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A B S T R A C T

The main challenge for partial nitrification is to reach stable nitrite accumulation, which strongly depends
on the nitrite-oxidizing bacteria (NOB) growth in the reactor. The on-line estimation of active biomass may
enhance the decision-making process to maintain a high nitrite accumulation in the reactor. In this work, we
propose an active biomass estimator based on ASM1 and on-line oxygen uptake rate measurements (OUR-E)
in a sequencing batch reactor. In order to validate the OUR-E, two operating scenarios were applied during
200 days of operation: unfavorable (sludge retention time (SRT) = 40 d, pH = 7.6, dissolved oxygen (DO) =
2 mg/L) and favorable for partial nitrification (SRT = 10 d, pH = 8.5, DO = 2 mg/L). Furthermore, a second
estimation method based on off-line measurements of N-species concentrations (Nsp-E) was implemented to
evaluate the performance of the OUR-E. The OUR-E was able to predict a reduction in the NOB active fraction
from 10.3% to 1.6% with nitrite accumulation over 80% when we shifted the operating scenario. Although both
estimators predicted similar results, the OUR-E showed a better prediction quality than the Nsp-E, according
to Theil’s coefficient of inequality.
. Introduction

Partial nitrification consists of incomplete biological oxidation of
mmonia up to nitrite. For this purpose the environmental conditions
re adjusted to inhibit nitrite-oxidizing bacteria (NOB) growth; am-
onium is oxidized by ammonia-oxidizing bacteria (AOB) to nitrite

nitritation) and only a part of this nitrite is oxidized by NOB to nitrate
nitratation). The accumulated nitrite can be reduced in the denitrifi-
ation step by heterotrophic bacteria (HB) and subsequently in various
teps to molecular nitrogen. The application of partial nitrification has
arious advantages, such as the reduction of aeration costs (up to
5%), the amount of carbon needed in denitrification (up to 60%),
nd active sludge production (Pambrun et al., 2008; Peng and Zhu,
006; Pollice et al., 2002). Partial nitrification depends on dissolved
xygen (DO) concentration, pH, ammonia concentration, temperature
nd the solids retention time (SRT) (Jaramillo et al., 2018b). Past
esearch has shown how to obtain a stable shortcut nitrification process
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by combining some or all of these parameters; however, successful long-
term partial nitrification (months to years) at industrial scale requires
on-line monitoring of the microorganisms’ activity in order to avoid a
step-wise increase of nitrate concentration with the growth of NOB in
the reactor. The latter can be explained by the acclimation of nitrifying
biomass to the inhibiting or limiting conditions (Casellas et al., 2006;
Turk and Mavinic, 1989). The required monitoring can be done on-line
by measurement of the DO concentration (Ganesh et al., 2006; Garcia-
Ochoa et al., 2010) based on correlating the bacterial growth rate
with the oxygen uptake rate (OUR). This tool provides the possibility
of detecting inhibitions (Hockenbury and Grady, 1977; Jubany et al.,
2009) and can also be applied for control purposes, i.e. for maintaining
a constant oxygen consumption rate inside the reactor (Jubany et al.,
2009) or for detecting the endpoint of ammonia oxidation during a
cycle in a sequencing batch reactor (SBR) (Chen et al., 2012; Corominas
et al., 2011).
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Nomenclature

AOB Ammonia-oxidizing bacteria
ASM1 Activated sludge model No. 1
DO* Dissolved oxygen set-point
FISH Fluorescent in-situ Hybridization
HB Heterotrophic bacteria
KLa Volumetric oxygen transport coefficient
NOB Nitrite-oxidizing bacteria
Nsp-E N-species estimation
OUR Oxygen uptake rate [mg O2/(L⋅h)]
OUR-E Oxygen uptake rate estimation
pH* pH set-point
rs Ammonia conversion rate [kg TAN/(kg

SSV⋅d)]
SBR Sequencing batch reactor
SNO−

2
Total nitrite nitrogen concentration
(HNO2–N + NO2–N)

SNO−
3

Total nitrate nitrogen concentration
(HNO3–N + NO−

3 –N)
SQP Sequential quadratic programming
SRT Sludge retention time
STAN Total ammonia nitrogen concentration

(NH3–N + NH+
4 –N)

TIC Theil’s inequality coefficient
X0 Initial biomass concentration inside the

reactor
XA Concentration of active AOB [mg COD/L]
XCOD Particulate COD concentration [mg

COD/L]
XH Concentration of active HB [mg COD/L]
XN Concentration of active NOB [mg COD/L]
XVSS Volatile suspended solid concentration

[mg/L]
YA Yield coefficient of AOB over substrate [g

COD/g N]
YH Yield coefficient of HB over substrate [g

COD/g COD]
YN Yield coefficient of NOB over substrate [g

COD/g N]
YO2∕S Yield coefficient of oxygen over substrate

[g O2/g COD] or [g O2/g N]
%XA Estimated fraction of active AOB (%XA =

XA∕XCOD)
%XN Estimated fraction of active NOB (%XN =

XN∕XCOD)
%XA+%XN Estimated fraction of active autotrophic

bacteria
%XNA Estimated fraction of active NOB among

active autotrophic bacteria (%XNA =
XN∕(XA+XN))

𝛼 Total TAN conversion (1-TANend∕TAN) (%)
𝛽 Total nitrite accumulation (𝛥NO−

2 ∕(𝛥NO
−
2 +

𝛥NO−
3 )) (%)

SBR is a compact technology with a small footprint, which offers
everal advantages: only one unit is required as reactor and settler;
itrification and denitrification may be conducted in the same reactor;
lexibility in the loading rate; and real-time control strategies can be
2

mplemented allowing exact adjustment of the length of reaction phases
to optimize energy consumption (Corominas et al., 2011; Jaramillo
et al., 2018a). Additionally, SBR is very suitable for partial nitrification
since it can detect when nitrite concentration reaches the maximum,
avoiding subsequent oxidation to nitrate (Antileo et al., 2013; Jaramillo
et al., 2018b).

