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MULTI-OUTPUT GAUSSIAN PROCESS TOOLKIT WITH SPARSE FORMULATION
FOR SPECTRAL KERNELS

En modelos Bayesianos no paramétricos, los procesos Gaussianos (GP) [1] son un pilar en
los problemas de regresión, los cuales se benefician de la estadística Bayesiana, mostrando
propiedades atractivas, tales como ser un prior conjugado para la verosimilitud Gaussiana. Su
extensión multivariada, los procesos Gaussianos con múltiples canales o salidas (MOGP) [2],
apunta a incorporar información entre canales, tanto para inferencia como para predicción,
para fenómenos multivariados acoplados.

Ambos tipos de GP, unicanal como multicanal están completamente determinados por su
función de covarianza o kernel, que en el caso de MOGP es una función a valores matriciales.
En este contexto, el mayor desafío al diseñar funciones de covarianza emerge en el balance
entre generalización, es decir, el considerar una familia amplia de kernels, y al mismo tiempo
mantener la condición de ser simétrico y definido positivo. una práctica común en el diseño
de kernels se basa en combinarlos entre ellos, empleando operaciones como suma, producto
o composición. Otra alternativa es el diseño de kernels a través de su representación espec-
tral, siendo ejemplos de esto el kernel Spectral Mixture (SM) [3] para el caso unicanal, y el
recientemente propuesto kernel Multi-Output Spectral Mixture (MOSM) [4] para multicanal.

El propósito principal de esta tesis es revisitar y extender el modelo MOSM, considerando
sus principales desventajas para que este pueda ser aplicado como un modelo multicanal de
propósito general. En este contexto, las principales contribuciones de este trabajo son las
siguientes: primero, abordamos la indeseada escalabilidad del modelo para conjuntos de datos
grandes, empleando aproximaciones sparse conocidas, proponiendo variables inducivas que
aprovechan de mejor forma la estructura del kernel. Segundo, mejoramos en entrenamiento
mediante el uso de heurísticas basadas en los datos disponibles, para encontrar puntos iniciales
que beneficien el proceso de optimización. Tercero, para los casos en que los canales no están
correlacionados, en los cuales puede ocurrir una transferencia negativa de información, la cual
empeora la predicción, proponemos una version restringida del kernel MOSM (R-MOSM),
y la complementamos usando priors regularizadores en los pesos de cada componente del
kernel, ayudando a mitigar la transferencia negativa de información. Por último, la cuarta
contribución de esta tesis consiste en un kit de herramientas de código abierto para MOGP,
que incluye MOSM y las extensiones propuestas, además de otros kernels usados previamente
en la literatura. Este kit de herramientas es llamado Multi-Output Gaussian Process Toolkit
(MOGPTK), y fue escrito en Python, usando como base TensorFlow y GPflow.

Estas contribuciones son validadas experimentalmente usando MOGPTK [5], en conjuntos
de datos multicanal de finanzas, robótica y clima.
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MULTI-OUTPUT GAUSSIAN PROCESS TOOLKIT WITH SPARSE FORMULATION
FOR SPECTRAL KERNELS

In Bayesian non-parametrics, Gaussian processes (GP) [1] are a staple in the regression
problem which, benefiting from the Bayesian machinery, features appealing properties such
as being a conjugate prior to the Gaussian likelihood. Its multivariate extension, the Multi-
Output Gaussian Process (MOGP) [2], aims to incorporate information across outputs, both
for inference and prediction, for coupled multivariate phenomena.

Both single-output and multi-output GP are entirely determined by the covariance func-
tion or kernel, which in the case of MOGP is a matrix-valued function. The main challenge
when designing covariance functions stems from the trade-off between generality, i.e., cater-
ing for a broad class of kernels, while maintaining the positive-definiteness condition of the
symmetric covariance. A common practice to kernel design is to combine kernels though,
e.g., sums, products or composition. Another alternative to kernel design is though their
spectral representation, as done by the Spectral Mixture (SM) kernel [3] for single output,
and the recently proposed Multi-Output Spectral Mixture (MOSM) [4].

The main purpose of this thesis is to revisit and extend the MOSM model, addressing its
main drawbacks so that it can be applied as a general-purpose multichannel model. In this
context, the contributions of this thesis are four-fold: first, we address the poor scalability of
the model for large datasets by employing known sparse approximations, and propose a set
of inducing variables which better use the structure of the kernel. Second, we improve model
training by defining data-driven heuristics for the initial point in the optimization. Third,
for the cases where the channels are not correlated, and thus negative transfer of knowledge
can worsen predictions, we propose a restricted version of the MOSM (R-MOSM) kernel
and complement it with a regularising priors on the component weights to help mitigate the
negative transfer. Lastly, the fourth contribution of this thesis is an open-source toolbox for
MOGPs, which includes MOSM, other kernels, and the proposed extensions. This toolbox
is called the Multi-Output Gaussian Process Toolkit (MOGPTK) and is written in Python
with a TensorFlow/GPflow backend.

These contributions are validated experimentally using MOGPTK [5], on multichannel
datasets from finance, robotics, climate.
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Introduction

The regression problem is a cornerstone in machine learning, where the aim is to estimate
the relationship between an output, denoted the dependent variable, and inputs, denoted
the independent variable. This relationship is often estimated choosing a family of models
from which a member is selected, members of said family can be determined by a finite
set of parameters, in which case are denoted parametric models, whereas when the number
of parameters is infinite or not a fixed quantity, are denoted non-parametric models. The
input, often of an arbitrary dimension, can comprise a wide range of quantities, although
the most commons are time and/or space, in contrast, the output is usually scalar-valued,
this is referred as univariate regression, although the setting can be expanded to handle
multiple outputs, where it is called multivariate regression, where in both cases the value
which represents the outputs depends on the application.

By a Bayesian standpoint, an approach to the estimation problem is accomplished by
defining (i) a prior distribution over the members of the family, which encapsulates the
knowledge before incorporating the observed data, acting as a regulariser as well, (ii) a
likelihood function, which when evaluated on a member, can be interpreted on how likely it
is that the given model could have generated the observed data. Then, by using the Bayesian
formalism, both the prior and the likelihood are used to obtain a (iii) posterior distribution
over the family of models, this quantity can be interpreted as how the distribution over
the family behaves after observing the data, this posterior can be used for estimation and
forecasting. Within this context, Gaussian processes (GP) [1], have appealing qualities such
as a closure of the posterior distribution under a Gaussian data likelihood, and have been
widely used in regression, by employing a GP prior over continuous functions.

The behaviour of a GP is completely codified by a mean (usually assumed zero) and
a covariance function commonly referred to as kernel, the elegance of the GP framework
then comes from its ability to use different kernels and control the behaviour of the process,
where the challenge of using GP flourish amidst designing a broad-class of kernels, whilst
still maintaining the positive-definiteness of the symmetric covariance kernel. A common
approach is to construct kernels utilising expert knowledge and incorporate it by operating
different kernels, by summing, multiplying, or composing them, however, by exploiting the
spectral (Fourier) representation of a kernel via the Bochner theorem [6], new covariance
functions can be created, as designing kernels in the frequency domain is less restrictive than
in the original input domain, a prime example of this for single output is the Spectral Mixture
Kernel [3].
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Moreover, the GP framework can be extended to handle multiple outputs, this is known
as a Multi-Output Gaussian Process (MOGP) [2] which, by jointly modelling the outputs,
is able the incorporate the information across-outputs, potentially improving the estimation.
The kernel in this case becomes a vector-valued function, where the entries must model
the covariance and cross-covariance among output, this further increases the challenge in
designing flexible kernels, as designing cross-covariance kernels is difficult.

Previous approaches to MOGP [7, 2, 8] are based on linear combinations of latent factors,
consisting in independent Gaussian processes, such approaches do not allow for flexibility
in each output, as each latent factor has a unique set of parameters which is shared across
all channels, and also all cross-covariances are symmetric. Alternatives employing the con-
volution process have been proposed [9], which allow for a unique set of parameters for the
covariance of each output, but still suffers from having symmetric cross-covariances, in [10]
a model with asymmetric cross-covariances is defined, but still is a linear combination of
latent factors. The recently proposed Multi-Output Spectral Mixture (MOSM) [4] tackles
this by designing a flexible family of multi-output kernels in the spectral domain, using the
multivariate version of Bochner’s theorem, Cramér’s Theorem [11].

By considering the work of “Spectral Mixture Kernels for Multi-Output Gaussian Pro-
cesses” (Advances in Neural Information Processing Systems, 2017 [4]), the main purpose of
this thesis is to revisit and expand the previously proposed MOSM model, understanding the
formulation of the kernel, identifying and addressing the main drawbacks of MOSM: (i) the
scalability issues for large datasets, (ii) difficulty in training due to sensibility to initial point
in the optimisation, (iii) hindering in the prediction in the presence of uncorrelated chan-
nels, and (iv) lack of available implementations of MOSM and other MOGP models. This is
achieved by first examining the formulation of the kernel. Second, integrating current sparse
GP approximations and proposing a type of inducing variables which better use the spectral
structure of MOSM. Third, designing data-driven initialisations of the initial points previous
to optimisation. Fourth, propose a regularised version of the MOSM kernel to mitigate the
transfer of information when outputs are not correlated. And lastly, constructing a python
toolkit which encapsulates all the previously mentioned work.

The outline of the work is the following: Chapter 1 reviews the relevant background of
MOGP, starting from single-output GP, passing through MOGP, previous approaches, and
sparse approximations for handling large datasets. Chapter 2 revisits the MOSM kernel, em-
ploying two different constructions. Chapter 3 addresses the drawbacks of MOSM using the
mentioned contributions. Chapter 4 is dedicated to validate the proposed model considering
synthetic and real-world data. Finally, the discussion and future work are in the Conclusion
Chapter.
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in press at Neurocomputing, 2020. https://arxiv.org/abs/2002.03471.

Contributions

Furthermore, the main contributions of this thesis are the following:

1. To propose initialisation methods for spectral kernels, for both single and multi-output
GP, finding initial points before the optimisation process. Detailed in section 3.2, the
proposed initialisations use a available data and the spectral representation of the kernel
to find initial estimate of the parameters.

2. To design inducing variables for MOSM, which can be incorporated in existing sparse
approximation frameworks. Detailed in section 3.1, the proposed inducing variables
arise from the latent factor construction of the kernel.

3. To propose a restricted version of MOSM (R-MOSM) kernel, detailed in section 3.3,
which in conjunction with regularising priors, helps to mitigate the negative transfer of
knowledge when uncorrelated channels are present.

4. To construct a python toolkit for multi-output GP, with implementations of previous
approaches to MOGP, as well as the MOSM kernel, along with the proposed extensions.
This is briefly discussed in section section 4.2.

5. To validate experimentally the proposed extensions of MOSM kernel, in section 4.3 the
proposed initialisations are compared against existing methods using atmospheric CO2
data, in section 4.4 the R-MOSM is compared against regular MOSM in a synthetic
dataset and in section 4.5 the proposed inducing variables are compared against existing
sparse approximations in a robotics dataset.

6. To validate the effectiveness of MOSM kernel in real-world applications, learning the
relationships among financial time series by modelling them through a MOGP. In sec-
tion 4.6 the MOSM kernel is compared against previous MOGP frameworks in two
finance datasets.
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Chapter 1

Background

In this chapter we review Gaussian process methods for regression, describing the single out-
put case and the extension to multiple outputs, we also review the construction of flexible
covariances for single output using the Fourier representation of the covariance, alongside
variational sparse approximations for handling large dataset, lastly, we review previous ap-
proaches to multi-output Gaussian process regression.

The regression problem can be seen as estimating a target function g(x), from a set of
—possibly noisy—observations of the function at the associated input, the goal is to define
a family of models which will contain the estimator, and find the member, f , of said family
whose evaluation explains the observations of the target function. This is usually done by
minimising some performance criterion, such as a measure of error between the observations
and the estimation. However, given that the objective is that the estimate should be able to
generalise over other values beyond the observations, choosing from a broad family of models
would produce multiple candidates for the estimation, so is common to add a regularisation
term in the criterion to optimise, in order to incorporate structure on the estimate, such as
smoothness or periodicity. This case when the model fits to the observations but is not able
to generalise is known as overfiting.

From a Bayesian perspective, the regression problem is tackled by choosing a prior dis-
tribution on the estimate f(x), then, in conjunction with the likelihood function for the
dataset, and using the Bayes rule of probability, a posterior distribution can be found and
used for prediction and forecasting. In this context, the prior encapsulates the knowledge of
the function previous to seeing any observations, as well as contributing a regularising effect,
preventing overfiting, the likelihood can be interpreted as how likely are the observations
to be generated from the model, finally the posterior shows the distribution of the estima-
tion after incorporating the observations, in conjunction with the prior. In this context, the
Gaussian processes capitalize on the appealing properties of Bayesian estimation, where in
the next section we formalise how the Gaussian processes form a robust, non-parametric,
non-linear regression framework.
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1.1 Gaussian Processes

A Gaussian process (GP) [1] is a non-parametric prior over functions of the form, f : X → R,
where X correspond to the input domain of the functions. Formally a Gaussian process f ,
is a collection of random variables, such that any finite collection is jointly Gaussian, said
stochastic process is completely defined by a mean and covariance function, that is,

f(x) ∼ GP (m(x), k (x, x′)) , (1.1)

where the mean function is usually assumed equal to zero, m(x) = 0, the covariance function,
also known as kernel, is parametrized in order to control structure the structure of the GP,
that is k(·, ·) = kθ(·, ·) for a set of parameters θ. Without loss of generality, from this point
forward we will assume the input space to be, X = Rp, p ∈ N.

Employing a GP prior defines a distribution over functions, considering observations of
the form, (x,y) = {(xn, yn)}Nn=1, with the points yn corresponding to observations of the
latent function f at input xn, generally contaminated with a Gaussian noise, that is,

yn = f(xn) + εn, εi ∼ N (0, σ2
ε ), (1.2)

this induces the posterior distribution p(f |y), where given the marginalisation property of
the multivariate Gaussian distribution this posterior can be in closed form. For a GP with
zero mean, and Gaussian data likelihood, the posterior p(f |y) is also a GP, where evaluating
on a single point, x∗ ∈ Rp, results in a multivariate Gaussian with mean and covariance
functions,

f(x∗)|y ∼ N
(
µ̂, Σ̂

)
(1.3)

µ̂ = kf (x∗)
> (Kff + σ2

ε I
)−1

y

Σ̂ = k(x∗,x∗)− kf (x∗)>
(
Kff + σ2

ε I
)−1

kf (x∗),

where σ2
ε is the noise variance, the matrix Kff = k(x,x) of size N ×N correspond to the

covariance of the observations, and kf (x∗) = k(x,x∗) of size N×1, to the covariance between
the observations and the function at the evaluation point.

