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BAYESIAN RECURRENT NEURAL NETWORKS FOR DIAGNOSIS OF
FAULT MODES AND PROGNOSIS OF REMAINING USEFUL LIFE

Deep learning has emerged as a promising method to handle big amounts of machinery
data and use it to determine the remaining useful life or the health state in the context of
prognostics and health management. However, most recent studies represent the results of
neural networks in form of a single point, and thus cannot properly represent the uncertain-
ties in predictions. This practice usually provides overly confident predictions and misguide
the decision-maker that might cause severe consequences in safety-critical situations.

This work proposes to integrate variational inference and recurrent neural networks to
quantify and propagate uncertainty in fault diagnosis and prognosis models. This exploits
the recent progress in weight perturbations to represent the weights of a neural network in
form of a distribution and introduce a regularization effect on the network. The proposed
approach is validated in a simulated dataset (CMAPSS) to check its performance against
different models, finally, the proposed approach is tested on four datasets obtained experi-
mentally to determine its ability to diagnose fault modes and forecast the remaining useful
life time in different mechanical equipment.

The results obtained show that the proposed approach is capable of carrying out diag-
nostic and prognostic tasks, presenting outstanding results, in addition to propagating and
quantifying uncertainty.
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El aprendizaje profundo se ha convertido en un método prometedor para manejar gran-
des cantidades de datos de maquinaria y usarlo para determinar la vida útil restante o el
estado de salud en el contexto de pronósticos y diagnóstico de fallas. Sin embargo, los es-
tudios más recientes representan los resultados de las redes neuronales en forma de un solo
punto, y por lo tanto no pueden representar adecuadamente la incertidumbre. Esta práctica
generalmente proporciona predicciones demasiado confiables y desorienta al momento de to-
mar decisiones, lo que podría causar graves consecuencias en situaciones críticas de seguridad.

Este trabajo propone integrar inferencia variacional y redes neuronales recurrentes pa-
ra cuantificar y propagar la incertidumbre en los modelos de diagnóstico y pronóstico de
fallas. Para esto, se utilizan los recientes progresos en el area de weight perturbations para
representar los pesos de una red neuronal en forma de distribución e introducir un efecto de
regularización en la red. El enfoque propuesto se valida en un conjunto de datos simulados
(CMAPSS) para verificar su rendimiento con respecto a diferentes modelos, finalmente, el
enfoque propuesto se prueba en cuatro conjuntos de datos obtenidos experimentalmente para
determinar su capacidad de diagnosticar modos de falla y pronosticar el tiempo de vida útil
restante en diferentes equipos mecánicos.

Los resultados obtenidos muestran que el enfoque propuesto es capaz de llevar a cabo
tareas de diagnóstico y pronóstico, presentando resultados sobresalientes, además de propagar
y cuantificar la incertidumbre.
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Chapter 1

Introduction

The modern engineered systems are generally configured by individual components, hu-
mans and their interactions. This characterization exponentially increases the complexity of
systems, in turn, boosting the possibility of system failure and therefore high system risk.
Defining and understanding the behavior and interactions among systems becomes challen-
ging and even impossible. With the rapid development of the Internet of Things (IoT), these
modern systems tend to be increasingly instrumented with network-connected devices and
massive quantities of multidimensional data is constantly generated. These big machinery
data has been recognized as the most valuable resource, based on which machine learning
techniques can be utilized to discover the hidden features to gain better insights of the system
performance [23].

In the past decade, prognostics and health management (PHM) has attracted increasing
attention from both academia and industry. PHM uses sensor technology and data analy-
tics to detect the degradation of engineered systems, diagnose the type of faults, predict the
remaining useful lifetime (RUL) and proactively manage failures. Typically, the raw data is
first processed to enhance the data quality, then identify the fault relevant features and use
machine learning techniques to formulate a predictive model for diagnostic and prognostic
purposes. Most recent PHM studies focus on the critical machinery components including
bearings [37, 43], gears [26, 38] and batteries [16, 29]. However, these studies are mainly
developed based on conventional machine learning with shallow configuration and thus, large
amounts of time and expertise resources to manually design features.

More recently, deep learning has emerged as a promising solution that allows to handle big
machinery data and automatic learning from data representing features without deep know-
ledge about it. The key idea of deep learning is to use multiple layers to progressively learn
a more abstract and complex representation of the raw input, and ultimately formulate an
end-to-end predictive framework. Typically, there are several types of deep learning models
including Auto-encoder, Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), Deep Belief Network and Deep Boltzmann Machines. Variants of these models are
also available and are still under active development such as Variational Auto-encoder, Gene-
rative adversarial networks and long short-term memory (LSTM). In the context of machinery
health prognosis, large amounts of research efforts have been conducted to explore the ad-
vantages against conventional machine learning techniques [17]. Verstraete et al. developed
an unsupervised and a semi-supervised deep learning generative adversarial network-based
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methodology for fault diagnostics of rolling element bearings [41]. Zhang et al. presented a
LSTM RNN model to predict the remaining useful life of lithium-ion batteries [48]. Correa-
Jullian et al. [7] demonstrated that the deep learning models for solar thermal systems can
outperform predictors and other regression models such as Bayesian Ridge, Gaussian Process
and Linear Regression. Two excellent review articles on the applications of deep learning to
handle big machinery data are developed by Zhao and Jia et al. [49, 19].

It should be noticed that the deep learning models developed in the mentioned studies
are unable to determine the uncertainty present in the operational data of the system and in
the model. Specifically, the weights of the deep learning models are represented in form of a
single point estimation and thus, cannot properly represent their uncertainties in predictions.
This practice usually provides overly confident predictions and then misguide the decision-
maker that might cause severe consequences in safety-critical industries. Although Peng et
al. [33] proposed a Bayesian deep learning approach to address uncertainty through health
prognosis, their Bayesian approximation is implemented through Monte Carlo (MC) Dropout
that unlike the regular dropout, MC Dropout is applied at both training and test. Then, the
addition of dropout between every layer can turn some portion of neurons in each layer to
0, returning the output without some extracted features by the network. This ultimately
generates random predictions as samples from a probability distribution which is treated as
variational inference [14]. However, the performance of MC Dropout has been criticized by
Osband et al. [30, 32], and counterexamples were presented to demonstrate the limitations
of MC Dropout to produce satisfactory results.

Nowadays, Bayesian recurrent neural networks has been studied and developed in diffe-
rent ways: [28] using a Markov Chain Monte Carlo variation (PX-MCMC) or [13] using Bayes
By Backprop with reparametrization trick to estimate the uncertainty of the model. As is
shown in Wen et al. [44], the flipout method outperforms previous methods using Bayesian
neural networks, because of this, in this work, an implementation of the most simple recurrent
neural network in their Bayesian form using flipout approach is developed and validated in
different datasets.

In particular, the weights of a Bayesian neural network are represented in the form of a
distribution rather than a single point estimation. As such, the model uncertainties can be
considered through the Bayesian posterior inference over the weights of the Bayesian recu-
rrent neural network. Meanwhile, a regularization effect is introduced by specifying a prior
distribution for the weights of a neural network. The Bayesian approximation is conducted
through a pure variational inference with Bayes by backprop. The proposed approach is va-
lidated using an open-access turbofan engine dataset [36] that is the most usual benchmark
for RUL prognosis. After the models are validated in CMAPSS dataset, they are tested in
four datasets more, to prove their efficiency in real life datasets.

The remainder of this paper is organized as follows. Chapter 2 provides a brief summary
of RNNs and their well-known architectures VRNN and JANET. Also, the background of
Variational inference, Bayes by Backprop and weight perturbation methods. Chapter 4 pre-
sents the proposed Bayesian RNN approach including the equations that characterizes the
Bayesian algorithm, a flowchart and workflow of this work approach and the architectures
that are compared with other models. Section 5 briefly summarizes all the datasets, all their
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preproccesing and discusses the results using different models. Finally, chapter 6 provides
conclusions and recommendations.

1.1. Hypotheses
The first hypotheses of this thesis is that Bayesian recurrent neural networks are compe-

tent in using the temporality of the data to estimate the remaining useful life of a mechanic
system or its health state.

The second hypotheses is that Bayesian recurrent neural networks are capable of estima-
ting and characterizing the prediction uncertainty in terms of a probability distribution.

The last hypothesis is that obtaining the uncertainty of the predictions, the results ob-
tained are better than in frequentist neural networks in terms of RMSE for prognosis and
accuracy for diagnosis.

1.2. General Objectives
Develop and implement two models of recurrent Bayesian neural networks and show their

effectiveness in the context of predictive maintenance, specifically in the tasks of predicting
remaining useful life and diagnosing health status.

1.3. Specific Objectives
1. Show a detailed mathematical development and discussion of the proposed Bayesian

Recurrent Neural.

2. Examine and implement the most used architectures of frequentist recurrent neural
networks in their Bayesian formulation.

3. Test the model developed in different datasets to demonstrate its generalization skills
in diagnosing failure modes and prognosis of RUL.

1.4. Resources Available for this Thesis
For the computational experiments required for the realization of this work, the SRMI

Lab of University of Chile facilitated the following hardware resources:

Desktop computer with processor Intel(R) Core(TM) i7-8700 CPU @ 3.70 GHz, Win-
dows 10 Pro as operative system, 32 GB of DDR4 RAM and a GPU Nvidia Titan
Xp.

The software resources were open sources libraries which include:

Python 3.6 programming language.
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Tensorflow 1.13

Tensorflow probability

Pandas, Numpy, Seaborn, Matplotlib, SKlearn were used to manage the data.
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Chapter 2

Theoretical Background

The following chapter shows the background necessary to understand the model developed
in this work. In the first instance, the context within which the project is developed is revealed,
this is preventive health management. Then, the relevant scientific areas for development are
presented, which are machine learning and a particular subset of it: deep learning in which
the most common algorithms for solving classification and regression problems are illustrated,
and finally, the variational inference method is introduced to solve problems that involve the
determination of probability distributions.

2.1. System-Level PHM definition
Mechanical systems such as pumps, turbines, bearings, among others, provide services

that are essential for nowdays societies. These systems are completely monitored by different
types of sensors and the information obtained from these sensors is used to predict the time
of failure of the equipment or their state of health. PHM is the study of advanced techniques
for the analysis of this data and through different techniques it will be able to automati-
cally determine the condition of some equipment[9], however, the commonly used methods
are not capable of delivering completely robust results, this means, they cannot provide a
measurement of the uncertainty present in them, so the interpretation of the results is limited.

To tackle the aforementioned challenge. it is imperative to use models able to measure the
uncertainty present in themselves, this allows decisions to be made with more information
on the real state of some equipment and thus to carry out preventive measures with greater
reliability.

2.2. Machine Learning
Machine learning is a method of data analysis based on the idea that systems are capable

of learning from data to recognize patterns with a high degree of automation. The type
of problems that can be solved with machine learning techniques can be divided in four
categories: classification, regression, clustering and anomaly detection[3]. In the PHM context,
the most typically requested tasks are those of classification and regression. Classification
tasks in this context are mainly based on the identification of the state of operation of
various mechanical systems or the detection of anomalies in these, while regression tasks are
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commonly used in the context of determining the remaining useful life of some equipment
or to predict any index related to the useful life of this. The regression and classification
problems are presented below.

2.2.1. Classification and Regression Problems
The objective in the classification tasks is to teach some algorithm to separate different

input values into different categories, that is to say, the problem is to relate the input data
x in the different categories C, for this, the algorithm used must be able to extract the most
significant characteristics from the data and use them for their categorization. This thesis
focuses on categorizing temporary data within a certain state of health corresponding to the
mechanical equipment.

Unlike classification problems, regression problems focus on predicting a value that, in
the context of this study, is capable of determining the health status of a team. Basically, the
main task of a regression algorithm is to find the function y = f(x), where y is the indicator
of the health status of the equipment and f is the function that the model must approxima-
te, commonly this type of problem in the context of PHM is more complex than the type
of classification problems, this is because there is not always a direct relationship between
the failure time of an equipment with its operational state, which increases the complexity
of this type of problem.

Machine Learning problems can also be divided based on the availability of data in two
distinct categories: supervised learning and unsupervised learning [15]. This work is focused
in supervised learning that is explained below.

