr-Datalog¬). Let Q be a SELECT query in
the safe SPARQL-1 fragment. Q is then translated as a nr-Datalog¬ query of the form (q(X̄),ΠQ)
using the following rule:

(SELECT X̄ WHERE R) 7→ q(X̄) ← r(Ȳ),X1 � ∅, . . . ,Xn � ∅; ΠR

where (r(Ȳ),ΠR) is the translation of the SPARQL R to nr-Datalog¬, and X̄ \ Ȳ � {X1, . . . ,Xn}.
Example 6.5. The translation of the query (SELECT{X,Y}WHERE(X, p , o)) is the query q(X,Y)
over the program:

q(X,Y) ← r(X),Y � ∅
r(X) ← triple(X, p , o)

6.5.2 MINUS queries in nr-Datalog¬

The translation of MINUS is implicit from the translation of the operator OPT by Angles
and Gutierrez [8].

111

Example 6.6. Let Q be the SPARQL query ((X, p , o)OPT (X, q ,Y)). According to Definition 6.4
the translation of Q is then the nr-Datalog¬ query q(X,Y) over the program Π defined as follows:

q(X,Y) ← r(X1), s(X2,Y), comp(X,X1,X2)
q(X,Y) ← r(X1),¬t(X2), comp(X,X1,X2),Y � ∅

t(X) ← s(X,Y)
r(X) ← triple(X, p , o)

s(X,Y) ← triple(X, q ,Y)
Πcomp

The program Π is the union of the programs Π1 and Π2 defined as follows:

Π1 �

q(X,Y) ← r(X1), s(X2,Y), comp(X,X1,X2)
r(X) ← triple(X, p , o)
s(X,Y) ← triple(X, q ,Y)
Πcomp

Π2 �

q(X,Y) ← r(X1),¬t(X2), comp(X,X1,X2),Y � ∅
t(X) ← s(X,Y)
r(X) ← triple(X, p , o)
s(X,Y) ← triple(X, q ,Y)
Πcomp

Because the equivalence

Q ≡ ((X, p , o)AND (X, q ,Y))UNION ((X, p , o)MINUS (X, q ,Y))

and that (q(X,Y),Π1) is the translation of the SPARQL query ((X, p , o)AND (X, q ,Y)) it results
natural that the translation of ((X, p , o)MINUS (X, q ,Y)) be (q(X,Y),Π2).
The observation made in the previous example is generalized in the following definition
to construct the translation of MINUS to nr-Datalog¬.

Definition 6.11 (Translation of MINUS queries to nr-Datalog¬). Let Q be a MINUS query in
the safe SPARQL-1 fragment. Q is then translated as a nr-Datalog¬ query of the form (q(X̄),ΠQ)
using the following rule:

(R MINUS S) 7→ q(X̄) ← r(hY(Ȳ)),¬t(hZ(W̄)),Comp(W̄)
t(W̄) ← s(Z̄)
ΠR ; ΠS

where (r(Ȳ),ΠR) and (s(Z̄),ΠS) are the respective translations of the SPARQL queries R and S,
t is a fresh predicate to ensure safeness, W̄ � X̄ ∩ Ȳ, functions hY : W̄ → V and hz : W̄ → V
rename variables in W̄ to fresh variables (where ranges of functions hY and hZ are disjoint), and
Comp(W̄) is the set of literals described in Definition 6.4.

6.5.3 VALUES queries to nr-Datalog¬

The VALUES operator is introduced in version 1.1 of SPARQL to define inline data in
SPARQL queries. Its translation to nr-Datalog¬ is as follows.

112

Definition 6.12 (Translation of VALUES queries to nr-Datalog¬). Let Q be a VALUES query
in the safe SPARQL-1 fragment. The translation of Q is then a query of the form q(X̄) over a
program having a rule of the form

q(X̄) ← X1 � µ′(X1), . . . ,Xn � µ′(Xn)

where µ′ � fill(µ, X̄), X̄ � {X1, . . . ,Xn}, for each mapping µ ∈ Ω.

Example 6.7. Let Q be the VALUES query (VALUES {X,Y} {{X 7→ a}, {Y 7→ b}}). The
translation of Q is then the nr-Datalog¬ query q(X,Y) over the following program:

q(X,Y) ← X � a ,Y � ∅
q(X,Y) ← X � ∅,Y � b

6.5.4 BIND queries in nr-Datalog¬

SPARQL 1.1 introduces the possibility of assigning a value of a expression into a variable
of a mapping. This feature exceeds the expressive power of pure nr-Datalog¬, but can be
expressed in it if built-ins are allowed.

Definition 6.13 (Translation of BIND queries to nr-Datalog¬). Let V̄ be a set of variables,
f : C|V̄ |∅ → C∅ be a function for which there is a built-in, and Z be a variable that is not in dom(R)
nor in V̄ . The translation of BIND queries is then defined as follows:

(R BIND(f (V̄)AS Z)) 7→ q(X̄) ← r(Ȳ),X1 � ∅, . . . ,Xn � ∅, Z � f (V̄)

where f (V̄) denotes the built-in that implements the function f , i.e., where given a substitution θ,
θ(Z � f (V̄)) if and only if θ(Z) � θ(f (V̄)).

6.5.5 The translation of SPARQL-1 fragment to nr-Datalog¬

Now we can state and prove that the translation of the whole SPARQL-1 fragment to
nr-Datalog¬ is correct.

Theorem 6.5. The translation of SPARQL queries in the safe SPARQL-1 fragment to nr-Datalog¬
given by the definitions 6.4 (except equality atoms and negations in filter-conditions), 6.7, 6.9, 6.10,
6.11, 6.12, and 6.13 to nr-Datalog¬ is correct.

Proof. This theorem is proved by induction in the structure of queries. The correctness
of the translation is already proved for rules in all the referred definitions, except the
definitions corresponding to the translation for the “new” operators SELECT, MINUS,
VALUES and BIND that are presented in this section (i.e., the definitions 6.10, 6.11, 6.12,
and 6.13). Thus, it suffices proving the correctness of the translation for these operators
because each operator behaves independently of others and so the recursion proof could
be done only over the new ones whose proof is missing.

– SELECT: Let Q be a SPARQL query of the form (SELECT X̄WHERER) in the SPARQL-
1 fragment, G be an RDF graph, and the nr-Datalog¬ queries q(X̄) and r(Ȳ) over the
program

q(X̄) ← r(Ȳ),X1 � ∅, . . . ,Xn � ∅ ; ΠR

113

where X1, . . . ,Xn are the variables of X̄ that do not occur in R, be the respective
translations of the SPARQL queries Q and R. Let µ ∈ JQKG. By definition, if
µ ∈ JQKG then there exists a mapping µ′ ∈ JRKG such that µ � µ′|X̄ . By induction,
µ′ ∈ Jr(Ȳ)KG. That is, fill(µ, Ȳ)(r(Ȳ)) ∈ Jr(Y)KG. By the first rule of the program of
query q(X̄)we have that fill(µ′, Ȳ ∪ X̄)(q(X̄)) ∈ Jq(X)KG. Since

fill(µ′, Ȳ ∪ X̄)(q(X̄)) � fill(µ′, X̄)(q(X̄))
� fill(µ, X̄)(q(X̄))

then fill(µ, X̄)(q(X̄)) ∈ Jq(X)KG. Thus, µ ∈ Jq(X̄)KG. Since this argument is valid in
both directions, the translation is correct for SELECT queries.

– MINUS: Let Q be a SPARQL query of the form (R MINUS S) in the
SPARQL-1 fragment, G be a graph, and the nr-Datalog¬ queries q(X̄), r(Ȳ), and
s(Z̄) over the program

q(X̄) ← r(hY(Ȳ)),¬t(hZ(W̄)),Comp(W̄)
t(W̄) ← s(Ȳ)
ΠR ; ΠS

be the respective translations of the SPARQL queries Q, R, and S, and hY , hz , W̄ ,
and Comp(W̄) are the structures described in Definition 6.11. Let µ1 ∈ JQKG. By
definition, if µ1 ∈ JQKG then µ1 ∈ JRKG and a mapping µ2 ∈ JSKG such that µ1 ∼ µ2
there not exists. By induction µ1 ∈ Jr(Ȳ)KG and there not exists a mapping µ2 ∈Js(X̄)KG such that µ1 ∼ µ2. According to the definition of dom(·), it holds X̄ � Ȳ.
Thus, by the first rule of the program of the query q(X̄), it holds that µ1 ∈ Jq(X̄)KG.
Since this argument is valid in both directions, the translation is correct for MINUS
queries.

– VALUES: Let Q be a SPARQL query of the form (VALUES X̄ Ω), G be an RDF graph,
and the nr-Datalog¬ query q(X̄) be the translation of the SPARQL query Q. Let
µ ∈ JQKG. By definition, µ ∈ Ω. By construction there is a rule in the program of
query q(X̄) such that µ ∈ Jq(X̄)KG. Since this argument is valid in both directions,
the translation is correct for VALUES queries.

– BIND: Let Q be a SPARQL query of the form (R BIND(f (V̄) AS Z̄)) in the
SPARQL-1 fragment, G be an RDF graph, and the nr-Datalog¬ queries q(X̄) and
r(Ȳ) be the respective translations of the SPARQL queries Q and R. Let µ ∈ JQKG.
By definition, µ|Ȳ ∈ JRKG. By induction, µ|Ȳ ∈ Jr(Ȳ)KG. Let θ � fill(µ, X̄). By
Definition 6.13, θ(Z � f (V̄)). Thus, θ(q(X̄)) ∈ Jq(X)KG. Thus, µ ∈ Jq(X)KG. Since
this argument is valid in both directions, the translation is correct for BIND queries.

6.6 Conclusion
In this Chapter we described and fixed the issues found in the translation from SPARQL
to nr-Datalog¬ by Angles and Gutierrez [8]. These issues are related to the fact that

114

SPARQL assigns three truth values to filter-conditions. The specification calls “error” to
the third truth value, instead of “unknown” as usual. This is because SPARQL also allows
expressions that produce errors (for instance, if a number is added to a date). However,
in the cases we address in this thesis, the only possibility to get errors is when variables
are unbound. As we showed in Chapter 4, unbound variables can be interpreted as null
values, so under that semantics errors are got when the truth value of a selection formula
is unknown.

It is interesting to note that to fix the translation by Angles and Gutierrez [8] we use a
technique that is inspired in the one used to approximate certain answers in Chapter 3.
In fact, we defined a query that returns the mappings where the evaluation raises error.
Likewise, to approximate certain answers we rewrite filter-conditions to capture the cases
where values are null.

Recall that in the previous Chapter we used a naive translation from a reduced fragment of
SPARQL to first-order logic to study the problem of substitution. However that translation
did not produce equivalent queries. To analyze the problem of substitution using a logic
based language, we thus required a translation that produces equivalent queries, as the
translation from SPARQL to nr-Datalog¬ by Angles and Gutierrez [8]. However, we found
some issues in their translation we had to fix. In the next chapter we return to the study of
substitution in SPARQL by translating it to nr-Datalog¬.

115

116

Chapter 7

Nested Datalog

In the previous chapter we presented a translation from SPARQL queries without occur-
rences of the EXISTS clause to nr-Datalog¬. The clause EXISTS essentially amounts to
composition of queries. In this chapter we propose an extended variant for Datalog de-
signed to allow query composition, that we call Nested Datalog. The motivation of this
new formalism is to capture the fundamental aspects of the notion of nesting in query lan-
guages, and by means of it study nesting in SPARQL by using the composition of queries
in this extended version of Datalog.

Nested Datalog introduces two main ideas: programs are composed of blocks (i.e. a
program can have "nested" programs inside it), and blocks can be "called" using a special
type of atoms, called "query atoms". Query atoms can have free variables that are used
as parameters when Block programs are called from other programs. Query atoms are
similar to what are called external atoms by Eiter et al. [22] and denoted with the prefix #.
We follow their notation and semantics.

The main issues arousing from introducing these new type of atoms are the scope of
variables. In standard Datalog the scope of each variable is the rule where the variable
occurs. In Nested Datalog the scope of a variable can range beyond the rule where the
call is made, i.e., the rule where the query atoms belongs to. This brings several issues
regarding the semantics of substitution of variables and, as we will show, these issues
reflect precisely the issues discussed about substitution in SPARQL.

Organization of this chapter

– In Section 7.1 we present the syntax and the semantics of Nested Datalog.

– In Section 7.2 we describe the relation among Nested Datalog and the external atoms
defined by Eiter et al. [22, 23].

– In Section 7.3 we show that Nested nr-Datalog¬ and nr-Datalog¬ have the same
expressive power.

– We conclude the chapter in Section 7.4.

117

7.1 Syntax and Semantics of Nested Datalog
Nested Datalog is an extension of Datalog designed to support composition of queries.
The intuitive idea is to allow call to subprogramas (blocks) inside Datalog programs in
order to simulate subqueries in standard query languages.

The extension from Datalog to Nested Datalog is done by allowing a special type of atoms,
called query atoms that will represent blocks (subprograms). In this regard, Nested Datalog
rules extend Datalog rules by admitting query atoms in the body of their rules.

Definition 7.1 (Nested Datalog Syntax). A Nested Datalog program Π is a finite set of pairs
{(π1, X̄1), . . . , (πn , X̄n)}, called the blocks of the program, where for each 1 ≤ i ≤ n, πi is a set of
Nested Datalog rules, and X̄i is a finite set of variables. We write πi[X̄i] to denote the block (πi , X̄i).
The set of intensional predicates of each program π j is disjoint with the intensional predicates of
other programs πk ∈ Π.

A query atom is an intensional predicate p of a block πi[X̄i] ∈ Π instantiated with a list of terms
t̄ plus the set of variables X̄i of the block (called the parameters of the query atom). It will be denoted
(following HEX programs notation) #p[X̄i](t̄). Brackets “[]” are omitted when a query atom has
no parameters. We say that a query atom #p j[X̄ j](t̄ j) is nested in a query atom #pk[X̄k](t̄k) if
#p j[X̄ j](t̄ j) occurs in a rule of the block πk[X̄k] where the intensional predicate pk belongs to.

Example 7.1. The following is simple Nested Datalog program. Consider the following rules:

p(X) ← q(X,Y) (π1)
q(X,Y) ← r(X,Y),¬#s[X](a ,Y)

s(Z,Y) ← #t(X,Y), #u(Y, Z) (π2[X])

t(X,Y) ← v(X,Y) (π3)

u(X,Y) ← w(X,Y) (π4)

Extra vertical space between groups of rules is added only to denote that they belong to each of
the four different blocks (indicated in parenthesis on the right). The set {π1, π2[X], π3, π4} is a
Nested Datalog program. The list of terms of a query atom, e.g. (a ,Y) in #s[X](a ,Y) or (Y, Z)
in #u(Y, Z), is intended to denote that the “subqueries are called” with these values. On the other
hand, the parameters inside [·] are intended to denote “global variables”: e.g. [X] in #s[X](a ,Y)
indicates that in the whole subprogram s, the variable X represent the same value, e.g. X occurring
in #t(X,Y)) represents the same as the one in q(X,Y). The parameters [·] were necessary because
recall that variables in a rule in standard datalog are “local” variables, e.g. the X in p(X) ← q(X,Y)
is “local” (inside the rule), e.g. could be renamed.