Given a set of observations, training the model involves finding the set of kernel hyper-
parameters θ that maximises the marginal likelihood, which is likelihood of the GP of gen-
erating the observations, integrating out the function values. In practice the negative log
likelihood (NLL) is minimised, which takes the following expression of eq. (1.4),

p(y|x, θ) = log
[
N (0, Kff + σ2

ε I)
]
. (1.4)

Each evaluation requires the inversion of the matrix Kff + σ2
ε I which has a cost O(N3),

this will be the main concern when dealing with a large number of observations and main
motivation for developing sparse models.

The flexibility of GPs as a machine learning tool lies in the use of different covariance
functions, which can add structure to the model by incorporating expert-knowledge by hard
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coding effects in the kernel, such as periodicity or smoothness [1], between other effects, or by
using flexible kernels which can adapt to a wide variety of data. However, in order to define
valid covariance functions, the kernel must satisfy two conditions, it has to be (i) symmetric
and (ii) positive-definite, a kernel k : Rp × Rp → R is said to be symmetric if,

k(x, x′) = k(x′, x), ∀x, x′ ∈ Rp, (1.5)

whilst a kernel is said to be positive-definite if ∀N ∈ N, ∀ {a1, . . . , aN} ⊂ R, ∀x =
{x1, . . . , xN} ⊂ Rp then,

N∑
n,n′

anan′k(xn, xn′) ≥ 0, (1.6)

that is, the kernel is positive-definite if, for any N points the N ×N matrix given by k(x,x)
is positive-semidefinite. Maintaining this condition is one of the main challenge in the design
of new covariances, in the following section a result will be enunciated which can help fulfil
this condition while maintaining flexibility.

1.2 Spectral Representation of Covariance Kernels

A kernel is said to be stationary if it can be written in the form k(x, x′) = k(x − x′) where
(x − x′) is usually denoted τ ; as the name suggests, a stationary GP will be defined by a
stationary covariance. In this context, stationary kernels are of special interest, where the
Fourier representation of the kernel can be used to construct new covariance functions by
designing the kernel in the spectral domain via the Bochner theorem [6],

Theorem 1.1 (Bochner’s Theorem): a function k on Rp is the covariance function of a
weakly stationary random process on Rp if and only if it can be represented as,

k(τ) =

∫
Rp

eιω·τdν(ω), (1.7)

where ν is a positive finite measure and ι is the imaginary unit.

In the case that the measure ν has a density, this density is known as the spectral density
S(ω) of the covariance function, where a Fourier duality arises between the spectral density
and the kernel, given by,

S(ω) = F {k(τ)} =

∫
k(τ)e−ιω·τdτ (1.8)

k(τ) = F−1 {S(τ)} =

∫
S(ω)eιω·τdω, (1.9)

where F denotes the Fourier transform operator. This relationship is known as the Wiener-
Khintchin theorem [12] and allows to design the kernels in the spectral domain rather than
the input domain, this is specially useful, as satisfying the positiveness of the spectral density
is less restrictive than the positive definiteness of the covariance function.

6



A well-known example of a kernel designed using this theorem is the Spectral Mixture
(SM) kernel [3], where the spectral density is formulated as a weighted mixture of Q Gaussian
functions, with mixing weights aq, spectral means µq and diagonal covariance Σq, that is,

φ(ω) =

Q∑
q=1

aq
1

(2π)p/2|Σq|1/2
exp

[
−1

2
(ω − µq)>Σq(ω − µq)

]
. (1.10)

Then, in order to obtain a real-valued kernel, the density is symmetrized by taking S(ω) =
1
2
[φ(ω) + φ(−ω)], where S(ω) will be the spectral density of the kernel. Using the fact that

the Fourier transform of a Gaussian is also Gaussian, the SM kernel takes the form,

kSM(τ) =

Q∑
q=1

aq exp

[
−1

2
τ>Σqτ

]
cos(µ>q τ), (1.11)

where denoting the input dimension as p, the qth component has a mean µq = [µ
(1)
q , . . . , µ

(p)
q ] ∈

Rp, a diagonal covariance Σq = diag[σ
(1)
q , . . . , σ

(p)
q ], with σ(i)

q ∈ R+, i = {1, . . . , p} and mixing
weights aq ∈ R+. This flexible kernel is able to recover commonly used stationary covariances
functions, such as squared exponential, Matérn, rational quadratic and periodic kernels [1].

1.3 Sparse Approximations

Training the kernel parameters of a GP is often prohibitive for large datasets, given that
for the single output case, training cost is of order O(N3) with N the number of training
points, where having a dataset with a few thousand of points makes training unfeasible. This
issue is amplified when using MOGP, where having different sets of training points for each
channel further increases the required cost, where given M channels with N points each, the
training cost is O(N3M3). This problem has been tackled utilising sparse approximations,
such as the Partially independent training conditional (PITC) and Fully independent training
conditional (FITC) [13], which use a reduced number of points, often denoted pseudo-inputs
to approximate the full process, this pseudo-inputs can be either a subset of the training
inputs or entirely new values of the process, for single output GP, considering K pseudo-
inputs reduces the training cost to O(NK2).

A downside of traditional sparse methods is that they do not approximate the full model,
which can lead to overfit when optimising the inducing locations alongside the kernel pa-
rameters [14], to address this, variational methods [14] approximate the true process by
minimizing the KL divergence between the approximated process and the full GP, prevent-
ing overfit while maintaining the reduced cost. This work have been expanded to be applied
to non Gaussian likelihoods [15] and MOGP [16], moreover, recent methods allows to perform
training in even larger datasets, using stochastic variational inference [17] which allow the
training to be done employing mini batches.
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1.3.1 Variational Inference for GP

Variational inference [18] (VI), similar to Markov Chain Monte Carlo (MCMC), is an ap-
proach for approximate inference. A prominent application is in the estimation of posterior
distributions in Bayesian inference, where the target is finding the posterior distribution of
the model, conditional on the observations denoted y. Compared to MCMC relying in sam-
pling from a proposal distribution, in VI the process is realised trough optimisation, with the
main idea is to define an approximating family of variational distributions, D, from which
a member is chosen to be approximating distribution. The member is chosen within the
family, q ∈ D, such that minimises the Kullback-Leibler (KL) divergence between the true
posterior, p(f(x)|y) and the member q. Said member is denoted q∗, and satisfies the following
condition,

q∗ = argmin
q∈D

KL [q‖p(f(x)|y)] . (1.12)

However, as is the case in approximate inference, the posterior distribution cannot be eval-
uated in closed form, and thus the KL divergence will not be computable, the workaround
consist in finding an alternative objective function, which is equivalent to the KL divergence
up to a constant, this alternative is the evidence lower bound (ELBO), which is obtained by
expanding the objective KL divergence,

KL [q||p(f(x)|y)] = Eq [log q − log p(f(x)|y)] (1.13)
= −Eq [log p(y|f(x))p(f(x))− log q] + log p(y)

, −ELBO(q) + log p(y),

KL [q||p(f(x)|y)] , −ELBO(q) + log p(y) (1.14)

where the ELBO can be written as,

ELBO(q) = Eq
[
log p(y|f(x))− log

q

f(x)

]
. (1.15)

Now maximising the ELBO is equivalent to minimising the KL divergence as the evidence
p(y) is a constant. The name of the expression comes from the last row of eq. (1.13) and the
fact that KL(·) ≥ 0, where the ELBO lower-bounds the log evidence, log p(y) ≥ ELBO.

In the case of GP, the variational family is constructed considering a set of inducing-inputs
(or pseudo-inputs), z = {zi}Ki=1 which are generally in the same domain as the input of the
original GP, although other alternatives will be shown in section 3.1. Then, variational family
is constructed by selecting the vector of values, λ = {f(zi)}Ki=1, assumed to be drawn from
the same GP prior as the observations, located at the pseudo-inputs z. Then, the form of
the approximating distribution q is defined in the following manner: (i) using that the joint
approximation of the posterior can be written as, q(f(x), λ) = q(f(x)|λ)q(λ) and (ii) that
in the optimal case the variational distribution q is the same as the posterior, which can
be written jointly with the inducing variables p(f(x), λ|y) = p(f(x), λ)p(λ|y), with this we
chose the approximating distribution to have the form,

q(f(x), λ) = p(f(x)|λ)q(λ), (1.16)
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where the conditional prior p(f(x)|λ) follows eq. (1.3) but conditioning on λ, and q(λ) will
be a free-form variational distribution, which will encapsulate most of the flexibility of the
model.

In order to obtain a tractable ELBO for GPs, we condition on the the inducing variables
λ and latent function values f at the training locations x. Conditioning on λ and f , the prior
distribution of the remainder process f(x) can be written as,

p(f(x)) = p(f(x)|f , λ)p(f |λ)p(λ), (1.17)

where all the terms can be obtained, as all are either Gaussian distributions or GP,

p(λ) = N (0, k(z, z)) (1.18)
p(f |λ) = N (k(x, z)Kffλ, k(x,x)− k(x, λ)K−1

λλ k(x, λ)>) (1.19)

p(f(x)|f , λ) = GP
(
kf̃ (x)>K−1

f̃ f̃
y, k(x, x′)− kf̃ (x)>K−1

f̃ f̃
kf̃ (x

′)
)

(1.20)

where f̃ = [f , λ]>. Similarly, the approximating distribution q(f(x)) can be written as,
q(f(x)|f , λ)q(f |λ)q(λ), where using eq. (1.16) we note that q(f(x)|f , λ) and q(f |λ) are the
same as p(f(x)|f , λ) and p(f |λ) from eq. (1.18), where the only differences will be in p(λ)
and q(λ), with this, the ELBO from eq. (1.15) can be simplified, arriving at the following
expression,

ELBO(q(f(x))) = Ep(f |λ)q(λ)[log p(y|f)]− Eq(λ)

[
log

q(λ)

p(λ)

]
. (1.21)

Furthermore, if q(λ) is chosen to be a Gaussian distribution and the likelihood of the data
p(y|f(x)) is Gaussian as well, with noise variance σ2

n, then the ELBO at the optimal distri-
bution q∗, and the optimal variational member itself can be found in closed form, then the
ELBO is given by [14],

ELBO(q∗) = logN
(
y|0, Qff + σ2

nI
)
− 1

2σ2
n

Tr(Kff −Qff ), (1.22)

where Kff = k(x,x) and Qff = k(x, z)k(z, z)−1k(z,x) with the trace term act as a regulari-
sation term by subtracting the difference between the real and approximated diagonal, then
the optimal variational member q∗ has the form,

q∗(λ) = N (µ∗,Σ∗) (1.23)

Σ∗ = Kλλ

(
Kλλ + σ−2

n KλfK
T
λf

)−1
Kλλ

µ∗ = σ−2
n Σ∗K−1

λλKλfy.

Then, the approximated model can be trained by optimising the ELBO at eq. (1.22) with
respect to the inducing inputs z. In order to evaluate the approximated model, the ap-
proximated distribution q(f(x)) can be obtained by integrating out the inducing variables
λ

q(f(x)) =

∫
q(λ)q(f(x)|λ)dλ = GP

(
µ̂q(x), Σ̂q(x, x)

)
,

µ̂q =kλ(x)>K−1
λλ µ

∗

Σ̂q =k(x, x) + kλ(x)T (K−1
λλ Σ∗K−1

λλ −K
−1
λλ )kλ(x).
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The case where the data-likelihood is not Gaussian and the approximation distribution q
is necessarily chosen to be Gaussian, the optimal member cannot be found in close form,
although can be approximated using MCMC [19]. A more detailed derivation and discussion
on the variational approximation can be found in [15].

1.4 Multi-Output Gaussian Processes

Traditional GPs can only be applied onto single a scalar-valued function, making it restrictive
when the objective is to learn multiple tasks simultaneously, in which case the target function
takes the form f : Rp 7→ RM . This problem of learning multiple task in unison, is known
as multi-output learning [20] (also known as multi-task learning), and in the case of GP
it can be tackled by jointly modelling M different processes, one for each output. This in
turn involves learning multiple covariances -one for each output- and cross covariances across
pairs of outputs, when referring to output functions, the term output and channel will be
interchangeable.

A natural way to expand the GP framework to handle multiple outputs is trough a Multi-
output Gaussian process (MOGP) [21, 22, 2], which consist of an augmented model where
all the outputs are jointly modelled as a GP, and the covariance and cross covariances are
governed by a multi-output kernel. Moreover, given the M output latent functions, {fi}Mi=1,
the covariance kernel will be a matrix valued function K : Rp × Rp 7→ RM×M , where the
element (i, j) of the kernel corresponds to the covariance between outputs fi and fj, following
the notation for the (i, j) element, [K(x, x′)]ij = kij(x, x

′),

cov[fi(x), fj(x
′)] = kij(x, x

′), i, j = {1, . . . ,M}. (1.24)

Similar to the single channel case, a kernel K : Rp × Rp 7→ RM×M is said to the covariance
function of a M -output Gaussian process if: (i) is symmetric and (ii) positive-definite, where
K is symmetric if,

K(x, x′) = K(x′, x)>, ∀x, x′ ∈ R, (1.25)

and positive-definite if, ∀N ∈ N, ∀x = {xn}Nn=1 ⊂ Rp, ∀
{
{cin}Mi=1

}N
n=1
⊂ R, then,

M∑
i,j

N∑
n,n′

cincjn′kij(xn, xn′) ≥ 0, (1.26)

this can be seen as that for any N points in the function domain, the N ·M ×N ·M matrix
K(x,x) has to be positive-semidefinite. It was assumed that all channels have the same input
dimension, p, but the condition can be generalized so each output can have different input
dimension, the same can be said about the number of observations, where each channel can
have a different number of observations.

Fitting the model is akin to the single output case, consisting in finding the kernel param-
eters Θ which minimize the negative log marginal likelihood (NLL), moreover, denoting Ni

observations for channel i, the total observations of channel i by,

(Xi, Yi) =
{

(x(i)
n , y

(i)
n )
}Ni

n=1
, i = {1, . . . ,M}, (1.27)
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the noise variance for channel i by σ2
i , N̂ =

∑M
i=1 Ni the total number of observations, Y the

vector of concatenated observations, X the matrix of concatenated inputs,

Y = [y
(1)
1 , . . . , y

(1)
N1
, . . . , y

(M)
1 , . . . , y

(M)
NM

] (1.28)
= [Y1, . . . , YM ]

X = [x
(1)
1 , . . . , x

(1)
N1
, . . . , x

(M)
1 , . . . , x

(M)
NM

]

= [X1, . . . , XM ],

and the concatenated noise variances Λ = diag[σ2
1, . . . , σ

2
m]. Then, the gram matrix K(X,X′)

will be an N̂ × N̂ block matrix where each block of size Ni ×Nj will contain the covariance
between channels i, j, between all observations on said channels, and the block diagonal
contains the covariance of an output with itself. With this the NLL has the form,

NLL = − log p(Y|X,Θ) (1.29)

=
N̂

2
log 2π +

1

2
log |Kyy|+

1

2
Y>K−1

yy Y,

with Kyy = K(X,X′) + Λ. The evaluation of the model follows from the fact that any
collection of values of the process are jointly Gaussian, regardless of the channel, with this,
the posterior distribution for a single input point, x∗ ∈ Rp is given by,

f(x∗)|Y ∼ N
(
µ̂, Σ̂

)
(1.30)

µ̂ = kf (x∗)
>K−1

yy Y

Σ̂ = K(x∗, x∗)− kif (x∗)
>K−1

yy kf (x∗),

with µ̂ ∈ RM and Σ̂ ∈ RM×M , where kf (x∗) of size N ·M ×M is the covariance between the
observations and the evaluation point, that is,

kf (x∗) = K(X, x∗) (1.31)
= [k•1 (X, x∗) , . . . , k•M (X, x∗)] .