A key factor for achieving long-term partial nitrification in SBRs is
knowledge of the concentration of the active AOB, NOB, and HB in
the reactor on a long-term basis. These active bacteria concentrations
as unmeasured variables have a direct influence on the nitritation
rate and therefore on the degree of nitrite accumulation for partial
nitrification. Unfortunately, hardware sensors are not able to measure
active biomass on-line; however, this can be overcome by using state
estimators (also called soft-sensors). As shown in Fig. 1, state estimators
calculate missing information about the internal states of a biochem-
ical process (unmeasured variables), e.g. they can infer meaningful
hidden information from the data provided by the sensor based on
a model (Sotomayor et al., 2002). This method could be based on
a phenomenological model, such as the ASM1 or data-driven models
obtained from artificial intelligence techniques, or a combination of
both.

Most known implementations of state estimators related to bio-
logical nitrogen removal are based on continuous processes (Alcaraz-
González et al., 2002; Benazzi et al., 2007; Boulkroune et al., 2009;
Hedegärd and Wik, 2011). The challenge in this work was to apply a
state estimator for a transient state process, such as SBR, based on a
modified ASM1; and to develop a new estimation method of internal
variables using real-time differentiation of active AOB/NOB nitrifying
biomass.

Bogaerts and Wouwer (2003) and Hedegärd and Wik (2011) have
reported an implementation of estimators for continuous nitrogen re-
moval processes in a simulated ASM1. Later, Smida et al. (2018a,b)
reported an observer based on a continuous process and calibrated
ASM1 with experimental data in order to develop a predictive control
scheme. Wu et al. (2014) also used a predictive control approach to
control the substrates in a continuous activated sludge. For online
estimation of active biomass in SBR for partial nitrification, Boaventura
et al. (2001) estimated the total active autotrophic and heterotrophic
biomass concentrations. To our knowledge there is no work reporting
the differentiated AOB and NOB estimation from OUR in real time.

Therefore, the objectives of this work were:

• To develop two new estimation methods of internal states of the
partial nitrification process derived from the full-horizon state estima-
tion, using a modified ASM1 model. The first estimator uses on-line
oxygen uptake rate measurements (OUR-E) and the second one uses
off-line measurements of N-species concentrations (Nsp-E).

• To estimate on-line the most likely initial conditions for the active
bacteria concentrations in SBR cycles.

• To validate the two proposed estimators through experimental assays
at two operating scenarios of an SBR on long-term basis.

• To compare the performance of the on-line estimator OUR-E with
respect to the off-line estimator Nsp-E.

We developed a method for indirect and differentiated determi-
nation of the active concentrations of AOB, NOB and HB using state
estimation based on on-line measurements of OUR and the initial
concentrations of the N-species (NH+

4 , NO−
2 , NO−

3 ) measured off-line.
This state estimator is able to calculate the development of the concen-
trations of the N-species, OUR and the active concentrations of both
bacterial species during an SBR-cycle by running multiple simulations
of a modified ASM1 (ASM1 for partial nitrification). Most studies on
SBR modeling are validated only in short time dynamics considering
the behavior during a small number of cycles. In this work, the two
proposed estimators were validated on a long-term basis by comparison
of estimates with off-line measurements in order to determine the trend

of the active NOB concentration during partial nitrification.
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Fig. 1. Principle of a soft-sensor.
Source: Adapted from Sotomayor
et al. (2002).
2. Materials and methods

2.1. Sequencing batch reactor

The lab-scale SBR had a volume of 2.4 L. Temperature was kept in
a range around 20◦ C by a thermostat (JULABO, Model EC, Germany).
Homogenization was performed by a stirrer at 360 rpm (HEIDOLPH,
RSR 2050, Germany). DO and pH/temperature were measured by two
electrodes, WTW (OXI 701, Germany) and HACH (EC 310, USA). The
SBR system was automated with a programmable logic controller (PLC)
(Siemens, Simatic S7-200, CPU214, Germany) and operated with a
user interface developed in MATLAB® 7.1, linked to the PLC through
the OPC (OLE for Process Control) server KepServerEX. The pH was
regulated by a PI controller by the addition of 0.125 mL at 0.2M sodium
carbonate solution with a diaphragm pump (LANG, model ELADOS,
EMP II, 41 L/h, Germany) to neutralize the protons released during
nitrification. DO control was carried out by applying pulse width mod-
ulation (PWM), with a time period of 1 s, to open an electromagnetic
air valve (Festo, 457, MSG- 24DC, Germany). The aeration was supplied
by a blower (COSMOS double type 1000, China). The synthetic solution
used to feed the SBR was prepared in tap water as follows: (NH4)2SO4,
4.52 g/L; MgSO4 7H2O, 0.256 g/L; K2HPO4, 1.7448 g/L; KH2PO4, 1.364
g/L.