Recall that a Datalog query looks like (p(t̄), π) where the predicate atom p(t̄) is the goal
and π is the program. Since each intensional predicate belongs to a unique block of a
Nested Datalog program, a query atom #p[X̄](t̄) is simply a traditional (p(t̄), π) plus a set
of parameters X̄. We call Nested Datalog queries (or simply queries) to query atoms. We
borrowed the notation of external atoms used in the context of HEX programs [22, 23] to
denote query atoms.

118

Definition 7.2 (Nesting-graph and stratified queries). The nesting-graph of a Nested Datalog
query Q is the directed multigraph whose nodes are the queries occurring in Q, including Q, and
there is an edge (Qi ,Q j) if and only if query Q j is nested in query Qi . A query Q is said to
be stratified if and only if its nesting-graph is a tree, each node of the nesting-graph belongs to a
different program, and each query atom occurs only once in the Nested Datalog query. A node of the
nesting graph of a query Q is said negative (and denoted with ¬ as prefix) if it occurs in a negative
literal in Q.

Example 7.2. The following figure depicts the nesting-graph of the query of Example 7.1.

#p(X)

¬#s[X](a ,Y)

#t(X,Y) #u(Y, Z)

This query is stratified because its nesting-graph is a tree and each node belongs to a different
program.

In the following we consider only stratified Nested Datalog. These types of queries are
enough to model relevant features of nesting in query languages.1 In these queries each
block is associated with exactly one node of the nesting-graph, and the nesting-graph is
a tree. Thus, queries and blocks are structured in “levels of nesting”. We can say that
one query is nested in another if the nested query is “below” in the nesting-graph. The
following definition presents the terminology that we will use along this thesis.

Definition 7.3 (Inner, outer and nested queries). Let queries Qi and Q j be nodes of a nesting-
tree. If node Qi is the parent node of Q j , then we say that query Q j is an inner query of query Qi
(at level 1), or that Qi is an outer query of Q j , or that Q j is nested in Qi . We say Q j is an inner
query of query Qi at level k, if node Qi is k levels above node Q j in the nesting-tree. The same
definitions that apply to queries apply to blocks, e.g., the block π j of query Q j is an inner block of
block πi of query Qi if Q j is an inner query of Qi . We say that query Q j is nested in a rule R if Q j
occurs in the body of R. We say that a rule R belongs to a query Qi if R belongs to the block of Qi .

Scope of variables. As we suggested in Example 7.1, the scope of variables in Nested
Datalog is different than in Standard Datalog. In Standard Datalog the scope of a variable
X is the rule R where X occurs. Indeed, in the interpretation of rule R as a logical formula,
variable X is universally quantified. On the other hand, in Nested Datalog, the scope of X
in a rule R will be the rule R unless R belongs to a block π[X̄] or has a query atom #p[X̄](t̄)
where X ∈ X̄, in which case the scope of X extends beyond the rule R.

1Furthermore, a Nested Datalog query where a block is pointed to by two or more query atoms, can be
normalized by duplicating the pointed block and renaming consistently each intensional predicate in it by
fresh predicates.

119

Example 7.3. Consider the following Nested Datalog program:

p(X) ← q(X), #r[X](Z) (π1)

r(Y) ← s(Y, Z), Z , X (π2[X])
The scope of variable X in the first rule also includes the second rule, because the second rule belongs
to the block #π2[X] with parameter X. On the contrary, the scope of variable Z in the second rule
is that same rule, because Z is not a parameter of the block containing it.

The intuition behind the notion of parameter, i.e. those variables inside [· · ·], is to indicate
“global” variables. This intuition leads to formalizing the notion of substitution in blocks.

Definition 7.4 (Substitution). Given a block π[X̄] and a substitution θ with dom(θ) � X̄, the
result of substituting the parameters of block π with θ is the block, denoted π[θ], with no (variable)
parameters, and consisting in the rules that result from adding the equality atom X � θ(X) to each
rule of block π, for each parameter X ∈ X̄.

Example 7.4. Consider the block π[X] consisting of the rule r(Y) ← s(Y, Z), Z , X, and θ be
the substitution {X/a}. The result of substituting the parameters of block π[X] with θ is the block
π[θ] with no parameters consisting of the rule r(Y) ← s(Y, Z), Z , X,X � a. Intuitively, the
equality atom X � a added to each rule of the inner-query ensures that the variable X is restricted
to the value a.

Now we are ready to present the semantics of Nested Datalog. We assume a proof-theoretic
semantics for Nested Datalog programs.

Definition 7.5 (Semantics of Nested Datalog). Let D be a database and Π be a Nested Datalog
program. The derivation trees of Π with respect to D, denoted dt(Π,D), are defined recursively
as follows:

1. For each fact f ∈ D and block with no parameters π ∈ Π there is a derivation tree in dt(Π,D)
having (f , π) as unique node.

2. Let π ∈ Π be a block with no parameters, and R ∈ π be a rule of the form Ln+1← L1, . . . , Ln ,
and θ be a substitution such that the domain of θ is the set of variables occurring in R such
that one the following conditions hold, and ri be the derivation tree defined as follows, for
1 ≤ i ≤ n:

(a) Li is a positive predicate atom and there is a derivation tree ti ∈ dt(Π,D) whose root is
(θ(Li), π). In this case, ri � ti .

(b) Li is a negative predicate atom and there is no derivation tree ti ∈ dt(Π,D) such that the
root of ti is (θ(Li), π). In this case, ri is a derivation tree with a single node (θ(Li), π).

(c) Li is a positive equality atom and θ(Li) is an equality of the form a � a where a is a
constant. In this case, ri is a derivation tree with a single node (a � a , π).

(d) Li is a negative equality atom and θ(Li) is an inequality of the form a , b where a and b
are different constants. In this case, ri is a derivation tree with a single node (a , b , π).

(e) Li is a positive query atom #p[X̄](t̄), predicate p belongs to block π′[X̄], and there is a
derivation tree ti ∈ dt(Π∪ {π′[θ]},D) where the root of ti is (θ(p(t̄)), π′[θ]). In this
case, ri � ti .

120

(f) Li is a negative query atom ¬#p[X̄](t̄), predicate p belongs to block π′[X̄], and there is
no derivation tree ti ∈ dt(Π ∪ {π′[θ]},D) where the root of ti is (θ(p(t̄)), π′[θ]). In
this case, ri is a derivation tree with a single node (θ(Li), π′[θ]).

If the conditions above hold then there is a derivation tree t ∈ dt(Π,D) consisting of:

• Root θ(Ln+1);
• Ordered edges θ(Ln+1) → ri with label R, for 1 ≤ i ≤ n.

3. No more derivations trees are in dt(Π,D).
Like in standard Datalog, a Nested Datalog query is a pair Q � (p(X̄),Π) where p(X̄) is a
positive literal called the goal of the query, and Π is a Nested Datalog program. Given a
database D, a substitution whose domain are the variables in p(X̄) is said to be an answer
of Q in D, denoted θ ∈ JQKD , if there exists a derivation tree t ∈ dt(Π,D) such that the
root of t has the form (θ(p(X̄)), π) where π is the block where the predicate of p belongs
to.

Example 7.5. Consider the program Π � {π1, π2[X]} defined by the following rules:

p(X, Z) ← r(X), #q[X](Y), s(Y, Z) (π1)

q(Y) ← t(Y),¬u(Y) (π2)
u(Y) ← w(Y,W),W , X

Let us illustrate some steps of the evaluation of the query #p(X, Z) against the database D �

{r(a), s(b , c), . . . }. A possible solution amounts to check if there is a derivation tree for the literal
#q[X](Y) with θ � {X/a ,Y/b , Z/c}, in order to know if p(a , c) is an answer of query #p(X, Z).
This means, finding a derivation tree t ∈ dt(Π ∪ {π2[θ]},D) whose root is (q(b), π2[θ]) and
π2[θ] is the following program:

q′(Y) ← t′(Y),¬u(Y),X � a (π2[θ])
u′(Y) ← w(Y,W),W , X,X � a

Safeness and non-recursiveness. As with Standard Datalog, in this thesis we will con-
sider safe an non-recursive stratified Nested Datalog queries, called Nested nr-Datalog¬
queries. These notions are extended to Nested Datalog as follows.

Definition 7.6 (Safeness). Let (#q(t̄),Π) be a stratified Nested Datalog query, and R be a rule in
a block π[X̄] of programΠ. Assume an order in the literals of rule R given by the literal subscripts
1, . . . , n + 1:

Ln+1← L1, . . . , Ln

Then, a variable X is safe at literal Li of rule R, if and only if one of the following conditions holds:

1. i > 1 and X is safe at literal Li−1.

2. X ∈ X̄ (i.e., is a parameter of the block).

3. Literal Li has the form X � c where c is a constant.

121

4. Literal Li has the form X � Y where Y is a variable and Y is safe at literal Li−1.

5. Literal Li has the form p[Ȳ](t̄) and X ∈ t̄ \ Ȳ.

The rule R is safe if there is an order of its literals under which all variables occurring in the rule
are safe.

A query Q is safe if all its rules are safe.

Intuitively, the definition of safe rule in Nested Datalog extends the definition of safe rules
in Datalog by allowing unsafe variables (according to the standard Datalog criteria) be safe
if they are parameters of the query to where the rule belongs to.

Example 7.6. Consider the following Nested Datalog program.

p(X) ← q(X,Y), #r[X](Y) (7.1)

r(Y) ← s(Y, Z), Z , X (7.2)
s(Y, Z) ← #t[Y](Z), #u[Z](Y) (7.3)

t(X) ← q(X,Y) (7.4)

u(Y) ← q(Y, Z),X , Y (7.5)

The rule in (7.1) is safe, because variables X and Y are safe at the first-literal of its body. The rule
in (7.2) is safe because the unique variable that could be unsafe, variable X, is a parameter of the
query block to where this rule belongs. The rule in (7.3) is unsafe because whatever the order of
literals #t[Y](Z) and #u[Z](Y), one of the variables is unsafe. The rule in (7.4) is unsafe because
variable X is unsafe since X is not safe in a previous literal nor X is a parameter of the query where
this rule belongs. Hence, query #p(X) is unsafe because it has an unsafe rule.

The rule in (7.3) exemplifies an interesting case of unsafe rule. Recall that in Datalog a
variable Y is safe in a rule R if Y occurs in a positive predicate atom in R or in an equality
atom of the form Y � t, where t is a constant or a safe variable in R. In Nested Datalog that
condition is not enough. Although variable Y occurs in a positive query atom #u[Z](Y),
variable Y is unsafe in rule (7.3). The problem is that, atom #u[Z](Y) cannot be evaluated
before the range of variable Z is restricted. Variable Z is restricted by the literal #t[Y](Z),
that cannot be evaluated before the literal #u[Z](Y). The rule is unsafe because there is a
deadlock between both literals (i.e. there is no way of evaluating it).

In order to define the notion of non-recursive Nested Datalog query we have to define
first the notion of dependency graph of a Nested Datalog program. Recall that a Nested
Datalog programΠ is a set {π1[X̄1], . . . , πn[X̄n]} where each π j is a set of rules admitting
query atoms. These rules can relate predicates occurring in different blocks.

Definition 7.7 (Dependency graph). LetΠ be a Nested Datalog program. Then, the dependency
graph ofΠ is a graph whose nodes are the predicates inΠ and has an edge (p , q) if and only if there
is a rule where p occurs in a head and q occurs in the body either as a predicate atom or as a query
atom.

Definition 7.8 (Non-recursiveness). A Datalog program Π is said to be non-recursive if the
dependency graph of Π is acyclic.

122

7.2 Query atoms and external atoms
We mentioned that we borrowed the notation of external atoms used in the context of HEX
programs [22, 23] to denote query atoms. We now explain the relation between these two
notions that justifies our notation.

HEX programs are nonmonotonic logic programs extended with higher-order atoms as well
as external atoms, and interpreted using the answer-set semantics. In this context, an
external atom has the form #p[y1, . . . , ym](x1, . . . , xn)where y1, . . . , ym and x1, . . . , xn are
two lists of terms (called input and output list, respectively), and #p is an external predicate.
The set of external predicates is assumed disjoint with the set of regular predicate names
and terms. The character # is used as a prefix to identify external predicate names. The
semantics of an external atom with an external predicate #p is given by a (m + n + 1)-ary
Boolean function f assigning to each tuple (D , b1, . . . , bm , a1, . . . , an) either true or false,
where m and n are respectively the lengths of the input and output lists, D is a database, and
b1, . . . , bm , a1, . . . , an is a list of constants. Thus, given a replacement θ, and a database
D the truth value of an external atom #p[y1, . . . , ym](x1, . . . , xn) against replacement θ
and database D is f (D , θ(y1), . . . , θ(ym), θ(x1), . . . , θ(xn)), where the domain of θ must
include all variables occurring in the external atom and for each constant a is assumed that
θ(a) � a.

As the following definition shows, query atoms #p[X̄](t̄) in Nested Datalog can be under-
stood as external atoms of the program π j where the query atom #p[X̄](t̄) belongs.

Definition 7.9 (HEX Query of a Nested Datalog Query). Let X̄ � {X1, . . . ,Xm} be a set of
variables, #q[X̄](t̄) be a query atom occurring in a Nested Datalog program Π, and π be the block
of Π where the intensional predicate q occurs. Then, #q[X̄](t̄) can be considered an external atom
whose semantics is given by the Boolean function f defined as follows:

f (D , x1, . . . , xm , y1, . . . , yn) �

true there is a derivation three t ∈ dt(Π ∪ {π[θ]},D)
with root (q(y1, . . . , yn), π[θ]),

false otherwise,

where θ is the replacement {X/x1, . . . ,X/xm}.

7.3 The expressive power of Nested nr-Datalog¬

In this section we show that Nested nr-Datalog¬ has the same expressive power as nr-
Datalog¬ by providing a translation among both query languages.

To compare the expressive power of both query languages we extend Datalog databases
with a predicate adom(·) that when translating a query Q to a query Q′ using a database
D, codifies the active domain of D and the constants in query Q. Formally, given a query
Q, a Datalog database D is extended with a fact adom(c) for each constant c occurring in
Q or in D.

To show that Nested nr-Datalog¬ and nr-Datalog¬ have the same expressive power, we
require some preliminary definitions.