This posterior distribution resembles the single output case, but now additional cross-channel
information can be taking into account. The MOGP can also be evaluated for a single output,
where the posterior for a single channel i evaluated at the same input x∗ is given by,

fi(x∗)|Y ∼ N
(
µ̂i, Σ̂i

)
(1.32)

µ̂i = kif (x∗)
>K−1

yy Y

Σ̂i = kii(x∗, x∗)− kif (x∗)
>K−1

yy kif (x∗),

where µ̂i ∈ R, Σ̂i ∈ R1×1 and kif (x∗) = k•i(X, x∗) of size N ·M × 1.

One of the main challenges in MOGP lies in designing expressive covariances while ful-
filling the positive-definiteness condition. In the next section prior work on MOGP will be
highlighted and compared with the proposed model.
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1.5 Existing work on MOGP

The applications of multi-output learning can be traced in a wide spectrum of fields, where
a pioneer has been in the area of geostatistics, using models such as the Linear model of
corregionalization [7], where the use of MOGP it is known as cokriging. MOGP has also
been used in robotics [23] and recently in financial time series [24]. In the following section
we will contextualize previous approaches to MOGP, where in the subsequent section these
models will be shown to be a particular case of the proposed model.

1.5.1 Separable and Non-separable Kernels

Multi-output kernels generally can be classified in separable and non-separable [2], separable
kernels are such that the multi-output covariance is composed by the multiplication of a kernel
that only depend in the input variables, and a kernel that only depend of the channels. The
components of the multi-output kernels take the form,

kij(x, x
′) = k(x, x′) ka(i, j), (1.33)

where the contribution of inputs and outputs are decoupled. A common choice of the output
kernel, ka, is one that associates coefficients to each output channel, that is, ka(i, j) = aiaj,
then the multi-output kernel can be written as a base kernel multiplied by coefficients de-
pending on the output,

kij(x, x
′) = aiaj k(x, x′). (1.34)

Then, we can group the coefficients and write the multi-output kernel in matrix form,

K(x, x′) = k(x, x′) a>a (1.35)
K(x, x′) = k(x, x′)B,

where a = [a1, . . . , aM ] and B is a M ×M matrix, usually of real values, although we will
see cases with complex-valued coefficients. A generalization on this is to consider a sum of
Q kernels, kq, yielding the expression for sum of separable kernels,

K(x, x′) =

Q∑
q

kq(x, x
′)B, (1.36)

where for a set of inputs X = {xn}Nn=1 the kernel can be written as,

K(X,X) =

Q∑
q

Bq ⊗ kq(X,X), (1.37)

where ⊗ denotes the Kronecker product between matrices.

In contrast, a non-separable kernel is such that cannot be written in the form eq. (1.37)
and thus the entry (i, j) on the kernel depends on a single function which incorporates inputs
and channels,

kij(x, x
′) = k(x, x′, i, j). (1.38)
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As it will be shown, separable kernels tend to be more simple to construct and train, given
that the number of kernel parameters is reduced, only needing the base kernel parameters
and output coefficients, and the fact that the positive-definiteness is given by construction if
B = a>a, and k is valid single output kernel. In the non-separable case the flexibility comes to
the cost of no structural benefit to ensure positive-definiteness, this proposes the challenging
problem of designing flexible non-separable kernel while maintaining the positive-definiteness
condition.

In the next section, previous approaches to MOGP kernels will be briefly discussed, high-
lighting the most common models.

1.5.2 Linear Model of Corregionalization

The linear model of corregionalization (LMC) [7], models each output as a linear combination
of independent latent processes, {uq}Qq=1, where this latent processes are Gaussian processes.
Given that the linear combination of GPs is also a GP, each output takes the form,

fi(x) =

Q∑
q=1

aiquq(x), i = {1, . . . ,M}, (1.39)

where the latent processes uq, have zero mean and covariance cov[uq(x), uq′(x
′)] = δqq′kq(x, x

′),
with δqq′ , the Kronecker delta. Furthermore, some latent function can have the same ker-
nel while remaining independent, and subsequently the latent processes that share the same
covariance can be grouped together. Expressing the output functions fi as,

fi(x) =

Q∑
q=1

Rq∑
r=1

a
(r)
iq uq(x)(r), i = {1, . . . ,M}, (1.40)

where there are Q different covariances of the latent processes, with the component q having
Rq independent replicas with the same covariance. With the above characterisation of the
output functions, the covariance between outputs can be obtained and the multi-output
kernel constructed, with this, the covariance between the outputs i and j, cov[fi, fj] = kij

takes the following expression,

kij(x, x
′) =

Q∑
q=1

Rq∑
r=1

a
(r)
iq a

(r)
jq kq(x, x

′) (1.41)

=

Q∑
q=1

b
(q)
ij kq(x, x

′),

with bqij =
∑Rq

r=1 a
(r)
iq a

(r)
jq , then, we can write and expression for the covariance of the joint

process, utilising all the outputs,

K(x, x′) =

Q∑
q=1

Bqkq(x, x
′), (1.42)
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where the matrix Bq ∈ RM×M is given by [Bq]ij = b
(q)
ij , this matrix is known as corregion-

alization matrix [7], the LMC kernel follows a structure of sum of separable kernels, thus
the kernel in eq. (1.42) will be positive-definite as long as the corregionalization matrix is
positive-semidefinite and the kernels kq are valid kernels, where Bq is positive semidefinite
by definition.

1.5.3 Intrinsic Corregionalization Model

The intrinsic Corregionalization Model (ICM) [7] is a simplification of the LMC, by assuming
that elements b(q)

ij of the corregionalization matrix Bq can be written as b(q)
ij = vij bq, that is,

decouples the dependency of the outputs and the latent components, using this model, the
covariance between channels takes the form,

kij(x, x
′) = vij

Q∑
q=1

bqkq(x, x
′), (1.43)

where the joint covariance can be written as,

K(x, x′) = Υ

Q∑
q=1

bqkq(x, x
′) (1.44)

= Υ k̂(x, x′)

where Υ ∈ RM×M has entries [Υ]ij = vij and k̂ =
∑Q

q=1 bqkq. From eq. (1.44) it can be seen
as a LMC kernel with Q = 1, and as a particular case of LMC, will be a valid multi-output
kernel. As was pointed in [7], this construction is more restrictive model than LMC, where
now each component kernel kq will contribute equally to covariance and cross-covariances
between outputs.

1.5.4 Semiparametric latent factor model

The semiparametric latent factor model [25], results in a particular case of LMC obtained
when considering {Rq = 1}Qq=1, that is,

kij(x, x
′) =

Q∑
q=1

aiqajqkq(x, x
′), (1.45)

which can be written for all outputs in a similar form of sum of separable kernels of eq. (1.37)
and eq. (1.42),

K(x, x′) =

Q∑
q=1

Bqkq(x, x
′), (1.46)

where now the coefficient matrix Bq ∈ RM×M will have rank 1 and the elements are given
by [Bq]ij = aiqajq. The semiparametric latent factor model name comes from the linear
(parametric) mixing of random processes, uq, which are nonparametric GPs.
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1.5.5 Convolution Model

Previous models such as LMC are based in the idea of linear combinations of latent factors,
this can be seen as a instantaneous mixing of latent factors, as each factor uq(x), at a input
x, only affects an output fi(x), at the instant same instant x. Based on the idea of using
convolutions instead of instantaneous mixing, the convolution model [9] model each output
as the convolution of the latent factors with a smoothing kernel, that is, for outputs {fi}Mi=1,

fi(x) =

Q∑
q=1

∫
X
hiq(x− z)uq(z)dz (1.47)

=

Q∑
q=1

hiq(x)? uq(x),

where ? denotes the convolution operator. Assuming each uq independent of each other, that
is, cov[uq, uq′ ] = σ2

uqδqq′ , then the covariance between outputs takes the form,

kij(x, x
′) =

Q∑
q=1

∫
X

∫
X
hiq(x− z)hjq(x

′ − z′)kq(z, z′)dz′dz. (1.48)

Furthermore, if the latent functions, uq, are assumed to be independent white noise pro-
cesses, cov[uq(z), uq′(z

′)] = σ2
uqδqq′δ(z− z′), consequently the eq. (1.48) is reduced to just one

convolution,

kij(x, x
′) =

Q∑
q=1

σ2
uq

∫
X
hiq(x− z)hjq(x

′ − z)dz (1.49)

=

Q∑
q=1

σ2
uq

∫
X
hiq(z̃)hjq(x

′ − x+ z̃)dz̃,

=

Q∑
q=1

σ2
uq

∫
X
hiq(z̃)hjq(−(τ − z̃))dz̃,

=

Q∑
q=1

σ2
uq (hiq (τ) ? hjq (−τ)) (τ),

where z̃ = x−z and τ = x−x′, this covariance function will be stationary as it only depend on
the difference between the inputs τ . The convolution process correspond to a generalization
of LMC, where if the smoothing kernels hiq are taken to be Dirac delta function such that,
hiq(x− z) = aiqδ(x− z′) then the eq. (1.42) is recovered.

Since the framework requires the convolution to be evaluated in closed form, in [9] pro-
pose the use of Gaussian functions for smoothing kernel and the covariance of the latent
process, due to the fact that Gaussian functions are closed under convolution. With this,
the Gaussian convolution model (CONV) has a non-separable covariance function, where the
smoothing kernels are given by hiq = (2π)−p/2|Σiq|1/2e(− 1

2
x>Σiqx), and the covariance of the

15



latent processes, cov[uq, uq′ ] = kq, are given by, kq(τ) = (2π)−p/2|Σq|1/2e(− 1
2

(τ)>Σq(τ)), then,
the multi-output kernel takes the following expression,

kij(τ) =

Q∑
q=1

aiqajq
|Σijq|1/2

(2π)p/2
exp

(
−1

2
(τ)>Σijq(τ)

)
, (1.50)

where Σ−1
ijq = Σ−1

q + Σ−1
iq + Σ−1

iq . A mayor difference of CONV with separable kernels such as
LMC is that as a non-separable kernel, CONV can assign each output with different kernel
parameters, whereas in LMC, the kernel parameters of kq are shared across all outputs. As
was noted in [9], when input dimension, denoted p, has a high dimension, then normalisation
term (2π)p/2 will dominate in eq. (1.50), making the value of the kernel decay to zero, a
solution to this is scale the channels standard deviation of the kernel.

1.5.6 Cross-Spectral Mixture

The cross-spectral mixture (CSM) [10] kernel is a separable kernel, which was proposed as a
generalization on the LMC framework, allowing corregionalization matrices, B on eq. (1.42)
to take complex values, thus, being able to obtain non-symmetric cross-covariances. The
model is constructed by taking the latent factors, uq, to be a GP with spectral mixture
kernel, that is, kq follows eq. (1.11), subsequently, the corregionalization matrices, Bq are
chosen to be,

[Bq]ij =

Rq∑
r=1

√
a

(r)
iq a

(r)
jq exp(−ι(ϕ(r)

iq − ϕ
(r)
jq )), (1.51)

then, cross spectral mixture kernel is formulated as,

kij(x, x
′) = Re

{
Q∑
q=1

Bq k̃
(q)
SW (x, x′)

}
(1.52)

where k̃(q)
SM = exp

(
−1

2
τ>Σqτ + ιµ>q τ

)
is the complex-valued, non-symmetrised version of the

SM kernel of eq. (1.11), where Σq is a diagonal matrix. With this, the CSM takes the form,

kij(x, x
′) =

Q∑
q=1

Rq∑
r=1

√
a

(r)
i,q a

(r)
jq exp

(
−1

2
τ>Σqτ

)
cos
(
µ>q τ +

(
ϕ

(r)
iq − ϕ

(r)
jq

))
. (1.53)

To the best of our knowledge, this kernel is the first to incorporate non-symmetric cross-
covariances, in the form of the cross-phases, ϕ(r)

iq , this hints the construction of flexible covari-
ance functions for multi-output GP where additional to incorporating phase shifts between
channels, other variations can be added such as time delay in the input values of the kernel.
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Chapter 2

The Multi-Output Spectral Mixture
Kernel

In this chapter, the formulation of the multi-output spectral mixture kernel (MOSM) [4] will
be revisited, considering two different constructions, the first one consists in constructing a
family of Hermitian definite-positive spectral densities, in a similar way of how the SM kernel
is constructed for single output, but using the Cramér’s Theorem [11] instead, with can be
seen as the multi-output version of Bochner theorem. The second form of constructing the
MOSM kernel employs the convolution process framework, where latent factors are convolved
with filters, so that covariance of the filtered process results in the MOSM kernel.

Theorem 2.1 (Cramér’s Theorem): A family {kij(τ)}Mi,j=1 of integrable functions are the
covariance functions of a weakly-stationary multivariate stochastic process if and only if they
(i) admit the representation,

kij(τ) =

∫
Rp

eιω
>τSij(ω)dω ∀ i, j ∈ 1, . . . ,M, (2.1)

where each Sij is an integrable complex-valued function Sij : Rp → C, known as the spectral
density associated to the covariance function kij(τ), and (ii) fulfil the positive definiteness
condition,

M∑
i,j=1

aiajSij(ω) ≥ 0 ∀ {a1, . . . , aM} ⊂ C, ω ∈ Rp. (2.2)

Where similar to the Bochner theorem, from eq. (2.1) the cross-covariance kernels kij

and the corresponding spectral densities Sij are Fourier pairs, furthermore, the argument of
the kernel, τ ∈ Rp lies in the input domain of the GP, whereas the argument of the spectral
densities, ω ∈ Rp, corresponds to the frequency domain. It is also worth noting from eq. (2.2),
for any ω the evaluation of the spectral density, S(ω) = [Sij]

M
i,j=1 yields a positive-definite

M ×M matrix, and thus, said matrix will be hermitian, that is, for any ω, S(ω) = S(ω)>.

This theorem enables the construction of covariance functions in the spectral domain
rather than the input domain, where a key aspect is that the conditions to be fulfilled for
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the spectral densities in eq. (2.2) are less restrictive than the needed for the covariance in
eq. (1.26), this can be better understood when comparing to the single output case, where
positive-definiteness in the kernel only requires positiveness in the spectral density, whilst in
the multi-output case the positive-definiteness of the kernel only requires positive-definiteness
of the matrix S(ω), for all ω, this without imposing any restriction on the components Sij(ω).
Another way interpretation is that for the kernel, for any N input points, x = {xn}Nn=1 , the
matrix given by K(x,x) of size N ·M ×N ·M has to be positive-semidefinite whereas for the
spectral density, for any ω the matrix S(ω) of size M ×M needs to be positive-semidefinite.