2.2.2. Supervised Learning
Supervised learning algorithms build a mathematical model of a set of data that contains

both the inputs and the desired outputs[35].This means that the supervised models are de-
signed to understand the characteristics necessaries to generate a mapping between x and y.
Typically, regression and classification problems are also supervised problems.

In PHM, most problems involve supervised learning, since the operating status of a me-
chanical equipment is generally known while it is monitored.

2.3. Deep Learning
Deep learning is a class of machine learning algorithms [10] that uses multiple layers to

extract higher level features from the input data. In this way, it is possible to get more in-
formation of the same data. Neural networks purpose is to approximate a function based
in large amount of data, these types of models are composed by layers or cleverly ordered
parameters trained using a technique based on gradient descent called automatic differen-
tiation [22]. There are a lot of tasks neural networks can easily perform such as regression,
classification and data reconstruction.
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This section reviews three types of neural networks architecture that are used in this
thesis: artificial neural networks (ANN), convolutional neural networks (CNN) and recurrent
neural networks (RNN).

2.3.1. Artificial Neural Networks
Artificial Neural Networks (ANN), are the basis blocks of the deep learning models. They

consist of sets of neurons in multiple hidden layers that operate the input data of each one
of them. This models ends with the output layer that predicts the target of the model. A
simple scheme of a ANN is presented in Figure 2.1

Input Layer Hidden Layers Output Layer

Figure 2.1: ANN scheme.

The ANN’s apply a linear operation followed by a nonlinear function σ known as activation
function which is presented in equation 2.1.

~y = σ(W~x+~b) (2.1)

Where matrix W and vector ~b are parameters known as weights and biases respectively,
those are parameters that are trained using the input data of the model. Commonly, the deep
learning architectures stack large amount of layers with the aim of extract deeper features
that can be useful to complete a different task.

2.3.2. Convolutional Neural Networks
Convolutional Neural Networks (CNN) are an ANN-based model that uses a receptive

field named kernel K to extract patterns from the input data through multiple stacked con-
volutional layers, each neuron in the convolutional layers is connected only to neurons located
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within the kernel in the previous layer.

To do the convolution operation (?) is used within a matrix of weightsWk (that represents
the kernel K) and the input data X ∈ RIxJ from an arbitrary layer as shown in equation 2.2.

y(i,j) = (Wk ? W ) =
w∑
a=0

h∑
b=0

Wk(a,b) ·Xi+a,j+b (2.2)

where y(i,j) corresponds to the output of the convolution of the kernel K, also named
feature map, ww and h are the width and height of K respectively and (i, j) corresponds
to and specific point in X. With this, the convolutional layers are able to generate multiple
feature maps to interpret the information of the input data.

Finally using equation 2.2, the output of a convolutional layer can be written as is shown
in equation 2.3.

~y = σ(Wk ? X +~b) (2.3)
An schematic view of a common CNN is presented in Figure 2.2. It can be seen that the

output of the last convolutional layer is flattened to be used as input of the ANN and perform
the desired task, in this case, regression.

Fl
at
te
n

ANNConvolutional LayersInput Layer

Figure 2.2: CNN scheme.

Convolutional neural networks are widely used because of their capacity to generalize and
extract information of the input dataset, in fact, the CNN’s outperform common ANN’s in ex-
periments of pattern recognition and automatic feature extraction, therefore, these networks
are widely used in PHM[21].

2.3.3. Recurrent Neural Networks
Recurrent neural networks(RNN) are artificial neural networks capable of operating time

series, that is to say, they can deal with data in the form x = ~x1, . . . , ~xt [15], this type of data
is quite common in the context of PHM, since the monitoring of most mechanical equipment
is done using temporary sensors such as accelerometers, speedometers, tachometers, etc. All
recurrent neural networks are made up of basic units known as cells, which can be presented
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as single units or as a group. For these architectures it is necessary to take advantage of one
of the first ideas found in machine models learning and statistics from the 1980s: sharing
parameters through the different parts of the same model, in this case, the input data passes
through the model in a sequential way so that a single output data is obtained for each
time-step, this output data is known as hidden state. This hidden state also serves as an
extra input for the next time-step, alongside the actual input for that time-step, so the cell
has information about the last result predicted and the data of the current time-step. With
this information, the cell understands the temporal behavior of the data, so it can produce
an output to the actual time-step according to that development. This process is schematized
by a basic RNN in Figure 2.3, referred to as vanilla RNN (VRNN), in which the network of
neuron-like nodes organizes into successive layers, the general operation for vanilla RNN is
shown in equation 2.4:

ht = σ(U · xt + V · ht−1 + bh)ot = ht

Where xt denotes the input data at time t, ht denotes the hidden state of the cell in time
t and ot denotes the output of the cell in every time t.
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Figure 2.3: Architecture of a RNN.

In the following of this section, two of the most well-known cells in recurrent neural
networks are studied: Vanilla recurrent neural networks(VRNN) and just another network
(JaNet).

Vanilla Recurrent Neural Network (VRNN):
Basic VRNN is a network of neuron-like nodes organized into successive "layers". Each
node in a given layer is connected with a directed (one-way) connection to every other
node in the next successive layer.
The VRNN architecture is basically composed of one hidden gate, as is shown in Figure
2.4, the activation function of this gate is normally a hyperbolic tangent.
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Figure 2.4: RNN cell.

The equation below describes the operation inside the cell [15]:

ht = tanh(U · xt + V · ht−1 + bh)
ot = ht (2.4)

Where:

• Uh: are the weight matrix of each of the layer for their connection to the current
input vector xt.

• Vh: are the weight matrix of each of the layer for their connection to the hidden
state vector ht−1.

• bh: are the bias terms for each of the layers.

Just Another Network (JaNet):
Due to the new perspective that Gated recurrent networks [6] implemented (less gates,
fast training, best results), it is natural to ask whether gates are completely necessary
or not. The JANET Cell only uses a forget cell (ft). As shown by Westhuizen et al. [39],
the JANET architecture can not only perform better than the common LSTM network
on the MNIST and pMNIST dataset, but also require less computational resources.
The basic JANET cell is shown in Figure 2.5.

10



⊙

� ���ℎ

−1

+⊙

��

�
�

ℎ�−1 ℎ
�

Figure 2.5: JaNet cell.

The JANETs operations are described below: [39]:

ft = σ(Uf ◦ ht−1 +Wf · xt + bf )
ct = ft ◦ (1− fc) ◦ tanh(Uc · ht−1 +Wc · xt + bc) (2.5)

ht = ct (2.6)

Where:

• Wi: are the weight matrix of each of the layer for their connection to the current
input vector xt.

• Ui: are the weight matrix of each of the layer for their connection to the hidden
state vector ht−1.

• bi: are the bias terms for each of the layers.
• σ: is the activation funcion.

In the next section a review of the training procedure of all the networks previously
mentioned is presented.

2.3.4. Training of Neural Networks
As it was show in the previous section, all the purpose of neural networks is to produce

a function f with parameters θ (all the trainable parameters) able to estimate certain values
as is shown in equation 2.7.

ŷ = f(x) (2.7)
where x is the input of the network that can be a vector of data, images or sequence of vec-

tors depending on the type of network, and ŷ are the predicted values. In supervised learning,
the data consists in pair of points (x, y) where x is the data, y are the labels of this data, and
the parameters θ are learned by minimizing a function denominated loss function L that is
selected based on the type of task performed by the network, but the mainly objective of the
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network is that the predicted values ŷ are as similar as possible to the labels y for each data x.

The process of optimization is done firstly by computing the gradient of each parameter
in θ in relation to the loss function L, this is, dL

dθ
with backpropagation algorithm and using

gradient descent to update each parameter in θ. This process is faster and more stable when
the gradient descent algorithm is applied to an averaged sample subset of the dataset to
update the weights and biases. The size of the subsample is known as batch size. When every
pair of the original dataset has been used to compute gradients at least once, it is said that
one epoch of training has passed.

For regression problems, the value ŷ that the net has to predict is just one, which means
that the last layer of the neural networks only has one neuron and doesn’t have an activation
function, i.e the activation function is the identity function. In this case, the metric to evaluate
the performance of the model is basically the distance between the real value y and the
predicted values ŷ, as the distance is a positive value, the way to avoid problems with negative
values is to get the quadratic distance. Lastly, to avoid a dependence with the data size, the
total sum of the distances is divided for the data size N as is shown in equation 2.8, this
value is known asmean squared error(MSE).

MSE =
N∑
i=1

(yi − ŷi)2 (2.8)

Another loss function commonly used for regression task is the root mean squared error(RMSE),
this is because taking the square root of the average squared errors has some interesting im-
plications. Since the errors are squared before they are averaged, the RMSE gives a relatively
high weight to large errors. This means the RMSE should be more useful when large errors
are particularly undesirable, the equation that describes RMSE is showed below 2.9.

RMSE =

√√√√ N∑
i=1

(yi − ŷi)2 (2.9)

For the classification problems, the output of the neural network is equal to the number
or classes in the problem (C), which means that the last layer of the net has the same number
of neurons that the classes in the problem, when the problem is a multi-class problem, the
activation function that correspond to the last layer is the softmax function[17], presented
in equation 2.10. Softmax is a function that takes as input a vector of C real numbers, and
normalizes it into a probability distribution consisting of C probabilities proportional to the
exponentials of the input numbers.

σ(ŷi) = eŷi∑C
j=1 e

ŷj
(2.10)

A Scheme for the training process of an ANN is presented below in figure 2.6:
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Figure 2.6: Schheme of the training process in ANN’s

The following section explains a technique for approximating probability distributions
called variational inference, this technique is essential for the development of the main model
of this thesis.

2.4. Variational inference
One of the main current statistical problems corresponds to the ability to adequately

process probability densities. To face this type of problem, the variational inference tool
was developed, a method mainly dedicated to transform the problems of finding probability
distributions into problems of optimization [20]. To understand the use of this tool, let’s
examine the following example: consider x = x1, · · · , xN the set of observable variables and
z = z1, · · · , zN a set of latent variables, in this case, the latent variables are the representation
of the weights of the model sampled from a distribution of parameters θ, the inference problem
is to compute the conditional density of the weights given the observations, p(z|x), then, the
expression of the conditional density can be written as shown in equation 2.11.

p(z|x) = p(z, x)
p(x) (2.11)

The denominator of equation 2.11 is denoted as evidence and can be calculated by inte-
grating the latent variables of the joint density 2.12. The marginalization over z to calculate
p(z) in the denominator is typically intractable, because, for example, the search space of z
is combinatorially large. For almost every model this integral is unavailable in closed form,
and the evidence is what we need to compute the conditional from the joint distribution.

p(x) =
∫
p(x, z)dz (2.12)

In variational inference, a family Q of densities over the latent variables is specified. Each
q ∼ Q is a candidate approximation to the exact conditional distribution, the final goal is to
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find the distribution q closest to the joint distribution (p(z|x)) [4], this is, the distribution
that minimize the Kullback–Leibler divergence. This transforms the problem of the equation
2.11 and 2.12 in the following problem:

q∗(z|θ) = arg minq(z|θ)∼Q KL(q(z|θ)||p(z|x)) (2.13)
where q∗ is the best approximation to solve the optimization problem, however, this is

still not computable due to the problem in equation 2.12. To understand why, it is necessary
to work a little in the KL divergence, for this, the Expectation in relation to a distribution
and the Kullback-Leibler divergence are defined as:

Eq(z|θ) =
∫
q(z|θ)f(z)dw (2.14)

KL(q(x)||p(x)) =
∫
q(x)log q(x)

p(x)dx (2.15)

Using this in the original problem of equation 2.13 the following equation is obtained:

KL(q(z|θ)||p(z|x)) = Eq(z|θ)∼Q[log q(z|θ)− log p(z|x)] (2.16)
Expanding the conditional using Bayes theorem it results as:

KL(q(z|θ)||p(z|x)) = Eq(z|θ)∼Q[log q(z|θ)− log p(x|z)− log p(z) + log p(x)] (2.17)

As p(x) is a value that is not a probabilistic function, the expected value (Eq(z|θ)∼Q[log p(x)])
is equal to p(x):

KL(q(z|θ)||p(z|x)) = Eq(z|θ)∼Q[log q(z|θ)]− log p(x|z)− log p(z)] + log p(x) (2.18)

As this reveals the dependency of p(x) which is the problem in the fist place, now, to
solve this issue it’s necessary to work even more in the equation 2.18, regrouping some terms
it results in:

KL(q(z|θ)||p(z|x))− log p(x) = Eq(z|θ)∼Q[log q(z|θ)− log p(x|z)− log p(z)]

KL(q(z|θ)||p(z|x))− log p(x) = Eq(z|θ)∼Q[log q(z|θ)− log p(z)]− Eq(z|θ)∼Q[log p(x|z)]

KL(q(z|θ)||p(z|x))− log p(x) = KL(q(z|θ)||p(z))− Eq(z|θ)∼Q[log p(x|z)]

log p(x)−KL(q(z|θ)||p(z|x)) = Eq(z)∼Q[log p(x|z)]−KL(q(z|θ)||p(z)) (2.19)

The main objective of this was to minimize the Kullback–Leibler divergence on the left
side of the equation 2.19, which minimizes the distance between the proposed distribution
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q(z) and the real posterior function p(z|x). If only the proposed distribution is changed, it
will not variate the first term in the left side of the equation 2.19 because the evidence just
depends of the data, therefore, if the right side of the equation is maximized by varying q(z|θ)
the Kullback–Leibler divergence on the left side will automatically decrease. The right side
of the equation is named the Evidence Lower Bound (ELBO), which derives from it being
always a lower bound for log p(x) (the evidence) since the Kullback-Leibler divergence is
always a non-negative quantity [4], the equation for ELBO is seen in equation 2.20.