The concentration of the N-species (e.g. ammonium, nitrite, ni-
trate) in a SBR cycle was determined once to twice a week, taking
samples every fifty minutes during a cycle. The total ammonia nitro-
gen (TAN) concentration was measured by electrometry with a dual
channel pH/ion meter (AR25 Fisher Scientific). The concentrations of
nitrite and nitrate were measured using standard spectrophotometric
methods (APHA, 1992) and UVmini-1240 UV–VIS-Spectrophotometers
Shimadzu equipment.

The SBR was inoculated with sludge from the wastewater treatment
plant of Temuco, Chile. The SRT was measured weekly in order to
maintain the bacterial activity stable during the validation of the
estimation methods, considering sample volumes for off-line measure-
ments and the waste activated sludge. The biomass concentrations were
determined by filtration, drying (105◦ C) and incineration (550◦ C).

The OUR was determined by the dynamic method, with aeration
interrupted every 15 min for 33 s. It was determined experimentally
that an interruption time shorter than 33 s led to unreliable OUR mea-
surements. The DO concentration inside the reactor was determined
every two seconds. For the OUR calculation only the DO values of the
last fifteen seconds of the interruption were used, excluding the last
measurement point and avoiding DO depletion below 1.5 mg O2/L
according to Jubany et al. (2008, 2009). The −𝑑𝐷𝑂∕𝑑𝑡 slope of the
linear regression of the curve DO vs time with the highest R2 was used
to calculate the OUR.
3

2.2. Control and operating strategies of the SBR

Partial nitrification was carried out in a SBR using four phases:
filling, aerobic reaction, settling, and discharge. Uncompleted ammonia
oxidation occurred up to nitrite (partial nitrification), and the progress
of the reaction was evaluated on-line by detecting bending points as a
real-time control strategy according to Antileo et al. (2013). This strat-
egy detected the end point of ammonia oxidation when the diaphragm
pump did not make a stroke for 30 min and a minimum value of %AVO
(air valve opening) was reached. Afterwards, aeration was stopped, the
sludge was allowed to settle inside the SBR for 30 min and the effluent
was removed.

The SBR reactor was controlled in real-time by a PLC. One level
higher in the hierarchic command order were two MATLAB® interfaces,
one for the DO concentration control (DO-control) and the other for
control of the SBR. The SBR control involved on-line processing and
storage of pH/temperature, DO concentration and OUR. These acquired
data enabled the PLC to command the stirrer, the sodium carbonate
pump (actuator of pH control), air valve opening (actuator of DO
control), and the charge and discharge pumps for the control of SBR
cycles.

The estimation methods proposed in this work aimed to calculate
the trends of the active biomass concentrations XA (AOB), XN (NOB)
and XH (HB) on a long-term basis. Therefore, two operating scenarios
were carried out as shown in Table 1, one scenario favorable for partial
nitrification and the other unfavorable. The favorable scenario involved
a strongly alkaline pH since ammonia nitrogen inhibits NOB growth,
and low SRT acts as kinetic selection pressure for NOB washout. In
contrast, high SRT and a slightly alkaline environment promote AOB
and NOB growth, leading to complete nitrification from ammonia up
to nitrate. The DO concentration was high enough to enable OUR
measurements on-line during each SBR cycle with a set-point of 2
mg/L by means of a predictive control based on a modified ASM1
model (Muñoz et al., 2009).

2.3. Modified ASM1 model

A modified model based on the ASM1 (Henze et al., 1987) was
used to estimate the active biomass of autotrophic and heterotrophic
microorganisms on-line during whole SBR cycles as well as to perform
DO predictive control.

In ASM1, nitrification is represented as a one-step process with
no differentiation between nitritation and nitratation (Gernaey et al.,
2004). In this work, we added kinetic equations and yields of AOB and
NOB species in the model matrix to simulate nitritation and nitratation.
The modified ASM1, described in Eq. (1), uses eleven differential
equations as state variables, considering kinetic parameters as well as
growth, decay and hydrolysis parameters of both nitrifying species and
state variables for the different fractions of soluble and particular mat-
ter. In addition, the first three state variables (STAN, SNO−

2
, and SNO−

3
)

were considered as the output (𝒚 ) of this state–space system. The
𝑵
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Table 1
Operating conditions for the validation of the estimation methods.

pH set-point SRT [d] DO set-point [mg O2/L] Time [d]
Unfavorable scenario 7.6 ∼ 40 2.0 120for partial nitrification
Favorable scenario 8.5 ∼ 10 2.0 60for partial nitrification
model matrix was based on the processes 𝝆(𝑥), the rate equations, and
the stoichiometry of the eleven compounds (𝑨), which are illustrated
in Table 2. All the stoichiometric and kinetic parameters considered in
the proposed model are detailed in Table 3. The kinetic equations for
AOB and NOB originally involved substrate inhibitions ([SNH3]2/KIS,A
and [SHNO2]2/KIS,N) as well as cross inhibitory kinetics (SNH3/KI,N and
CHNO2/KI,A). Finally, the equations related to the two-step nitrification
process are shown in Table 4.