2.1 MOSM in a Nutshell

Recall that the covariance kernel of a MOGP of M channels can be thought of as family of
covariance functions,

{kij(τ) : Rp 7→ R} , (2.3)

such that when used in conjunction as a M × M matrix-valued function, is symmetric,
eq. (1.25), and positive-definite, eq. (1.26). We now describe a procedure to generate this
family, starting from an arbitrary family of functions and perform a series of transformations
such that the resulting family fulfils the conditions of a MOGP kernel, said arbitrary family
of functions will be denoted by R = {r̂i(·)}Mi=1 .

Proposition 2.2 Let us consider an arbitrary CQ×M -valued function

ĥ(ω) : Ω 7→ CQ×M , (2.4)

with Ω ⊆ Rp, such that each component of ĥ(ω) lies in L1 and is bounded, and denote by
k̂(ω) the outer product of ĥ(ω) with itself, that is,

k̂ : Ω 7→ CM×M

ω → k̂(ω) = ĥH(ω)ĥ(ω). (2.5)

Then, the inverse Fourier transform of k̂, given by,

k(τ) = F−1
{
k̂(ω)

}
, (2.6)

is a valid stationary covariance kernel of an M-channel stochastic process.

Proof. To show that k(τ) is a valid covariance function, it needs to fulfil the two conditions
of Cramér’s theorem, the first condition comes from construction in eq. (2.6), and the fact
that the Fourier transform to a matrix-valued function is component by component, thus the
spectral density associated to kij is k̂ij, note that the inverse Fourier transform is well defined,
as product of bounded Lebesgue integrable functions are Lebesgue integrable. The second
condition is met as k̂ij is Hermitian and positive-definite by construction from eq. (2.5).

The strength of the above Proposition is that we could consider any Q · M functions
(provided that they are bounded and Lebesgue integrable) and the above procedure will
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deliver a family of valid stationary covariance functions, where taking taking a complex-
vector-valued function of size Q × M , a covariance is obtained after computing the inner
product with itself and then applying the inverse Fourier transform.

2.2 Squared Exponential Spectral Mixture

Given this generative framework, we can construct a family of Hermitian positive-definite
complex-valued functions and use them as cross-spectral densities whiting MOGP. Since
Fourier transform and multiplication of squared exponential (SE) functions are also SE, we
propose R(ω) = ĥ(ω) to be a complex valued SE function, where R ∈ CQ×m. For the sake
of simplicity we chose Q = 1, where case for arbitrary Q is shown in the end of the section,
denoting Ri the ith component (in the case of arbitrary Q the ith column) of R,

Ri(ω) = ai exp

(
−1

4
(ω − µi)

>Σ−1
i (ω − µi)

)
exp

(
−ι(θ>i ω + φi)

)
, i = 1, . . . ,M, (2.7)

subsequently, the power spectral density will be Sij(ω) = RH
i Rj, that is,

Sij(ω) = aij exp

(
−1

2
(ω − µij)

>Σ−1
ij (ω − µij) + ι(θ>ijω + φij)

)
, i, j = 1, . . . ,M. (2.8)

Note that this is a Gaussian, with spectral mean µij and covariance Σij, multiplied with a
complex exponential, containing the information on the delay θij and phase φij. The cross
channel parameters (denoted by subscripts ij) follow the next relations and interpretations,

• Magnitude: aij = aiaj exp
(
−1

4
(µi − µj)>(Σi + Σj)

−1(µi − µj)
)

• Covariance: Σij = 2(Σ−1
i + Σ−1

j )−1 = 2Σi(Σi + Σj)
−1Σj

• Mean: µij = (Σ−1
i + Σ−1

j )−1(Σ−1
j µj + Σ−1

i µi) = (Σi + Σj)
−1(Σiµj + Σjµi)

• Delay: θij = θi − θj
• Phase: φij = φi − φj

In order to restrict this generative model to real-valued GPs, the power spectral density needs
to be real and symmetric with respect to w, we make Sij(ω) symmetric by reassigning

Sij(ω)← 1

2
(Sij (ω) + Sij (−ω)) , (2.9)

this ensures symmetry with respect to ω, and real values when taking i = j as the complex
terms in eq. (2.10) cancel each other,

Sij(ω) =
aij

2

(
e(− 1

2
(ω−µij)>Σ−1

ij (ω−µij)+ι(θ>ijω+φij)) + e(− 1
2

(ω+µij)>Σ−1
ij (ω+µij)+ι(−θ>ijω+φij))

)
. (2.10)

Note that this construction makes the off-diagonal elements (i 6= j) able to take complex-
values and be asymmetric w.r.t ω = 0, while still keeping the diagonal (i = j) real-valued and
symmetric, thus fulfilling the conditions of a power spectral density, this allow for flexible
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modelling the cross-covariances. Finally, the kernel is obtained by taking the inverse Fourier
transform of the symmetrised spectral density,

kij(τ) = F−1 {Sij(ω)}

kij(τ) = αi,j exp

(
−1

2
(τ + θij)

>Σij(τ + θij)

)
cos
(
(τ + θij)

>µij + φij

)
, (2.11)

where αij = aij(2π)
n
2 |Σij|1/2. This kernel can be expanded to higher rank matrix by taking

Q > 1, arriving at the proposed kernel,

Definition 2.3 The Multi-Output Spectral Mixture Kernel (MOSM) has the form:

kij(τ) =

Q∑
q=1

α
(q)
ij exp

(
−1

2
(τ + θ

(q)
ij )>Σ

(q)
ij (τ + θ

(q)
ij )

)
cos
(

(τ + θ
(q)
ij )>µ

(q)
ij + φ

(q)
ij

)
(2.12)

Where α(q)
ij = a

(q)
ij (2π)

n
2 |Σ(q)

ij |1/2 and the super-index (·)(q) denotes the parameter of the qth
component of the spectral mixture.

From the kernel expression in eq. (2.12) and the spectral representation in eq. (2.10), the
kernel parameters can be interpreted: the cross-spectral delays θ(q)

ij serves as the time delay
between channels; the spectral means µ(q)

i represent the main frequency of that component,
and the cross-spectral means µ(q)

ij are a weighted sum of the frequencies, each one propor-
tional to the spectral-variances of the other channel, that is, weighting each frequency by
the uncertainty of the opposing channel component, making the frequency associated to a
low uncertainty component have a higher weight; the cross-spectral phase φ(q)

ij is simply the
difference in phase between channels; the spectral covariance Σ

(q)
i represents the uncertainty

of the distribution in the spectrum, and in the diagonal case is proportional to the inverse of
the square root of the lenghtscale of each input dimension, resembling to the automatic rel-
evance determination (ARD) kernel; finally the unnormalized component weights a(q)

i serves
as the importance of each component with respect to the total variance of the channel, where
the cross magnitude a(q)

ij is proportional to the magnitude of the cross-covariance between
channels. The single-channel spectral delay, θ(q)

i and spectral phase φ(q)
i do not have a useful

interpretation because when i = j then θ
(q)
ij = 0, φ(q)

ij = 0, thus, they only have incidence
when comparing different channels.

2.3 Relationship with other models

The proposed MOSM can recover many of the previously proposed models for multi-output
Gaussian processes. For instance, if the LMC framework is used with the single output
Spectral mixture kernel as covariance functions for the latent process, the denoted SM-
LMC [8] kernel is formed, which can be recovered from the MOSM by restricting each spectral
mean and spectral covariance to be the same for each channel, and setting delays and phases
equal to zero. Moreover, the CONV with a white noise latent function and Gaussian filters
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can also be recovered in the MOSM framework if only zero-centred Gaussian are considered
in the spectrum, and the delay and phases between channels are set to zero. Likewise, the
CSM kernel can be seen as the MOSM kernel with a fixed spectral mean and covariance for
each output channel and setting the delays equal to zero. This relationships with previous
models are shown in table 2.1, which shows the restrictions to be applied in eq. (2.12) in
order to recover previous models.

Model Restrictions Degrees of freedom

SM-LMC µi = µ Σi = Σ θi = θ φi = φ , i = 1, . . .M Q(M + 2p)
CONV µi = 0 - θi = θ φi = φ , i = 1, . . .M Q(M + pM)
CSM µi = µ Σi = Σ θi = θ - , i = 1, . . .M Q(2M + 2p)
MOSM - - - - - Q(3M + 2pM)

Table 2.1: Recovering other MOGP models from the MOSM framework. The parameters
mentioned correspond to MOSM formulation in eq. (2.12). In the CSM and SM-LMC kernel,
it is assumed the multiplicity of each factor Rq = 1, q = 1, . . . , Q.

2.4 Alternative Construction: Convolution Process

The MOSM kernel can also be achieved using the convolution process framework [9], where
the output functions, {fi}Mi=1, are constructed by taking the convolution between independent
latent processes or factors denoted, {uq}Qq=1 and filters denoted, {hi}Mi=1. In the original
formulation the filters consisted in real-valued functions, whereas to construct the MOSM
kernel, complex-valued filters are necessary.

Considering the latent factors, uq, to be white noise processes, we aim to build filters hi,
such that when convolved with a latent factor, the covariance between the filtered processes
results in the MOSM kernel. In order to construct such filters, let for simplicity consider the
case of one component, Q = 1, where a generalisation is shown at the end of the section,
subsequently, recalling that the MOSM kernel can be written as the inverse Fourier transform
of the PSD, which by the convolution theorem can be expressed as,

kij(τ) = F−1 {Sij(ω)} (τ)

= F−1

{
1

2

(
Ri(ω)Rj(ω) +Ri(−ω)Rj(−ω)

)}
=

1

2

[(
hi(−τ)? hj(τ)

)
(τ) +

(
hi(τ)? hj(−τ)

)
(τ)
]
, (2.13)

where hi(τ) = F−1 {Ri(ω)}, and given that Ri is a complex-valued Gaussian, the inverse
Fourier transform can be found in closed form, where the expression is as follows,

hi(x) = F−1 {Ri(ω)} (x)

= ai(2π)p/2|Σi|1/2 exp
(
−(x− θi)

>Σi(x− θi)
)

exp
(
ι
(
(x− θi)

>µi − φi

))
, (2.14)
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the derivation of eq. (2.14) can be found in Appendix.4.6.2. Finally, utilising eq. (1.49) an
expression for the output functions can be obtained, taking into account that the covari-
ance between zero-mean complex valued random variables is given by cov(fi(x), fj(x

′)) =
E[fi(x)fj(x

′)], and noting from eq. (2.13) that two convolutions are used to construct the
MOSM kernel, then two independent latent processes are used instead of one, which results
in the following latent factor construction,

fi(x) =
1√
2

(
hi(−x)? u1(x) + hi(x)? u2(x)

)
, (2.15)

where u1, u2 are independent white noise processes.

Fig. 2.1 shows a example of a sample of the MOSM kernel employing latent factors and
convolution process, in top left the latent factor consisting in a white Gaussian noise of
unitary variance, top right the filter with real and imaginary part, and bottom the resulting
output process which correspond to a channel from a MOGP sample with MOSM kernel.
Note that since the filter is complex-valued, convolutions with the latent process results in a
complex-valued output as well, so in order to obtain a real-valued output, a transformation
must be applied such as taking the real part.
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Figure 2.1: Sampling from a mogp with MOSM kernel using the latent factor construction.
Top left the white noise sample, top right the MOSM filter, bottom the white noise convolved,
which real part correspond to the sample of a MOGP with MOSM kernel.

To corroborate that this formulation recovers the MOSM kernel, the covariance between
two functions, fi, fj, is obtained, where the white noise processes have covariance cov[uq(x), uq′(x

′)] =
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δqq′δ(x− x′), consequently, the covariance between outputs will be given by,

cov[fi(x), fj(x
′)] =

1

2
E
{(
hi(−x)? u1(x) + hi(x)? u2(x)

) (
hj(−x)? u1(x) + hj(x)? u2(x)

)}
=

1

2

∫
hi(−x+ z)hj(−x′ + z′) cov[u1(z)u1(z′)] dzdz′

+

∫
hi(x− z′′)hj(x′ − z′′′) cov[u2(z)u2(z′)] dz′′dz′′′, u1 ⊥⊥ u2

=
1

2

[∫
hi(−x+ z)hj(−x′ + z)dz +

∫
hi(x− z′)hj(x′ − z′)dz′

]
=

1

2

[∫
hi(−z̃)hj(τ − z̃)dz̃ +

∫
hi(z̃

′)hj (−(τ − z̃′)) dz̃′
]

=
1

2

[(
hi(−τ)? hj(τ)

)
(τ) +

(
hi(τ)? hj(−τ)

)
(τ)
]
. (2.16)

Which is the same expression as eq. (2.13), where τ = x − x′, z̃ = x − z, z̃′ = x − z′. A
generalisation for arbitrary number of components is built summingQ > 0 of these structures,
that is,

fi(x) =

Q∑
q=1

h
(q)
i (−x)? uq(x) +

Q∑
p=1

h
(p)
i (x)? up(x). (2.17)

Observation This can be interpreted in signals and systems theory as the transfer function,
Ri, and impulse response hi, of a system, where the white noise uq serves the role of input of
the system. This construction of the MOSM kernel as a convolution process allows for efficient
MOGP variational sparse methods [16], where they propose the use of inducing variables as
points of the latent factors, this idea is expanded in the following section where inducing
variable for MOSM are designed. This construction of MOSM also allows for constructing
new multi-output covariance functions, such as non-parametric ones [26].
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Chapter 3

Extending the MOSM Kernel

Alongside other MOGP, the MOSM kernel suffers from three important shortcomings, (i)
the training of the model does not scale well with the number of data points, making it often
unfeasible for large datasets, (ii) given the high number of kernel parameters, the training
is prone to fall in local minima, where the optimisation is often sensible to the starting
point, and (iii) even with the flexible structure of MOSM kernel, if often fails to regularise
when channels are not correlated between them, where uncorrelated channels can hinder the
prediction.

In this section said shortcomings of MOSM kernel will be addressed, extending the kernel
in various ways. First, we will show how different sparse GP frameworks can be used with
MOSM kernel and design inducing variables that better use the structure of the kernel,
second, we will construct initialisation methods for the MOSM kernel based on the spectral
representation of the kernel, improving the optimisation process, and third, we will propose
restricted version of the MOSM kernel which can regularise the number of active components
of the kernel, mitigating the negative effects of the uncorrelated channels.