123

Recall that the root of each Nested Datalog derivation tree T is a pair (p(b̄), π) where p(b̄)
is a fact, and π is a block (see Definition 7.5). When there is no ambiguity about the block
(e.g., when the query has a single block) we will denote the root of tree simply as p(b̄).
From now on, we call derived fact of a block (or query) to a fact that occurs in the root of a
derivation tree of that block (or query). Similarly, we call derived fact of a rule R to a fact
that is a derived fact of the block where the rule belongs to, and the root is connected to its
children with edges labeled with rule R. Observe that if a fact p(c̄) is derived from a rule
R, then rule R has head p(Ȳ) and there exists a substitution θ such that p(c̄) � θ(p(Ȳ)).
We write θ(Ȳ) � c̄ to denote that Ȳ and c̄ are respectively a tuple of variables (Y1, . . . ,Yn)
and a tuple of constants (c1, . . . , cn), of the same size n, such that θ(Yi) � ci , for 1 ≤ i ≤ n.
The equality p(c̄) � θ(p(Ȳ)) implies thus the equality θ(Ȳ) � c̄.

Let π[X̄] be a block of a Nested nr-Datalog¬ query Q having no query atoms in the body of
the rules of block π[X̄]. Then, the de-parametrization of block π[X̄] is the block that consists
of the rules R′ resulting from applying the following modifications to each rule R of block
π[X̄]:

1. Replace every intensional predicate atom q(t̄) in the rule R by an intensional predicate
atom of the form q(X̄ , t̄).

2. Add the extensional atom adom(X) to the body of R, for each variable X ∈ X̄.

Intuitively, the de-parametrization of a block π[X̄] is a block that emulates π[X̄] without
using parameters. This intuition is expressed in Lemma 7.1.

Lemma 7.1. Let X̄ be the tuple of variables, ā be a tuple of constants, θ be a substitution that maps
each variable X ∈ X̄ to a constant a ∈ ā (i.e., θ(X̄) � ā), and π[X̄] be a block of a Nested Datalog
query Q having no query atoms in the body of the rules of block π[X̄]. Then, the intensional fact
p(b̄) is a derived fact of block π[θ] if and only if p(ā , b̄) is a derived fact of the de-parametrization
of block π[X̄].

Proof. For every derivation tree T ∈ dt(π[θ]) we write T′ to denote the derivation tree
resulting from the following modifications on tree T:

1. Each intensional fact q(b̄) in a node of the derivation tree T is replaced by an inten-
sional fact of the form q(ā , b̄).

2. Each rule R labeling an edge in T is replaced by the rule R′ resulting from the
de-parametrization of block π[X̄].

We next show that for each derived fact p(ā) of block π[θ] there exists a derived fact p(ā , b̄)
of the de-parametrization of block π[X̄] by induction in the height h of the derivation tree
T of block π[θ]whose root is p(b̄) (h is the maximum numbers of edges from the root to a
leaf of the tree).

Case h � 1. In this case rules R and R′ of derivation trees T and T′ do not include intensional
predicate atoms in the body. Rules R and R′ have thus the following form:

R :� p(Z̄) ← L1, . . . , Ln

R′ :� p(X̄ , Z̄) ← L1, . . . , Ln , X̄ � ā

where X̄ � ā denote the sets of literals of the form X � a where X ∈ X̄ and a ∈ ā.

124

Without loss of generality, assume a substitution θ1 such that p(b̄) is a derived fact of rule
R and θ1(Ȳ) � b̄. Then, p(b̄) is the root of T, and for each literal Li in the body of rule R
the root of T has as child the node θ1(Li) and as edge label the rule R.

Let θ2 � θ1∪θ. By construction, θ2(p(X̄ , Z̄)) � p(ā , b̄) is the root of T′, and the children are
the nodes θ2(Li) and θ2(X1 � a). Hence, T′ is a derivation tree of the de-parametrization
of block π[X̄], and p(ā , b̄) is thus a derived fact of the de-parametrization of block π[X̄].

Case h > 1. Like in the previous case, rules R and R′ have the following form:

R :� p(Z̄) ← L1, . . . , Lm−1, Lm , . . . , Ln

R′ :� p(X̄ , Z̄) ← L1, . . . , Lm−1, L′m , . . . , L
′
n , θ(X̄) � ā

The difference with the base case h � 1, is that now literals Lm , . . . , Ln and L′m , . . . , L′n have
intensional predicates.

Like in the previous case, assume a substitution θ1 such that rule R derives p(b̄), and the
substitution θ2 � θ1 ∪ θ. As in the previous case, we have that θ2(p(X̄ , b̄)) � p(ā , b̄) is the
root of T′ and for each literal Li in R′ it holds that θ2(Li) is a child of the root of T′, except
for the additional literals L′m , . . . , L′n that have intensional predicates.

By construction, for m ≤ k ≤ n, the literal Lk is the (positive or negative) predicate atom
of the form q(t̄)whereas L′k is the (positive or negative) predicate atom of the form q(X̄ , t̄).

If Lk is positive, then there is a derivation tree of block π[θ] with root θ1(q(t̄)). Then, by
induction, there is a derivation tree with root θ2(q(X̄ , t̄)) of the de-parametrization of block
π[X̄]. Hence, T′ is a derivation tree of the de-parametrization of block π[X̄], and p(ā , b̄) is
thus a derived fact of the de-parametrization of block π[X̄].

If Lk is negative, then there is no derivation tree of block π[θ] with root θ1(q(t̄)). Then,
by induction, there is no derivation tree with root θ2(q(X̄ , t̄)) of the de-parametrization of
block π[X̄]. Hence, T′ is a derivation tree of the de-parametrization of block π[X̄], and
p(ā , b̄) is thus a derived fact of the de-parametrization of block π[X̄].

So far, we have proved that if p(b̄) is a derived fact of block π[θ] then p(ā , b̄) is a derived
fact of the de-parametrization of block π[X̄]. The contrary implication can be shown using
the same argument.

Now we can present the promised result.

Theorem 7.1. Nested nr-Datalog¬ has the same expressive power as nr-Datalog¬.

Proof. The fact that nr-Datalog¬ is included in Nested nr-Datalog¬ follows from the fact
that every nr-Datalog¬ is equivalent to a Nested nr-Datalog¬ query consisting in a single
block with no parameters. The reverse implication, that Nested nr-Datalog¬ is included
in nr-Datalog¬, can be shown by induction in the number of blocks n of the Nested
nr-Datalog¬ query.

Case n � 1. Let Q be a Nested nr-Datalog¬ query with a single block π1. Since Q is safe,
π1 has no parameters and is thus equivalent to a nr-Datalog¬ query.

125

Case n > 1. Let Q be a Nested nr-Datalog¬ query with n > 1 blocks. Since Q is stratified,
there exist two blocks πi[X̄] and π j[Ȳ] in the query such that block πi[X̄] has no nested
block, and block πi[X̄] is nested in π j[Ȳ]. Then, there is a rule R in π j[Ȳ] with a query
atom of the form #p[X̄](t̄)where p is an intensional predicate of block πi[X̄].

We next construct a query Q′ that is equivalent to Q and consists of n − 1 blocks. Then,
by induction, query Q′ is expressible in nr-Datalog¬, so query Q is also expressible in
nr-Datalog¬.

Let Q′ be the query that results of the following modifications in query Q:

1. Delete block πi[X̄].

2. Replace in block π j[Ȳ] the (positive or negative) query atom #p[X̄](t̄) by the (positive
or negative) predicate atom p(X̄ , t̄).

3. Add all rules of the deparametrization of block πi[X̄] to block π j[Ȳ].

By construction queries Q and Q′ have the same number of rules. Indeed, for each rule R′

in block πk[Ȳ] there is a rule R that belongs either to πi or π j such that R′ is the result of
translating R. Given a rule R in query Q we write R′ to denote the rule of query Q′ that
corresponds to R.

We next show that for each derivation tree T of query Q there exists a derivation tree T′ of
query Q′ with the same root as T. For each derivation tree T of query Q, there are three
options:

1. There is no node in T with the predicate name p (i.e., the block πi[X̄] is not involved
in the derivation). In this case let T′ be T. Since the block πi[X̄] is not involved, T′ is
a derivation tree of Q′ because T′ uses the rules that are shared by both queries.

2. The query atom #p[X̄](t̄) is positive in query Q and there is a node of the form
(p(b̄), πi[θ]) in tree T. Let ā be the tuple θ(X̄). By definition, the subtree Ts with
root is (p(b̄), πi[θ]) is also a derivation tree of query πi[θ]. By Lemma 7.1, the fact
p(ā , b̄) is a derived fact of the desparametrization of block πi[X̄]. Hence, there exists
a derivation tree T′s of Q′with root (p(ā , b̄), π j[Ȳ]). By construction the derivation T′

that results from replacing Ts by T′s is a derivation tree of Q′.

3. The query atom #p[X̄](t̄) is negative in query Q and there is a node of the form
(¬(p(b̄), πi[θ]) in tree T. By the same argument that in the previous case, given
θ(X̄) � ā, we know that p(b̄) is not a derived fact of Q and p(ā , b̄) is not a derived
fact of Q′. Hence, the derivation tree T′ resulting from replacing node (¬p(b̄), πi[θ])
by node (¬p(ā , b̄), π j[Ȳ]) is a derivation tree of query Q′.

So far, we have proved that if T is a derivation tree of Q then T′ is a derivation tree of Q′.
The proof of the contrary, that if T′ is a derivation tree of Q′ then T is a derivation tree of
Q follows the same argument.

126

7.4 Conclusion
In this chapter we proposed a formalism to allow the composition of Datalog queries. This
formalism extends the standard Datalog with a new type of atom, called query atom, that
can be formalized using the notion external atoms by Eiter et al. [23]. We show that Nested
Datalog has the same expressive power than standard Datalog. This result implicates that
by defining a translation from SPARQL queries with the EXISTS clause to Nested Datalog
we also define a translation to the standard Datalog.

127

128

Chapter 8

On the Nested Datalog semantics of the
EXISTS clause

In this chapter we address the problem of translating SPARQL with the EXISTS clause
to Nested Datalog. This translation is an extension of the one from SPARQL to Datalog
presented in Chapter 6. As we show in the previous chapter, Nested Datalog and Datalog
have the same expressive power. The composition of queries is thus not needed to express
the EXISTS clause in Datalog. However, as we show in this section, it helps to provide a
more intuitive translation.

Recall that we have several proposals for the semantics of the EXISTS clause. Thus, instead
of defining a translation for a single semantics of EXISTS, in this chapter we compare how
the proposals behave when translated to Nested Datalog.

Throughout this chapter we use upper case letter for SPARQL variables as in Datalog in
order to simplify the translation among both languages.

Organization of this chapter

– In Section 7.1 we describe two forms of substitutions of SPARQL variables. Each of
these forms is translated as a different form of substitution in Nested Datalog.

– In Section 8.2 we show that the translation of the EXISTS clause gets queries whose
size is exponential in the number of variables to substitute. We thus propose a variant
of Nested Datalog extended to deal with null values.

– We conclude the chapter in Section 8.3.

8.1 Two forms of substitution of SPARQL variables
Query atoms are introduced to provide an explanation for substitution in languages as SQL,
SPARQL and G-Core. Because this thesis is focused on SPARQL, this section illustrates
how Nested Datalog can be used to model the SPARQL EXISTS clause. We identify two
forms of substitution. The first involves attributes that are not part of answers of the inner
query, and that in Nested Datalog are parameters of the query atom. The second involves

129

attributes that are part of the answers of the inner query, and that in Nested Datalog occur
as variables in the goal of the query.

8.1.1 Substitution of parameters
In a Nested Datalog query #q[X̄](t̄) the parameters X̄ are substituted in the block that
the query refers to. Parameters can be used to represent correlated variables inside filter-
conditions.

Example 8.1. Consider the SPARQL query:

P FILTER (EXISTS((X, p ,Y) FILTER (X , Z)︸ ︷︷ ︸
Q

)). (8.1)

The EXISTS clause in (8.1) has to be evaluated before substituting the inner query Q with a
mapping ν. According to the translation by Angles and Gutierrez [8], fixed with the modifications
proposed in Chapter 6, the inner query Q in (8.1) corresponds to the query #q(X,Y) with the
Datalog program defined as follows:

q(X,Y) ← r(X,Y),¬s(X,Y) (8.2)
r(X,Y) ← triple(X, p ,Y)
s(X,Y) ← t(X,Y)
s(X,Y) ← p(X,Y)
t(X,Y) ← r(X,Y),X � Z,X , ∅, Z , ∅
p(X,Y) ← r(X,Y),X � ∅
p(X,Y) ← r(X,Y), Z � ∅

Assume ν � {Z 7→ a}. There are two options to define the semantics of the EXISTS clause in (8.1):
either Z is replaceable with a value from the outer query P or it is not replaceable. We can model
that Z is replaceable by assuming that Z is a parameter of the query (i.e., we consider #q[Z](X,Y)
instead of #q(X,Y) when translating the whole query). In this case the result of substituting Z by
a in the inner query is the Datalog program defined as follows:

q(X,Y) ← r(X,Y),¬s(X,Y), Z � a (8.3)
r(X,Y) ← triple(X, p ,Y), Z � a
s(X,Y) ← t(X,Y), Z � a
s(X,Y) ← p(X,Y), Z � a
t(X,Y) ← r(X,Y),X � Z,X , ∅, Z , ∅, Z � a
p(X,Y) ← r(X,Y),X � ∅, Z � a
p(X,Y) ← r(X,Y), Z � ∅, Z � a

For the sake of the readability intensional predicates were not renamed as is stated by Definition 7.5.

The last rule of program in (8.3) can be removed without changing the semantics of the program
because literals Z � ∅ and Z � a are contradictory (i.e., this rule cannot be used to infer new facts).

130

Likewise, the literal Z , ∅ can be removed from the fifth rule of the program in (8.3), since it is
subsumed by the equality atom Z � a. That is, the fifth rule can be rewritten equivalently as:

t(X,Y) ← r(X, p ,Y),X � Z,X , ∅, Z � a (8.4)

Since Z does not occur in the head of this rule, it can be rewritten equivalently as follows:

t(X,Y) ← r(X, p ,Y),X � a (8.5)

Hence, the program in (8.3) is equivalent to the following Datalog program:

q(X,Y) ← r(X,Y),¬s(X,Y) (8.6)
r(X,Y) ← triple(X, p ,Y)
s(X,Y) ← t(X,Y)
s(X,Y) ← p(X,Y)
t(X,Y) ← r(X,Y),X � a
p(X,Y) ← r(X,Y),X � ∅

Let us find the semantics of EXISTS in that agrees with the program 8.6 we obtained using the
Nested Datalog substitution. According to the environment-binding proposal (see Definition 5.6),
the result of substituting ν in the inner query in (8.1) is the following SPARQL query:

({X 7→ a} AND (X, p ,Y)) FILTER (X , a). (8.7)

The translation of the SPARQL query in (8.7) is the Datalog query q(X,Y, Z) whose program is
the following:

q(X,Y, Z) ← r(X,Y, Z),¬s(X,Y) (8.8)
r(X,Y, Z) ← w(X,Y), Z � a

w(X,Y) ← triple(X, p ,Y)
s(X,Y) ← t(X,Y, Z)
s(X,Y) ← p(X,Y, Z)

t(X,Y, Z) ← r(X,Y, Z),X � a
p(X,Y, Z) ← r(X,Y, Z),X � ∅

It is not difficult to see that program in 8.6 can infer a fact of the form p(c1, c2) if and only if there
exists a constant c3 such that the program in 8.8 can infer the fact of the form p(c1, c2, c3). Hence,
in this case the semantics of substitution in Nested Datalog coincides with substitution in SPARQL
according to the environment-binding proposal.