�̇�(𝑡) = 𝑨𝑇 𝝆(𝒙(𝑡))

𝒚𝑵 =
[

𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)
]𝑇

𝒙𝟎 = 𝒙(0)

𝒙(𝑡) =
[

STAN SNO−
2

SNO−
3

SND SS XA XN XH XP XS XND

]𝑇

(1)

As an alternative output, Eq. (2) was used to predict the simulta-
neous respiration of the nitrifying (AOB and NOB) and heterotrophic
bacteria in the SBR:

𝑂𝑈𝑅 =
(

3.43 − YA
YA

)

⋅ 𝜌(1) +
(

1.14 − YN
YN

)

⋅ 𝜌(2) +
(

1 − YH
YH

)

⋅ 𝜌(3) (2)

2.4. Design and validation of two methods for active biomass estimation

The estimation methods were based on the ASM1 model (mod-
ified as described in Eq. (1)). ASM1 provided the trajectory of the
state variables throughout the cycle, including the concentrations of
the initial and final AOB/NOB species. Two kinds of active biomass
estimation method were designed: N-species Estimation (Nsp-E) and
OUR Estimation (OUR-E). The first used off-line measurements of N-
species concentrations as input for the estimation process; the second
used on-line measurements such as DO, temperature and OUR profiles
to calculate the internal variables of the nitrification process. The
Nsp-E method uses ASM1 to convert the measurements of ammo-
nium/nitrite/nitrate concentrations (mg L−1) into OUR values (mg O2
L−1) and vice versa, which allowed us to validate the estimation of the
OUR-E method online. Both methods require the initial concentrations
of the N-species for each SBR cycle as input.

The estimation was carried out by running multiple simulations of
the modified ASM1. At the beginning of the estimation process a vector
with random concentrations of XA, XN and XH was defined. With this
vector the entire SBR cycle was simulated, generating an error of the
estimation by comparison with the measured OUR profiles (for the
OUR-E) or N-species (for the Nsp-E). A sequencing quadratic program-
ming (SQP) algorithm, using quadratic approximation of the non-linear
model, projected the trajectory of the estimation error by recursive
changes of the initial vector. The estimation process ended when the
estimated error converged to a minimum. This minimum was defined
as a local minimum, so the estimation process was repeated with a large
number of initial random vectors (Monte-Carlo Simulation). At the end
of the simulation process the errors of all local minima were compared.
The vector of the simulation with the smallest global error was set as
the best fitting initial vector of the SBR cycles and used afterwards for
the simulation of the trend of bacterial species XA, XN and XH. This
procedure was implemented in MATLAB® 7.1.

For running the model it was necessary to assign initial values for
the bacteria concentrations (X0) and an OUR profile resulting from
the simulation (Outputs in Fig. 2). These are different for different X0,
which shows the observability of the applied X0 (Ammar and Vivalda,
2004). Thus the model had different trajectories depending on the
4

Fig. 2. Scheme of the active biomass estimation by OUR-E.

initial conditions used; the trajectory with the lowest error compared
to measurements had to be found with a cost function.

Nsp-E was mainly used for validation of OUR-E. Nsp-E measures
more state variables than OUR-E, which demands a higher manual
effort. However, Nsp-E is not measured online as it is with the OUR-E.

The two estimation methods were experimentally validated
throughout a long-term SBR operation. The validation was performed
over six months of SBR operation under unfavorable (120 days) and
favorable conditions (60 days) for partial nitrification, according to the
environment scenarios shown in Table 1.

The validation method was based on the examination for coherency
of the results during long-term partial nitrification. On the one hand,
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Table 2
Model matrix and kinetic equations of the ASM1 modified for partial nitrification.

STAN SNO−2
SNO−3

SND SS XA XN XH XP XS XND Rate equations

Aerobic growth of 𝐗𝐀
(𝝆(𝟏))

− 1
Y A

− iXB
1
Y A

1 𝜇max,A ⋅
SNH3

KS,A ⋅

(

1 +
SHNO2
KI,A

)

+ SNH3 +

⎛

⎜

⎜

⎜

⎝

S2NH3
KIS,A

⎞

⎟

⎟

⎟

⎠

⋅

(

SDO
KDO,A + SDO

)

⋅ XA

Aerobic growth of 𝐗𝐍
(𝝆(𝟐))

−iXB − 1
YN

− iXB
1

YN
1 𝜇max,N ⋅

SHNO2

KS,N ⋅

(

1 +
SNH3
KI,N

)

+ SHNO2
+

⎛

⎜

⎜

⎜

⎝

S2HNO2
KIS,N

⎞

⎟

⎟

⎟

⎠

⋅

(

SDO
KDO,N + SDO

)

⋅ XN

Aerobic growth of 𝐗𝐇
(𝝆(𝟑))

−iXB − 1
YH

1 𝜇max,H ⋅

(

SDO
KO,H + SDO

)

⋅

(

SS
KS,H + SS

)

⋅ XH

Decay of 𝐗𝐀 (𝝆(𝟒)) −1 fp 1 − fp iXB − fp ⋅ iXP bA ⋅ XA

Decay of 𝐗𝐍 (𝝆(𝟓)) −1 fp 1 − fp iXB − fp ⋅ iXP bN ⋅ XN

Decay of 𝐗𝐇 (𝝆(𝟔)) −1 fp 1 − fp iXB − fp ⋅ iXP bH ⋅ XH

Ammonification of 𝐒𝐍𝐃
(𝝆(𝟕))

1 −1 ka ⋅ SND ⋅ XH

Hydrolysis of 𝐗𝐒 (𝝆(𝟖)) 1 −1 kh ⋅
XS

KX + XS∕XH
⋅

SDO
KO,H + SDO

Hydrolysis of 𝐗𝐍𝐃 (𝝆(𝟗)) 1 −1 kh ⋅
XND

KX + XS∕XH
⋅

SDO
KO,H + SDO
Table 3
Stoichiometric and kinetic parameters for a two-step nitrification model (T, pH).
Source: Adapted from Jubany et al. (2008).