− ELBO = KL(q(z|θ)||p(z))− Eq(z|θ)∼Q[log p(x|z)] (2.20)

This equation is one of the most important in Bayesian problem under Deep Learning con-
text so it is important to understand each term of the equation. The second term describes
the probability of the data given the latent variables; it encourages densities that place their
mass on configurations of the latent variables that explain the observed data. The first term
is the negative divergence between the variational density and the prior; it encourages den-
sities close to the prior. Thus, the variational objective mirrors the usual balance between
likelihood and prior.

Summarizing, Maximizing the ELBO is equivalent to minimizing the Kullback-Leibler
divergence, for the most part, it is easier to treat the maximization problems as a minimization
one, therefore, instead of maximizing the ELBO, it is preferred to minimize the negative value
of it.

2.4.1. Weight Perturbations
Weight perturbations is a class of methods that instead of use weights as a collection of

numbers, uses weights as a collection of values sampled from a distribution qθ parametrized
by θ. The objective of this methods is to minimize the expected loss function, the distribution
qθ can often be described in terms of perturbations: W = W̄ + ∆W , where W are the mean
weights and ∆W is a stochastic perturbation.

Some specific examples of weight perturbations are Gaussian perturbations, Dropconnect
[42], variational Bayesian neural nets and Evolution strategies[34].

In general, weight perturbation algorithm suffers high variance of the gradient estimates
because all training examples in a mini-batch share the same perturbation, which means that
sharing perturbations make the net think that there is a relation between the weights, this
causes lack of precision and the variance can’t be eliminated by averaging. The method of
flipout is presented below.

Flipout:

To apply Flipout method is necessary to make two important and non-trivial assum-
ptions over qθ:

1. The perturbation over the weights are independent.
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2. The perturbation distribution is symmetric around zero.

Is important to note that under this assumptions, the perturbation distribution is in-
variant to element-wise multiplication by random sign matrix (a matrix whose entries
are ±1). From now on, element-wise multiplication is denoted by ◦.

Before explaining mathematically this method, it is necessary to understand the fo-
llowing observation: Let qθ be a perturbation distribution that satisfies the above as-
sumptions, and let ∆W ∼ qθ. If E is a random sign matrix independent of ∆̂W , then
∆W = ∆̂W ◦E is identically distributed to ∆W . Furthermore, the loss gradients com-
puted using ∆W are identically distributed to those computed using ∆̂W . [44]

Flipout method uses this fact by using an original perturbation ∆̂W shared by all the
data points in the batch and multiplies it by different rank-one sign matrix as is shown
below:

∆Wi = ∆̂W ◦ risTi (2.21)

where the subscript denotes the index within the mini-batch, and ri and si are random
vectors whose entries are sampled uniformly from ±1. Using this “trick”, the marginal
distribution over gradients computed for individual training examples will be identical
to the distribution computed using shared weight perturbations. Consequently, flipout
yields an unbiased estimator for the loss gradients, the next step can be described as
shown in equation 2.4.1:

yi = σ(W Txi)
yi = σ((W̄ + ∆̂W ◦ risTi )Txi)

yi = σ(W̄ Txi + (∆̂W T (xi ◦ si)) ◦ ri) (2.22)

To vectorize the previous equation it is necessary to define matrices R and S whose
rows correspond to the random sign vectors ri and si, then the equation 2.4.1 can be
written as equation 2.23

Y = σ(XW̄ + ((X ◦ S)∆̂W ) ◦R) (2.23)

This defines the next step because R and S are sampled independently of W and ∆̂W ,
a backpropagation of the gradients through equation 2.23 can be done to obtain deri-
vatives with respect to W , ∆̂W , and X.

Summarizing, flipout is a weight perturbation method able to regularize neural net-
works and decorrelate the weight gradients between different examples in a batch.
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Also, Flipout takes advantage of evolution strategies allowing parallelism on a GPU
updating the weights with the following scheme:

¯Wt−1 = W̄t + α
1

M N

M∑
m=1

N∑
n=1

Fmn
[ ˆ∆Wm ◦ rmnsmn

]
(2.24)

Where, N are the flipout perturbations at each weight, M the number of weights and
Fmn the reward at the n− th perturbation at the weight m.

At this point, the loss function of the model is well defined by section 2.4, and the way to
apply weight sampled from a distribution to a neural network via flipout method is illustrated
in subsection 2.4.1, now, the way to train this networks is shown below in subsection 2.4.2:

2.4.2. Bayes by Backprop
Bayes by Backprop is an algorithm that trains Bayesian neural networks with uncertainty

in their weights (figure 2.7). It optimizes a well defined loss function to learn the distribution
on the weights of a neural network. To optimize the loss function it is necessary transform
the expression in 2.20 into a computationally feasible one.

Input Layer
Hidden Layers Output Layer

�(�|�)

Figure 2.7: Scheme of a Neural Network with uncertainty in their
weights

To transform the ELBO, first it is necessary to use next proposition[5]:

Let ε be a random variable having a probability density given by q(ε) and let w = t(θ, ε)
where t(θ, ε) is a deterministic function. Suppose further that the marginal probability density
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of z, q(z|θ), is such that q(ε)dε = q(z|θ)dz. Then for a function f with derivatives in w:

∂

∂θ
Eq(z|θ)[f(z, θ)] = Eq(ε)

[
∂f(z, θ)
∂z

∂z

∂θ
+ ∂f(z, θ)

∂θ

]

Proof :

∂

∂θ
Eq(z|θ)[f(z, θ)] = ∂

∂θ

∫
f(z, θ)q(z, θ)dz

= ∂

∂θ

∫
f(z, θ)q(ε)dε

= Eq(ε)
[
∂f(z, θ)
∂z

∂z

∂θ
+ ∂f(z, θ)

∂θ

]
�

This previous propositions allows to define a function t(θ, ε), a deterministic distribution
that can transform a sample of ε and the variational posterior parameters θ into a sample
from the variational posterior, applying this to equation 2.20, it results in:

ELBO = log q(z|θ)− log p(z)− log p(x|z) (2.25)
Using Monte Carlo sampling to evaluate the expectations, similar as backpropagation

algorithm, the Bayes by Backprop method is defined for variational Bayesian inference in
neural networks which uses 2.20 to learn a distribution over the weights of a neural network.
Finally, the complete aproximation of ELBO can be written as follows:

ELBO ≈
n∑
i=1

log q(z(i)|θ)− log p(z(i)) − log p(x|z(i)) (2.26)

where z(i) is the ith Monte Carlo sample extracted from the posterior function q(z(i)|θ). It
is also important to note that each term in equation 2.26 depends on the extracted weights, in
this case, a variance reduction technique known as common random numbers can be used [31].

Summarizing, Bayes by Backprop is an algorithm obtained to train Bayesian inference
neural networks which uses unbiased estimates of gradients of the cost in 2.20 to learn a
distribution over the weights of a neural network[5], the result of this algorithm is the equation
2.26 as unbiased loss function.

2.5. Putting all Pieces Together
The background presented above is necessary to understand the final purpose of this

work, which is to use the temporality of the data to predict the behavior of some mechanical
equipment and also be able to quantify the uncertainty in the RUL and health state predic-
tion.

Quantifying uncertainty in this case refers to finding the probability distribution that
most closely resembles the actual probability distribution presented by the data in relation
to the variable to be predicted. To find this distribution, the variational inference method
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is presented, which transforms the problem of finding a probability distribution into an op-
timization problem.

Various techniques can be used to predict a probability distribution using artificial neu-
ral networks. In this work, the chosen technique corresponds to Flipout, which consists of
treating the weights of a neural network as probability distributions centered on zero. With
this, when entering the same value into the network multiple times, it will deliver different
results that will allow the output distribution to be generated, that is, the distributions for
the values entered into the network are obtained using the Monte Carlo method.

To make feasible the solution of the optimization problem that arises when using the
variational inference to obtain the loss function and the flipout method to quantify the un-
certainty, the cost function proposed in the section 2.4 must be adapted for a distribution
obtained by the Monte Carlo method. The algorithm that approximates the cost function for
this purpose is known as Bayes by Backprop.

Finally, the proposed models in this work combine the concepts explained above with the
recurrent neural networks, that is, use the temporality of the data to predict a certain value
and quantify the uncertainty in RUL and health state prediction.
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Chapter 3

Methodology

To test the capabilities of Bayesian Recurrent Neural Networks in the context of PHM
and thus, meet the objectives of this thesis, the methodological steps followed are shown
below:

1. Data Acquisition: The models designed in this work are trained using a specific al-
gorithm known as Bayes by Backprop, the recurrent networks are used to find specific
representation of the data using the temporallity of it, in this case, the phenomenon
of interest is the degradation of an asset or system that causes failures in it’s opera-
tion. Therefore, the first step of this thesis is the acquisition of operational datasets of
mechanical elements or systems, with the aim of validate the proposed models, in this
case the chosen dataset is:

CMAPSS Simulated Dataset: The objective of this dataset is to perform
prognosis of remaining useful life of turbofans using operational data generated
by a simulation algorithm [36], this dataset is known for being one of the best
dataset candidates for validate models in the context of RUL prediction.

With the aim of testing the developed models, four more datasets were acquired:

Fatigue Crack Growth University of Maryland: This dataset is composed
by the measurements of three disipative energies in a strain-stress essay developed
in University of Maryland, the main objective for this data is to predict the RUL
of each test sample with this data.
Wind Turbine High Speed Bearings: This data was collected by a condition
monitoring system placed in a wind turbine, the data consists on the vibration
of a bearing inside the turbine[2]. The main goal is to estimate the RUL of the
bearings using this dataset to prevent a failure.
University of Ottawa Bearings: The data contains vibrational signals collected
from bearings under time-varying rotational speed conditions, the experiments are
performed on a SpectraQuest machinery fault simulator in University of Ottawa
[18]. The aim of the study made with this dataset is to categorize the health state
of the bearings.
Politecnico di Torino Bearnigs: This dataset was collected over a rig set up
at DIRG Lab in the Department of Mechanical and Aerospace Engineering at
Politecnico di Torino, the dataset consists on the measurement of acceleration,

20



rotational speed, radial load and damage level on bearings [8]. The objective is to
test the ability of the developed models to use the temporality of this data and
determinate the health state of it, this means that this is a classification problem.