Example 8.1 shows that the environment-binding proposal can, in some form, be explained
by the use of the (fixed) translation by Angles and Gutierrez [8] to model nested queries.
However, it requires a different formalization because in the rules produced by their
translation all variables are local to rules, and can thus be renamed without changing the
semantics of rules. In other words, Datalog does not provide a method to indicate what
variables occurring in different rules are the same variable. Instead, Nested Datalog allows
expressing this extended scope of variables. The following two examples show how to use
Nested Datalog to enrich the translation by Angles and Gutierrez [8] in order to express
the EXISTS clause.

131

Example 8.2. Consider the SPARQL query:

(X, p ,Y)︸ ︷︷ ︸
P

FILTER(EXISTS((X, q ,Y)AND (SELECT X WHERE (X, r,Y))︸ ︷︷ ︸
Q

)). (8.9)

According to the translation by Angles and Gutierrez [8] the inner query Q of this SPARQL query
is translated as the Datalog query q(X,Y) over the following program:

q(X,Y) ← r(X1,Y), s(X2), comp(X,X1,X2) (8.10)
r(X,Y) ← triple(X, q ,Y)

s(X) ← t(X,Y)
t(X,Y) ← triple(X, r,Y)

However, their translation does not provide information on whether the occurrences of variable Y in
this program can be considered the same variable or not. Nested Datalog can express this relation.
If one wants both occurrences of Y to be the same variable, then we can translate the inner query Q
as the Nested Datalog query #q(X,Y) over the program consisting in the two following blocks:

q(X,Y) ← r(X1,Y), #s[Y](X2), comp(X,X1,X2) (8.11)
r(X,Y) ← triple(X, q ,Y)

s(X) ← t(X,Y) (8.12)
t(X,Y) ← triple(X, r,Y)

In this case, the variable Y in the block (8.11) is the same that variable than Y in the block (8.12)
because the scope of Y is the scope of the parameter Y in the query atom #s[Y](X2).
On the contrary, if we want all occurrences of Y to denote different variables, we can translate the
inner query Q as the Nested Datalog query #q(X,Y) over the program consisting in the following
two blocks:

q(X,Y) ← r(X1,Y), #s(X2), comp(X,X1,X2) (8.13)
r(X,Y) ← triple(X, q ,Y)

s(X) ← t(X,Y) (8.14)
t(X,Y) ← triple(X, r,Y)

In this case we can rename each occurrence of Y without changing the semantics of the query.

Example 8.2 shows how Nested Datalog enriches the scope of variables in Datalog by
allowing variables to be scoped beyond rules. At the same time, Nested Datalog allows us
to express that variables are local by enclosing them in a nested query. In Example 8.2 the
three proposals (shallow-binding, deep-binding and environment-binding) agree in that
variable Y in the inner query is local. It is relevant to note that not all engines agree on
that [40]. The following example shows a case where the three proposals do not agree.

Example 8.3. Consider the SPARQL query:

(X, p ,Y)︸ ︷︷ ︸
P

FILTER(EXISTS((X, q , Z)MINUS (X, r,Y)︸ ︷︷ ︸
Q

)). (8.15)

132

According to the translation by Angles and Gutierrez [8] the inner query Q is translated as the
query q(X, Z) over the following program:

q(X, Z) ← r(X1, Z),¬s(X2), comp(X,X1,X2) (8.16)
r(X, Z) ← triple(X, q , Z)

s(X) ← t(X,Y)
t(X,Y) ← triple(X, r,Y)

As in Example 8.2 this translation does not indicate if variable Y in the filter condition of the
SPARQL query in (8.15) is or is not replaceable with the value of Y in the outer query P. In the
Datalog program in (8.16) the variable Y is not replaceable because its scope is the rule where it
occurs. The formalism of Nested Datalog can be used to overcome this Datalog limitation. Indeed,
to codify that variable Y is replaceable, the inner query Q can be translated as the Nested Datalog
query #q(X, Z) over the program composed by the following two blocks:

q(X, Z) ← r(X1, Z),¬#s[Y](X2), comp(X,X1,X2) (8.17)
r(X, Z) ← triple(X, q , Z)

s(X) ← t(X,Y) (8.18)
t(X,Y) ← triple(X, r,Y)

On the contrary, if variable Y is not replaceable, then the inner query Q can be translated as the
Nested Datalog query #q(X, Z) over the program consisting in the following two blocks:

q(X, Z) ← r(X1, Z),¬#s(X2), comp(X,X1,X2) (8.19)
r(X, Z) ← triple(X, q , Z)

s(X) ← t(X,Y) (8.20)
t(X,Y) ← triple(X, r,Y)

Example 8.3 describe alternatives that need be considered to translate the alternative
semantics for EXISTS we discussed in this thesis. Indeed, according to the shallow-binding
and deep-binding proposals, the variable Y of this example is not visible from the outer
query. On the contrary, according to the environment-binding proposal the variable Y is
visible from the outer query.

8.1.2 Substitution of goal variables
We showed that Nested Datalog queries can be used to indicate what variables are visible
from an outer query. This includes the variables that occur as parameters of a query atom.
Now we discuss what happens with variables that occur as arguments of a query atom
(i.e., in the parenthesis).

Example 8.4. Consider the following SPARQL query:

P FILTER (EXISTS((X, r,Y)MINUS (X, s , Z)︸ ︷︷ ︸
Q

)), (8.21)

133

and assume the mapping ν � {Y 7→ a} from the outer query P. According to the shallow-binding
and deep-binding proposals, the inner query is substituted respectively as follows:

{Z 7→ a} AND ((X, r,Y)MINUS (X, s , Z)) shallow-binding, (8.22)
({Z 7→ a} AND (X, r,Y))MINUS (X, s , Z) deep-binding. (8.23)

The translations of the SPARQL queries Q, (8.22) and (8.23) to Datalog according to the translation
by Angles and Gutierrez [8], are Datalog queries with the head q(X,Y) over the following respective
programs:

q(X,Y) ← t(X1,Y),¬u(X2), comp(X,X1,X2) Q, (8.24)
t(X,Y) ← triple(X, r,Y)

u(X) ← v(X, s , Z)

q(X,Y) ← w(X,Y),Y � a shallow-binding, (8.25)
w(X,Y) ← t(X1,Y),¬u(X2), comp(X,X1,X2)
t(X,Y) ← triple(X, r,Y)

u(X) ← v(X, s , Z)

q(X,Y) ← t(X1,Y),¬u(X2), comp(X,X1,X2) deep-binding. (8.26)
t(X,Y) ← w(X,Y),Y � a

w(X,Y) ← triple(X, r,Y)
u(X) ← v(X, s , Z)

The Datalog programs (8.25) and (8.25) represent two different places where the variable Y can
be replaced by the value a. The Datalog program (8.24) does not codify the place where Y is
substituted. Nested Datalog allows to overcome this limitation. For instance, the SPARQL query
Q can be translated to Nested Datalog as a query #q[Y](X, Z) over the following two alternative
programs:

q(X,Y) ← t(X1,Y),¬u(X2), comp(X,X1,X2) shallow-binding, (8.27)
t(X, Z) ← triple(X, r, Z)

u(X) ← v(X, s , Z)

q(X, Z) ← t(X1, Z),¬u(X2), comp(X,X1,X2) deep-binding, (8.28)
t(X,Y) ← triple(X, r,Y)

u(X) ← v(X, s , Z)

The programs (8.27) and (8.28) are similar to program (8.24), except that the variable Y is renamed
differently in the first and the second rules of both programs. It is not difficult to see that the
programs that result from substituting Y in programs (8.27) and (8.28) are equivalent to programs
(8.25) and (8.26). Hence, Nested Datalog allows expressing both semantics for EXISTS in a simple
and intuitive way.

Observe that all variables named by Y in the program (8.24) of Example 8.4 are somehow
connected. Despite all of them being universally quantified, and thus we can consistently

134

rename the variables, the value used to instantiate them each time a fact is inferred has to
be the same. Connection between variables can be defined syntactically by the positions in
which a variable occurs. In [39] we called this notion logical connection between variables.
This notion is formalized as follows:

Definition 8.1 (Logical connection). Let Q be a Nested Datalog query whose variables where
renamed to avoid using the same name in different scopes. Then, the relation of being logically
connected defined in the set of variables of Q, is the minimal partial order such that given two
variables X and Y occurring respectively in rules RX and RY , X is logically connected with Y,
denoted X ⇝ Y, if one of the following conditions holds:

1. RX and RY are in the same block, there is a predicate atom p(t̄) in the body of RX , X is in the
i-th position of tuple t̄, the head of RY is p(s̄), and Y is in the i-th position of tuple s̄.

2. There is a query atom #p[Z̄](t̄) in the body of RX , X is in the i-th position of tuple t̄, RY is a
rule of block of the query atom #p[Z̄](t̄), whose head is p(s̄), and Y is in the i-th position of s̄.

3. There is a variable Z in the rule RX where X occurs such that the atom X � Z occurs in RX
and Z ⇝ Y.

The following example shows the relevance of logically connected variables regarding
substitution in SPARQL.

Example 8.5. Consider the following Nested Datalog program Π consisting in two blocks:

p(X) ← t(X), #q(X) (8.29)

q(Y) ← r(Z,Y) (8.30)
r(U,V) ← s(U,V)

To evaluate the query #p(X) over this program we can first find a substitution θ that makes true the
literal t(X). Assume that θ(X) � c. We can then find solutions for the query atom #q(X) where
X takes the value c. To solve the query atom we need no substitution. However, the evaluation of
the query atom #q(X) could be optimized if we constraint X to the value c inside the block (8.30).
Instead of evaluating the block (8.30), we can alternatively evaluate the blocks (8.31) and (8.32)
defined as follows:

q(Y) ← r(Z,Y),Y � c (8.31)
r(U,V) ← s(U,V)

q(Y) ← r(Z,Y) (8.32)
r(U,V) ← s(U,V),V � c

The evaluation of query #q(X) is in programs (8.31) and (8.32) returns the same answers because
variables X, Y and V are logically connected, more precisely X ⇝ Y and Y ⇝ V . The logical
connection between these variables ensures that the semantics of the inner program does not change
after restricting also the connected variables.

Shadow-binding and deep-binding proposals for the substitution in SPARQL can be
viewed as alternatives to substitute logically connected variables. The variable Y that
occurs in the first and second rules of the program (8.24) in Example 8.4 are logically

135

connected. The example shows that one proposal substitutes variable Y in the first rule,
while the other proposal substitutes variable Y in the second rule.

The following theorem shows how to substitute variables that are logically connected
without changing the semantics of the query.

Theorem 8.1. Let Π be a Nested Datalog program, and R be an arbitrary rule occurring in Π.
Without loss of generality, the literals in the rule R can be organized as follows:

Ln+1← L1, . . . , Lm ,X � a , . . . , Ln

where literal Lm has either a predicate atom q(t̄) or a query atom #q[Ȳ](t̄) where variable X occurs
in the tuple t̄. Then, Π is equivalent to the program that results from:

1. removing the literal X � a from rule R,

2. adding a literal Y � a for each rule R′ where the predicate of the head is q, variable Y occurs
in the head, and X ⇝ Y, and

3. leaving the other rules unmodified.

Proof. Let Π be a Nested Datalog program. That includes the following rules:

Ln+1← L1, . . . , Lm−1, q(t1, . . . , tk), t j � a , . . . , Ln

q(t1
1 , . . . , t

1
k) ← B1
...

q(tr
1 , . . . , t

r
k) ← Br

where 1 ≤ j ≤ k, no other rule of Π has predicate q in the head, and B1, . . . , Br denote
sets of literals. Let Π′ be the program that results from replacing the rules above with the
following rules:

Ln+1← L1, . . . , Lm−1, q(t1, . . . , tk), . . . , Ln

q(t1
1 , . . . , t

1
k) ← B1, t1

j � a
...

q(tr
1 , . . . , t

r
k) ← Br , tr

j � a

Let R and R′ denote the first rules of the respective programsΠ andΠ′ in the order they are
presented above. To prove that programsΠ andΠ′ are equivalent we have to demonstrate
that a substitution θ makes true all literals in rule R if and only if θ makes true all literals
in rule R′. Since, the literals of R′ are subsumed by the literals of R, it holds that if θmakes
true all literals in R then θ makes true all literals in R′. To prove the converse, we have to
show that if θ makes true all literals in R′ it also makes true the equality atom t j � a. Since
θ makes true the literal q(t1, . . . , tk) the fact q(θ(t1), . . . , θ(tk)) must be inferred by one of
the rules of Π′ of the form:

q(t1
1 , . . . , t

1
k) ← B1, t1

j � a

136

then according to the equality atom t1
j � a it holds that θ(t j) � a. Thus, θ makes true the

literal t j � a. Hence, we proved the converse.

The proof for the query atom follows the same argument.

Intuitively, Theorem 8.1 states that substitutions can be moved across logically connected
variables, even when rules of different blocks are involved. If one needs to move substitu-
tions from the top rule of a program to the bottom, it suffices applying the transformation
described by Theorem 8.1 as much times as it is needed.

Example 8.6. The following Nested Datalog programs are equivalent:

p(X) ← q(X), r(X),X � a p(X) ← q(X), r(X) p(X) ← q(X), r(X)
q(Y) ← v(Y) q(Y) ← v(Y),Y � a q(Y) ← v(Y)
r(Z) ← s(Z) r(Z) ← s(Z) r(Z) ← s(Z), Z � a
r(U) ← #t(U) r(U) ← #t(U) r(U) ← #t(U)
t(V) ← u(V) t(V) ← u(V) t(V) ← u(V),V � a

In fact, these three Nested Datalog programs show different places where variable X can be restricted
to take the value a. All the substitutions done are done in variables that are logically connected.
The equivalence between the three programs follows from Theorem 8.1.

Example 8.4 showed that the shallow-binding and the deep-binding proposals can be seen
in Nested Datalog as alternative places where to substitute logically connected variables.
Theorem 8.1 shows that the place where a variable is substituted does not affect the
semantics of the query. However, it is well known that shallow-binding and deep-binding
proposals can produce different results (see the examples in Section 5.1).

We will show in the following section that extending Nested Datalog with null values
provides a better explanation for substitution in SPARQL, and in particular shows that
the differences between both proposals is due to the presence of unbound values in the
substitution. The following example shows one of the complications due to unbound
values.