3.1 Alternatives for Sparse Approximations

A key part of the classic and variational sparse formulations for GP are the inducing variables,
which serve as a proxy for the training dataset. The usual inducing variables consist in
points of the same process where the inducing inputs share the same domain as the original
process, although existing work [27] proposes inter-domain inducing variables by taking a
linear transformations of the process, and using points of the transformed process as the
inducing variables. A direct application is to utilise the Fourier transform of the process to
define inducing variables, taking advantage of the spectral content of the process which could
be represented in fewer points, where in this case the inducing inputs are in the frequency
domain. In practice, as the samples of the process would not be Lebesgue integrable, ipso-
facto the Fourier transform of the process cannot be obtained, so a windowed version of the
process is employed.
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Moreover, given the convolution process construction of some kernels, a natural idea would
be to use inducing variables consisting in points of the latent processes, where the benefits are
twofold, (i) as each latent process is shared across all channels, fewer points are required to
represent all outputs, and (ii) as the latent processes are independent, the covariance between
inducing variables will contain blocks of zeroes, thus reducing the computational cost.

However, as it was pointed out in previous works [16, 26], considering points of the latent
process as inducing variables is unfeasible when the latent process is a white noise process,
as it would require an infinite number of points to represent the process. To address this, a
linear transformation of the latent processes which consists in filtered versions will be used as
inducing variables. Which given that the convolution of the latent process with a filter, causes
each point of the filtered white noise to contain information of a neighbourhood of the original
process, and possibly all the original process for certain choices of filter. In this section a
class of inducing variables utilising the convolution process formulation of the MOSM kernel
is proposed, using filtered versions of the latent white noise processes as inducing variables,
where this filtered latent processes will be constructed such that, the covariance between
inducing variables and covariance between inducing variables and original process can be
computed in closed form, this proposed latent inducing variables (LIV) escalate better with
the number of channels as each latent component is shared across all channels.

Given a multi-output GP with MOSM kernel a Q components, the proposed inducing
variables, denoted λq, will be of the form,

λq(z) = Gq(−x) ? uq1(x) +Gq(x) ? uq2(x), (3.1)

where z are the inducing inputs, uq1 and uq2 are independent white noise process for the
component q, and Gq is the inducing filter for the latent process. Then, the covariances
between inducing variables and the output processes can be obtained in closed form by
choosing the inducing filter to be of the form,

Gq = ai(2π)p/2|Σi|1/2 exp
(
−x>Σqx

)
, (3.2)

which is equivalent as taking the complex conjugate of the MOSM filter defined in eq. (2.14),
and setting θq = 0, φq = 0 and µq = 0. To perform inference, the covariance between inducing
variables and the covariance between inducing variables and the output must be evaluated,
and given the choice of inducing filter as a particular case of the MOSM filter, this quantities
can be obtained in closed form, subsequently, the covariance between inducing variables is
given by,

cov [λq(x), λq′(x
′)] = δqq′ (Gq(τ) ? Gq(−τ) +Gq(τ) ? Gq (−τ))

= δqq′

(∫
Gq(x− z)Gq(x

′ − z)dz +

∫
Gq(x− z)Gq(x

′ − z)dz

)
= a2

q(2π)p/2|Σq|1/2 exp

[
−1

2
τ>Σqτ

]
, (3.3)

with τ = x − x′, noting that Gq(τ) = Gq(−τ), and the solution of the convolutions follows
the same procedure as eq. (2.16). Then, the covariance between the output ith channel and
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inducing variable at component q is given by,

cov [fi(x), λq(x
′)] = hi(−τ)Gq(τ) + hi(τ)Gq(τ)

=

∫
hi(−x+ z)Gq(x

′ − z)dz +

∫
hi(x− z)Gq(x

′ − z)dz

= αiq exp

[
−1

2
(τ + θiq)

>Σiq(τ + θiq)

]
cos
[
(τ + θiq)

>µiq + φiq

]
, (3.4)

where hi is the MOSM filter defined in eq. (2.14), and similar to the case of the traditional
MOSM kernel, the cross parameters in the equation above are given by:

• αiq = aiq(2π)n/2|Σiq|1/2 ; aiq = a
(q)
i aq exp

[
−1

4
µ

(q)
i

>
(Σ

(q)
i + Σq)

−1µ
(q)
i

]
• θiq = θ

(q)
i

• φiq = φ
(q)
i

• µiq =
(

Σ
(q)
i + Σq

)−1

Σ
(q)
i

−1
µi

• Σiq = 2Σ
(q)
i

(
Σ

(q)
i + Σq

)−1

Σq.

The proposed inducing variables, LIV, for the MOSM kernel, can be used in sparse methods
of the family of reduced rank approximation, which include variational methods, enabling
MOSM to be used in large datasets.

A key difference with the classic inducing variables is how cost scales with the number
of channels and components, for instance, in the variational sparse approximation, calssic
inducing variables, with M number of channels, each one having N points, by considering
K inducing points for each channel, the training cost is O(NM2K2) scaling quadratically
with the number of channels but begin independent of the number of components of the
kernel. Whereas in the proposed LIV, with the same number of channels and observations,
but using K inducing points for a kernel with Q components the training cost is O(QNMK2)
scaling linearly with the number of channels but adding a linear cost in the number of latent
components. This trade-off in the proposed inducing variables is useful when working with
a higher number of channels and a low number of kernel components, whilst the classic
inducing variables can be used in scenarios with low number of channels and higher kernel
components.

3.2 Optimisation Considerations

Spectral kernels such as SM, CSM and MOSM although expressive, are difficult to optimise
due to the large number of kernel parameters and sensibility present in training, where the
optimisation of the NLL is heavily dependent on the starting point. Moreover, given that
the number of parameters of said kernels increase with the number of components, adding
more components further increases training complexity by increasing the dimension of the
optimisation problem. A key factor in the optimisation process is start from a convenient
initial point, which can greatly assist to avoid falling in local minima, in particular for spectral
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kernels there is a way to exploit the frequency domain representation of the kernel to obtain a
initial estimation of the hyperparameters utilising the available data prior to optimisation. In
the next section two methods will be introduced to facilitate the initialisation of the spectral
kernels using an estimate of the power spectral density (PSD) of the channels.

The first consist in estimating the PSD of the available data, then considering said estimate
to obtain sound initial parameter values by using the spectral interpretation of the kernel
parameters. The second initialisation method is specific to multi-output kernels, where co-
variance of a given channel is usually a known single output channel, for instance, SM-LMC,
CSM and MOSM kernels all reduce to a SM kernel when looking at the covariance of a
channel with itself, so a natural way of initialize such models is to fit independent GPs with
SM kernels for each channel and then use those parameters to initialize the multi-output
kernels. When used in practise, the SM kernels for each channel can be initialized using the
first method, yielding a two-stage initialization.

In the next section it we will show that utilising the Bayesian non-parametric spectral
estimation (BNSE) [28] to estimate the PSD considering the available observations, can find
initial hyperparameters which leads to consistent and better results, compared to previous
initialization schemes and other PSD estimations. First the initialisation method based on
the PSD estimation will be shown for a single GP with SM kernel, then will be generalized
to the MOGP case.

3.2.1 Initializing SM Kernel

Recalling the structure of the SM kernel and the interpretation as a mixture of Gaussians in
the spectral domain. In from eq. (1.11), the form of the SM kernel is as follows,

kSM(τ) =

Q∑
q=1

aq exp

[
−1

2
τ>Σqτ

]
cos(µ>q τ). (3.5)

Where in the construction as a multivariate Gaussian in the spectral domain, aq correspond
to the mixture weights, which also can be interpreted as the (unnormalised) magnitude of
the spectral component q. The spectral mean of the component, µq. And Σq the spectral
covariance of the component, which in general is diagonal matrix with values [σ

(1)
q , . . . , σ

(p)
q ]

with p the input dimension. The aim is to find initial values for the aforementioned kernel
parameters, using the data available.

Existing initialization schemes choose each parameter individually by some heuristic, in [8],
the weights wq in eq. (1.11) are chosen as constants proportional to the standard deviation
of the data, spectral means, µq sampled from a uniform distribution from [0, ηnyquist] where
ηnyquist is the estimation of the Nyquist frequency given by half of the inverse of the largest
interval between input points, and spectral variances, σq from a truncated Gaussian with
mean proportional to the range of the observation inputs. As each parameter is sampled
independently from each other, this method will be denoted Independent Parameter Sampling
(IPS) initialisation.
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In practice the IPS initialisation yields good but inconsistent results, often requiring a
high number of experiments in order to optimise from a adequate starting point and not fall
in local minima. As it will be shown in the experiments, for periodic signals it is crucial
to obtain a sound initial estimate of the fundamental frequencies, where if misspecified, a
common result in the optimisation process is that the kernels reverts to the sum of squared
exponential (SE) kernels. That is, the case of SM when the spectral means are zero, µq = 0,
which greatly affects the forecasting outside the training intervals. As without a periodic
component, the SE kernel is known to revert to the prior for predictions far enough (de-
pendant on the lenghtscale) of the training points. In order to address this problem and
have a more consistent initialisation, a method is proposed with heavy emphasis in choosing
parameters with relation to each other and incorporate the available spectral information
from the observations.

The proposed initialization takes as a base the estimated PSD of the process and the
number of components Q. The PSD estimate can be obtained from the available spectral
estimation literature, such as the periodogram [29], Welch periodogram [30] or Lomb Scargle
(LS) [31, 32] among others. To obtain the estimation, the first Q higher peaks in magnitude
from the PSD estimate are identified, then, from this peaks: the weights aq are taken propor-
tional to the magnitude of the peaks, normalised so the sum of the weights is proportional to
the variance of the observations (in practice a upscale by a factor of 2 yielded good results),

Q∑
q=1

aq ∝ Var({yn}Nn=1), (3.6)

where Var() denotes the sample variance; spectral means µq as the position of the peaks;
and spectral variances σq proportional to the width of the peaks (in practice a factor 2
yielded good results). The aforementioned initialization assumes input dimension p = 1, but
a generalization can be done by estimating individual PSD for each input dimension and
assigning accordingly the spectral means µq and covariance Σq, the weights can be taken as
the mean weight across al input dimensions.

Given that in most GP regression problems the observations are not uniformly sampled,
the PSD estimation is recommended to be obtained utilising BNSE or LS. For the evaluation
of both methods, a grid of frequencies is required, where a uniform grid of frequencies up to the
estimated Nyquist frequency is recommended, where the Nyquist frequency can be estimated
as half of the inverse of the smallest interval between input points. Initialization using these
methods will be refereed as LS initialization and BNSE initialization. In the experiment sec-
tion, when referring to these initializations word initialization will be omitted for simplicity. A
drawback of the proposed spectral initialisation, is that the initialisation will always yield sim-
ilar results, so in order to include some variability, random Gaussian noise of variance σ2 will
be added to the initial values, this variant of the original initializations will be denoted LS+ε
and BNSE+ε respectively. A summary of the method is shown in the following algorithm,
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Algorithm 1: SM Spectral initialisation
Input: Vectors (x,y) the observations, integer Q the number of components
Result: SM Spectral initialisation
psd ← calculate_psd_estimate(x,y) ;
peaks ← find_highest_peaks(Q) ;
for q ← 1 to Q do

µq ← position of qth peak ;
Σq ← proportional to the width of qth peak ;
aq ← proportional to the magnitudes of qth peak, following eq. (3.6) ;

end
Output: Kernel parameters, µq,Σq, aq, for q = 1, . . . , Q.

3.2.2 Initializing MOSM Kernel

The MOSM kernel defined in eq. (2.12) suffers from a similar problem as the SM kernel
regarding the sensibility in the optimization with respect to the initial point, where added
to the intrinsic complexity of multi-output GP, results in a even more sensible optimization
process. In this context two ways of initialising the hyperparameters prior to the optimization
are proposed, following the rationale behind the methods for initialising SM kernel.

The first method for initializing MOSM is an extension of the initialisation of SM kernel
based on PSD estimation, where now the PSD will be estimated for each channel, in the
case of multiple input dimension, then the PSD estimate is obtained for each channel, for
each input dimension. Note that for each output dimension and input dimension, a different
estimation of the Nyquist is required.

Let Q be the number of components in the MOSM kernel, with the set of PSD estimates
(PSDi)

M
i=1, then, for channel i the greater Q peaks are taken for each input dimension, then the

magnitudes a(q)
i are assigned as the mean magnitudes for the given channel i then normalized

so that the sum of squared weights equals the channel sample variance of the observations of
said channel,

Q∑
q=1

(a
(q)
i )2 ∝ Var

({
y(i)
n

}Ni

n=1

)
, (3.7)

and
{
y

(i)
n

}Ni

n=1
correspond to the observations at output i. The spectral means µ(q)

i are

initialised as the position of the peaks; the spectral variances Σ
(q)
i are set proportional to the

width of each peak, in practice the variances are multiplied by 2 so that the uncertainty on
a given frequency starts lower and prevent overfit.

The delays θ(q)
i and phases φ(q)

i are set to 0 making a initial assumption that there is no
input-delay nor phase-delay between channels, leaving to the optimization process to find the
non-zero delay and phase if there is.

The second method of initialising consists in fitting individual GP with SM kernel for
each channel, given that MOSM kernel in the diagonal is reverted to SM kernel, by fitting
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an independent GP with SM for each channel and then utilising those parameters as a
initial guess. It is also noted that each individual SM kernel can be initialised with the
aforementioned methods in order to further improve the results.

The aforementioned methods can be applied to kernels that are a particular case of MOSM,
such as SM-LMC, CONV and CSM by taking into account the restrictions in table. 2.1 to
recover such kernels from MOSM.

3.3 Mitigating Negative Transfer of Knowledge

One of the main benefits MOGP is the use of across-channel information to improve pre-
dictions by incorporating the information of other channels, this is known as transfer of
knowledge. However, this transfer of knowledge is only useful if the channels are correlated,
and misspecifying this relationship by modelling together unrelated channels could lead to a
negative impact in the predictions, where the additional across-channel information leads to a
worst prediction than considering the observations of a single channel alone, this phenomenon
is called negative transfer of knowledge.

To tackle this problem, in [33] they propose an extension of LMC by decomposition each
channel in common and specific components, where the common components are shared
across all channels, and consequently is where transfer of knowledge occurs, whilst specific
components are unique to each output function, modelling individual behaviour of the chan-
nels. This decomposition takes the form,

fi(x) =

Q∑
q=1

a
(q)
i uq(x) + vi(x), i = 1, . . .M, (3.8)

then, if the processes {uq}Qq=1 and {vi}Mi=1 are assumed independent, then the covariance
kernel is as follows,

kij(x, x
′) = δij ki(x, x

′) +

Q∑
q=1

a
(q)
i a

(q)
j kq(x, x

′), (3.9)

where kq is the covariance of the shared process uq, and ki is the covariance of specific the
process vi. This extension of LMC can help mitigate problem of negative transfer of knowledge
as each channel has is own “explain away” term to model characteristic of the channel that
are not present in other channels, thus not contributing negatively in the prediction.

One limitation only having specific and common components is the lack of control over
the influence on a given component, where specific ones only affect one channel and common
affect all, with no in between, that is, transfer of knowledge between a subset of channels
cannot be achieved in a controlled manner. For instance, say that for component q we only
want it shared between channels i and j but not with channel j′, by looking at eq. (3.9)
one way is by setting a(q)

j′ = 0, but then channel j′ would not be able to share information
across any other channels using that component q because it was “shut down” for that specific
output. A naive solution would be to increase the number of components, adding flexibility
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and allowing for each channel to possibly have dedicated component by choosing Q ≥ M
or be capable of modelling the relation of each pair of channels by choosing Q ≥

(
M
2

)
, the

main drawback of choosing a high number of components is the increased complexity as each
component increase the number of kernel parameters to be optimised. In the next section
this problem will be addressed considering restricted components, where they can be either
pairwise or specific, which in conjunction with the common components allow to increase the
flexibility of the kernel while regularising the negative transfer.