2. Literature Review: Before the development phase of this work it is necessary to find
the appropriate literature on both Bayesian Neural Networks and Deep Learning based
methods applied to Reliability.
In Bayesian Neural Networks the main topics necessary for the development of this
thesis are shown below:

Variational inference to transform the problem from creating a distribution, to an
optimization problem.
Weight perturbation to apply the perturbated weights to the studied models.
Bayes by Backprop to transform the optimization problem into a computationally
feasible problem.

3. Development of B-RNN: This step consists in both the theoretical adaptation of
weight perturbation to work in Recurrent Neural Networks, and the development of
such adaptation in code.

The variational inference tool is used to develop the probabilistic model necessary to
quantify uncertainty, that is, the problem of finding a probability distribution becomes
an optimization problem, this concept serves as a theoretical basis for the development
of networks recurrent Bayesian neural neuroses developed in this work.

In this work the probabilistic model developed is based on the flipout method ex-
plained in section 2.4.1, this method is implemented in dense layers in the tensorflow
probability library, in this thesis these layers are used to replace the logic gates inside
the recurrent cells JANET and VRNN, in this way the weights within the developed
recurrent layers are treated as probability distributions and are capable of propagating
uncertainty, finally, as in frequentist recurrent neural networks, the weights of these
networks are shared to the different time steps within each of the data delivered to the
network, this, at the code level is done using a "for"loop for each time step.

Finally, to develop the training of the developed networks, the Bayes by Backprop
algorithm is implemented, which, as explained above, is an algorithm developed to
train neural networks whose weights are treated as probability distributions, to carry
out this implementation the tools are used from the tensorflow probabilities library to
calculate the KL divergence and the term corresponding to the log likelihood in each
epoch, after this, the keras optimizer Adam is used to update the parameters of the
distributions from which the network weights are extracted.

4. Test and Validation in Simulated Dataset: Once the model is fully developed,
the next step is testing it in simulated data, this is to be sure that the model can get
results from it.
The use of turbo fan data is also a good way to compare the performance of the proposed
model with other models previously designed for the prediction of RUL in this dataset.
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5. Test in Real Dataset: After testing the model in the validation data, it is important
to show the performance of the model in real data, for this, the four acquired data are
tested using the developed models.

6. Analysis of the results and concluding remarks: After the experiments are finis-
hed, the results can be analyzed and the hypotheses will be either refuted or validated
Also, from this analysis, the concluding remarks of this thesis will be drawn.
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Chapter 4

Proposed Bayesian Recurrent Neural
Networks

This chapter presents the recurrent Bayesian neural networks developed and implemented
in this work.

The development of recurrent Bayesian neural networks consists of the development of
recurring layers based on flipout layers and the implementation of the Bayes by Backprop
algorithm to train the networks.

4.1. Bayesian Recurrent Neural Networks
The proposed Bayesian Recurrent Neural Networks (B-RNNs) are recurrent neural net-

works in which weights are extracted from a probability distribution using flipout method
and that are also able to deliver a probability distribution as output. Because of this, in the
case of RUL predictions one B-RNNs model is able to get multiple samples and get the pro-
bability distribution for every point in the dataset. In the case of diagnosis, the distribution
is discrete, so the network will tend to choose the correct class.

As it is possible to get the probability distribution for each point in the dataset in the case
of prognosis, it is also possible to get the probability intervals from this distribution. This
concept is interesting in PHM context because the confidence interval in RUL represents the
probability of failure of a determinate mechanical equipment in a specific time with a certain
confidence.

In the following Figure, there is a flowchart of the developed B-RNN approach to make
it more understandable.
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Figure 4.1: Framework of the proposed Bayesian RNN’s models.

As shown in chapter 2, RNNs make a prediction one step ahead with dependency on the
present state and all previous time-step outputs (hidden states). This means that a k-step
prediction depends on the hidden states for t ∈ 0, ..., k − 1 and timestep k and so on. The
developed Bayesian RNN’s of this work performs in the same way, but the main difference is
the way that the weights of the recurrent cell operates. In the case of the developed B-RNN’s
the weights are treated as distributions and are applied using flipout method illustrated in
section 2.4, applying the equation of flipout 2.4.1 [44] to the basic equation of RNN 2.4. The
next equation is developed for Bayesian Vanilla RNN (B-VRNN):

ft = σ(Ūf
T
ht−1 + (∆Ûf

T (ht−1 ◦ sht )) ◦ rht + W̄f
T
xt + (∆Ŵf

T (xt ◦ sxt )) ◦ rxt )
ht = ft (4.1)
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Where t ∈ 0, ..., k is the discrete-time index with k the prediction horizon, ht is the hidden
state of the cell representing time-step t, xt the cell input, W̄i, Ūi are the means of the weight
matrix and ∆Ŵi, ∆Ûi are the “perturbation” of the weight matrix that is applied to the
input and hidden vector respectively.

In conclusion, W̄i, Ūi, ∆Ŵi, ∆Ûi are trainable parameters of the developed Bayesian recu-
rrent layers, these parameters are learned from training data by minimizing the sum between
the negative log likelihood and the Kullback-Leibler using Bayes by Backpropagation algo-
rithm.

The developed equations for the proposed B-RNN’s in all the studied Bayesian cells are
presented below, these equations are generated by applying the flipout estimator to the
frequentist RNN cells.

The operation inside Bayesian VRNN are:

ft = tanh
(
Ūf

T
ht−1 + (∆Ûf

T (ht−1 ◦ sht )) ◦ rht + W̄f
T
xt + (∆Ŵf

T (xt ◦ sxt )) ◦ rxt
)

ht = ft (4.2)

Bayes JaNet Operations:

ft = σ(W̄f
T
xt + (∆Ŵf

T (xt ◦ sxt )) ◦ rxt + Ūf
T
ht−1 + (∆Ûf

T (ht−1 ◦ sht )) ◦ rht )

ct = ft ◦ ht−1 + (1− ft) ◦ tanh(Ūc
T
ht−1 + (∆Ûc

T (ht−1 ◦ sht )) ◦ rht +

W̄c
T
xt + (∆Ŵc

T (xt ◦ sxt )) ◦ rxt )
ht = ct (4.3)

All the above equations follows the same notation, where:

– W̄i, Ūi: Represent the mean of the weight matrix that is applied to the input and hidden
vector respectively.

– ∆Ŵi, ∆Ûi: Represent the “perturbation” of the weight matrix that is applied to the
input and hidden vector respectively.

– R, S: Are random matrices whose entries are sampled uniformly from ±1.

It is important to note that the schemes of the cells in B-RNN’s are the same that the
frequentist networks.

4.2. Training of Bayesian Recurrent Neural Networks
The main objective of this Bayesian model in mathematical terms, is to minimize the

negative ELBO as it is explained in section 2.4, for this, B-RNN’s has to minimize the equa-
tion 2.26. The process of trainig B-RNN’s is similar to the process of regular recurrent neural
networks, this means that the process of optimization is done by computing the gradient of
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each parameter of θ (corresponding to the parameters of the distributions from where the
weights of the network are sampled) with respect to the loss function L (equation 2.26), this is
∂L
∂θ
. This derivative is calculated via Bayes by Backpropagation algorithm, which means that

it is necessary to sample from the distribution of the weights (q(z|θ)) to calculate the deri-
vative illustrated above. Finally, gradient descent algorithm is used to update each parameter.

Bayesian Recurrent Networks (B-RNN) are studied in [44], where Bayes by Backprop is
validated in recurrent networks. The approach to generate B-RNNs is to wrap the Tensorflow
probability layers. With this, it is possible to get distributions as outputs in the developed
models, encouraging the time prediction of the RNNs and including uncertainty about the
results. This opens many possibilities in reliability engineering where decisions need to be
made considering risk.

4.3. Performance Metrics for Bayesian Recurrent Neu-
ral Networks

Since the output of the proposed model is a distribution, it is not possible to use the
metrics described in subsection 2.3.4. Therefore, it is necessary to adapt the model output to
a value comparable to the commonly used models in terms of accuracy and mean square error.

To obtain values comparable to frequentist models, it is necessary to obtain samples of
the model’s output distributions, and use the average of these values as a prediction point,
to finally use this value to calculate the metrics corresponding to the regression and classifi-
cation tasks.

For the regression, the equations to calculate the RMSE is described below:

RMSE =

√√√√ N∑
i=1

(yi − ˆ̄yi)2 (4.4)

where yi is the real value of point xi and ˆ̄yi is the mean of the distribution generated from
the data xi.

4.4. Implementation
For the implementation of the proposed model, advantage is taken of the fact that each of

the gates within a recurring cell consists of a layer of an artificial neural network. Therefore,
to add uncertainty in the weights of the recurring network, the gates within the recurring
cells are replaced by DenseFlipout layers developed in the library of Tensorflow Probability
[12].

Each of the weights of the proposed Bayesian recurrent neural networks are represented
by a normal distribution, therefore, each of these weights has two parameters, a mean µ and
a standard deviation σ.
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A problem that arises when training the recurrent Bayesian neural network developed in
this work consists in the difference in the orders of magnitude of the two terms in the loss
function presented in equation 2.26. To solve this, a regulator must be chosen that allows both
terms in the loss function to have a similar order of magnitude, the choice of this parameter
is different for each dataset and is shown in the section corresponding to each one.
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Chapter 5

Case Studies

5.1. Validation Dataset: RUL Prediction in Turbofan
Engine Degradation Simulation (CMAPSS)

The first case study presented in this thesis is a prognosis example corresponding to a
simulated data. The aim of this dataset is the estimation of remaining useful life in turbofan
engines. The data for this case study comes from CMAPSS originated for the PHM 08’ data
competition [36] and used since then as a benchmark dataset for PHM purposes. A scheme
of the Simulated turbofans is shown in Figure 5.1. This chapter starts with description of
the dataset followed by the preproccesing necessary to use the proposal approach of section
4. Finally, the results obtained are presented below.

Figure 5.1: Scheme of The turbofans simulated by NASA

5.1.1. Data Description
Dataset is composed of multivariate operational time-series obtained by simulating a

turbofan under various fault modes and operational conditions using the Commercial Aero
Propulsion System Simulation (CMAPSS) [36]. This dataset is organized in four categories
depending on the operational condition and fault modes of the turbofans, this organization
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of the dataset is shown in the table below.

Table 5.1: Caracterization of CMAPSS

Subset Operational Conditions Fault Modes
FD001 One One (HPC Degradation)
FD002 Six One (HPC Degradation)
FD003 One Two (HPC and Fan Degradation)
FD004 Six Two (HPC and Fan Degradation)

The description of the sensors and their measurement units is illustrated in table below.

Table 5.2: C-MAPSS sensors

Sensor Descriprion Unit
#1 Total temperature at fan inlet ◦R
#2 Total temperature at LPC outlet ◦R
#3 Total temperature at HPC outlet ◦R
#4 Total temperature at LPT outlet ◦R
#5 Pressure at fan inlet psia
#6 Total pressure in bypass-duct psia
#7 Total pressure at HPC outlet psia
#8 Physical fan speed rpm
#9 Physical core speed rpm
#10 Engine pressure ratio (P50/P2) -
#11 Static pressure at HPC outlet psia
#12 Ratio of fuel fow to Ps30 pps/psi
#13 Corrected fan speed rpm
#14 Corrected core speed rpm
#15 Bypass Ratio -
#16 Burner fuel-air ratio -
#17 Bleed Enthalpy -
#18 Demanded fan speed rpm
#19 Demanded corrected fan speed rpm
#20 HPT coolant bleed lbm/s
#21 LPT coolant bleed lbm/s

In the dataset, each row represents one time-step measured in cycles and each column is
a different sensor in the order showed in table 5.2. As this dataset was created for a com-
petition, the train-test sets were already separated, and in both cases the trajectories are
simulated from a normal operational state with an unknown level of degradation, but the
difference between the train and test set is that the train trajectories are simulated until the
engine presents one of the corresponding fault modes and the test set simulated trajectories
are stopped at a random moment before that. Nowadays, the RUL for the test examples have
been made available to the public with the rest of the data.
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The following section explains the preprocess of the data to be tested using the proposal
methods.

5.1.2. Data Preparation
The first step for the preprocessing of CMAPSS dataset is to eliminate the sensors that

don’t change in time, this allows to erase unnecessary information. For datasets FD001,
FD002, FD003 and FD004 the number of sensors eliminated is 7, which means that the total
useful sensors remaining for the following preprocessing is 14.