Unit Symbol Value Reference

Parameters related to AOB
Oxygen saturation constant mg O2 L−1 KDO,A 0.99 Ciudad et al. (2007)
NH3–N saturation constant mg NH3–N L−1 KS,A 0.3 Ciudad et al. (2007)
NH3–N inhibition constant mg NH3–N L−1 KIS,A 540 Wiesmann (1994)
HNO2–N inhibition constant mg HNO2–N L−1 KI,A 0.003 Jubany et al. (2008)
Growth yield g COD g−1 N YA 0.2 Wiesmann (1994)
Decay rate h−1 bA 0.002 Wiesmann (1994)
Parameters related to NOB
Oxygen saturation constant mg O2 L−1 KDO,N 1.4 Ciudad et al. (2007)
HNO2–N saturation constant mg HNO2–N L−1 KS,N 2.2e−4 Ciudad et al. (2007)
HNO2–N inhibition constant mg HNO2–N L−1 KIS,N 0.260 Wiesmann (1994)
NH3–N inhibition constant mg NH3–N L−1 KI,N 0.010 Jubany et al. (2008)
Growth yield g COD g−1 N YN 0.06 Wiesmann (1994)
Decay rate h−1 bN 0.002 Wiesmann (1994)
Parameters related to HB
Affinity constant for SO2 mg O2 L−1 KO,H 0.2 Henze et al. (2000)
Affinity constant for SS mg COD L−1 KS 4 Henze et al. (2000)
Growth yield g COD g−1 COD YH 0.67 Henze et al. (2000)
Decay rate h−1 bH 0.008 Henze et al. (2000)
Other parameters
Ammonification rate L mg−1 COD h−1 kA 0.003 Henze et al. (2000)
Max. specific hydrolysis rate g COD g−1 COD h−1 KH 0.13 Henze et al. (2000)
Affinity constant for XS g COD g−1 COD Kx 0.03 Henze et al. (2000)
Nitrogen content of XA, XN, XH g N g−1 COD iXB 0.086 Henze et al. (2000)
Nitrogen content of XP g N g−1 COD iXP 0.06 Henze et al. (2000)
Fraction of biomass leading XP g COD g−1 COD fXP 0.08 Henze et al. (2000)
the concentration of AOB, NOB and HB obtained by both estimators
(Nsp-E and OUR-E) must be in a reasonable range. On the other, the
operating changes in the process from unfavorable to favorable con-
ditions should be reflected by the long-term evolution of the bacterial
concentrations.
5

The quality of the prediction of N-species concentrations and OUR

values by OUR-E and Nsp-E, respectively, was evaluated using Theil’s

inequality coefficient (TIC) (Chen, 2011). Thus, the goodness of fit of

each estimation method was quantified by comparing the simulation
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𝑇

Table 4
Kinetic parameters and equilibrium equations for nitritation and nitratation.

Name Unit Equation Reference

Ionization constant for
ammonium

– Ka = e(6334∕(273+T)) Jubany et al. (2008)

Ionization constant for
nitrous acid

– Kn = e(−2300∕(273+T)) Jubany et al. (2008)

Maximum specific growth
rate (AOB)

h−1 𝜇max,A = 1.28 × 1012 ⋅ e(−8183∕(273+T))

1 +
(

2.05 × 10−9

10−pH

)

+
(

10−pH

1.66 × 10−7

) ⋅
1
24

Jubany et al. (2008)

Maximum specific growth
rate (NOB)

h−1 𝜇max,N = 6.69 × 107 ⋅ e(−5295∕(273+T))

1 +
(

2.05 × 10−9

10−pH

)

+
(

10−pH

1.66 × 10−7

) ⋅
1
24

Jubany et al. (2008)

Maximum specific growth
rate (HB)

h−1 𝜇max,H = 6 ⋅ (1.07)(T−20) ⋅ 1
24

Jubany et al. (2008)

Concentration of NH3–N mg N
L

SNH3
=

STAN ⋅ 10pH

Ka + 10pH
Jubany et al. (2008)

Concentration of HNO2–N mg N
L

SHNO2
=

SNO−
2

1 + Kn ⋅ 10pH
Jubany et al. (2008)
Table 5
Comparison of average experimental parameters of favorable and unfavorable stages with estimations and references.