Recent work [34] proposes a model to mitigate negative transfer by using non-separable
covariances and pairwise modelling, where instead of jointly modelling all the channels, there
is a different model for each pair of outputs and the are combined employing the products of
GP experts (PoE) [35]. The model also separates between common and specific components,
but utilising the non-separable structure of the convolution model [9] instead of a linear
combination of latent factors, lastly they use a L1 or L2 regularization on the coefficients of
the common processes to further regularise and mitigate negative transfer of knowledge.

Inspired by this, in the following section a restricted version of MOGP kernels will be
proposed, being able to adapt components to only influence single, pairs or all components,
that when used in conjunction with regularising priors the negative transfer of knowledge
can be mitigated.

3.3.1 Restricted-MOSM (R-MOSM)

In order to construct an expressive model whilst mitigating the negative transfer of knowl-
edge, a modification of a non-separable multi-output kernel is proposed, where additional
to common and specific components, pairwise components are also incorporate, which only
affect a given pair of channels, that way can be controlled (i) individual, (ii) common-to-all
channels and (iii) pairwise relationships between channels, and consequently the transfer of
information. The pairwise components are constructed such that, for a given pair of channels
i, j, the covariance is zero unless they are the pair corresponding to said component, that is,

ki′j′

ij (x, x′) =

{
kij(x, x

′) if (i, j) = (i′, j′) or (i, j) = (j′, i′)

0 otherwise
. (3.10)

Denoting Qs, Qc, Qp the number of specific, common and pairwise components respectively,
the covariance using a mix of the three components will be given by,

kij(x, x
′) = δij

Qs∑
qs=1

a
(qs)
i k

(qs)
i (x, x′) +

Qc∑
qc=1

a
(qc)
i a

(qc)
j k

(qc)
ij (x, x′) +

Qp∑
qp=1

a
(qp)
i a

(qp)
j k

(qp)
ij (x, x′). (3.11)

Furthermore, a regularising prior such a Gaussian or Laplace can be imposed on the common
and pairwise component coefficients a(q)

i to further reduce the negative transfer and prevent
overfit due to the increased number of components. This type of restricted component can be
used in any kind of non-separable multi-output kernel, where for M channels, this restricted
approach can be seen as choosing Q = M · Qs +

(
M
2

)
Qp + Qc components, while restricting

some weights a(q)
i = 0 accordingly. In particular, by choosing all the components eq. (3.11) to
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be the MOSM kernel, will be denoted Restricted-MultiOutput Spectral Mixture (R-MOSM)
kernel.

32



Chapter 4

Validation

4.1 Experiment setting

To validate MOSM and the proposed improvements, five experiments are shown. The first
one compares the different initialisation methods proposed for spectral kernels, using a single
output GP regression considering CO2 concentration data. The second experiment, regarding
the negative transfer of knowledge, consists in a synthetic dataset where the negative transfer
can be controlled, comparing the restricted MOSM against regular MOSM. The third exper-
iment shows the sparse capabilities of MOGP by comparing the proposed latent inducing
variables for MOSM against regular inducing variables in a robot inverse-dynamic dataset
with 44000 points. The last two experiments consist in finance time series applications using
MOGP, where the MOSM kernel is compared against previous models.

As error metrics for the first three experiments, the root mean squared error (RMSE),
standardised mean squared error (SMSE) and negative log predictive distribution (NLPD)
were used as performance measurements. When the outputs are in the same scale the RMSE
and NLPD were used, whilst the SMSE was obtained when the outputs are in different
scales, which is common in the multi-output case as different channels can have unique
scales. Moreover, denoting {yn}Nn=1 the training points, σ the variance of the test points and
{y∗n}

N
n=1 the predictive mean of the model, the RMSE and SMSE are defined as,

RMSE =

(
1

N

N∑
n=1

(yn − y∗n)2

)1/2

, (4.1)

SMSE =
1

N

N∑
n=1

(yn − y∗n)2

σ2
. (4.2)

These two measurements are representative of point prediction error, a key difference between
the two is that the RMSE is in the same scale as the output, whereas the SMSE is normalised
by the variance of the test set so it can be compared between outputs of different scale. The
SMSE also has the property that, in the case of predicting with the naive model consisting of
the mean value, the SMSE would be equal to 1, making it easy to interpret, as values higher
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than 1 means the model is performing worse than the taking the mean of the test set, which
in the case of GP when the data is usually normalised to have zero mean, indicates that
the model was successfully trained, or when values of SMSE near 1, the posterior reverted
mainly to the prior.

Finally, the NLPD is a measure of the distribution prediction error, defined as the negative
log probability of the test data, given the learnt model,

NLPD = − 1

N

N∑
n=1

log (pn(yn)) , (4.3)

where {pi(yi)}Nn=1 is the learnt predictive distributions. All metrics shows a better perfor-
mance the lower the value.

All models, including the proposed MOSM are available in the mogptk toolkit which will
be briefly described in the following section. All the experiments are available 1.

4.2 MOGPTK: Multi-output GP Toolkit

In order to compare the proposed MOSM against existing MOGP kernels as well as to have
framework to incorporate the proposed initialisations, optimisation options and improve-
ments on the MOSM kernel, we built a Multi-Output Gaussian Process Toolkit (MOG-
PTK) [5] as Python package for training multi-channel datasets using Gaussian processes. It
extends GPflow [36], a general Gaussian process Python library, that in turn is built upon
TensorFlow [37] allowing GPU accelerated training. This toolbox was developed alongside
Taco de Wolff, while working on this thesis.

MOGPTK implements four popular MOGP models: the Linear Model of Corregional-
ization (LMC), the Cross-Spectral Mixture (CSM), the Convolutional Model (CONV), and
the Multi-Output Spectral Mixture (MOSM). The toolkit facilitates implementing the entire
pipeline of GP modelling, including data loading, parameter initialization, model learning,
parameter interpretation, up to data imputation and extrapolation.

The toolkit also includes the three main contributions of this paper, (i) the initialisation
methods for spectral multi-output kernels in section 3.2, to increase the likelihood of conver-
gence and speed up the training process, (ii) the restricted-MOSM which helps to mitigate
the negative transfer of knowledge, with individual and pairwise components, and (iii) the
latent inducing variables for sparse approximations which escalate better with the number of
channels. MOGPTK also allow to manually fix parameters before training, enabling flexible
training, where parameters can be optimised independently in stages.

Besides training and prediction, MOGPTK also provides interpretation of hyperparameter
values via visualization techniques. MOGPTK shows the correlations between channels for
different kernels, in the particular case of spectral kernels (e.g., SM, MOSM, CSM, SM-
LMC), this reveals the cross-spectral coupling between channels. Finally, MOGPTK features

1https://github.com/Ale-Cuevas/msc_thesis
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general-purpose classes to perform common data-analysis operations effortlessly. Data can
be easily loaded from various sources (e.g., CSV files, Pandas DataFrames, or generated using
Python functions) and can also be pre-processed utilising included transformations such as
detrending or logarithm among others. Additionally, MOGPTK allows for removing data
ranges to simulate missing data or sensor failure and the data can be easily plotted in time
or spectral domain.

MOGPTK is a complete package for MOGP training and is freely available for both
open-source and commercial applications. The source code, tutorials and examples in the
form of Jupyter notebooks, together with the API documentation, can be found at http:
//github.com/GAMES-UChile/mogptk.

4.3 Comparing initialisations

To compare the proposed initialisations, an experiment was performed in a single channel
GP regression setting using the SM kernel, considering four different optimisation methods
and six initializations. The initialization methods being: Random, IPS, LS, LS+ε, BNSE,
BNSE+ε, where the noise added in BNSE and LS case were Gaussian with variance equal
to 1/30 of the value of the parameter. The random initialization samples each parameter
from a uniform in (0, 1), the LS based initialisations was done evaluating the periodogram
in a similar uniform grid of 50000 points from 0 to the estimated Nyquist frequency, lastly
the BNSE based initialisations were evaluated using a uniform grid of frequencies of 10000
points, from 0 to the estimated Nyquist frequency. The Nyquist frequency was estimated as
half of the inverse of the minimum distance between inputs, that is ξNyquist = 0.5 · 1

dmin
where

dmin is the minimum distance between inputs.

The optimisation methods used were: conjugated gradient (CG), L-BFGS-B and Adam.
We compared all combination of initialisation and optimizers considering the monthly CO2
concentration at Mauna Loa observatory ([38]) consisting of 521 monthly observations, using
the first 300 observation as training and the remaining as test. The data was normalised so
it has unit zero mean and unit variance, then, for each pair of initialisation-optimizer, a GP
regression with SM kernel, utilising Q = 10 was trained. For each model, training time and
number of function evaluations was compared as well as RMSE and NLPD in test set. For
L-BFGS-B and CG a maximum of 2000 iterations and tolerance of 10−6 was used, for Adam
2000 iterations were used with learning rate set to 0.01 and remaining parameters to default
value.

The results averaged over 10 trials are shown in table. 4.1, whereas the training times
and number of NLL evaluations are shown in table. 4.2. The proposed spectral initialisa-
tion methods are able to find good starting points for the optimisation, where the BNSE
initialisation performed well across all optimisation methods, obtaining the lower NLPD in
all optimisation methods, and obtaining the lower RMSE when employing L-BFGS-B and
CG, where for Adam the lower RMSE is obtained using the LS initialisation.
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L-BFGS-B CG Adam
RMSE NLPD RMSE NLPD RMSE NLPD

Random 4.063± 0.916 3.217± 0.683 4.738± 0.015 4.330± 0.373 4.151± 0.133 9.447± 1.424
IPS 10.563± 8.096 4.011± 1.672 4.986± 5.311 16.305± 38.282 4.308± 5.330 6.644± 10.81
LS 3.420± 0.000 3.297± 0.000 3.808± 0.000 6.578± 0.000 2.952± 0.000 6.126± 0.000
LS+ε 4.042± 1.224 3.438± 1.366 2.912± 1.338 15.937± 30.688 3.340± 1.288 29.295± 32.209
BNSE 2.269± 0.000 1.923± 0.000 0.751± 0.000 1.441± 0.000 3.659± 0.000 5.734± 0.000
BNSE+ε 4.222± 2.347 2.770± 0.755 3.613± 1.374 6.206± 6.303 3.091± 0.854 7.305± 7.954

Table 4.1: RMSE and NLPD for different initialisations and optimisers in GP regression
using SM for Mauna Loa dataset, results averaged over 10 trials.

Looking at the training times and number of NLL evaluations, the main factor is the
optimisation method rather than the initialisation, where it can be seen that the higher
number of NLL evaluations of CG correlates with a better performance in the estimation.

L-BFGS-B CG Adam
Time [s] NLL evals Time [s] NLL evals Time [s] NLL evals

Random 1.8 84 74.7 3488 46.9 2000
IPS 5.7 268 85.1 3965 46.9 2000
LS 1.8 83 82.6 3852 47 2000
LS+ε 2.4 114 86.9 4054 46.9 2000
BNSE 2.3 105 92 4286 47 2000
BNSE+ε 3.3 153 87.5 4076 47 2000

Table 4.2: Time and number of objective function evaluation for different initialisations and
optimisers in GP regression using SM for Mauna Loa dataset, results averaged over 10 trials.

The proposed spectral initialisations were able to estimate sound initial parameters for the
SM kernel, decreasing the likelihood of falling in local minima. By using the PSD estimate and
the spectral representation of the kernel, the method computes initial kernel parameters which
incorporate the available information into the kernel parameters. In particular, initialising
the kernel parameters using BNSE for the PSD estimate yielded the higher performance
results, BNSE was able find the position of the peaks which corresponded to the frequencies
with higher energy, and not overfitting by assigning mass to nearby frequencies, resulting in
peaks with a non-zero width. Where the width of the peaks the mixture of Gaussians setting
represent the uncertainty of a component, this allows the optimisation process the perform
a broader search, while still starting from an advantage starting point.

A drawback the proposed spectral methods is that the initialisation is deterministic, thus
showing no variance in the results, given that the optimisation method is deterministic, which
can be detrimental if the initialisation does not yield a good result. This can happen if the
sinusoidal components of the data are not predominant, whereas the noisy variant of the LS
and BNSE show decreased performance, but also show variability in the results, allowing to
maintain the spectral nature of the initialisation while yielding different initial points for the
optimisation. Another drawback of the proposed initialisations comes when utilising a high
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number of input dimensions, where the proposed methods yield insufficient results, mainly
due to the nature of the Fourier transform of a function with a multidimensional domain,
where obtaining PSD independently by each input dimension is not enough to represent
the spectrum of the function. This can be understood when interpreting the spectrum of a
function as a distribution, where estimating the PSD independently by each axis is the same
as estimating the marginals of a multivariate distribution, and by the marginals alone the
joint distribution cannot be reconstructed, which is the same for the Fourier transform of a
function with domain of dimension p > 1.

4.4 Synthetic example of negative transfer

To assert that the proposed Restricted-MOSM (R-MOSM) is able to mitigate negative trans-
fer of knowledge, a synthetic example is constructed where the negative transfer can be con-
trolled, consisting in a asymmetric multi-output regression. The asymmetry relates in that
there exist some hierarchy in the relevance of the outputs, that is, some channels are more
important in terms of obtaining good prediction than others. In this case the main interest
will be obtaining predictions on a single channel with relatively low number observations,
while having other channels with more observations to help (or not) in the prediction. The
channel of interest will be denoted primary channel or output whilst the remaining will be
denoted secondary channels.

In order to control the negative transfer of knowledge, given a fixed number of secondary
channels, they will be constructed in such way that they will or will not be related with
the primary channel, thus controlling the negative transfer with the number of non-related
channels, if the number of non-related outputs is high, then it is more likely for the model
prediction on the primary channel to be hindered by the cross-channel observations.