As this dataset is used on a competition, the train and test were already separated, kno-
wing this, a scaler is trained with the training data to normalize the testing data, this is a
common process used in machine learning to accelerate and stabilize the training process of
the models.

The final step is to increase the number of training data-points and standardize the length
of them, since the proposed approach is not designed to support inputs of variable length.
One common strategy for this is to generate moving windows of length T time-steps, which
slides over each trajectory with an overlap v. This process is illustrated in figure 5.2 .
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Figure 5.2: Example for preprocessing of CMAPSS Dataset, in the
example the overlaping is 2 and the timestep T is 3.

Finally, every data point consists in the measurement of 14 sensors and variable time-
steps according to the study set. The overlap in every data is one step less than the time-step
T. Table 5.3 shows the final structure of data points according to their respective dataset.

30



Table 5.3: Data shape for different datasets on CMAPSS

Dataset Time Step Sensors
FD001 30 14
FD002 21 14
FD003 30 14
FD004 18 14

In the following section, the four datasets are tested in both proposal architectures of this
thesis, Bayes Vanilla RNN and Bayes JaNet.

5.1.3. Results for Bayes VRNN Cell in CMAPSS Dataset
In this section, the results for Vanilla Recurrent neural network are illustrated for each

one of the four datasets in table 5.3, the optimization of the parameters is done via grid
search, and the results for the parameters are illustrated in table below.

Table 5.4: Parameters for Bayesian VRNN in CMAPSS dataset.

Layer Units/Neurons Activation Function
BayesVRNN 32
DenseFlipout 32 Relu
DenseFlipout 16 Relu
DenseFlipout 2

The final Bayesian layer has two neurons, this is because the output of the network is a
normal distribution that has two parameters, the mean(µ) and the standard deviation(σ).
The parameters in this networks are twice than their frequentist version, this is because every
weight in the developed Bayesian layers has two parameters instead of one.

The number of epochs used for this model is 100, this is because at this point the loss
function 2.26 is stable and minimized. The regulating factor used for the stabilization of the
KL divergence is 1e− 6 and the samples took from the model to generate the distribution of
the test samples is 100.

The Bayesian recurrent layer returns all the sequence of data and not just the last value,
a scheme of the network used is shown in figure 5.3.

31



���1

���2

����−1

����

�1

�2

�3

��

��−1

��

�1

→

�2

→

��−1

→

��

→

�

�

�
�

→ �
�

→

�
�

−
1

→

�
2

→

�
1

→

�������

��

Figure 5.3: Scheme of RNN model used.

Where M is the number of units in RNN and T is the time-step defined for the dataset
in section 5.1.2. As it was shown in section 2 RNN’s take a temporal series as input and the
output could be a single vector obtained from the last recurrent cell or a vector for each unit
in the network, in this case every vector of every recurrent cell is used. To pass this vector
to the DenseFlipout layers, a Flatten operation is applied.
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FD001:
Below the results for Bayesian VRNN are presented for RUL prediction in FD001 data-
set. This is the easiest dataset among CMAPSS simulation, because of the operational
conditions and the fault modes.
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(a) Comparison between real and predicted RUL in CMAPSS FD001 data
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Figure 5.4: RUL Prediction for VRNN architecture on FD001
CMAPSS dataset, The (a) image is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 50 and 100 respectively.

As it is shown in figure 5.4 the uncertainty is quantified for every point in the test set,
it is important to observe that almost every real point in the dataset is inside of the
distribution predicted by the model. The probability distribution for each of the points
in the test set is different as it’s shown in figures 5.4b, 5.4c and 5.4d, this is because
each point in the test set has its own features and properties that can make more or
less difficult the prediction task.
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Figure 5.5: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD001 dataset.

In figure 5.5 both, the KL divergence and the log likelihood are decreasing, this means
that the difference between the real distribution function and the proposed function are
reducing the distance between them, as each term has its own meaning, the log like-
lihood term measures how well the model fits to a sample of data for given values of the
unknown parameters, so its decrease means that the predicted values are getting closer
to the real ones. The decrease in KL divergence means that the proposed distribution
is getting closer to the prior distribution as the parameters of the weight distributions
are updated, it is important to note that this does not mean that the prediction will
improve further if the KL divergence continues to decrease.
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FD002:
This dataset is much more complex than FD001 due to the quantity of operational
conditions, in the case of FD002 there are six operational conditions while in FD001
there is only one. The results for this dataset are shown below:
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(a) Comparison between real and predicted RUL in CMAPSS FD002 data
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Figure 5.6: RUL Prediction for VRNN architecture on FD002
CMAPSS dataset, The (a) image is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 125 and 250 respectively.

As it can be seen in figure 5.6 the results are not as good as in the first dataset, this
is expected considering the complexity of the current data, however, an interesting
remark is that the standard deviations of the distributions in figures 5.6b, 5.6c and
5.6d is bigger than in the first dataset due to the difference in the complexity of the
current data.
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Figure 5.7: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD002 dataset.

The figure above shows the evolution of the terms in the loss function across the epochs
of training, in this case the evolution and thus the conclusions about this behavior are
the same that in the first dataset.
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FD003:
This dataset consists in simulations of turbofans with one operational condition and
two fault modes, this means that this dataset is more complex than FD001, but less
complex than FD002, the result for this dataset is showed below in figure5.8.
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(a) Comparison between real and predicted RUL in CMAPSS FD003 data

80

90

100

110

120

130

140

Ground Truth: 125.00
Dist mean: 115.14

(b)

40

60

80

100

120

Ground Truth: 77.00
Dist mean: 76.62

(c)

20

0

20

40

60

Ground Truth: 6.00
Dist mean: 13.53

(d)

Figure 5.8: RUL Prediction for VRNN architecture on FD003
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 50 and 100 respectively.

As it is expected, the results are similar to FD001 dataset, but the standard deviation
are slightly bigger, this is because the model is not able to predict the RUL with the
same certainty that in the first dataset, however, the predictions are clearly accurate
and the uncertainty is quantified.
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Figure 5.9: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD003 dataset.

The behavior showed in figure 5.9 is the same that in figure 5.5.
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FD004:
This is the most complex of the four datasets due to the simulated operational con-
ditions and the multiple fault modes. The results for this dataset are shown below in
figure 5.10.
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(a) Comparison between real and predicted RUL in CMAPSS FD004 data
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Figure 5.10: RUL Prediction for VRNN architecture on FD004
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 125 and 245 respectively.

The results of this dataset are clearly worst than in previous datasets, which means
that the final RMSE is worst and the standard deviation is bigger. However, an impor-
tant observation is that in the majority of the test samples, the real RUL value belongs
into the range of the predicted distribution but this estimation is not as valid as in the
previous samples, this is because the standard deviation is large compared to the mag-
nitude order of the RUL, therefore, since the dataset is more complex, the uncertainty
of the model increases at the time of predicting the data, resulting in less-accurate
predictions.
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Figure 5.11: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD004 dataset.

The behavior showed in figure 5.11 is the same that in figure 5.5.
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5.1.4. Results for Bayes JaNet Cell in CMAPSS Dataset
In this section, the results for Bayesian Just Another Networks (JaNet) in CMAPSS

dataset are presented, the optimization of the hyperparameters is the same that in subsection
5.1.3 and the results for the networks parameters are illustrated in the table below:

Table 5.5: Parameters for Bayesian JaNet in CMAPSS dataset.

Layer Units/Neurons Activation Function
BayesJaNet 32
DenseFlipout 32 Relu
DenseFlipout 16 Relu
DenseFlipout 2

The number of epochs for this training process is fixed in 100 because at this point the
loss function is stable, the regulating factor is 1e − 6 and the samples took from the model
to generate the distribution of the test samples is 100.

The network structure is the same that the network illustrated in figure 5.3, which means
that for this process, all the sequential data obtained from the recurrent network is used to
train the model.

Below are the results of the four CMAPSS datasets for the architecture described above.
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FD001:
The results for CMAPSS FD001 are presented in figure 5.12. As it can be seen in this
figure, the value of the global RMSE is greater than in the case of the B-VRNN and in
the case of the standard deviations, the values do not demonstrate a significant change.
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(a) Comparison between real and predicted RUL in CMAPSS FD002 data
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Figure 5.12: RUL Prediction for JaNet architecture on FD001
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 50 and 100 respectively.

Although the results for this architecture are not better than for the VRNN, it is im-
portant to note that most of the real values are found within the predicted distributions.

The evolution of the log likelihood and the Kullback Leibler is presented in the figure
below:
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Figure 5.13: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD001 dataset.

Both, the Kullback-Leibler and the log likelihood decrease, which mean that the pro-
posed distribution is getting closer to prior one while the values predicted are getting
similar to the real ones.

As it can be seen in figure 5.13, the orders of magnitude of the two components of the
cost function used in this model are very different, this is because there is no restriction
for the Kullback Leibler value scale, moreover, the greater the number of parameters,
the greater the value of this term, which is why the regulator used is the inverse of the
difference between the value scales.
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FD002:
This dataset, as it was explained before, is more complex than FD001, but as it seen
in figure 5.14, the model can understand the behavior of the data, and predict in a
reasonable way the RUL of it.
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(a) Comparison between real and predicted RUL in CMAPSS FD002
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Figure 5.14: RUL Prediction for JaNet architecture on FD002
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 125 and 250 respectively.

Taking into account the difficulty of the data, the results are acceptable from the point
of view of determining uncertainty, despite the fact that the predictions are not opti-
mal, in most cases, the model is capable of encompassing the actual value of the RUL
within the probability distribution.
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Figure 5.15: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD002 dataset.

The behavior of the loss function illustrated in this image is identical to the one illus-
trated in figure 5.13, therefore, the observations are similar.

45



FD003:
The results obtained for the FD003 dataset are presented below in figure 5.16, in which
it is distinguished that the behavior of the data is correctly interpreted by the proposed
model, in addition, in most cases, the resulting distributions of the model include the
actual value of the RUL.
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(a) Comparison between real and predicted RUL in CMAPSS FD003 data
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Figure 5.16: RUL Prediction for JaNet architecture on FD003
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 50 and 100 respectively.

As it is possible to observe in figure 5.17, the loss function has the same behavior as
the one illustrated in figure 5.13, which means that the model is trained and regulated
in a stable way.
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Figure 5.17: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD003 dataset.
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FD004:
This dataset is the most complex among the four, the results obtained for the FD004
dataset using the JANET cells are illustrated below in figure 5.18.
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(a) Comparison between real and predicted RUL in CMAPSS FD004 data
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Figure 5.18: RUL Prediction for JaNet architecture on FD004
CMAPSS dataset, image (a) is a full comparison between the real
and predicted RUL, while figures (b), (c) and (d) are the probability
distribution predicted for the sample 1, 125 and 245 respectively.

The progress of the loss function in this dataset is shown in figure 5.19 and has the
same behavior as that previously analyzed in figure 5.13.
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Figure 5.19: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for CMAPSS FD004 dataset.

5.1.5. Comparison Against different frequentist models
The first comparison is made against the same networks in their frequentist form, which

means that the results are a comparison between the same architectures but with different
weights approximations, in the case of frequentist networks, the weights are just an array of
values while in the Bayesian networks the weights are sampled from normal distributions.

Table 5.6 shows the results for RMSE estimation. it is noticeable that in almost every
case the Bayesian approach is better than the frequentist, even reaching differences of 20 %
in VRNN with the most complex dataset.

Table 5.6: Results of Bayesian-RNN (mean RMSE) against frequen-
tist RNN (RMSE) for RUL estimation in C-MAPSS datasets in three
iterations each.

Model VRNN JaNet

Dataset Frequentist Model
RMSE

Bayesian Model
RMSE

Frequentist Model
RMSE

Bayesian Model
RMSE

FD001 14.62 14.28 15.02 15.06
FD002 21.15 16.78 20.58 18.44
FD003 16.88 13.86 16.65 12.70
FD004 24.71 20.11 24.68 21.95

The second comparison examines the performance of the proposed BRNN with weight
perturbation and Bayes by Backprop approach against RNN based on Monte Carlo Dropout
approach. The same architectures are applied, and MC Dropout is implemented with drop
rate either 0.25 or 0.5. As shown in Table 5.7, the results demonstrate that the Bayesian
RNNs architectures are capable of precisely predict the RUL of the turbofan and surpass the
approach using MC Dropout in almost all kind of architecture.
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Table 5.7: Results of Bayesian-RNN against the model that use MC
Dropout as Bayesian approximation in three iterations each.