Example 8.7. Consider the following SPARQL query:

P FILTER (EXISTS(((X, u ,Y)OPT (Y, v , Z))AND (X, w , Z)︸ ︷︷ ︸
Q

)), (8.33)

and assume the mapping ν � {Z 7→ a} from the outer query P. According the translation by
Angles and Gutierrez [8], the SPARQL query Q is translated to the Datalog query p(X,Y, Z) over
the following program:

p(X,Y, Z) ← q(X1,Y, Z1), r(X2, Z2), comp(X,X1,X2), comp(Z, Z1, Z2) (8.34)
q(X,Y, Z) ← s(X,Y1), t(Y2, Z), comp(Y,Y1,Y2)
q(X,Y, Z) ← s(X,Y1),¬u(Y2), comp(Y,Y1,Y2)

s(X,Y) ← triple(X, u ,Y)
t(Y, Z) ← triple(Y, v , Z)

u(y) ← t(Y, Z)
r(X,Y) ← triple(X, w , Z)

137

If we evaluate the inner query according to the deep-binding proposal, then variable Z has to be
substituted in the triple patterns of the SPARQL query. In the Datalog version of the query this
means substituting Z in the rules where the predicate triple includes the variable Z. Of course
this depends on the name of variables we use in the Datalog program. Here we are naming the
variables in the Datalog program as are named in the parts of the SPARQL query corresponding to
each rule. However, this naming of the variables is arbitrary because in Datalog variables can be
renamed consistently without changing the semantics of the program since they are scoped to rules.
If we preserve this naming of the variables, the substitution according to the deep-binding proposal
produces the following program:

p(X,Y, Z) ← q(X1,Y, Z1), r(X2, Z2), comp(X,X1,X2), comp(Z, Z1, Z2) (8.35)
q(X,Y, Z) ← s(X,Y1), t(Y2, Z), comp(Y,Y1,Y2)
q(X,Y, Z) ← s(X,Y1),¬u(Y2), comp(Y,Y1,Y2)

s(X,Y) ← triple(X, u ,Y)
t(Y, Z) ← triple(Y, v , Z), Z � a

u(y) ← t(Y, Z)
r(X, Z) ← triple(X, w , Z), Z � a

On the contrary, if we assume the shallow-binding proposal, then we have to substitute Z in the
first rule. This substitution thus produces the following program:

p(X,Y, Z) ← q(X1,Y, Z1), r(X2, Z2), comp(X,X1,X2), comp(Z, Z1, Z2), Z � a (8.36)
q(X,Y, Z) ← s(X,Y1), t(Y2, Z), comp(Y,Y1,Y2)
q(X,Y, Z) ← s(X,Y1),¬u(Y2), comp(Y,Y1,Y2)

s(X,Y) ← triple(X, u ,Y)
t(Y, Z) ← triple(Y, v , Z)

u(y) ← t(Y, Z)
r(X, Z) ← triple(X, w , Z)

Programs (8.35) and (8.36) are not equivalent. To see this, consider the RDF graph

G � {(b , u , c), (c , v , b), (b , w , a)}.

The facts q(b , c ,∅) and r(b , a) are inferred from program (8.35) in the graph G. Since ∅ and a
are compatible, also fact p(b , c , a) is inferred. Hence, query p(X,Y, Z) has an answer in program
(8.35). On the contrary, the facts q(b , c , b) and r(b , a) are inferred from program (8.36) in the
graph G. Since b and a are incompatible, query p(X,Y, Z) has no answers in program (8.36).

This difference does not contradict Theorem 8.1 because variables Z occurring in the predicate triple
are not logically connected with the variable Z in the first rule. The introduction of the predicate
atom comp(Z, Z1, Z2) precludes the logical connection between variable Z and variables Z1 and
Z2. In fact, they cannot be logically connected since they can refer to different values. This is the
case when Z1 refers to an unbound value and Z refers to a constant a.

Intuitively, the literal comp(Z, Z1, Z2) implies some connection of variable Z with variables
Z1 and Z2. However that connection is not strong enough to guarantee that we can move
substitutions across connected variables without changing the semantics of the program as

138

is stated by Theorem 8.1 for logical connections. If the literal comp(Z, Z1, Z2)were replaced
by literals Z � Z1 and Z � Z2 then variable Z in the first rule would be logically connected
with variable Z in the predicate triple, and thus both programs would be equivalent.

Informally, the predicate comp(Z, Z1, Z2) is combining the information about Z that comes
from two different sources. In some way, an unbound represents incomplete knowledge
about the value of Z, and the predicate comp(Z, Z1, Z2) combines the information, even
where both sources are not equally informative.

8.2 Nested Datalog with nulls
This section presents Nested Datalog with nulls, as an extension to Nested Datalog that
gives a special semantics to null values. Recall that the translation by Angles and Gutier-
rez [8] to Datalog reserves a constant, denoted ∅, to represent the SPARQL unbound
variables. However, the symbol ∅ has no special semantics. Instead, the rules emulate the
behavior of unbound variables.

The introduction of null values in Nested Datalog is motivated by the need to provide a
simpler translation from SPARQL to Datalog. One could argue that there is no need to
consider null values in Datalog since the translation by Angles and Gutierrez [8] does not
assume a special semantics for the ∅ symbol. However, to translate the EXISTS clause
there is an exponential blow-up that is illustrated in the following Example.

Example 8.8. Consider the following SPARQL query

P FILTER (EXISTS((X, p , Z)MINUS (X, q ,Y)︸ ︷︷ ︸
R

)), (8.37)

where P is a query with dom(P) � {X,Y}, and let the environment-binding proposal be the
semantics of this query. A first attempt to translate this query to a Nested Datalog query according
the assumed semantics, is one of the form #q(X,Y) whose program Π consists is the following two
blocks:

q(X,Y) ← p(X,Y), #r[Y](X, Z) (8.38)

r(X, Z) ← s(X1, Z),¬t(X2), comp(X,X1,X2) (8.39)
s(X, Z) ← triple(X, p , Z)

t(X) ← u(X,Y)
u(X,Y) ← triple(X, q ,Y)

The Nested Datalog queries #q(X,Y), #p(X,Y), and #r[Y](X, Z) over the program Π codify the
respective SPARQL queries (8.37), P and R.

Despite the fact that the Nested Datalog block (8.39) is the translation of the SPARQL query R
according to the translation by Angles and Gutierrez [8], the translation does not work when the
predicate atom p(X,Y) has an answer where variable Y is unbound. In SPARQL, if Y is unbound
then Y does not have to be substituted in the inner query R. A translation that considers both cases

139

for the value of variable Y (bound and unbound) is the Nested Datalog query over the following
program:

q(X,Y) ← p(X,Y),Y , ∅, #r1[Y](X, Z) (8.40)
q(X,Y) ← p(X,Y),Y � ∅, #r2(X, Z)

r1(X, Z) ← s1(X1, Z),¬t1(X2), comp(X,X1,X2) (8.41)
s1(X, Z) ← triple(X, p , Z)

t1(X) ← u1(X,Y)
u1(X,Y) ← triple(X, q ,Y)

r2(X, Z) ← s2(X2, Z),¬t2(X2), comp(X,X2,X2) (8.42)
s2(X, Z) ← triple(X, p , Z)

t2(X) ← u2(X,Y)
u2(X,Y) ← triple(X, q ,Y)

The equality atoms Y , ∅ and Y � ∅ filter solutions where Y is and is not substituted. To
substitute Y the query atom must include Y as a parameter. In general several variables that can
be unbound. This generates the exponential blow-up in the Nested Datalog query resulting of the
translation of a SPARQL query.

We next define the syntax of Nested Datalog extended with null values.

Definition 8.2 (Syntax of Nested Datalog with nulls). The syntax of Nested Datalog with nulls
is the same of Nested Datalog. That is, a Nested Datalog with nulls query is a Nested Datalog
query.

The main difference of Nested Datalog with and without nulls is the form in what substi-
tution is performed.

Definition 8.3 (Semantics of Nested Datalog with null values). The semantics of Nested
Datalog with null values is the same as for Nested Datalog, except that substitution does not add an
equality atom X � c to substitute variable X by constant c in a rule R, but performs the following
modifications in R:

1. replace all occurrences of X in the body of R by a fresh variable Y, and

2. add the literal comp(X,Y, c) to the body of R, where comp is the predicate that compute the
compatibility according to the compatibility program (see Definition 6.3).

Example 8.9. Consider the SPARQL query

P FILTER (EXISTS((X, p , Z)MINUS (X, q ,Y))) (8.43)

from Example 8.8, where P is a query with dom(P) � {X,Y}, and let the environment-binding
proposal be the semantics of this query. Example 8.8 showed that this query can produce an
exponential blow-up. Nested Datalog with null avoids the exponential blow-up by translating this

140

query as the Nested Datalog query with nulls #q(X,Y) over the following program:

q(X,Y) ← p(X,Y), #r[Y](X, Z) (8.44)

r(X, Z) ← s(X1, Z),¬t(X2), comp(X,X1,X2) (8.45)
s(X, Z) ← triple(X, p , Z)

t(X) ← u(X,Y)
u(X,Y) ← triple(X, q ,Y)

If the predicate atom p(X,Y) is true with a substitution θ where θ(Y) is a constant c, then we have
to evaluate the inner query after substituting in it the parameter Y by c. The result is the query
r(X, Z) over the following program:

r(X, Z) ← s(X1, Z),¬t(X2), comp(X,X1,X2) (8.46)
s(X, Z) ← triple(X, p , Z)

t(X) ← u(X,Y)
u(X,Y) ← triple(X, q ,Y′), comp(Y,Y′, c)

On the contrary, if θ(Y) is unbound, then the result of substituting the parameter Y is the query
r(X, Z) over the following program:

r(X, Z) ← s(X1, Z),¬t(X2), comp(X,X1,X2) (8.47)
s(X, Z) ← triple(X, p , Z)

t(X) ← u(X,Y)
u(X,Y) ← triple(X, q ,Y′), comp(Y,Y′,∅)

This last program is equivalent to the one that does not substitute Y, because the literal
comp(Y,Y′,∅) ensures that Y � Y′. Hence, the semantics of Nested Datalog with nulls permits
the expression of both alternatives described in Example 8.8, and thus eliminates the exponential
blow-up.

So far, we showed several examples that suggest that Nested Datalog offers a simpler
codification of SPARQL queries with EXISTS clauses than Datalog, and that Nested Datalog
with nulls offers a codification of SPARQL queries with EXISTS clauses that is even simpler
than that provided by Nested Datalog. Of course, these examples are not conclusive to
prove the convenience of Nested Datalog with nulls. This requires a complete translation
from SPARQL to Nested Datalog and Nested Datalog with nulls. The definition of this
translation is out of the scope of this thesis.

8.3 Conclusions
The translation of the EXISTS clause to Datalog is possible but not clean, because it requires
rules that have no direct counterpart in Datalog. The main complication is that in SPARQL
variables with different scopes can have the same name. Despite variables are naming
different resources, two proposals (deep-binding and environment-binding) allow replac-
ing them as if they were the same variable. This problem does not affect Datalog because

141

variables are scoped to rules. To bridge this gap we use Nested Datalog. However, this
extension was not enough to define an intuitive translation for Datalog. We thus proposed
another extension, consisting in introducing null values as a special type of value. We see
two interesting avenues in this regard: to study the properties of Nested Datalog with the
extension to deal with null values, and to formalize the three proposals for the semantics
of EXISTS studied herein using a translation to that Datalog extension.

142

Part IV

Conclusions

143

Chapter 9

Conclusions and future work

We are now at the end of the effort to understand the problem of incomplete data in
SPARQL. Let us sketch what lessons we have learned and what are the paths to follow for
the future.

The thesis addressed the problem of incomplete data in SPARQL. The idea that incomplete
data plays a central role in SPARQL is not new. Indeed, in an earlier work trying to formalize
SPARQL, Cyganiak [21] claimed that the treatment of null values is the major problem
encountered when trying to specify the semantics of SPARQL using standard relational
algebra. To address this problem we reviewed the problem of incomplete data in the
relational model. In particular, we reviewed two forms to incorporate incompleteness to
relations: null values (unknown values, inapplicable values, and no-information values)
and maybe-tuples. We described then the query languages for databases with these types
of incompleteness and the techniques to approximate certain answers in databases with
unknown values.

The hypothesis we presented in this thesis was that we can apply relational model tech-
niques dealing with incomplete data to the problems found in SPARQL. This hypothesis
resulted valid in some cases. We showed the feasibility of applying the known techniques
to the approximation of certain answers in SPARQL when considering blank nodes as null
values. However, the application of these techniques for the case of unbound values was
elusive, because SPARQL operators were not aligned with a known formalism. Hence, the
problem of formalizing the semantics of unbound values with relational model techniques
remains open for the practical and theoretical concerns.

We ended the thesis with the study of the semantics of the EXISTS clause. We showed that
several of the issues arising from this clause were related to the notion of incomplete data.
However, due to the complicate design of the notion of substitution in SPARQL, we chose
to study first this notion in an alternative formalism without the nuances of SPARQL and
then to address the real case.

The thesis left several new understandings that we will summarize as follows.

A first lesson arising from this thesis is that the SPARQL operators have too many nuances
that complicate the design and implementation of substitution. To address this problem,

145

it is better first to address the fundamental problem of substitution in a cleaner query
language and then see how it can be implemented in SPARQL. We did this by proposing
Nested Datalog, an extended version of Datalog that allows the composition of queries. We
develop this formalisms and derived the main properties regarding querying and show
how they relate to SPARQL and SQL. However, we did not focus in the systematization
of this relation nor their properties. This task—by its scope—is an interesting future work
per se.

Second. This thesis shows that the SPARQL query language can be improved by allowing
the approximation of certain answers. Indeed, we showed experimentally that these
approximations can be done without incurring in much extra cost, and that they provide
a better integration with the RDF semantics. However, there are two questions to be
addressed before implementing the approximations of certain answers in SPARQL. The
first is to have a workable notion of what a good approximation is, and the second is
determining how relevant are certain answers for the Semantic Web. We think that we
still need more knowledge about the notion of possible approximations and their costs in
order to answer the first question. Regarding the second problem, again it seems that there
is still more knowledge needed. We surveyed the Wikidata example queries, and found
not enough queries for which it would be relevant to fix the SPARQL semantics. Thus, the
question if this problem is really relevant in current practice remains open.

In the third place, we learned that the semantics of SPARQL still needs precisions in order
to address issues like the one we studied in this thesis. Throughout this thesis we cited
several efforts to formalize SPARQL. Some of these efforts report the ambiguities of the
specification and others interpret the specification in forms that differ from other works.
For example, Kaminski et al. [44] claimed that their semantics for the EXISTS clause is
compatible with the specification in the cases where there is no ambiguity, and also works
for the cases where the specification is ambiguous. However, their formalization—called
environment-binding in this thesis— does not agree with the interpretation that an editor
of the specification, Andy Seaborne, gives to the EXISTS clause—called deep-binding.
Other efforts provide valuable knowledge about SPARQL, but their proposals are not free
of mistakes induced by the complexities of SPARQL. This is the case of the translation
from SPARQL to Datalog by Angles and Gutierrez [8], that we improved in this thesis in
order to fix the cases in which their translation does not work. These examples show how
complex SPARQL is.