The experiment consist in one primary channel, fp, sampled from a GP with zero mean
and covariance given by a primary kernel SE, Kprim

SE , with lengthscale, `p = 0.5 and unitary
variance, then the sample is corrupted with Gaussian noise, εp, of scale equal to σnp = 0.3,
from this corrupted version, yp = fp+εp, the observations will be generated. Then 4 secondary
channels will be constructed, which can be related or unrelated to the primary channel, first,
related channels, denoted yir, are sampled from a GP with mean equal to the uncorrupted
primary channel and covariance given by a secondary kernel SE, Ksec

SE with lengthscale, `s =
0.1, and unitary variance, additionally the sample is multiplied by a random coefficient a
sampled uniformly from [0, 1], lastly the channel is corrupted with Gaussian noise of scale
equal to, σnr = 0.05,

fir ∼ GP (fp, K
sec
SE) ; a ∼ U(0, 1); εir ∼ N (0, σ2

nr)

yir = a fir + εir. (4.4)

Then, for constructing unrelated channels, denoted yiu, first a base unrelated function is
obtained, fu, sampled from a GP with zero mean and covariance given by a unrelated kernel
SE,Kunrel

SE , with lengthscale `u = 1, and unitary variance, subsequently the unrelated channels
are constructed in the same way as the related, but this time the mean of the GP sampled
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is fu, that is,

fiu ∼ GP (fs, K
sec
SE) ; a ∼ U(0, 1); εiu ∼ N (0, σ2

nu)

yiu = a fiu + εiu, (4.5)

where noise scale shares the same value as the related channels, σnu = 0.05. Finally, for a
given multi-output process consisting in the primary channel and 4 secondary channels which
can be related or not the primary, the observations are obtained by sampling 150 equispaced
points from [0, 10]. Then, first 80% of the primary task data was randomly removed, this
removed points were same across all trials, after that, the number of related and unrelated
channels was varied, starting with 0 related and 4 unrelated channels, and increasing the
related and decreasing the unrelated until there are 4 related and 0 unrelated.

This was repeated 5 times, in each one fitting 3 models, (i) regular MOSM with Q = 1, (ii)
a R-MOSM with Qs = 1 and Qu = [0, 1, 1, 1, 1, 1], Qp = 0 that is, there is a regular MOSM
component shared across all channels and each secondary channel has an individual compo-
nent, but no the primary channel, and (iii) a R-MOSM with Qs = 1, Qu = [0, 0, 0, 0, 0, 0],
Qp = 1, that is, a shared component across all channels and a component for each pair of
channels only influencing said pair, this model will be denoted R-MOSM-P. As a baseline, a
single output GP was fitted only using the primary channel observations, with a SM kernel,
this will be used to assert if there exist negative transfer in the learning, where if the model
performs worse than considering only the primary channel observations, negative transfer is
present.

For the primary channel, in Fig. 4.1 and Fig. 4.2 is shown the RMSE and NLPD re-
spectively, in function of the number of related secondary channels, showing the mean and
standard deviation of the 5 trials.
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Figure 4.1: RMSE in the primary channel in function of the number of secondary channels
that share information with the primary.

By looking at the RMSE plot in Fig. 4.1, the negative transfer can be seen clearly when
all 4 channels are uncorrelated, where the classic MOSM becomes more hindered in the
prediction than the restricted counterparts, with the increasing number of correlated channels
the negative transfer decreases, being mitigated around 2 correlated channels onwards. It
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can be seen that at 4 correlated channels, classic MOSM presents a higher error compared
to R-MOSM and R-MOSM-P, where the confidence interval falls above the baseline.
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Figure 4.2: NLPD in the primary channel in function of the number of secondary channels
that share information with the primary.

From the NLPD plot in Fig. 4.2, it can be seen that all models present a degree of negative
transfer when at least one channel is uncorrelated, one possible explanation is, given that
the RMSE falls under the baseline at 2 correlated channels, is that the models show high
uncertainty in the prediction, thus making the predictive variance take high values. The
tables with the values of the plots can be seen in appendix 4.6.2.

Fig. 4.3 shows the prediction on the primary channel for the baseline model, single output
GP with SM kernel, it can be seen that the prediction around x = 5 is not able to reconstruct
the curve of the target function, where the target function lies outside the confidence interval
of the prediction, the observations are not enough for the GP to be able fit correctly the target
function. In contrast, the prediction by R-MOSM shown in Fig. 4.4, is able to reconstruct
the target function following it closely, where cross-channel information compensates the lack
of data of the primary channel.
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Figure 4.3: Regression on the primary channel using single output GP with SM kernel.
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Figure 4.4: Regression on the primary channel using R-MOSM.

For R-MOSM, pairwise components allows to learn relationships which are only shared
across pairs of channels, while individual components are able to model specific behaviour of a
single channel, therefore preventing the transfer of information to other uncorrelated channels.
In contrast, regular MOSM forces relationships among channels, as the optimisation process
is unconstrained. A drawback of the proposed R-MOSM is the increased complexity in
training, given the sparse structure of the kernel, and the need to chose the parameters of
regularising priors.

The proposed R-MOSM was able to mitigate the negative transfer, reducing the error
when uncorrelated channels were present. However, this is clear only when there is 0 to
1 correlated channels, where by increasing the number of correlated channels shortens the
gap between the errors of MOSM and R-MOSM. This is due to the non-separable nature of
MOSM kernel, where given a high enough number of components the MOSM kernel is able
to naturally mitigate some of the negative transfer.

Unfortunately, both the R-MOSM and MOSM were not able to fully mitigate the negative
transfer, still yielding higher error than the baseline when no correlated channels were present.

4.5 Robot Inverse Dynamic Problem

The robot inverse dynamic problem is an important area in robotics, where the objective is
usually to obtain the forces or torques of a robot motors based of the kinematics, such as the
positions, velocities and accelerations. A commonly dataset used in multi-output regression
is the SARCOS dextrous arm dataset [39], which has been tackled previously using sparse
multi-output GP in [40, 41], the dataset relates to the dynamic model of a seven degree-of-
freedom robot arm, where the problem consist in estimating the 7 torques utilising the 21
inputs composed of the 7 positions, velocities and accelerations of the joints, consisting in a
total of 48933 observations.

We tackle the problem of learning the inverse dynamic problem employing the MOSM
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kernel, where in order to cope with the high number of observations, we employed the varia-
tional sparse multi-output approximation with stochastic variational inference (SVI), which
allows to work in mini-batches, in conjunction with the proposed inducing variables, this
model will be denoted SVI-MOSM-LIV.

For comparison, we also fitted MOGP using SVI with MOSM kernel and inducing variables
in the input domain; and independent GP with SM kernel and SVI sparse approximation,
which will be denoted SVI-MOSM and SVI-IGP-SM respectively. From the total of data
available, 44484 points where selected as the train test and the remaining 4449 for testing,
the joint learning of two couples is considered, the 2nd and 3rd torques which are negatively
correlated, and the 4th and 7th torques which are positively correlated [39].

All models were trained with Q = 1, and as was mentioned in the experiment regarding
the spectral initializations, they prove to be unsatisfactory for a high number of input di-
mensions, so all kernels parameters are initialized by sampling from a uniform in [0, 1] with
the exception of the phase and delay which are initialized to zero. For all the models, 800
inducing points were used, for SVI-MOSM and SVI-IGP-SM the inducing locations were
initialized by choosing randomly from the training set. For SVI-MOSM-LIV the inducing
locations are also initialized by randomly choosing from the training inputs, where the dif-
ference with SVI-MOSM is that, as the inducing points are in the latent process, it does not
need to consider the channel, making that each inducing point affects all the channels equally
for that component.

A desired property when working with mini-batches, is that the mean ELBO of the mini-
batches approximates the ELBO of the complete dataset, however this cannot be tested as the
size of the dataset makes prohibitive the evaluation of the ELBO using all the observations,
to assert this, instead 7000 random points were selected, from this, 600 mini-batches of 1200
points each were obtained, in each one evaluating the ELBO, the histogram of the evaluations
was obtained is shown in Fig. 4.5 alongside the mean of the evaluations.
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Figure 4.5: Histogram of ELBO of mini-batches for the 2nd and 3rd joint using a subset of
7000 points, in red line the mean of the evaluations, in black dashed line the ELBO of the
whole subset.
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Each experiment was run considering 800 inducing points, a batch size of 1200 and running
2000 iterations with Adam optimiser , where due to the large number of parameters, the
optimisation was done in fixing some parameters alternating between training the kernel and
the inducing inputs position and parameters if it is the case.

The first 500 iterations the kernel was trained leaving the inducing location fixed, the next
500 iterations the inducing variables, then the following 500 the kernel again and the last
500 iterations the inducing inputs were trained. The learning rate for the first cycle was set
to 0.05 and the following to 0.1. Training times were in the same order of magnitude, with
SVI-MOSM-LIV taking 15 minutes for training, SVI-MOSM 21 minutes and SVI-IGP-SM
30 minutes. For each model 5 trials were run.

For SVI-MOSM-LIV considering the learning of 4th and 7th joint, in Fig. 4.6 is shown
the ELBO of the mini-batches in training, where in blue is the training of kernel parameters
and in red the training of the inducing location, it can be seen that the first cycle of kernel
training does not increase the ELBO significantly, whilst the remaining cycles show a steady
increase in the ELBO. It is also worth noting the oscillating behaviour in the whole training
process, suggesting the use of a lower learning rate.
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Figure 4.6: Evolution of mini-batches ELBO in training, in blue the kernel training, in red
the inducing variables location training.

The results averaged over the 5 trials are shown in table. 4.3 for torques 2 and 3, for the
2nd torque, all models stays in the same order of magnitude, where SVI-MOSM presents the
lower RMSE and SMSE, indicating a better prediction of the posterior mean, whilst in torque
3 the independent GP with SM kernel show the lower RMSE and SMSE. But when looking
at the NLPD is clear that the SVI-MOSM and SVI-IGP-SM tend to overfit in the learning
process, where the proposed SVI-MOSM-LIV is able to regularize the posterior showings the
lower NLPD in both torques, where in the other cases the predictive variance is too low.

A possible explanation is that, given that the proposed LIV inducing features are shared
across all channels, in the optimisation process the inducing locations would be positioned
so it benefits all channels, thus reducing overfitting, as with independent inducing locations
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for each channels the positions could be adjusted to only benefit the corresponding channel.

Table. 4.4 shows the results for for torques 4 and 7, were similar to the other pair, for
the torque 4, the SVI-MOSM shows the lower RMSE and SMSE, where for torque 7 the
SVI-IGP-SM shows the lower RMSE and SMSE, but when evaluating the NLPD is clear
that both SVI-IGP-SM and SVI-MOSM tend to overfit, where the SVI-MOSM-LIV shows
the lower NLPD.

2nd joint 3rd joint
RMSE SMSE NLPD RMSE SMSE NLPD

SVI-IGP-SM 2.852± 0.115 0.037± 0.003 306.986± 147.337 1.44± 0.079 0.021± 0.002 46.253± 54.181
SVI-MOSM 2.572± 0.251 0.030± 0.006 63.045± 80.303 1.96± 0.926 0.047± 0.048 424.204± 662.538
SVI-MOSM-LIV 3.032± 0.209 0.042± 0.006 11.987± 4.598 1.855± 0.149 0.035± 0.006 12.133± 5.653

Table 4.3: RMSE, SMSE and NLPD for 2nd and 3rd joint in robot inverse dynamics problem,
results averaged over 5 trials.

4th joint 7th joint
RMSE SMSE NLPD RMSE SMSE NLPD

SVI-IGP-SM 3.647± 5.043 0.205± 0.396 335.33± 630.374 0.403± 0.064 0.025± 0.008 14.631± 7.757
SVI-MOSM 1.270± 0.107 0.009± 0.001 34.774± 63.767 0.827± 0.777 0.191± 0.324 275.196± 518.288
SVI-MOSM-LIV 1.464± 0.202 0.012± 0.003 4.981± 4.306 0.488± 0.048 0.036± 0.007 4.436± 2.316

Table 4.4: RMSE, SMSE and NLPD for 4th and 7th joint in robot inverse dynamics problem,
results averaged over 5 trials.

The proposed LIV can be integrated with existing sparse approximations, allowing to train
using a large number of observations. When used in conjunction with stochastic variational
sparse approximation, a MOGP can be trained in 15 minutes using 44000 points, while classic
inducing variables takes 20. Classic inducing variables must be defined per output, whereas
the proposed LIV are shared across all channels, this allows the use of fewer inducing variables
to represent the whole process, and better scalability with the number of channels, although
at a higher cost with respect to the number of components. This trade-off suggest which
inducing variable to use depending on the application, employing the proposed LIV when
working with a high number of channels but few kernel components, and classic inducing
variables when the number of channels is low and the number of components high.

A key assumption of the proposed LIV is that all channels are correlated, given that
the inducing variables correspond to points of the latent processes. If the channels are
not correlated and the LIV are utilised, when optimising the inducing locations the result
may no be sufficient to represent the whole process, where some inducing location could only
encapsulate useful information for certain channels. In this case, a higher number of inducing
variables must be used to incorporate the different structures, another option is use a mixed
set of inducing variables, mixing the LIV with classic inducing variables.
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4.6 Finance time series applications

The following two sections show applications of MOGP with MOSM kernel in finance datasets,
the first estimating missing values in a four channel model with observations of the price of
gold, oil, the compound index NASDAQ and a USD index. The second consist in the ex-
change rate of ten different countries with respect to USD, where the imputation of missing
values is considered. Both scenarios form part of a work presented in [24].

For the finance time series experiments, the error metrics employed were the mean-
normalised mean absolute error (nMAPE) and mean-normalised root mean squared er-
ror (nRMSE),where denoting N the number training points, {yn}Nn=1 the observations and
{y∗n}

N
n=1 the predictive mean of the model at training locations, the error metrics are defined

as follows,

nMAPE =
1

N

N∑
n=1

|yn − y∗n|
ȳ

· 100 (4.6)

nRMSE =

(
1

N

N∑
n=1

(yn − y∗n)2

ȳ

)1/2

, (4.7)

(4.8)

with, ȳ = 1/N
∑N

n=1 yn, the mean of the observations.

4.6.1 Gold, Oil, NASDAQ, and USD index

We considered a dataset comprising series of gold and oil prices, the NASDAQ and the USD
index (henceforth referred to as GONU) [42, 43, 44], between January 2017 and December
2018 with a weekly granularity. We detrended and log-transformed the data signals and
removed regions in each channel to mimic missing data. For oil we removed observations
between 2018-10-05 and 2018-12-31 as well as removing 30% of all observations randomly.
For gold we removed observations between 2018-07-01 and 2018-10-01. Finally, for the gold,
NASDAQ and USD channels we removed 60% randomly. Overall, our experiment consisted
of 385 training points and 446 test points resulting in roughly five minutes of training time
for the MOSM. We also set a Gaussian prior on the covariance magnitudes with the standard
deviation of the hyperparameter set to the maximum value of each channel.

Fig. 4.7 shows a fit of the MOSM kernel. The MOSM model is able to encapsulate the
structure of the channels with almost all data within the confidence interval of 95%, even
for parts that have missing data but with a deviating imputation for NASDAQ. The related
cross-correlation matrix is plotted in Fig. 4.8. Notice that the empirical cross-correlation
matrix is showing correlation between gold, oil, and NASDAQ, with especially a strong
dependency between oil and NASDAQ thus confirming our hypothesis. The hedging quality
of gold can also be seen (albeit faintly) with the negative cross-correlation between gold and
the USD index.
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Figure 4.7: GONU data set with the trained MOSM kernel. Training points are shown in
black, dashed lines are the ground truth and the colour coded lines are the posterior means.
The coloured bands show the 95% confidence intervals. The red shaded areas mark the data
imputation ranges.
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Figure 4.8: Cross-correlation matrix of the GONU data set (with missing data) among the
channels of the trained MOSM by evaluating the (normalised) kernel (eq. 2.12) at τ = 0 (left)
and the empirical cross-correlation of the full data set (right). The off-diagonal elements show
how much two currencies are aligned or anti-aligned, or whether they are unaligned and have
negligible correlation.