Reference Process conditions Experimental data Biomass fraction estimation

pH SRT T DO 𝑟𝑠 𝛽 OUR VSS XN∕(XA + XN)

[d] [◦C] [mg/L] [kg TAN/(kg VSS⋅d)] [%] [mg O2/(L⋅h)] [mg/L] [%]

Unfavorable 7.6 40 16–23 2.0 0.38 ± 0.16 48.5 ± 15.7 80.2 ± 10.7 4935 ± 930 11.8 ± 3.7 (Nsp-E)

scenario 10.3 ± 6.6 (OUR-E)

Favorable 8.5 10 16–23 2.0 0.77 ± 0.11 79.6 ± 6.7 77.2 ± 15.7 3095 ± 287 3.1 ± 1.0 (Nsp-E)

scenario 1.6 ± 1.4 (OUR-E)

Pollice et al. (2002) > 7.2 40 32 2.0 0.11 – – – –

Pollice et al. (2002) > 7.2 10 32 2.0 0.62 – – – –

Jianlong and Ning (2004) 7.5 – 30 1.5 2.76 – – – –

Jianlong and Ning (2004) 8.5 – 30 1.5 2.21 – – – –

Jubany et al. (2009) 8.3 30 25 ± 1 1.4 ± 0.2 0.4 ± 0.1 100 ∼ 68 – < 1

Rongsayamanont et al. (2010) 7.5–8.2 − 22–23 4.5–7.5 − 0 −
– 10.3 ± 3.7 (Nsp-E)

4.4 ± 4 (OUR-E)

Guo et al. (2009) 7.0–7.8 30 18–25 0–4 0.06 > 90 − − 0.5–3.5
12–17
t
s
0
a

3

3

t
s
7

and measurements variables as follows:

𝑇 𝐼𝐶𝑆𝑝,𝑛 =

√

∑

𝑖 𝑦𝑖 − �̂�𝑚,𝑖
√

∑

𝑖 𝑦
2
𝑖 +

√

∑

𝑖 �̂�
2
𝑚,𝑖

(3)

𝑇 𝐼𝐶𝑇 𝑜𝑡 =
𝑛
∑

1
𝑇 𝐼𝐶𝑆𝑝,𝑛 (4)

𝐼𝐶𝑂𝑈𝑅 =

√

∑

𝑖 𝑂𝑈𝑅𝑖 − ̂𝑂𝑈𝑅𝑚,𝑖
√

∑

𝑖 𝑂𝑈𝑅2
𝑖 +

√

∑

𝑖
̂𝑂𝑈𝑅2

𝑚,𝑖

(5)

The coincidence of measurements and simulation of every nitrogen
species was determined by Eq. (3). For a total TIC of the N-species,
6

Eq. (4) was applied. Eq. (5) shows the calculation of the TIC of OUR =
simulations and measurements, where 𝑦𝑚,𝑖 and 𝑂𝑈𝑅𝑚,𝑖 are the measure-
ments, and �̂�𝑚,𝑖 and ̂𝑂𝑈𝑅𝑚,𝑖 are the estimates made at the same time as
he measurements with the optimal initial conditions of the calculated
tate vector by both estimation methods. The TIC has a value between
and 1. Good model adaptation to the measurements is indicated by
TIC smaller than 0.3 (Huiliñir et al., 2010).

. Results and discussion

.1. Partial nitrification in a real-time controlled SBR

SBR operation was modeled based on a modified ASM1 to describe
he two-step nitrification process: nitritation and nitratation. Fig. 3
hows two different cycles, named cycle 4 (on the left side) and cycle
(on the right side); both cycles were operated at pH = 7.6 and SRT
40 d.
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Fig. 3. Partial nitrification for two SBR cycles conducted under unfavorable conditions, pH = 7.6 and SRT = 40 d. (A) Concentrations of nitrogen species; (B) on-line temperature
T, DO concentration and pH value; (C) manipulated variables of pH and DO control systems: Valve opening (%)-Carbonate pulses, and on-line OUR measurement.
Fig. 3A shows the evolution of the nitrogen species during partial
nitrification. The ammonia oxidation rate was close to 0.27 kg TAN/
(kg VSS⋅d) with an ammonia conversion of over 99% in both cycles.
The initial concentrations of TAN were over 400 mg N/L (> 6 mg NH3-
N/L) for both cycles, enabling ammonia cross inhibition on the NOB
(KI,N = 0.01 mg NH3-N/L). Fig. 3 shows a significant level of inhibition
of nitratation in cycles 4 and 7, which led to a nitrite accumulation of
over 66% in those assays.
7

Fig. 3B shows the evolution of temperature and the real-time con-
trolled curves of pH and DO concentration during cycles 4 and 7. The
predictive control set the DO concentration around 2 mg/L; the air
supply was interrupted every fifteen minutes for measurement of the
OUR. The DO concentration and the pH (set-point 7.6), were controlled
by means of the manipulated variables air valve (%) opening and
Na CO pulses, as shown in Fig. 3C. The alkaline solution was added
2 3
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Fig. 4. Performance of Nsp-E and OUR-E under unfavorable conditions for partial nitrification, pH = 7.6 and SRT = 40 d. (A) Nsp-E: Modeling of nitrogen species concentrations
and prediction of OUR (B) OUR-E: Modeling of OUR and prediction of nitrogen species concentrations.
step-wise to neutralize acidification during ammonia oxidation, achiev-
ing a plateau around 600 pulses at the end-point of nitrification. Air
valve opening increased at the beginning to maintain the DO set-point
and decreased after four hours when the ammonia was completely
oxidized. The DO concentration and the pH values rose at the endpoint
of ammonia oxidation.