Finally, another conclusion from this thesis has to do with the use of new formalisms to
address the semantics of (incompleteness in) SPARQL. The relation among the generalized
relational algebra, the algebra of maybe tables by Biskup [15], and the approximation by
Guagliardo and Libkin [33] shows how relevant is the notion of modal logic to the problem
of incomplete data. Grahne [28] described this relation by introducing modal structures
in his study of incomplete information. According to Grahne, over a modal structure a
first-order formula φ has two additional semantics—namely 3φ, the possible answers
of φ; and 2φ, the necessary answers of φ. These formulas are the subset of the first-
order modal logic formulas, that admit a unique modality in the begining of the formula.
The generalized relational algebra combines operators that are somewhat modal, that its,
combine several modalities in the same query. Hence, we see two interesting future works
in this regard: 1) to state a correspondence between the generalized relational algebra and

146

first-order modal logic, and 2) to extend Datalog with modalities to express the generalized
relational algebra.

147

148

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995. isbn: 0-201-53771-0. url: http://webdam.inria.fr/Alice/.

[2] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. “On the Representation and
Querying of Sets of Possible Worlds”. In: Theor. Comput. Sci. 78.1 (1991), pp. 158–187.
doi: 10.1016/0304-3975(51)90007-2. url: https://doi.org/10.1016/0304-
3975(51)90007-2.

[3] Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus, and Se-
bastian Skritek. “Towards Reconciling SPARQL and Certain Answers”. In: World
Wide Web (WWW). 2015, pp. 23–33. doi: 10.1145/2736277.2741636. url: http:
//doi.acm.org/10.1145/2736277.2741636.

[4] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L. Fletcher,
Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F.
Sequeda, Oskar van Rest, and Hannes Voigt. “G-CORE: A Core for Future Graph
Query Languages”. In: Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. Ed. by Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein. ACM, 2018, pp. 1421–1432.
doi: 10.1145/3183713.3190654. url: https://doi.org/10.1145/3183713.3190654.

[5] Renzo Angles and Claudio Gutierrez. “The Multiset Semantics of SPARQL Patterns”.
In: International Semantic Web Conference (ISWC). Springer, 2016, pp. 20–36. doi: 10.
1007/978-3-319-46523-4_2. url: http://dx.doi.org/10.1007/978-3-319-
46523-4_2.

[6] Renzo Angles and Claudio Gutiérrez. “Negation in SPARQL”. In: AMW. Vol. 1644.
CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[7] Renzo Angles and Claudio Gutiérrez. “Subqueries in SPARQL”. In: AMW. Vol. 749.
CEUR Workshop Proceedings. CEUR-WS.org, 2011.

[8] Renzo Angles and Claudio Gutiérrez. “The Expressive Power of SPARQL”. In: In-
ternational Semantic Web Conference. Vol. 5318. Lecture Notes in Computer Science.
Springer, 2008, pp. 114–129.

[9] Renzo Angles and Claudio Gutiérrez. “The Multiset Semantics of SPARQL Patterns”.
In: International Semantic Web Conference (1). Vol. 9981. Lecture Notes in Computer
Science. 2016, pp. 20–36.

[10] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda. A
Direct Mapping of Relational Data to RDF. W3C Recommendation. 2012.

[11] Marcelo Arenas and Jorge Pérez. “Querying semantic web data with SPARQL”.
In: Principles of Database Systems (PODS). ACM, 2011, pp. 305–316. doi: 10.1145/
1989284.1989312. url: http://doi.acm.org/10.1145/1989284.1989312.

149

http://webdam.inria.fr/Alice/
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1016/0304-3975(51)90007-2
https://doi.org/10.1145/2736277.2741636
http://doi.acm.org/10.1145/2736277.2741636
http://doi.acm.org/10.1145/2736277.2741636
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1007/978-3-319-46523-4_2
http://dx.doi.org/10.1007/978-3-319-46523-4_2
http://dx.doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/1989284.1989312
http://doi.acm.org/10.1145/1989284.1989312

[12] Marcelo Arenas and Martn Ugarte. “Designing a Query Language for RDF: Marrying
Open and Closed Worlds”. In: Principles of Database Systems (PODS). ACM, 2016,
pp. 225–236. doi: 10.1145/2902251.2902298. url: http://doi.acm.org/10.1145/
2902251.2902298.

[13] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert. “Web and Semantic
Web Query Languages: A Survey”. In: Reasoning Web, First International Summer
School 2005, Msida, Malta, July 25-29, 2005, Tutorial Lectures. Ed. by Norbert Eisinger
and Jan Maluszynski. Vol. 3564. Lecture Notes in Computer Science. Springer, 2005,
pp. 35–133. doi: 10.1007/11526988_3. url: https://doi.org/10.1007/11526988%
5C_3.

[14] Joachim Biskup. “A Formal Approach to Null Values in Database Relations”. In:
Advances in Data Base Theory: Volume 1. Boston, MA: Springer US, 1981, pp. 299–
341. isbn: 978-1-4615-8297-7. doi: 10.1007/978-1-4615-8297-7_11. url: http:
//dx.doi.org/10.1007/978-1-4615-8297-7_11.

[15] Joachim Biskup. “A Foundation of Codd’s Relational Maybe-Operations”. In: ACM
Trans. Database Syst. 8.4 (1983), pp. 608–636. doi: 10.1145/319996.320014. url:
http://doi.acm.org/10.1145/319996.320014.

[16] Dan Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation. Feb. 2014.
[17] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. “Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema”. In: The Semantic Web
- ISWC 2002, First International Semantic Web Conference, Sardinia, Italy, June 9-12, 2002,
Proceedings. Ed. by Ian Horrocks and James A. Hendler. Vol. 2342. Lecture Notes in
Computer Science. Springer, 2002, pp. 54–68. doi: 10.1007/3-540-48005-6_7. url:
https://doi.org/10.1007/3-540-48005-6%5C_7.

[18] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Surveys in computer science. Springer, 1990.

[19] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of Conjunctive
Queries in Relational Data Bases”. In: Proceedings of the 9th Annual ACM Symposium
on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA. Ed. by John E. Hopcroft,
Emily P. Friedman, and Michael A. Harrison. ACM, 1977, pp. 77–90. doi: 10.1145/
800105.803397. url: https://doi.org/10.1145/800105.803397.

[20] E. F. Codd. “Extending the Database Relational Model to Capture More Meaning”.
In: ACM Trans. Database Syst. 4.4 (Dec. 1979), pp. 397–434. issn: 0362-5915. doi: 10.
1145/320107.320109. url: http://doi.acm.org/10.1145/320107.320109.

[21] Richard Cyganiak. “A relational algebra for SPARQL”. In: Digital Media Systems
Laboratory HP Laboratories Bristol. HPL-2005-170 (2005), p. 35.

[22] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. “A Uni-
form Integration of Higher-Order Reasoning and External Evaluations in Answer-Set
Programming”. In: ĲCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005. Ed. by Leslie
Pack Kaelbling and Alessandro Saffiotti. Professional Book Center, 2005, pp. 90–96.
url: http://ijcai.org/Proceedings/05/Papers/1353.pdf.

[23] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. “Ef-
fective Integration of Declarative Rules with External Evaluations for Semantic-Web
Reasoning”. In: The Semantic Web: Research and Applications, 3rd European Semantic
Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings. Ed.
by York Sure and John Domingue. Vol. 4011. Lecture Notes in Computer Science.

150

https://doi.org/10.1145/2902251.2902298
http://doi.acm.org/10.1145/2902251.2902298
http://doi.acm.org/10.1145/2902251.2902298
https://doi.org/10.1007/11526988_3
https://doi.org/10.1007/11526988%5C_3
https://doi.org/10.1007/11526988%5C_3
https://doi.org/10.1007/978-1-4615-8297-7_11
http://dx.doi.org/10.1007/978-1-4615-8297-7_11
http://dx.doi.org/10.1007/978-1-4615-8297-7_11
https://doi.org/10.1145/319996.320014
http://doi.acm.org/10.1145/319996.320014
https://doi.org/10.1007/3-540-48005-6_7
https://doi.org/10.1007/3-540-48005-6%5C_7
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109
http://doi.acm.org/10.1145/320107.320109
http://ijcai.org/Proceedings/05/Papers/1353.pdf

Springer, 2006, pp. 273–287. doi: 10.1007/11762256_22. url: https://doi.org/
10.1007/11762256%5C_22.

[24] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny
Vrandecic. “Introducing Wikidata to the Linked Data Web”. In: International Semantic
Web Conference (ISWC). 2014, pp. 50–65. doi: 10.1007/978-3-319-11964-9_4. url:
http://dx.doi.org/10.1007/978-3-319-11964-9_4.

[25] Valeria Fionda, Giuseppe Pirrò, and Claudio Gutiérrez. “NautiLOD: A Formal Lan-
guage for the Web of Data Graph”. In: TWEB 9.1 (2015), 5:1–5:43. doi: 10.1145/
2697393. url: https://doi.org/10.1145/2697393.

[26] Melvin Fitting and Richard L Mendelsohn. First-order modal logic. Springer Science
& Business Media, 1998.

[27] César A. Galindo-Legaria. “Outerjoins as Disjunctions”. In: Proceedings of the 1994
ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota,
USA, May 24-27, 1994. Ed. by Richard T. Snodgrass and Marianne Winslett. ACM
Press, 1994, pp. 348–358. doi: 10.1145/191839.191908. url: https://doi.org/10.
1145/191839.191908.

[28] Gösta Grahne. The problem of incomplete information in relational databases. Vol. 554.
Springer Science & Business Media, 1991.

[29] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Approximation algorithms
for querying incomplete databases”. In: Inf. Syst. 86 (2019), pp. 28–45.

[30] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Computing Approximate
Certain Answers over Incomplete Databases”. In: Proceedings of the 11th Alberto
Mendelzon International Workshop on Foundations of Data Management, Montevideo,
Uruguay, June 5–9 (2017). (to appear).

[31] SPARQL Maintenance (EXISTS) Community Group. SPARQL EXISTS report. Draft.
Apr. 2019. url: https://w3c.github.io/sparql-exists/docs/sparql-exists.
html.

[32] Paolo Guagliardo and Leonid Libkin. “A Formal Semantics of SQL Queries, Its
Validation, and Applications”. In: PVLDB 11.1 (2017), pp. 27–39. doi: 10.14778/
3151113.3151116. url: http://www.vldb.org/pvldb/vol11/p27-guagliardo.pdf.

[33] Paolo Guagliardo and Leonid Libkin. “Making SQL Queries Correct on Incomplete
Databases: A Feasibility Study”. In: Principles of Database Systems (PODS). ACM,
2016, pp. 211–223. doi: 10.1145/2902251.2902297. url: http://doi.acm.org/10.
1145/2902251.2902297.

[34] Claudio Gutierrez, Daniel Hernandez, Aidan Hogan, and Axel Polleres. “Certain
Answers for SPARQL?” In: Proceedings of the 10th Alberto Mendelzon International
Workshop on Foundations of Data Management, Panama City, Panama, May 8-10, 2016.
Ed. by Reinhard Pichler and Altigran Soares da Silva. Vol. 1644. CEUR Workshop
Proceedings. CEUR-WS.org, 2016. url: http://ceur-ws.org/Vol-1644/paper13.
pdf.

[35] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge Perez.
“Foundations of Semantic Web databases”. In: J. Comput. Syst. Sci. 77.3 (2011),
pp. 520–541. doi: 10.1016/j.jcss.2010.04.009. url: http://dx.doi.org/
10.1016/j.jcss.2010.04.009.

[36] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Lan-
guage. W3C Recommendation. Mar. 2013.

[37] Patrick Hayes. RDF Semantics. W3C Recommendation. Feb. 2004.

151

https://doi.org/10.1007/11762256_22
https://doi.org/10.1007/11762256%5C_22
https://doi.org/10.1007/11762256%5C_22
https://doi.org/10.1007/978-3-319-11964-9_4
http://dx.doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1145/2697393
https://doi.org/10.1145/2697393
https://doi.org/10.1145/2697393
https://doi.org/10.1145/191839.191908
https://doi.org/10.1145/191839.191908
https://doi.org/10.1145/191839.191908
https://w3c.github.io/sparql-exists/docs/sparql-exists.html
https://w3c.github.io/sparql-exists/docs/sparql-exists.html
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
http://www.vldb.org/pvldb/vol11/p27-guagliardo.pdf
https://doi.org/10.1145/2902251.2902297
http://doi.acm.org/10.1145/2902251.2902297
http://doi.acm.org/10.1145/2902251.2902297
http://ceur-ws.org/Vol-1644/paper13.pdf
http://ceur-ws.org/Vol-1644/paper13.pdf
https://doi.org/10.1016/j.jcss.2010.04.009
http://dx.doi.org/10.1016/j.jcss.2010.04.009
http://dx.doi.org/10.1016/j.jcss.2010.04.009

[38] Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommenda-
tion. Feb. 2014.

[39] Daniel Hernández, Claudio Gutierrez, and Renzo Angles. “The Problem of Corre-
lation and Substitution in SPARQL - Extended Version”. In: CoRR abs/1801.04387
(2018). arXiv: 1801.04387. url: http://arxiv.org/abs/1801.04387.

[40] Daniel Hernández, Claudio Gutiérrez, and Renzo Angles. “Correlation and Substi-
tution in SPARQL”. In: CoRR abs/1606.01441 (2016).

[41] Daniel Hernández, Claudio Gutiérrez, and Aidan Hogan. “Certain Answers in
SPARQL with Blank Nodes”. In: International Semantic Web Conference. Vol. 5318.
Lecture Notes in Computer Science. Springer, 2018, pp. 114–129.

[42] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. “Everything
you always wanted to know about blank nodes”. In: J. Web Sem. 27 (2014), pp. 42–69.
doi: 10.1016/j.websem.2014.06.004. url: http://dx.doi.org/10.1016/j.websem.
2014.06.004.

[43] Tomasz Imielinski and Witold Lipski Jr. “Incomplete Information in Relational
Databases”. In: J. ACM 31.4 (1984), pp. 761–791. doi: 10.1145/1634.1886. url:
http://doi.acm.org/10.1145/1634.1886.

[44] Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. “Query Nesting,
Assignment, and Aggregation in SPARQL 1.1”. In: ACM Trans. Database Syst. 42.3
(2017), 17:1–17:46.

[45] Nadine Lerat and Witold Lipski Jr. “Nonapplicable Nulls”. In: Theor. Comput. Sci.
46.3 (1986), pp. 67–82. doi: 10.1016/0304-3975(86)90022-8. url: https://doi.
org/10.1016/0304-3975(86)90022-8.

[46] Mark Levene and George Loizou. A guided tour of relational databases and beyond.
Springer, 1999.

[47] Leonid Libkin. “Aspects of Partial Information in Databases”. PhD dissertation.
University of Pennsylvania, 1994.

[48] Leonid Libkin. “SQL’s Three-Valued Logic and Certain Answers”. In: International
Conference on Database Theory (ICDT). 2015, pp. 94–109. doi: 10.4230/LIPIcs.ICDT.
2015.94. url: http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94.

[49] Leonid Libkin. “SQL’s Three-Valued Logic and Certain Answers”. In: ACM Trans.
Database Syst. 41.1 (2016), 1:1–1:28. doi: 10.1145/2877206. url: http://doi.acm.
org/10.1145/2877206.