Model VRNN JaNet

Dataset
Bayesian
Model
RMSE

MC-
Dropout
0.5 RMSE

MC-
Dropout
0.25 RMSE

Bayesian
Model
RMSE

MC-
Dropout
0.5 RMSE

MC-
Dropout
0.25 RMSE

FD001 14.28 19.95 15.44 15.6 15.16 14.90
FD002 16.78 20.82 21.04 18.44 21.41 21.56
FD003 13.86 21.15 22.75 12.70 20.37 17.43
FD004 20.11 26.32 25.05 21.95 25.44 24.62

The last comparison is with state-of-the-art models for CMAPSS dataset, to make this
comparison, only the B-VRNN architecture is used since it is the one that presents the best
results for all datasets. Since 2014 multiple neural networks models have been developed to
predict RUL in CMAPSS dataset, some of the most successful attempts to complete this task
are summarized below; Chong Zhang et al. [47] MODBNE which stands for Multi-Objective
Deep Belief Networks Ensemble to generate RUL predictions, Xiang Li et al. [25] proposes a
Deep Convolutional Neural Network with the same time window approach to the proposed
model; the standard deviation is the deviation of many independent models. Jun Wu et al.
[45] presents a Deep LSTM model for RUL prediction showing the improvement with deep
fusion of sensory data and finally domain Adaptive CNN (Li, Li and He) [24] which can test
not only with the test set of the same data but also with test sets from other data (i.e. train
with FD001 and test with FD003).

Table 5.8: Results of Bayesian-RNN against state-of-the-art models

Model MODBNE DCNN DLSTM AdaBN-CNN Bayesian
VRNN

Data Mean STD Mean STD Mean STD Mean STD Mean STD
FD001 15.40 - 12.61 0.19 16.14 - 13.17 - 14.28 0.52
FD002 25.05 - 22.36 0.32 24.49 - 20.87 - 16.78 0.48
FD003 12.51 - 12.64 0.14 16.18 - 14.97 - 13.86 0.75
FD004 28.66 - 23.31 0.39 28.17 - 24.57 - 20.11 0.51

As it can be seen in table 5.8, the results obtained, in addition to being able to determine
the uncertainty of the model, are also capable of presenting highly competent and even better
results than most of the proposed models studied in this work.

The results obtained for the two more complex datasets are much better than any of the
other models analyzed. As previously stated, this dataset is used to validate the proposed
model, since the dataset is simulated, the next step is to use the models proposed in real
datasets and demonstrate their efficiency.

The following sections, presents the results for the proposed approach in different datasets
generated based on experiments.
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5.2. RUL Prediction in Wind Turbine High Speed Bea-
rings

The diagnosis of bearing health through the quantification of accelerometer data has been
an area of interest for many years and has resulted in numerous signal processing methods
and algorithms. In particular, bearing used in wind turbine generators (WTGs) are subjected
to tough environments during operation, in the case of WTGs the bearing main objective is
to support the loads in the rotor and the rotor shaft, this is why it is necessary to have a
good indicator of the health state of the bearings.

In this section, a method to estimate the RUL inside of a WTG is presented, as the RUL
is a continuous variable, this is a regression problem.

5.2.1. Data Description
This dataset is collected from a 2 [MW ] wind turbine high-speed shaft driven by a 20-

tooth pinion gear. A vibrational signal of 6 seconds in a 100[kHz] sampling rate was acquired
each day for 50 consecutive days. An inner race fault developed and caused the failure of the
bearing across the 50-day period [40], the failure is shown on figure 5.20.

Figure 5.20: Real world HSS bearing fault: At the conclusion of the
data collection, an inspection of the bearing revielsed a cracked inner
race.

The data from a high speed shaft bearing from a WTG is provided by the Green Power
Monitoring Systems in USA. An scheme for wind turbine generator is illustrated below:
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Figure 5.21: Components of the WTG including; tower; yaw system;
generator; gearbox; low-speed shaft (main shaft); HSS; blades; nacelle;
hub; meteorological unit (anemometry and wind vane); brake system;
main bearing[27]

Bearings are typed SKF 32222 J2 tapered roller bearings. The TRB is 200 [mm] in outer
diameter, with a bore of 110 [mm] and a total length of 56 [mm]. Note that the bearing
under state also has a load cell to measure the force on the bearing. It’s a variable speed
control from 2 to 100 [Hz], with a load cell up to 1000 [lbs]. Most of the testing was done at
150 or 300 [lbs]. The highest test load applied was 50 % of rated power to reduce the chances
of a catastrophic gearbox failure.

5.2.2. Data Preparation
To use this data in the model proposed for this work it is necessary to reorder the data

for a recurrent neural network, this means that the order of the data must be data-size,
time-steps, features, which means that every data point must consist in a temporally series
with one or more features, to get more information about the signals, in this work a set of
characteristics are obtained from the signal.

For the preprocessing in each file, it is necessary to cut the signal into batches to get
features (feature bacth), after this process is applied on each file from every feature batch,
it is possible to get all the different features mentioned below: mean, peak, peak to peak
distance, crest factor, root mean square, variance, skewness, kurtosis, first five moments, and
the first five band frequencies. Each of these features are calculated for the raw signal, the
derivative from the signal and the integral of the signal, providing a total of 57 features for
each feature batch, as this is a regression problem, for each feature batch the time to failure
is registered and saved as is shown in figure below:
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Figure 5.22: Preprocessing Scheme for feature batches in WTG data

where fi,j(xk) is the feature i obtained in the column j of the data batch k, and yfi is the
time to failure of the features i.

After the dataset is transformed into the feature dataset, it is necessary to define a time-
step to fully complete the requirements of the recurrent networks, for this, every data point
between certain time interval is grouped into a temporal batch, with this, the data is able to
be used into the proposed model.
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Figure 5.23: Scheme for the final step of preprocessing in WTG data

Where Xi is the data point i and Yi is the time to failure of the i-th point. Finally, each
point of the data consists in a time serie of the feature extracted from the original accelera-
tion signal.

The time-step and feature size batch are chosen to obtain better results, the respective
values of each are 200 for the feature batches and 50 for the entry of the recurrent neural
networks, because the sampling frequency is ≈ 100 [kHz] and each data point needs 10000
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values, it can be said that each data point represents a time of 0.1 [s], which means that for
every data point, the quantity of revolutions of the bearings oscillates between 20 and 1000.

Before the data enters to the model it is randomly separated using a test-train ratio of
0.33, which means that the train set is the 66 % of the total data while the test set is the
33 % of the total data. After the data is divided, a scaler for the normalization of the data is
trained with the training set and then using this scaler on the test set, the train set and the
test set are normalized.

The indicator generated for this dataset is a health indicator that goes from 0 to 100
where 100 it means fully healthy and 0 means that the system failed, at the beginning of
the preprocessing, every point is labeled with a health indicator according to their respective
time to failure.

5.2.3. Results and Discussion
The results for the prediction of the health indicator of this dataset are presented below.

The networks used are Convolutional Bayesian RNN (Conv-BayesRNN), this networks
use an image as input, which means that the time series generated in subsection 5.2.2 are used
as an image for the Convolutional layers. An important observation about this layers is that
the kernel used is of the form [1xi], because in this way the temporality of the time serie is not
altered. After leaving the convolutional layers, the signal is operated by a TimeDistributed
layer, which means that the output images of the convolutional layers are separated and
flattened into time vectors and then enter the Bayesian Recurrent Layers. Finally, all the
sequential data of the recurrent layers are flattened and used by the DenseFlipout layers to
predict the bearing health indicator in the wind turbine. An outline of the networks used is
shown below.
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Figure 5.24: Scheme of RNN model used.

As seen in the previously illustrated figure, the main task of frequentist convolutional
networks is to generate the feature maps as it was explained in subsection 2.3.2 so that these
are then interpreted by recurrent Bayesian networks and finally the parameters of the output
distribution are predicted by the DenseFlipout layers.

The number of epochs during which the model was able to obtain the most acceptable
results is 3000, the KL divergence regulator has a value of 1e− 7, the net income batch size
is 500 and finally the number of examples used to obtain the distributions for each example
in the test set using the Monte Carlo method is 100.
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Bayes VRNN:
The optimization process for the Conv-BayesRNN using VRNN as recurrent cell is done
using a grid search. The final parameters used are shown in the table below:

Table 5.9: Conv-Bayes VRNN parameters

Layer Neurons/Units/Filters Kernel Activation Function
Conv2D 32 [1,2] ReLu
Conv2D 64 [1,2] ReLu
BayesVRNN 64 - ReLu
DenseFlipout 16 - ReLu
DenseFlipout 2 -

The results for the health indicator prediction are shown in figure 5.25, in which it can
be seen that the proposed model is capable of identifying and accurately predict the
bearing health indicator, it is important to note that the standard deviation in almost
all the test examples involves the actual result, which is a good indicator to say that
the model is capable of quantifying uncertainty in an accurate way.
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(a) Comparison between real and predicted RUL in WTG data
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Figure 5.25: RUL Prediction for VRNN architecture on WTG dataset,
image (a) is a full comparison between the real and predicted RUL,
while figures (b), (c) and (d) are the probability distribution predicted
for the sample 100, 400 and 800 respectively.

As seen in figure 5.26, the behavior of the loss function is as expected, that is, both
functions stabilize after 6000 epochs and this means that there is a correct regularization
of the network, together with a good quantification of the model uncertainty .
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Figure 5.26: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for WTG dataset.

As seen in the previous figure, there is a slight overfit at the time of training, however,
this is not significant considering the results finally obtained with this model.

Bayes JaNet: Below, are the optimized parameters for the Conv-Bayes JaNet network
in table 5.10, the network scheme is the same as in figure 5.24.

Table 5.10: Conv-Bayes VRNN parameters

Layer Neurons/Units/Filters Kernel Activation Function
Conv2D 32 [1,2] ReLu
Conv2D 64 [1,2] ReLu
Bayes JaNet 64 - ReLu
DenseFlipout 16 - ReLu
DenseFlipout 2 -

As seen in figure 5.27, the results for this architecture are better than those previously
presented for the Conv-Bayes VRNN network, however, in both cases it can be seen
that the model is able to accurately predict bearing degradation by delivering. Thus,
a health indicator directly related with the operational condition of the bearing is
predicted by the developed models.
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Figure 5.27: RUL Prediction for JaNet architecture on WTG dataset,
image (a) is a full comparison between the real and predicted RUL,
while figures (b), (c) and (d) are the probability distribution predicted
for the sample 100, 400 and 500 respectively.

In figure 5.28 it can be seen that the behavior is similar to the one seen previously in
figure 5.26, so the pertinent observations are explained in the previous item.
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Figure 5.28: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for WTG dataset.

It is important to emphasize that given the nature of the data, where it considers only one
failure, the separation between the train-test sets is random with a radius of 33% as explained
above. This, however, could contemplate certain complications, since the model is capable of
predicting behavior only for this type of failure, it is possible that under different conditions
the model cannot predict an accurate health indicator, however, to generalize it, a larger set
of failures are required.

A summary with the RMSE results obtained for three iterations of each of the developed
models is presented below in table 5.11.

Table 5.11: RMSE for all the iterations in WTG dataset.

Iteration Conv Bayes-VRNN Conv Bayes-JaNet
1 10.25 8.53
2 10.97 9.11
3 10.01 9.26
Mean (STD) 10.41 (0.40) 8.96 (0.31)
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5.3. Health Indicator Prediction in Cracks
For this dataset, the main objective is to determine the remaining useful life of metal parts

subjected to cyclic loads. This dataset is obtained through a series of experiments developed
by the University of Maryland.