Fig. 3C illustrates bending points in profiles of all secondary vari-
ables: %AVO, number of sodium carbonate pulses, and ORP. The
bending points for cycles 4 and 7 occurred at 4.5 and 5 h, respectively,
at the end of TAN oxidation. The mean value of the %AVO sank
slowly during the reaction, until it plunged almost instantaneously to
values below 20% in cycle 4 (%AVO bending point). Fig. 3C shows
in both cycles that the total number of sodium pulses increased in a
nearly linear mode until the constant number of total pulses reached
marked the end of TAN oxidation (carbonate consumption bending
point). The OUR values increased during both cycles, indicating a
8

higher respiration rate, until falling instantaneously below 60 mg/(L⋅h)
at the end of TAN oxidation (OUR Bending Point). These three ways of
determining the end-point of nitrification were observable during all
the cycles performed.

3.2. Design of Nsp-E and OUR-E estimators

This section presents the internal variables of the nitrification pro-
cess calculated by the Nsp-E and OUR-E estimators for two scenarios.
The first scenario shows cycles 4 and 7 operating under unfavorable
conditions, and the second shows cycles 18 and 23 operating under
favorable conditions for partial nitrification.

3.2.1. Estimation under unfavorable conditions: pH = 7.6 and SRT 40 d
Fig. 4 shows the curves of N-species and OUR estimated by Nsp-

E (Fig. 4A) and OUR-E (Fig. 4B) under unfavorable conditions. As
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Fig. 5. Performance of Nsp-E and OUR-E under favorable conditions for partial nitrification, pH = 8.5 and SRT = 10 d. (A) Nsp-E: Modeling of nitrogen species concentrations
and prediction of OUR (B) OUR-E: Modeling of OUR and prediction of nitrogen species concentrations.
illustrated in Fig. 4A, the Nsp-E estimation shows a high coincidence
among the measured and simulated curves of N-species concentrations
for cycles 4 and 7; the algorithm slightly overestimates the concen-
tration of nitrite at the end of cycle 7. The TICtot value was 0.034,
indicating very good agreement with measured data (TIC < 0.3). It
is noteworthy that Nsp-E was able to estimate adequately the OUR
experimental values, with TIC values ranging from 0.069 to 0.076,
although the Nsp-E used off-line measurements of N-species for the
estimation process. Fig. 4B shows the performance of OUR-E. The sim-
ulated OUR curve resulted in a closer agreement with the experimental
values than the OUR prediction of the Nsp-E (Fig. 4A); however, the
figure shows a minor overestimation in cycle 7. Based on these data
the TICOUR were calculated to be 0.026 and 0.005 for cycles 7 and 4,
respectively. The initial conditions obtained with OUR-E were used to
predict the N-species curves. As can be seen in Fig. 4B, the agreement
with experimental N-species was good, achieving a TICTot of 0.065 for
both cycles.
9

In all 17 cycles (120 operation days) performed by Nsp-E the
average TIC were calculated to be TICtot = 0.04 and TICOUR = 0.36.
For the OUR-E, the average TIC were calculated to be TICtot = 0.12
and TICOUR = 0.02. Based on the experimental results, the OUR-E has
a better quality of prediction than the Nsp-E, which can be explained
by the experimental data size of the OUR used as input during the
estimation process.

3.3. Estimation under favorable conditions: pH = 8.5 and SRT 10 d

Fig. 5 shows the curves of N-species and OUR estimated by Nsp-E
(Fig. 5A) and OUR-E (Fig. 5B) under favorable conditions. As shown
in Fig. 5A the Nsp-E estimation shows a high coincidence between the
measured and calculated data for cycles 18 and 23. The TICtot value was
lower than 0.053 indicating a very good agreement (TIC < 0.3) with
measured data for nitrogen species concentrations. Nsp-E was also able
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Fig. 6. Bacterial active fractions of AOB (XA) and NOB (XN) calculated by Nsp-E and OUR-E in a long term SBR operation. Total COD particulate XCOD = XA +XN +XH +XP +XS.
Fig. 7. Evolution of the active AOB fraction and the experimental total ammonia nitrogen oxidation rate (𝑟𝑠) in a long term SBR operation.
to estimate adequately the OUR experimental values, with TIC values
ranging from 0.022 (cycle 23) to 0.083 (cycle 18).

Fig. 5B shows that the simulated OUR curve of the OUR-E resulted
in a better coincidence with the experimental values than the OUR
prediction of the Nsp-E (Fig. 5A). Based on these data, the TICOUR were
calculated to be 0.018 and 0.011 for cycles 18 and 23 respectively.
The initial conditions obtained with OUR-E were used to predict the
N-species concentrations. As can be seen in Fig. 5B, the agreement
with N-species measurements was good, achieving a TICTot ranging
from 0.046 (cycle 18) to 0.086 (cycle 23). Contrary to the unfavorable
scenario, under the favorable operating condition for partial nitrifica-
tion the bending points in the OUR curves agreed with experimental
10
measurements at the end of ammonia oxidation. The latter could be
explained by an improvement in the experimental measurements of
OUR in time, which led to better prediction of the N-species during the
favorable scenario than the unfavorable scenario. Thus the TIC values
of TAN and nitrite diminished by 11% and 68% when the SBR was
shifted to the favorable condition.

For the whole 22 SBR cycles operated under favorable and unfavor-
able conditions for partial nitrification, the estimation of the N-species
concentrations by OUR-E was significantly better (TIC = 0.124 ± 0.01)
than the estimation of the OUR by Nsp-E (TIC = 0.316 ± 0.06). The
OUR-E was able to predict correctly (TIC < 0.3) the concentrations
of ammonia, nitrite and nitrate using only one experimental source
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of kinetic information: OUR measurements every 15 min. The higher
information density of the on-line OUR measurements used as input by
the OUR-E, with fewer manual errors than in the off-line measurements
of nitrogen species used by Nsp-E, explains the better performance of
the OUR-E.