[50] Witold Lipski Jr. “On Relational Algebra with Marked Nulls Preliminary Version”.
In: Principles of Database Systems (PODS). Waterloo, Ontario, Canada: ACM, 1984,
pp. 201–203. isbn: 0-89791-128-8. doi: 10.1145/588011.588040. url: http://doi.
acm.org/10.1145/588011.588040.

[51] John W. Lloyd and Rodney W. Topor. “Making Prolog more Expressive”. In: J. Log.
Program. 1.3 (1984), pp. 225–240.

[52] David Maier. “Null Values Partial Information and Database Semantics”. In: The
Theory of Relational Databases (1983), pp. 371–438.

[53] Alejandro Mallea, Marcelo Arenas, Aidan Hogan, and Axel Polleres. “On Blank
Nodes”. In: The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference,
Bonn, Germany, October 23-27, 2011, Proceedings, Part I. Ed. by Lora Aroyo, Chris Welty,
Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy,
and Eva Blomqvist. Vol. 7031. Lecture Notes in Computer Science. Springer, 2011,

152

https://arxiv.org/abs/1801.04387
http://arxiv.org/abs/1801.04387
https://doi.org/10.1016/j.websem.2014.06.004
http://dx.doi.org/10.1016/j.websem.2014.06.004
http://dx.doi.org/10.1016/j.websem.2014.06.004
https://doi.org/10.1145/1634.1886
http://doi.acm.org/10.1145/1634.1886
https://doi.org/10.1016/0304-3975(86)90022-8
https://doi.org/10.1016/0304-3975(86)90022-8
https://doi.org/10.1016/0304-3975(86)90022-8
https://doi.org/10.4230/LIPIcs.ICDT.2015.94
https://doi.org/10.4230/LIPIcs.ICDT.2015.94
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
https://doi.org/10.1145/2877206
http://doi.acm.org/10.1145/2877206
http://doi.acm.org/10.1145/2877206
https://doi.org/10.1145/588011.588040
http://doi.acm.org/10.1145/588011.588040
http://doi.acm.org/10.1145/588011.588040

pp. 421–437. doi: 10.1007/978-3-642-25073-6_27. url: https://doi.org/10.
1007/978-3-642-25073-6%5C_27.

[54] Libby Miller, Andy Seaborne, and Alberto Reggiori. “Three Implementations of
SquishQL, a Simple RDF Query Language”. In: The Semantic Web - ISWC 2002,
First International Semantic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings.
Ed. by Ian Horrocks and James A. Hendler. Vol. 2342. Lecture Notes in Computer
Science. Springer, 2002, pp. 423–435. doi: 10 . 1007 / 3 - 540 - 48005 - 6 \ _36. url:
https://doi.org/10.1007/3-540-48005-6%5C_36.

[55] Boris Motik, Peter F. Patel-Schneider, and Bĳan Parsia. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition). W3C Recommen-
dation. Dec. 2012.

[56] Ralph R. Swick Ora Lassila. Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation. Feb. 1999.

[57] Peter F. Patel-Schneider and David Martin. “EXISTStential Aspects of SPARQL”. In:
International Semantic Web Conference (Posters & Demos). Vol. 1690. CEUR Workshop
Proceedings. CEUR-WS.org, 2016.

[58] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and complexity
of SPARQL”. In: ACM Trans. Database Syst. 34.3 (2009), 16:1–16:45. doi: 10.1145/
1567274.1567278. url: http://doi.acm.org/10.1145/1567274.1567278.

[59] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. “Semantics and complexity of
SPARQL”. In: ACM Trans. Database Syst. 34.3 (2009), 16:1–16:45.

[60] Axel Polleres. “From SPARQL to rules (and back)”. In: Proceedings of the 16th Inter-
national Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12,
2007. Ed. by Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and
Prashant J. Shenoy. ACM, 2007, pp. 787–796. doi: 10.1145/1242572.1242679. url:
https://doi.org/10.1145/1242572.1242679.

[61] Axel Polleres and Johannes Peter Wallner. “On the relation between SPARQL1.1 and
Answer Set Programming”. In: Journal of Applied Non-Classical Logics 23.1-2 (2013),
pp. 159–212.

[62] Eric Prud’hommeaux and Andy Seaborne. PARQL Query Language for RDF. W3C
Recommendation. Jan. 2008.

[63] Raymond Reiter. “A Sound and Sometimes Complete Query Evaluation Algorithm
for Relational Databases with Null Values”. In: J. ACM 33.2 (Apr. 1986), pp. 349–370.
issn: 0004-5411. doi: 10.1145/5383.5388. url: http://doi.acm.org/10.1145/5383.
5388.

[64] Raymond Reiter. “On Closed World Data Bases”. In: Logic and Data Bases. Advances
in Data Base Theory. New York: Plemum Press, 1977, pp. 55–76.

[65] Raymond Reiter. “Towards a Logical Reconstruction of Relational Database Theory”.
In: On Conceptual Modelling (Intervale). 1982, pp. 191–233.

[66] Simon Schenk. “A SPARQL Semantics Based on Datalog”. In: KI. Vol. 4667. Lecture
Notes in Computer Science. Springer, 2007, pp. 160–174.

[67] Andy Seaborne. Proposal: deep binding injection. 2016. url: https : / / lists . w3 .
org/Archives/Public/public-sparql-exists/2016Sep/0024.html (visited on
09/29/2016).

[68] Yannis Vassiliou. “Null Values in Data Base Management: A Denotational Semantics
Approach”. In: Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, Boston, Massachusetts, USA, May 30 - June 1. Ed. by Philip A.

153

https://doi.org/10.1007/978-3-642-25073-6_27
https://doi.org/10.1007/978-3-642-25073-6%5C_27
https://doi.org/10.1007/978-3-642-25073-6%5C_27
https://doi.org/10.1007/3-540-48005-6_36
https://doi.org/10.1007/3-540-48005-6%5C_36
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
https://doi.org/10.1145/1242572.1242679
https://doi.org/10.1145/1242572.1242679
https://doi.org/10.1145/5383.5388
http://doi.acm.org/10.1145/5383.5388
http://doi.acm.org/10.1145/5383.5388
https://lists.w3.org/Archives/Public/public-sparql-exists/2016Sep/0024.html
https://lists.w3.org/Archives/Public/public-sparql-exists/2016Sep/0024.html

Bernstein. ACM, 1979, pp. 162–169. doi: 10 . 1145 / 582095 . 582123. url: https :
//doi.org/10.1145/582095.582123.

[69] Denny Vrandecic and Markus Krötzsch. “Wikidata: a free collaborative knowledge-
base”. In: Commun. ACM 57.10 (2014), pp. 78–85. doi: 10.1145/2629489. url: http:
//doi.acm.org/10.1145/2629489.

[70] Carlo Zaniolo. “Database Relations with Null Values”. In: Proceedings of the ACM
Symposium on Principles of Database Systems, March 29-31, 1982, Los Angeles, California,
USA. Ed. by Jeffrey D. Ullman and Alfred V. Aho. ACM, 1982, pp. 27–33. doi: 10.
1145/588111.588117. url: https://doi.org/10.1145/588111.588117.

[71] Carlo Zaniolo. “Database Relations with Null Values”. In: J. Comput. Syst. Sci. 28.1
(1984), pp. 142–166. doi: 10.1016/0022-0000(84)90080-1. url: http://dx.doi.
org/10.1016/0022-0000(84)90080-1.

154

https://doi.org/10.1145/582095.582123
https://doi.org/10.1145/582095.582123
https://doi.org/10.1145/582095.582123
https://doi.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489
https://doi.org/10.1145/588111.588117
https://doi.org/10.1145/588111.588117
https://doi.org/10.1145/588111.588117
https://doi.org/10.1016/0022-0000(84)90080-1
http://dx.doi.org/10.1016/0022-0000(84)90080-1
http://dx.doi.org/10.1016/0022-0000(84)90080-1

Appendix A

The information lattice of mappings with
marked nulls

Lattices over incomplete data were developed, among others, by Grahne [28] for incomplete
relations that are described by sets of models and by Zaniolo [71] for relations with nulls
that denote no information about the attributes. In this section we will present a lattice for
mappings over a common domain that admit marked nulls. To the best of our knowledge,
the lattice we will present in this section has not been studied before.

In this appendix we assume familiarity with the Reiter [63] proof-theoretical semantics
formalization of tables with marked nulls. His formalization is equivalent to the model-
theoretical semantics formalization we used to describe tables with marked nulls in this
thesis. We use his formalization in this section because it simplifies some proofs.

Definition A.1 (Constants and marked nulls). In this chapter we assume two disjoint sets
C and B, called the set of constants and the set of marked nulls. In terms of the RDF sets (see
Definition 2.1), C � I ∪ L and B is the set of blank nodes.

Definition A.2 (Value replacements). Given a function h : C∪ B→ C∪ B, and a mapping µ,
we write h(µ) to denote the mapping where µ(?x) is replaced by h(µ(?x)) for each attribute ?x of µ.

Definition A.3 (Informativeness of a mapping). Let µ1 and µ2 be two mappings where
dom(µ1) � dom(µ2). Then, µ1 is said to be less or equally informative than µ2, denoted µ1 ≤ µ2,
if and only if there exists a function h : C ∪ B → C ∪ B such that h(c) � c for every constant
c ∈ C, and h(µ1) � µ2. Given two mappings µ1 and µ2, we say that they are equivalent, denoted
µ1 � µ2, if and only if µ1 ≤ µ2 and µ2 ≤ µ1. We write [µ]� to denote the set of mappings
that are equivalent to µ; this set is also called the equivalence class of µ over �. We will say that
[µ1]� ≤ [µ2]� if the elements of [µ1]� are equally or less informative than the elements of [µ2]�.

Definition A.4 (Mappings below a mapping). Given a set of attributes X̄, we write (C ∪ B)X̄
to denote the set of mappings µ where dom(µ) � X̄ and µ(X) ∈ C ∪ B for each attribute X ∈ X̄.
Given a mapping µ, we write (C ∪ B)µ to denote the set of mappings s ∈ (C ∪ B)dom(µ) where
s ≤ µ.

Observe that ((C ∪ B)X̄ , ≤) is not a partial order because the antisymmetry does not hold.
Indeed, let (⊥1) and (⊥2) be two different mappings. Then, (⊥1) ≤ (⊥2), (⊥2) ≤ (⊥1)

155

and (⊥1) , (⊥2). To construct a lattice we need a partial order. It is well known that
a partial order can be build using classes of equivalence over elements of a preorder.
Throughout this thesis, the order of elements is extended in the obvious way for the
classes of equivalence, that is, given two elements a and b in a preorder (A, ≤) then, for
the elements [a]� and [b]� in A/�, it holds that [a]� ≤ [b]� if and only if a ≤ b. We use
this technique in the following theorem.

Theorem A.1. Given a set of attributes X̄, the pair ((C ∪ B)X̄/�, ≤) is a partial order.

Proof. To see that ((C ∪ B)X̄/�, ≤) is a partial order, we have to prove the reflexibility,
antisymmetry, and transitivity of ≤. The relation ≤ is reflexible because Id(µ) � µ for the
the identity function Id over C∪B. The relation ≤ is antisymmetric because if [µ1]� ≤ [µ2]�
and [µ2]� ≤ [µ1]� then µ1 � µ2, so [µ1]� � [µ2]�. The relation ≤ is transitive because if
µ1 ≤ µ2 and µ2 ≤ µ3 then there exists functions h1 : C∪B→ C∪B and h2 : C∪B→ C∪B
such that h1(µ1) � µ2, h2(µ2) � µ3; thus (h2 ◦ h1)(µ1) � µ3, so µ1 ≤ µ3.

Theorem A.2. Let X̄ be a set of attributes, and µ be a complete mapping (i.e., a mapping without
null values) over the schema X̄. Then, the pair ((C ∪ B)µ/�, ≤) is a lattice.

Proof. To show that the partial order ((C ∪ B)µ/�, ≤) is a lattice we have to show that
there exists an algebra ((C ∪ B)µ/�,∧,∨)where for any [µ1]� , [µ2]� ∈ ((C ∪ B)µ/�, ≤) the
following properties hold:

1. [µ1]� ∨ [µ2]�—the join—is the minimal element in ((C∪B)µ/�, ≤) such that [µ1]� ≤
[µ1]� ∨ [µ2]� and [µ2]� ≤ [µ1]� ∨ [µ2]�; and

2. [µ1]�∧[µ2]�—the meet—is the maximal element in ((C∪B)µ/�, ≤) such that [µ1]�∧
[µ2]� ≤ [µ1]� and [µ1]� ∧ [µ2]� ≤ [µ2]�.

The join: Given two mappings µ1 and µ2 in (C ∪ B)µ, let µ1 ∨ µ2 be the mapping defined
by the following procedure:

1. Let µ0 be a mapping whose domain is X̄ and that ranges over sets of constants or
marked null values, whose initial value is defined as follows:

µ0(X) � {µ1(X), µ2(X)}.

Intuitively, each set in the range of µ0 represents a set of values in C ∪ B that are
equal if µ1 and µ2 represent the same mapping.

2. Apply the following update until a fixed point is reached: If there are two attributes
X and Y in X̄ where µk(X) ∩ µk(Y) , ∅ then let µk+1 be the mapping that agrees
with µk except in attributes X and Y where µk+1(X) � µk+1(Y) � µk(X) ∪ µk(X).
Intuitively, this update applies the transitivity of the equality relation assumed in
the elements of sets µk(X) and µk(Y).

3. After reaching a fixed point µ, the join between mappings µ1 and µ2 is determined
for each attribute X ∈ X̄ follows:

156

(a) If µ(X) is a set S having no constants then (µ1 ∨ µ2)(X) is a fresh marked null
⊥S, and consistently (µ1 ∨ µ2)(Y) � ⊥S for every other attribute Y ∈ X̄ where
µ(Y) � S.

(b) If µ(X) is a set S having a constant c, then (µ1 ∨ µ2)(X) � c.

Also, let Eµ(µ1, µ2), E1(µ1, µ2), E2(µ1, µ2), and E12(µ1, µ2)denote the sets of equalities
defined as follows:

Eµ � {µ(X) � (µ1 ∨ µ2)(X) | X ∈ X̄},
E1 � {µ1(X) � (µ1 ∨ µ2)(X) | X ∈ X̄},
E2 � {µ2(X) � (µ1 ∨ µ2)(X) | X ∈ X̄},

E12 � {µ1(X) � µ2(X) | X ∈ X̄}.

Then, given two elements [µ1]� and [µ2]� in (C ∪ B)µ/�, the join of them, denoted
[µ1]� ∨ [µ2]�, is defined as follows:

[µ1]� ∨ [µ2]� � [µ1 ∨ µ2]� .

Let Σµ, Σ1, Σ2 and Σ12 be the respective Reither’s theories of the relations containing only
mapping µ, mapping µ1, mapping µ2 and mapping µ1 ≤ µ2. Thus, the partial order ≤
corresponds to the entailment over theories.