5.3.1. Data Description
The experimental processes developed consist of the collection of three dissipative ener-

gies; deformation energy, heat dissipation and acoustic emission. Each dissipative energy data
was converted to damage-representing entropy. Particularly, classical thermodynamic entropy
is used as the reference damage measure and used to assess the performance of the other two
entropic approaches.[46]

Crack length and cycle life measurements are used to determine the moment of failure,
the failure point in crack length is determined differently at initiation, 250 µm crack, 500 µm
crack, 1000 µm crack, the transition from region II to III (following linear elastic fracture
mechanics (LEFM) [1]), and fracture. These failure determinations are used in each entropic
approach’s assessment [46].

The mechanical and chemical properties of the specimen used for this dataset is shown
below in table 5.12. The dogbone-shape for the specimen was selected and designed for fati-
gue testing under the ASTM 466 guideline [11].

Table 5.12: Mechanical properties and chemical composition of speci-
men material SS304L.

Mechanical Properties
σuts σyield Elongation[%] Hardness[RB]
613.8 325.7 54.06 85.00

Chemical Composition
C Cr Cu Mn Mo N Ni P S Si

0.024 18.06 0.366 1.77 0.294 0.071 8.08 0.030 0.001 0.193

In the uniaxial loading test, a servo-hydraulic testing system was used. An Instron 8800
system retrofitted on an MTS 311.11 frame, the specimens are clamped from its upper and
lower end, at the lower end the actuator is connected so the cyclical forces are applied at this
point. The loading conditions belong to the range 9 ∼ 15 [kN], the stress ratio corresponds to
0.1 and the frequency is 5 [Hz]. Every 1000 cycles the load is paused and 500 excitation cycles
are applied at 25 [Hz] and 6 [kN]. After each period of charge and excitation, the sample
remains at rest for a period of two minutes to allow the sample to cool and the measurements
are not disturbed.

The loading and extension data was collected by the Instron 8800 system, the acoustic
data was collected from two Physical Acoustics Micro-30s resonant sensors and the crack
length was measured by a microscope system (Edmond 2.5-10X microscope body combined
with OptixCam Pinnacle Series CCD digital camera).
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5.3.2. Data Preparation
The preprocessing used for this dataset is similar to the one seen previously for the

CMAPSS dataset, that is to say, for this dataset characteristics were extracted for each of
the measurements. This means that the remnant useful life of the last time-step is used to
generate the labels of the temporary window, as it can be seen in figure 5.2. However, since
there are very high remaining useful life times, for this dataset each remaining useful life time
is normalized with respect to the fault to which it belongs, thus obtaining a health indicator
that varies between zero and one hundred, where one hundred means that the equipment is
in an optimal state of health and zero corresponds to the failure.

In order to not have test-train contamination, seven random failures are extracted from
the dataset to be used to test the model, while the others are used for training, so in a
real case, the model will be able to predict the life time useful of a sample under the same
experimental conditions.

5.3.3. Results and Discussion
The results for the two architectures studied in this work are presented below. The para-

meters for the optimizations of both networks were obtained through a grid search, the time
necessary for the stabilization of the models is 2000, the batch size is 1000, the number of
samples used to obtain the output distributions is 100, and the KL divergence regulator is
1− 7.

Bayes VRNN: The results obtained for the VRNN architecture are presented in figure
5.29 in which it can be seen that the network is capable of predicting the behavior
of all failures independently, however, in the last failure the network is not capable of
correctly determine the point of degradation, this may be due to the simplification of
the labeling process or to a lack of optimization in the model.
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Figure 5.29: Health Indicator Prediction for VRNN architecture on
Maryland Cracks dataset, image (a) is a full comparison between the
real and predicted Health Indicator, while figures (b), (c) and (d) are
the probability distribution predicted for the sample 100, 200 and 300
respectively.

The network training process is visualized in figure 5.29 in which the behavior turns
out to be as expected, ending with a stabilization of the log-likelihood and a decreasing
behavior in the KL divergence, which means that the proposed distribution approaches
the prior while the predicted values approach the actual values..
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Figure 5.30: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for Cracks dataset.

The figures below show detailed images of the predicted health indicator in the test set,
in these figures, it can be distinguished the predictive capacity of the health indicator
of the proposed model.
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Figure 5.31: Health indicatior prediction for every sample in test set
for VRNN architecture on Maryland Cracks dataset.

As can be seen in the previously illustrated figures, the health indicator obtained by
the VRNN architecture is able to distinguish the degradation process in the cracks,
however, in some cracks the predictions are far from the real value. This may be mainly
due to unforeseen failures in the sample corresponding to the crack studied.s.

Bayes JaNet: The results obtained for the architecture corresponding to the JaNet cells
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are illustrated below, in figure 5.32. The model proposed, like in the previous item, is
capable of predicting the behavior of the dataset, which means that this model can
predict the Health Indicator of the sample.
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Figure 5.32: Health indicator prediction for JaNet architecture on
Maryland Cracks dataset, image (a) is a full comparison between the
real and predicted RUL, while figures (b), (c) and (d) are the proba-
bility distributions predicted for the sample 100, 200 and 300 respec-
tively.

The behavior of the cost function is the same as in the previous case. This can be seen
in figure 5.33.
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Figure 5.33: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for Cracks dataset.

A detail of the failures studied in the test set is presented below, the results for the pre-
diction of low Health Indicator is much better than for the larger ones, again, this is due
to the number of samples present in the training set that have similar characteristics.
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Figure 5.34: Health indicator prediction for every sample in test set for
JaNet architecture on Maryland Cracks dataset.

The errors in the predictions of the Bayes JaNet architecture are similar to those studied
for the previous model, and are mainly due to unexpected failures within the samples
studied.

A summary with the RMSE results obtained for three iterations of each of the developed
models is presented below in Table 5.13.
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Table 5.13: RMSE for all the iterations in Maryland Cracks dataset.

Iteration Bayes-VRNN Bayes-JaNet
1 20.20 19.64
2 20.20 19.38
3 19.58 19.32
Mean (STD) 19.99 (0.29) 19.45 (0.18)
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5.4. Health State Diagnosis Bearings: University of Ot-
tawa

In this section, free access dataset of vibrating bearings of Univesity of Ottawa is studied.
The fist part of this section explains the content of the dataset followed by a section about
the preproccesing of the data. Finally, the results and discussion of the prediction of the
health state of the data is presented.

5.4.1. Data Description
The experiments are performed on a SpectraQuest machinery fault simulator (MFS-

PK5M) ilustrated in figure 5.35. The shaft is driven by a motor and the rotational speed
is controlled by an AC drive. Two ER16K ball bearings are installed to support the shaft, the
left one is a healthy bearing and the right one is the experimental bearing, which is replaced
by bearings of different health conditions [18].

Figure 5.35: Experimental Setup for the vibrational data of University
of Ottawa.[18]

The sensors located at the set up are an accelerometer (ICP accelerometer, Model 623C01)
and an incremental encoder (EPC model 775).

In the experiments, two signals are obtained for the sensors, and both signals are sampled
at 200.000 Hz in 10 second periods. The final dataset consists in 36 experiments, for each
one there are two experiment settings: the bearing health condition, and varying the speed
condition. The health conditions includes healthy, faulty with an inner race defect, faulty
with an outer race defect, and multiple failures. The operating rotational speed condition are
increasing speed, decreasing speed, increasing, then decreasing speed and decreasing, then
increasing speed.
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Table 5.14: Parameters of Bearings

Bearing type Pitch diameter Ball diameter Number of balls BPFI BPFO
ER16K 38.52 mm 7.94 mm 9 5.43fr 3.57fr

The main problem in PHM context is to diagnose the health state of the bearings, this
means that the problem is a classification type problem, and the classes in this case are the
five health states explained above.

Table 5.15: Dataset Format

Bearing Health conditions Speed Varying Conditions

Increasing
speed

Decreasing
speed

Increasing
then decreasing
speed

Decreasing
then increasing
speed

Healthy
H-A-1
H-A-2
H-A-3

H-B-1
H-B-2
H-B-3

H-C-1
H-C-2
H-C-3

H-D-1
H-D-2
H-D-3

Faulty
(inner race fault)

I-A-1
I-A-2
I-A-3

I-B-1
I-B-2
I-B-3

I-C-1
I-C-2
I-C-3

I-D-1
I-D-2
I-D-3

Faulty
(outter race fault)

O-A-1
O-A-2
O-A-3

O-B-1
O-B-2
O-B-3

O-C-1
O-C-2
O-C-3

O-D-1
O-D-2
O-D-3

Faulty
(ball fault)

B-A-1
B-A-2
B-A-3

B-B-1
B-B-2
B-B-3

B-C-1
B-C-2
B-C-3

B-D-1
B-D-2
B-D-3

Faulty
(combinated faults)

C-A-1
C-A-2
C-A-3

C-B-1
C-B-2
C-B-3

C-C-1
C-C-2
C-C-3

C-D-1
C-D-2
C-D-3

5.4.2. Data Preparation
To use this data in the model proposed for this work, it is necessary to reshape the data

for a recurrent neural network, this means that the order of the data must be data-size,
time-steps, features, which means that every data point must consist in a temporally serie
with one or more features, to get more information about the signals, in this work a set of
characteristics are obtained from the signal.

For the preprocessing of this dataset, the first step is to separate the data for sample,
which means that every file contains 10 seconds of bearing measurements in one operational
condition, for each file it is necessary to cut the signal into batches to get features (feature
bacth). After this process is applied on each file from every feature batch, it is possible to get
all the different features mentioned below: mean, peak, peak to peak distance, crest factor,
root mean square, variance, skewness, kurtosis, first five moments, and the first five band
frequencies. Each of these features are calculated for the raw signal, the derivative from the
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signal and the integral of the signal, providing a total of 57 features for each signal. A scheme
of this process is shown in figure 5.36.
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Figure 5.36: Preprocessing Scheme for feature batches in Ottawa Bea-
rings

where fi,j(xk) is the feature i obtained in the column j of the data batch k. It is also
important to note that this process of feature extraction is useful in this case because of the
large amount of data, however, the data reduction caused by the application of this method
is not negligible.

After the dataset is transformed into the feature dataset, it is necessary to define a time-
step to fully complete the requirements of the recurrent networks, for this, every data point
between certain time interval is grouped into a temporal batch, with this, the data is able to
be used in the proposed model.
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Figure 5.37: Scheme for the final step of preprocessing od WTG Data
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The selection of the size of the feature batch and the time-step size it is not a random
choice, these values are calculated based on the minimum rotation speed of the bearings, that
is, the total size of each temporary batch is such that the bearing with the lowest rotation
speed is capable of advancing half a revolution, the final value for both values is 50 data
points, this means that 2500 data points are necessary to get one temporary batch, this is
0.0125[s].

Summarizing, to work this dataset, two processes are applied to the data, and in both
of them the amount of data is reduced by the size of the feature batch, and by the size of
the time-step, specifically, the initial amount of data is 4000000 data points, after the first
process of feature batches, the remaining amount of data point is 80000, and finally after the
preprocess for recurrent networks, the final amount of data points is 16000.

To avoid train-test contamination, the files corresponding to the health states and ope-
rating conditions remained separate in each process, this is important because in this way,
the labels of each point remains in the file and tagging files doesn’t become a problem. Since
there were three tests for each operating condition, the final dataset was separated into three,
where two of the three parts of the dataset were used to train the models, and the last one
was used to test the model, this process was done in such a way that the three tests of the
bearings could be evaluated in the testing phase of the model.

5.4.3. Results and Discussion
This problem corresponds to a classification task, so the trained distribution is not the

same as the one trained previously, the distribution in this case is a categorical distribution,
which means that the number of neurons in the last layer is equal to the number of classes of
the problem, in this particular problem the categories are five, the structure of the network
is showed below:
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Figure 5.38: Scheme of a Bayesian RNN for classification task.

The same experiments are made for both recurrent cells, Bayesian Vanilla RNN and
Bayesian JaNet, the results are presented below:

Bayes VRNN:
The optimization process for Bayes RNN using VRNN as recurrent cell is done via grid
search, the final parameters used are shown in the table below:
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Table 5.16: Parameters for Bayesian VRNN in Ottawa Bearings Datset.