Our trained MOSM kernel is recovering the more significant dependencies such as the oil
and gold correlation and the oil and NASDAQ correlation. In Fig. 4.7 these curves follow
similar behaviour, especially for oil and the NASDAQ this is apparent. The USD is found
to correlate more negatively with the other channels, as well as gold and the NASDAQ. It
should be noted that the MOSM finds correlations by minimising the negative log-likelihood
(NLL), where if three channels correlate, the model could find correlation between the first
and second, and between the second and third channels, but not necessarily between the
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first and third, explaining the discrepancies between kernel and empirical cross-correlations.
Furthermore, the MOSM only uses part of the data, and depending on the number of pa-
rameters and training it may not find all correlations. Table 4.5 shows error values of the
test set comparing different models against the MOSM.

Gold, Oil, NASDAQ, USD index
Model nMAE (10−2) nRMSE (10−2)

SM-IGP 2.817± 0.000 5.071± 0.000
SM-LMC 2.5± 0.4 3.4± 0.6
CSM 1.88± 0.02 2.44± 0.06
MOSM 1.8± 0.1 2.6± 0.4

Table 4.5: Performance indices for the GONU and exchange rate experiments using the
normalised mean absolute error (nMAE) and normalised root mean square error (nRMSE)
on the test data and averaged over five test trials. Both are normalised by division of the
mean.

4.6.2 Exchange Rates

Much like the GONU data set, the movement of exchange rates among large currencies is
due to international market changes and national macro economic factors. Exchange rates
are heavily influenced by inflation and interest rates, trade and economic performance. We
chose ten exchange rates against the USD, namely the AUD, CAD, CHF, EUR, GBP, HKD,
JPY, KRW, MXN, and NZD using a daily granularity with data ranging from 2017-01-01
to 2017-12-31. For all the channels, 30% of the data points have been removed randomly.
All channels have the last 40 days removed except for EUR, JPY, and AUD. The EUR,
JPY, and AUD thus act as reference channels to predict the other currency exchanges. For
some channels an additional range has been removed to simulate missing data. Overall, we
used 1535 training points and 955 test points, where each trial took roughly 60 minutes per
trial for the MOSM. Table 4.6 shows error values of the test set comparing different models
against the MOSM.

Fig. 4.9 shows the currency exchange data set with a fit of the MOSM kernel. We see that
the predicted posterior means at the removed tails follow the data quite closely. A possible
reason why one channel can recover missing data better while other channels have difficulty
doing so, lies in the fact that a strongly correlating channel is needed to impute the data.
Notice that since the MOSM is a covariance-driven model, the EUR, JPY, and AUD channels
can be used to reconstruct the other channels.
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Figure 4.9: Ten currency exchange rates with respect to the USD fitted using the MOSM
kernel. Training points are shown in black, ground truth in dashed grey, the coloured lines
are the posterior means and the coloured shadows are the 95% confidence intervals. The red
shaded areas mark the data imputation ranges.

Fig. 4.10 shows how much the channels correlate among each other under the trained
MOSM kernel. Among the EUR, GBP, and CHF channels we see a strong positive correla-
tion which is highly likely as the EU is the major trading partner for the GBP and CHF.
Furthermore, we see that the HKD correlates negatively with the EUR, JPY, and AUD as
the AUD and JPY correlate positively. The correlation between AUD and NZD is hardly
surprising as these markets usually move quite similarly due to the geographic constraints of
New Zealand.
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Figure 4.10: Cross-correlation between the ten currency exchange channels using the MOSM
by evaluating the kernel (eq. 2.12) at τ = 0 and normalising with the sum of the weights of
each channel.

Gold, Oil, NASDAQ, USD index Currency exchange rates
Model nMAE (10−2) nRMSE (10−2) nMAE (10−3) nRMSE (10−3)

SM-IGP 2.817± 0.000 5.071± 0.000 5.478± 0.000 7.481± 0.000
SM-LMC 2.5± 0.4 3.4± 0.6 6.6± 0.5 8.9± 0.6
CSM 1.88± 0.02 2.44± 0.06 8± 1 10± 2
MOSM 1.8± 0.1 2.6± 0.4 4.8± 0.3 6.5± 0.4

Table 4.6: Performance indices for the GONU and exchange rate experiments using the
normalised mean absolute error (nMAE) and normalised root mean square error (nRMSE)
on the test data and averaged over five test trials. Both are normalised by division of the
mean.
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Conclusions

We have revisited a framework for constructing flexible kernels for multi-output Gaussian
processes (MOGP), by formulating a family of Hermitian functions which serve as the spectral
representation of the kernel, then by taking the inverse Fourier transform, the multi-output
kernel is formed, and also reinterpreted the framework as the convolution of latent white-
noise processes with a filter, where the convolution between filters defines the kernel. This
framework has been used with squared exponential functions as bases for the Hermitian
family, resulting in the Multi-output spectral mixture (MOSM) kernel, where this covariance
function can recover previous approaches to MOGP.

We also have expanded on the MOSM framework, tackling four main issues of the MOSM
kernel: scalability for large datasets, difficulty in training due to sensibility to initial points,
negative transfer of knowledge which can occur when the outputs are not correlated, and
lack of user-friendly implementation available of current and previous models.

The main contributions of this thesis include: (i) addressing scalability of the model for
large datasets by formulating sound inducing variables which can be used in variational
sparse approaches, (ii) designing methods for finding an initial point in optimisation for
spectral kernels, utilising the available data, (iii) by restricting certain components of the
kernel to only influence specific outputs, where regularising using priors can mitigate the
negative transfer of knowledge, which can occur when the outputs are not correlated, and
(iv) implementing a toolkit containing the proposed MOSM, previous approaches which are
particular cases of MOSM, and the aforementioned extension of the kernel.

To show that the MOSM kernel and the proposed variations constitute a robust approach
to MOGP, we have validated the approach using real-world data, considering finance time
series to assert the flexibility and predictive capabilities of the kernel, where MOSM out-
performed previous approaches in MOGP. The integration of the kernel with current sparse
approximation frameworks has been demonstrated utilising a robot-arm dataset with near
44000 training points, where the training only takes 15 minutes. The proposed kernel ini-
tialisations have been tested utilising a known periodic dataset on a single channel setup,
where the proposed spectral initialisation using Bayesian non-parametric spectral estima-
tion (BNSE) yielded the best results, however, these methods have shortcomings, wherein
the case of multiple input dimension or a dataset with a non-pronounced periodic compo-
nent the initialisation fails to deliver consistent results. Lastly, the regularising extension
for mitigating negative transfer, restricted MOSM (R-MOSM), have been validated consid-
ering a synthetic dataset where the negative transfer can be controlled. Additional to this,
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we have constructed the Multi-Output Gaussian Process Toolkit (MOGPTK), encapsulating
the proposed-and-previous approaches to MOGP.

The proposed spectral initialisations constitute a robust method to find initial estimate of
the kernel parameters, prior to optimisation, outperforming previous initialisation methods,
in a dataset with a strong periodic component. Although this method can only be applied to
kernels with known Fourier transform, this include commonly used kernels, such as squared
exponential and Matérn, and specially the spectral mixture, where the spectral means con-
stitute a sensible parameter in the optimisation. This method have been expanded to MOGP
kernel, in particular, MOSM benefits from this due to the high number of kernel parameters,
where the initial estimates helps the optimisation process.

A limitation of the proposed spectral initialisation, is that it yields insufficiency results
when working with high number of input dimensions, where estimating the PSD for each
input dimension is not enough to incorporate the information of the whole process.

In regard of R-MOSM, it is able to mitigate the negative transfer, when uncorrelated chan-
nels are present, by restricting certain components to only affect a limited number of channels.
The R-MOSM outperforms classic MOSM in a setting where all channels are uncorrelated,
and only the performance in a single channel is considered. Moreover, when increasing the
number of correlated channels both methods yield similar results, noting that R-MOSM is
able perform similar to MOSM when there is no risk of negative transfer. However, R-MOSM
is not able to fully mitigate negative transfer, with a single-channel GP outperforming the
R-MOSM, when all channels are uncorrelated, and focusing on the error of a single channel.

Regarding the proposed inducing variables, LIV has been incorporated in existing sparse
approximation methods, enabling the MOSM kernel to be used in contexts with large quan-
tities of data. The proposed LIV escalate better than classic inducing variables with the
number of channels, with the trade-off of a high dependency of the number of components.
As each inducing variable of the LIV is in the latent process, each inducing variable affects all
channels, lowering the number of inducing variables necessary to represent the whole process,
if the channels are highly correlated, but otherwise increasing the number necessary if the
channels present low correlation.

The introduced MOGPTK have been successful in incorporating the MOSM kernel and
the proposed extension, alongside previous models. The MOGPTK was used to perform all
validation experiments, validating the use in real-world scenarios.

Future Directions

Future work includes the application of the proposed framework over other different base
functions rather than the squared exponential, where and interesting option is the mixture
of rectangular functions, which defines a limited-band spectrum, and will yield the recently
proposed sinc kernel. [45].

The proposed framework for the MOSM kernel and its variants are expressive, simplifying
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the user design by utilising the expressive kernel instead of relying on expert knowledge,
however, there is still the issue of choosing the number of components Q, recent work [46]
proposed the use of a non-parametric prior such as the Indian buffet process to model the
number of components employing simple kernels, future work includes considering other
non-parametric prior over the number of components of the MOSM kernel, such as Dirichlet
processes or Determinantal point processes.

Concerning the proposed initialisation methods, an improvement on this would be to
estimate the delay using the lag which produces the higher cross-correlation between a pair
of channels, this is proposed as future work. An extension of this is not only to estimate
the PSD of each channel for each input dimension, but estimate as well the cross-spectral
densities to incorporate across-channel information before training. In the case with multiple
input dimensions, the use of multivariate spectral estimation methods could be used instead
of estimating the spectrum for each input dimension.

Regarding the proposed inducing variables, future improvements can be made using the
spectral representation of the MOSM kernel, by designing inducing variables in the spectral
domain of the latent processes [27], but instead of considering the spectrum of the output
process, it uses the spectrum of the latent processes, benefiting from the independence of the
latent factors.

Recent work [47] utilises an eigenfunction approximation of the covariance function util-
ising the spectral density for single output GP, this could be expanded for multi-output GP,
where the MOSM kernel benefits as the spectral density is known. Another interesting line
of work is at the variational Fourier features [48], which defines inducing variables by util-
ising an RKHS inner product between the process and a truncated Fourier base, this work
was developed for the Matern kernel, as said inner product can be obtained in closed form,
this could be expanded to arbitrary spectral kernels by employing a theorem which char-
acterise the inner product of RKHS whose reproducing kernels have a closed-form Fourier
transform [49] [50], this result states the following theorem,

Theorem 4.1 Let k be a shift-invariant kernel on X = Rd such that k(x, x′) := k(x − x′)
for k ∈ C(Rd) ∩ L1(Rd). Consequently, the RKHS Hk of the kernel k will be given by,

Hk =

{
f ∈ C(Rd) ∩ L2(Rd) : ||f ||2Hk

=
1

(2π)d/2

∫
|F (ω)|2

S(ω)
dω <∞

}
, (4.9)

and the inner product of said RKHS will be given by,

< f, g >Hk
=

1

(2π)d/2

∫
F (ω)G(ω)

S(ω)
dω, f, g ∈ Hk, (4.10)

where F (ω) and G(ω) correspond to the spectrum of f and g respectively, and S(ω) is the
Fourier transform of the kernel.

This result could be used to expand the variational Fourier feature framework, allowing
design of new inducing variables for spectral kernels.
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Appendix A.

In this appendix we derive the expression from Section 2.4, eq. (2.14), where the MOSM
kernel can be obtained from the convolution of a white noise process and a filter hi(x).

Proof.

hi(x) = F−1 {Ri(ω)}

= F−1

{
ai exp
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4
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>Σ−1
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}
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}
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= ai|Σi|1/2(2π)n/2 exp(−ιφi)
{
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Appendix B.

L-BFGS-B CG Adam
SMSE SMSE SMSE

Random 0.240± 0.097 0.310± 0.002 0.238± 0.015
IPS 2.447± 2.628 0.733± 1.479 0.649± 1.496
GMM 0.310± 0.001 0.299± 0.022 0.288± 0.000
LS 0.162± 0.000 0.200± 0.000 0.120± 0.000
LS+ε 0.246± 0.140 0.142± 0.095 0.177± 0.101
BNSE 0.071± 0.000 0.008± 0.000 0.185± 0.000
BNSE+ε 0.322± 0.332 0.206± 0.110 0.142± 0.062

Table 7: SMSE for different initialisations and optimisers in GP regression using SM for
Mauna Loa dataset, results averaged over 10 trials.

Appendix C.

Tables of experiment of negative transfer of knowledge, used in Fig.4.1 and Fig.4.2.
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RMSE
SM MOSM R-MOSM R-MOSM-P

0-Correlated channels 0.538 1.041± 0.149 0.701± 0.256 0.643± 0.119
1-Correlated channels - 0.591± 0.352 0.598± 0.146 0.640± 0.065
2-Correlated channels - 0.566± 0.195 0.532± 0.101 0.594± 0.208
3-Correlated channels - 0.390± 0.258 0.436± 0.189 0.537± 0.173
4-Correlated channels - 0.367± 0.337 0.344± 0.170 0.261± 0.095

Table 8: RMSE for primary channel at different number of correlated channels, results aver-
aged over 5 trials.

SMSE
SM MOSM R-MOSM R-MOSM-P

0-Correlated channels 0.319 1.879± 1.194 0.521± 0.317 0.430± 0.146
1-Correlated channels - 0.472± 0.434 0.368± 0.161 0.414± 0.060
2-Correlated channels - 0.257± 0.142 0.204± 0.056 0.256± 0.113
3-Correlated channels - 0.172± 0.216 0.219± 0.225 0.271± 0.120
4-Correlated channels - 0.284± 0.495 0.119± 0.108 0.072± 0.062

Table 9: SMSE for primary channel at different number of correlated channels, results aver-
aged over 5 trials.

NLPD
SM MOSM R-MOSM R-MOSM-P

0-Correlated channels 0.643 1.633± 0.334 1.309± 0.819 1.055± 0.282
1-Correlated channels - 0.823± 0.700 1.026± 0.473 1.348± 0.432
3-Correlated channels - 1.368± 1.309 1.211± 0.824 2.235± 2.115
2-Correlated channels - 0.534± 0.741 0.582± 0.481 1.073± 0.798
4-Correlated channels - 0.320± 0.663 0.338± 0.427 0.157± 0.258

Table 10: NLPD for primary channel at different number of correlated channels, results
averaged over 5 trials.
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