By construction, it holds that:

E1 ∧ Σ12 |� Σ1, (A.1)
E2 ∧ Σ12 |� Σ2, (A.2)
Eµ ∧ Σµ |� Σ12. (A.3)

The statements in (A.1), (A.1), and (A.1) imply respectively that µ1 ≤ µ1 ∨ µ2, µ1 ≤ µ1 ∨ µ2
and µ1 ∨ µ2 ≤ µ. Thus, the join is more informative than the elements joined and the join
operation is closed on (C ∪ B)µ.

Since the theories Σ1 and Σ2 implies that there exists a unique mapping of schema X̄, the
following statement holds:

Σ1 ∧ Σ2 |� E12. (A.4)

Then, it holds that:

E1 ∧ E2 ∧ Σ1 ∧ Σ2 |� Σ12. (A.5)

To see that µ1 ∨ µ2 is the minimum mapping such that µ1 ≤ µ1 ∨ µ2 and µ2 ≤ µ1 ∨ µ2,
assume that there is another mapping µ3 ∈ (C ∪ B)µ where µ1 ≤ µ3 and µ2 ≤ µ3. Then, it
holds that:

E13 ∧ Σ3 |� Σ1, (A.6)
E23 ∧ Σ3 |� Σ2, (A.7)

157

where E13 and E23 are the sets of equalities defined as follows:

E13 � {µ1(X) � (µ1 ∨ µ2)(X) | X ∈ X̄},
E23 � {µ2(X) � (µ1 ∨ µ2)(X) | X ∈ X̄}.

Then, by applying the conjunction among both sides of the statements in (A.6) and (A.7),
it holds that:

E13 ∧ E23 ∧ Σ3 |� Σ1 ∧ Σ2. (A.8)

By introducing the formulas E1 ∧ E2 in both sides in (A.8), it holds that:

E1 ∧ E2 ∧ E13 ∧ E23 ∧ Σ3 |� E1 ∧ E2 ∧ Σ1 ∧ Σ2. (A.9)

By the statements in (A.5) and (A.9) it holds that:

E1 ∧ E2 ∧ E13 ∧ E23 ∧ Σ3 |� E12 (A.10)

The statement in (A.10) implies that µ1 ∨ µ2 ≤ µ3. Hence, µ1 ∨ µ2 is the minimal mapping
that is more informative than µ1 and µ2.

The meet: Let u : (C ∪ B)2→ C be the function defined as follows:

u(x , y) �
{

a constant c if x � y � c ,
a fresh null otherwise.

Let µ1 and µ2 be two mappings in (C ∪ B)µ. Then, µ1 ∧ µ2 � u(µ1(X), µ2(X)) for each
attribute X in the schema of mappings µ1 and µ2, and [µ1]� ∧ [µ2]� be [µ1 ∧ µ2]�.

Let µ1, µ2, and µ3 be three mappings in (C ∪ B)µ where µ3 ≤ µ1 and µ3 ≤ µ2. Let h1 and
h2 be the functions whose domain are the values in the mapping µ1 ∧ µ2 and for every
attribute X ∈ X̄ the following conditions hold:

h1(z) � x if µ1(X) � x and (µ1 ∧ µ2)(X) � z ,
h2(z) � y if µ2(X) � y and (µ1 ∧ µ2)(X) � z.

By construction, µ1 is the result of replacing each value z in the mapping µ1 ∧ µ2 by h1(z).
Thus, µ1 ∧ µ2 ≤ µ1. Indeed, if µ1(X) is a constant c then (µ1 ∧ µ2)(X) is the constant c or
a null value. If µ1(X) is a null value, then (µ1 ∧ µ2)(X) is a null value. In both cases µ1
is more informative than µ1 ∧ µ2. The same argument applies to show that µ1 ∧ µ2 ≤ µ2.
Furthermore, since µ1 ∧ µ2 ≤ µ1, by transitivity, it holds that µ1 ∧ µ2 ≤ µ. Hence, ∧ is
closed in (C ∪ B)µ.

Let h3 be the function whose domain are the values in mapping µ3 and holds the following
condition for each attribute X ∈ X̄:

h3(z) � u(x , y) if µ3(X) � z , µ1(X) � x , and µ2(X) � y.

Then, by construction, h3(µ3) � µ1 ∧ µ2. To see that µ3 ≤ µ1 ∧ µ2 we have to prove that
µ3(X) is less or equally informative than (µ1 ∧ µ2)(X), for each attribute X ∈ X̄. If µ3(X)

158

(⊥1,⊥2,⊥3)

(a ,⊥1,⊥2) (⊥1, a ,⊥2) (⊥1,⊥1,⊥2) (⊥1,⊥2, b)

(a , a ,⊥1) (a ,⊥1, b) (⊥1, a , b) (⊥1,⊥1, b)

(a , a , b)

Figure A.1: Lattice of (C+

(a ,a ,b)/�, ≤)

is a constant c, then µ1(X) � c and µ2(X) � c, because µ3 ≤ µ1 and µ3 ≤ µ2. Then,
by definition, it holds that (µ1 ∧ µ2)(X) � c. Thus, µ3(X) is equally informative than
(µ1 ∧ µ2)(X). Otherwise, if µ3(X) is a null value, then µ3(X) is less or equally informative
than (µ1 ∧ µ2)(X). Thus, µ3 ≤ µ1 ∧ µ2. Hence, µ1 ∧ µ2 is the most informative mapping
that is subsumed by µ1 and µ2.

By simple inspection, the operator ∧ is idempotent, commutative, and associative.

Observe that, given a mapping µ without nulls, by construction the top of the lattice
((C ∪ B)µ/�, ≤) is the class [µ]�. It is not difficult to see that the bottom is the mapping
s where s(X) is a different null value for each attribute X ∈ X̄. Figure A.1 depicts a the
lattice associated to the mapping (a , a , b).

159

160

Appendix B

SQL and relational algebra

In the previous section we showed several operators that generalize the operators of
relational algebra. In this section we will show how these operators are related to SQL.
That is, if SQL queries can be described in terms of these operators. Then, we will show
the well-known fact that SQL does not ensure certain-answers and use the relation of SQL
and the generalized algebraic operators to provide an intuition on what is happening with
SQL.

Since SQL uses unmarked nulls, we have to consider the generalized algebra for unknown
values. Generalized operators section were defined in the previous section for the case
of databases with marked nulls. It is not difficult to adapt these results to the case of
unmarked nulls. Moreover, the selection operator for unmarked null values was defined
for both cases in order to provide the intuition of how the corresponding operators for
unmarked nulls may be defined.

Throughout this section we present several correspondences between the generalized
relational algebra and SQL. These correspondences are justified by experiments. We run
queries in three open source engines, namely SQLite3, PostgreSQL and MariaDB, and
then compare the results with the returned by the generalized algebra. Of course, this
method does not ensure that both query languages are equivalent, but it is useful to
explore correspondences when the specification of a query language is not clear or too
complex for the study. According Guagliardo and Libkin [32], this is the case of SQL. To
validate the formal semantics for SQL that they proposed, they generate random queries
and compare the result of the queries against two engines, namely PostgreSQL and Oracle.
In this section we follow the experimental strategy of Guagliardo and Libking to find an
equivalence between the generalized relational algebra and SQL. However, we do not use
the same randomly generalized queries that they use. Instead, we use simple generic
queries manually created.

A natural extension of the work presented in this section is repeating the experimental
validation by Guagliardo and Libkin [32], and proving theoretically the equivalence of the
generalized relational algebra with the formal semantics they proposed. These extensions
are left out the scope of this thesis since we are focused on SPARQL.

161

B.1 SQL and the generalized PRU algebra
The generalized operators projection, renaming and union correspond exactly to SQL.
Table B.1 shows the correspondence between these generalized algebraic operators and
SQL.

Algebra SQL
πX1 ,...,Xn (R) SELECT DISTINCT X1, . . . ,Xn FROM R
ρX/Y(R) SELECT X AS Y FROM R
R ∪ S SELECT * FROM R UNION SELECT * FROM S

Table B.1: Correspondence between PRU algebra and SQL.

To check the correspondences presented in Table B.1 we realized a simple experiment
where table R is instantiated as follows:

R �

A B

1 2
⊥ 3
4 ⊥
⊥ ⊥

, S �

A B

1 2
3 4
⊥ ⊥

 ,
and the three queries in Table B.1 are instantiated as is presented in Table B.2. These
three queries were checked in the three aforementioned engines, and all results agree with
correspondences presented in Table B.2.

Algebra SQL
πA(R) SELECT DISTINCT A FROM R
ρA/C(R) SELECT A AS C FROM R
R ∪ S SELECT * FROM R UNION SELECT * FROM S

Table B.2: Queries to check the correspondence between PRU algebra and SQL.

The keyword DISTINCT is added to the SQL query in the first row of Table B.1 in order
to avoid repeated elements. Recall that the generalized algebra assumes that tables are
sets of tuples, while SQL tables admit the repetition of tuples. Regarding to repeated
tuples and null values, it is interesting that in this case unmarked nulls is not the particular
case of marked nulls when all marked nulls are different, as occur when considering the
model-based database semantics of unknown values. In fact, if we replace the unmarked
null by marked nulls, the result of query πA(R) has the tuples {(1), (⊥1), (4), (⊥2)}, while
the result of this query with unmarked nulls is {(1), (⊥), (4)}.

Observe that the SQL UNION in the last query is the set union. In SQL the union that
admit repeated elements is denoted ALL UNION. Likewise the case of the projection, in
the set union unmarked nulls are not a particular case of marked nulls.

162

B.2 SQL and the generalized selection
Consider the following SQL query

SELECT A, B

FROM R

WHERE R.A = R.B

and let R be the following table:

A B

a a
a b
a ⊥
⊥ b
⊥ ⊥

Then the output of this SQL query is the following table:[

A B

a a

]
If table R has not had null values, then this SQL query would have been equivalent
to the relational algebra query σA�B(R). However, in presence of nulls this query has
to be evaluated with a generalized operator. The results of this query are equivalent
to the generalized algebraic query σunder A�B(R). Thus, this experiment validates the
correspondence presented in Table B.3. Intuitively, SQL tries to return only certain answers
by passing only tuples where the condition is evaluated as true.

Algebra SQL
σunderφ(R) SELECT * FROM R WHERE φ

Table B.3: Correspondence between selection formulas in the generalized algebra and in
SQL.

B.3 SQL and the generalized join
Consider the following SQL query

SELECT A, B

FROM R NATURAL JOIN S

and let R and S be the following tables:

R �

A

a
b
⊥

 S �

A B

a c
⊥ d

163

Then, the output of this query is the following table:[
A B

a b

]
If tables R and S have not had null values, then this SQL query would have been equivalent
to the relational algebra query R 1 S. However, in presence of nulls this query has to be
evaluated with a generalized operator. The result of this query is equivalent to the one
obtained when evaluating the query R 1under S. Thus, this experiment validates the
correspondence presented in Table B.4. Intuitively, SQL assumes that cells where there is
a null value are not joinable.

Algebra SQL
R 1under S SELECT * FROM R NATURAL JOIN S

Table B.4: Correspondence between the join in the generalized algebra and in SQL.

B.4 SQL and the generalized difference
Consider the following SQL query

SELECT A

FROM R

WHERE NOT EXISTS (SELECT S.A

FROM S

WHERE S.A = R.A)

where R and S are the following tables:

R �

A

a
b
⊥

 S �

A

b
⊥

Then, the output of this SQL query is the following table:

R �

A

a
⊥

If tables R and S have not had null values, then this SQL query would have been equivalent
to the relational algebra query R − S. However, in presence of nulls this query has to
be evaluated with a generalized operator. The result of this query is equivalent to the
one obtained when evaluating the query R −over S. Thus, this experiment validates the
correspondence presented in Table B.5. Intuitively, SQL discards tuples of R that are surely
discarded.

164

Algebra SQL
R −over S SELECT * FROM R

WHERE NOT EXISTS (
SELECT * FROM S
WHERE R.X1 = S.X1 AND ... AND Xn = S.Xn)

Table B.5: Correspondence between the difference in the generalized algebra and in SQL.

Another form of difference in SQL is the one provided by the operator EXCEPT. For
instance, consider the following SQL query:

SELECT A FROM R

EXCEPT

SELECT A FROM S

If R and S are the same relations as the previous query, then result of this second SQL query
is {(a)}. EXCEPTS corresponds to the set difference generalized with null values. This re-
sult does not correspond to the under-approximated difference nor the over-approximated
difference.

165

	Introduction
	Preliminary notions
	Problems, hypothesis and goals
	Summary of contributions of this thesis
	Structure of this thesis.

	I Preliminaries
	RDF and SPARQL
	The RDF data model
	The SPARQL query language

	II Incomplete data in SPARQL
	Blank nodes as unknown values
	Naive semantics of RDF
	RDF graphs as v-tables
	The V-tables relational algebra
	The relational algebra of SPARQL

	Approximating certain answers in SPARQL
	Certain answers with null values
	Under- and over-approximations
	Approximating relational algebra queries
	SPARQL rewriting strategies

	Evaluation
	Evaluation Setting
	TPC–H experiments
	Wikidata survey

	Conclusions

	Unbound values as incomplete data
	A brief review of the landscape of null values
	Where do unbound values came from?
	Null values in SQL and SPARQL
	The generalized algebra
	Mapping SQL and SPARQL operators to the generalized algebra

	Conclusions

	III On the semantics of EXISTS
	The notion of substitution under incomplete data
	The problem of substitution in SPARQL
	An overview of the problems of substitution in SPARQL
	Existing proposals for the semantics of EXISTS
	How the existing proposals solve the substituion issues

	Environment-binding as a substitution proposal
	Free, bound, and range restricted variables
	Substitution in relational calculus
	Substitution in SQL
	Substitution in SPARQL

	Conclusions

	Expressing SPARQL in Datalog
	An overview of nr-Datalog-neg
	Translation of the safe SPARQL-0 fragment
	Fixing the translation of equality atoms in filter-conditions
	Fixing the translation of negation in filter-conditions
	Translation of the SPARQL-1 fragment
	SELECTION queries in nr-Datalog-neg
	MINUS queries in nr-Datalog-neg
	VALUES queries to nr-Datalog-neg
	BIND queries in nr-Datalog-neg
	The translation of SPARQL-1 fragment to nr-Datalog-neg

	Conclusion

	Nested Datalog
	Syntax and Semantics of Nested Datalog
	Query atoms and external atoms
	The expressive power of Nested nr-Datalog-neg
	Conclusion

	On the Nested Datalog semantics of the EXISTS clause
	Two forms of substitution of SPARQL variables
	Substitution of parameters
	Substitution of goal variables

	Nested Datalog with nulls
	Conclusions

	IV Conclusions
	Conclusions and future work
	Bibliography
	Appendix The information lattice of mappings with marked nulls
	Appendix SQL and relational algebra
	SQL and the generalized PRU algebra
	SQL and the generalized selection
	SQL and the generalized join
	SQL and the generalized difference