Layers Units/Neurons Activation Function
VRNN 64 Relu
DenseFlipout 64 Relu
DenseFlipout 5

The main result for a classification process is the confusion matrix and the accuracy.
As mentioned above, this dataset was separated according to the three tests for each of
the operating conditions, however, to avoid bias in the results, each model was iterated
three times. The results of an iteration are presented below.
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Figure 5.39: Confusion Matrix 5.39b and normalized confusion matrix
5.39a for the test-set in Ottawa Bearing Dataset using VRNN archi-
tecture.

Where bf means ball fault, ht means healthy, if means inner fault, mf means multiple
faults and ot means outer fault.

As it can be seen in figure 5.39 the accuracy for this iteration is over 97 % ,furthermo-
re, it can be seen that in all the categories the accuracy is very similar, so it could be
said that the proposed model is able to generalize the structure of the data and thus,
accurately correlating it with a category.

In the case of a classification task, the visualization of the uncertainty of the model is
not as direct as in the case of a regression, in order to visualize it in this case, a sample
of the test set was extracted for a value of each class chosen randomly. As it can be
seen in figure 5.40, the model does not always classify data with the same category, this
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is because in some cases, the network is not robust enough to choose a single category
for a sample.

Figure 5.40: Distribution for the results in VRNN model for Ottawa
Bearing dataset.

The evolution of the loss function for the training of this network is illustrated in figure
5.41 in which it can be seen that both terms in the cost function decrease, which means
that the model is properly regulated and that it converged.
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Figure 5.41: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for Ottawa Dataset.
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Bayes JaNet:
The parameters used for this network are similar to those presented in table 5.16 and
were obtained through a grid search, the confusion matrices for this architecture are
presented below.
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Figure 5.42: Confusion Matrix 5.42b and normalized confusion matrix
5.42a for the test-set in Ottawa Bearing Dataset using JaNet architec-
ture.

the results obtained with this architecture are outstanding, achieving an accuracy of
97.48% implies that this model is capable of correctly classify almost all the examples
in the test set. As seen in figure 5.40 the model is rarely confused or chooses a different
class than the correct one.
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Figure 5.43: Distribution for the results in JaNet model for Ottawa
Bearing dataset.

The behavior of the loss function illustrated in figure 5.44 is the same as in the case of
the VRNN explained in the previous item.
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Figure 5.44: Log Likelihood and Kullback-Leibler in Bayes JaNet trai-
ning for Ottawa Dataset.

As it can be seen in figures 5.39 and 5.42, the results for this classification of data are excellent,
the general results for the three test sets and the three iterations of each are presented in the
tables below.
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Table 5.17: Result for every iteration and dataset for VRNN architec-
ture in Ottawa Bearings Dataset.

VRNN
Accuracy [%]

Iteration 1 2 3 Mean
Data_1 90,61 90.65 91,08 91,31
Data_2 96.30 97,30 96.85 96,81
Data_3 93.18 93.65 94.15 93.66

Table 5.18: Result for every iteration and dataset for JaNet architecture
in Ottawa Bearings Dataset.

JaNet
Accuracy [%]

Iteration 1 2 3 Mean
Data_1 91.06 92.03 91.30 91.46
Data_2 97.40 97.48 97.10 97.32
Data_3 94.45 94.75 94.90 94.70

Finally, as distinguished from the previously illustrated results, the model that is best able
to predict the behavior of the data, thus giving a better categorization, is the model based on
the JaNet cell, however, both, Bayes JaNet and Bayes VRNN models present excellent results
in this dataset. The main advantage of these models compared to the frequentist models, lies
in the interpretation of the model, for example, in the case of a frequentist network, when
entering a given data into the network, the model will always deliver the same result, being
able to be wrong, however, the model developed in this work, being able to quantify its
own uncertainty, can show more than one classification, which allows to interpret the values
delivered by the network and thus make more pertinent decisions.
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5.5. Politecnico di Torino rolling bearing test rig
In this section, rolling bearing test rig is studied in order to diagnose the health state

of high speed aeronautical bearings whose accelerometric acquisitions at variable rotational
speed, radial load and damage level, together with temperature measurements, are being
made available as open access data.

The objective of using this dataset is to use the proposal model for classification in PHM
context.

5.5.1. Data Description
The test rig depicted in figure 5.45 consists in high speed spindle, driving the rotation of

a shaft. The bearings of the spindle are grease lubricated and their temperature is limited
by a liquid (glycol/water) refrigeration circuit, the speed of the spindle is setted by a control
system, but the spindle has no keyphasor transducer or tachometer to detect its actual speed
and there is no feedback for the controller of the inverter. As consequence, the speed of the
shaft is always lower than the ideal one. [8]

Figure 5.45: The test rig a) general view of the test rig; b) positions of
the two accelerometers and the reference system; c) the shaft with its
three roller bearings.[8]

The three bearings are put together in the spindle, the outer bearings are identical and
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the inner rings of the three bearings are connected by a very short and thick hollow shaft
designed to speed up to 3600 [rpm].

The main properties of the external bearings (B1 & B3) and the center bearing (B2) are
shown below:

Table 5.19: Properties of the bearings in test rig

Pitch diameter
D (mm)

Rollers diameter
d (mm) Contact angle (φ) Rolling elements Z

B1 & B3 40.5 9.0 0 10
B2 54.0 8.0 0 16

Two types of experiments are performed for the dataset, in the first one, the accelerations
are relative to the bearings with different damages running at different speeds and under
different loads, and the second reports the behavior of a single damaged bearing undergoing
a long (about 330 [h]) test at constant speed and load.

The table for the different health conditions of the bearings is shown below:

Table 5.20: Health state on Politecnico di Torino’s bearings

Name Defect Dimension (µ)
C0A No defect –

C1A Diameter of an indentation
on the inner ring 450

C2A Diameter of an indentation
on the inner ring 250

C3A Diameter of an indentation
on the inner ring 150

C4A Diameter of an indentation
on a roller 450

C5A Diameter of an indentation
on a roller 250

C6A Diameter of an indentation
on a roller 150

The testing process of every bearing is illustrated below:

A brief run at the minimum speed (100 [Hz]) and no load, so to check the correct
mounting.

Application of the static load: at first 1000[ N ], then 1400 [N ] and finally 1800 [N ].

Increment of the speed of the shaft from 0[ Hz] to 500 [Hz] with steps of 100 [Hz].

Measurement of the accelerations as soon as a steady speed of the shaft was reached.
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The measurements taken from the experiments are shown below in table 5.21.

Table 5.21: Direction of the measured accelerations

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6
Direction Axial, X Axial, Y Axial, Z Radial, Z Radial, Y Radial, X

5.5.2. Data Preparation
The preprocessing of the data is the same as the one used in subsection 5.4.2 i.e. the first

step to operate this data is to obtain feature data from the feature batches, as it is show in
figure 5.36, then this feature data is treated as shown in figure 5.37 to obtain the final data
for the input of recurrent neural networks, the difference between this processes is that the
feature batch size in this case is 300 and the time step is 50.

As the files in the data remain separated through the prepossessing, for test-train division,
two files are removed for testing and the remaining files are used for training, this means that
15 % of the dataset is used for testing purposes and 85 % of the dataset is used for training
the model.

Before the training-testing process, training data is normalized using a min-max scaler,
after the scaler is trained using training data, the test data is normalized using the scaler
previously trained.

The training-testing process in this case is running eleven times to ensure that every file
is used for testing at least once.

5.5.3. Results and Discussion
The problem relevant to the dataset previously studied corresponds to a classification

or diagnosis of the state of health of the bearings, this classification contains seven classes
previously explained in the 5.5.2 subsection, therefore, the type of network used for the reso-
lution of this problem is similar to the one in figure 5.38 but instead of having five elements
in the output, there are seven.

The number of epochs necessary for the convergence of the solution to this problem is 400,
the KL divergence regulator has a value of 1e− 4 and the batch size used is 800. Finally, the
number of samples extracted from the model for the generation of the output distributions
is 100.

The results obtained for the two architectures studied are presented below.

Bayes VRNN:
The optimization process for Bayes RNN using VRNN as recurrent cell is done via grid
search, the result of this grid search is shown on table below:
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Table 5.22: Parameters for Bayesian VRNN in Torino Bearings Datset.

Layers Units/Neurons Activation Function
VRNN 64 Relu
DenseFlipout 64 Relu
DenseFlipout 5

Using these parameters and the previously explained configurations, the results obtai-
ned are illustrated in figure 5.46.
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Figure 5.46: Confusion Matrix 5.46b and normalized confusion matrix
5.46a for Politecnico di Torino Bearing Dataset using VRNN architec-
ture.

The results for the B-VRNN network conclude with an accuracy of around 91%, which
means that the model used is capable of accurately recognize the characteristics of the
examples provided, and using them to predict their condition.
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Figure 5.47: Log Likelihood and Kullback-Leibler in Bayes VRNN trai-
ning for Politecnico di Torino Bearing Dataset.

In this case again both terms of the loss function decrease, as seen in figure 5.47 the
term of the log likelihood stabilizes while the term of the KL divergence only decreases,
this tells us that despite the proposed distribution (q(z|θ)) gets closer and closer to the
prior distribution of weights (p(z)) the results do not improve.

Bayes JaNet:
The optimization process for this network is the same that in the previous item and
the values are similar to those illustrated in table 5.22.
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Figure 5.48: Confusion Matrix 5.48b and normalized confusion matrix
5.48a for Politecnico di Torino Bearing Dataset using JaNet architec-
ture.

The studies carried out for this model show that it has a better generalization capa-
city than the previous model, despite having a similar behavior, this, besides meaning
that this architecture has a good generalization capacity for this dataset, it could also
signify that the data is not complex enough to represent a challenge for the proposed
neural network, however, this serves to demonstrate the efficiency of the algorithm for
classification tasks.
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Figure 5.49: Log Likelihood and Kullback-Leibler in Bayes JaNet trai-
ning for Politecnico di Torino Bearing Dataset.

The behavior of the cost function is similar to the previous case illustrated in the figure
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5.47

To visualize the uncertainty in this case, the image below is presented, where it is
seen that even when the network is always able to correctly classify the data, in some
samples it distinguishes that they could belong to another class.

Figure 5.50: Distribution for the results in JaNet model for Politecnico
di Torino Bearing dataset.

In the paper that describes the dataset studied above, the confusion matrices illustrated
in figure 5.51 are presented, which despite of having worse results than those studied in this
paper, the prediction was made with a less complex algorithm (linear discriminant analysis).
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Figure 5.51: LDA confusion matrices in rounded percentages by rows
[8].

The most remarkable results in this dataset are the ability of the algorithm developed
to predict the health condition of the bearings, together with the ability to determine the
uncertainty.
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Chapter 6

Concluding Remarks

In this work, Bayesian dense layers are wrapped into Recurrent Neural Networks to propo-
se Bayesian recurrent neural networks for prognosis of remaining useful life (RUL) and health
state diagnosis in mechanical equipment. This is a major advantage over the frequentist ap-
proach of machine learning since it is possible to quantify uncertainty, which is achieved by
outputting a distribution unlike a single number in frequentist networks.

The Bayesian VRNN and JaNet models developed is validated with state of the art per-
formance in the C-MAPSS dataset, where it outperforms other models (MODBNE, DCNN,
DLSTM, AdaBN-CNN) in the most difficult sub datasets (FD002 and FD004), which ha-
ve multiple operational conditions and more examples than the most simple sub datasets
(FD001 and FD003), encouraging the scalability with data complexity and dimensionality.

The models are also tested in four different datasets in which it has proven its efficiency
to determine the remaining useful life and the health condition of different mechanical equip-
ment. In each of these datasets, the model presents outstanding results, which proves its
usefulness not only in simulated data.

In addition to showing highly accurate predictions, the proposed model is able to de-
termine uncertainty, unlike the models previously presented. This ability to determine the
uncertainty in the remaining useful life and in the health state of the equipment can be used
to make decisions incurring a lower risk of premature failure.

The work presented above, allows to declare that recurrent Bayesian neural networks are
a useful and efficient tool in the context of prognostics and health management that allows
decisions to be made with a more detailed level of information in order to avoid damage in
mechanical equipment.
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