3.4. Validation of OUR estimator on long-term SBR operation

The OUR-E aimed to monitor the dynamic behavior of nitrifying
active biomass on a long-term basis under different SBR operating
scenarios. Fig. 6 shows the active nitrifying bacteria estimation using
Nsp-E and OUR-E during SBR operation for more than 6 months. During
scenario 1 (unfavorable for partial nitrification), the fraction of active
AOB (XA) with respect to the total particulate COD concentration
diminished to approximately 15% after three months’ operation. As
shown in Fig. 6, after 50 days Nsp-E and OUR-E estimated similar active
biomass fractions. After 30 d of operation at scenario 2 (favorable for
partial nitrification) the AOB fraction increased by up to 40% and the
NOB fraction diminished to 1%–3%. A reduction of SRT by a factor of 4
(40 to 10 d) in scenario 2 promoted a kinetic of selective NOB washout.
On the other hand, at pH = 8.5 the ammonia concentration appeared as
he real substrate for AOB and an inhibition factor for NOB, enhancing
he AOB/NOB ratio. Regarding the total bacteria concentration, Jubany
t al. (2009) reported fractions of XA = 68%, XN < 1% and XH = 31%
ased on fluorescent in-situ hybridization (FISH) analysis for partial
itrification with 100% nitrite accumulation during 100 d operation of
continuous reactor system. In this work, the OUR-E estimated active
iomass fractions of XA = 39.8%, XN = 1.3% and XH = 58.9% as mean
alues for partial nitrification with 86% nitrite accumulation during 60
of SBR operation (scenario 2 plus transition period). Fig. 6 also shows

he effect of two pH incidents on the nitrifying biomass, which have a
oticeable effect on the Nsp-E and OUR-E trends.

Fig. 7 shows the evolution of the AOB active biomass fraction as a
unction of the ammonia conversion rate (r𝑠) and nitrite accumulation
𝛽). The AOB estimations of both Nsp-E and OUR-E follow the dynamic
f the ammonia oxidation rate (experimental measurements) in long-
erm SBR operation. At the end of scenario 1, the nitrite accumulation
tarted to rise according to the decay of the NOB fraction. During
cenario 2 the nitrite accumulation increased up to 90% owing to the
imultaneous increase of the AOB and decay of NOB (see Fig. 6).

Table 5 compares the different results of this work with the litera-
ure. Despite unfavorable conditions for partial nitrification at SRT =
0 d and pH = 7.6, the nitrite accumulation remained close to 50%.
ence, a low DO concentration around 2 mg/L was enough to limit
OB growth during more than 100 days of operation under unfavorable
onditions. The favorable scenario at SRT = 10 d and pH = 8.5 almost
oubled nitrite accumulation, which put the accent on the role of free
mmonia nitrogen for reaching stable partial nitrification on a long-
erm basis. The TAN oxidation rate increased strongly from 0.38 to 0.77
hen the pH was increased by one point (SRT = 10 d does not limit
OB growth), emphasizing the importance of putting the reactor out
f limitation by ammonia for AOB growth. In terms of the volumetric
eaction rate, the TAN oxidation rate increased from 1.38 ± 0.3 to
.71 ± 0.03 kg TAN/(m3⋅d). The TAN oxidation values were in the
rder of magnitude reported in the literature (Pollice et al., 2002;
iudad et al., 2005; Jubany et al., 2009).

As shown in Table 5, the OUR values did not change significantly
rom one scenario to another, hence OUR would not work as a control
ariable, at least to conduct partial nitrification from 50% to over 80%
f nitrite accumulation. The latter results move away from the OUR
trategy reported in Jubany et al. (2009). Remarkably, the OUR-E was
ble to predict a significant reduction in the NOB active fraction from
0.3% to 1.6% of the autotrophic biomass when the scenario shifted
o a favorable condition for partial nitrification. This estimation of the
OB fraction in a favorable scenario agrees with those reported by Guo
11

t al. (2009).
We concluded that the OUR-E is able to adequately estimate the
itrifying active biomass during a process of partial nitrification using
UR on-line measurements as experimental data source. This work
alidated the OUR-E with 200 days by comparing it with the Nsp-
; both estimation methods predicted similar nitrifying active biomass
uring two operating scenarios on a long-term basis.

. Conclusions

Two methods for active bacteria estimation were designed and
alidated using on-line OUR measurements every 15 min (OUR-E) and
ff-line measurements of nitrogen species (Nsp-E) as input data for
rocess estimation. Both estimation methods predicted similar active
itrifying and heterotrophic biomass concentrations during the two
perating scenarios. The estimation of the N-species concentrations by
UR-E was significantly better (TIC = 0.124 ± 0.01) than the estima-

ion of the OUR values by Nsp-E (mean TIC = 0.316 ± 0.06) according
o the Theil’s coefficient of inequality. The OUR-E was able to predict
significant reduction in the NOB active fraction from 10.3% to 1.6%
hen the scene shifted to a favorable condition for partial nitrification.
he opposite trend of NOB occurred during consecutive SBR cycles
200 days). We concluded that the OUR-E could adequately estimate
he nitrifying active biomass concentration during a process of partial
itrification using OUR on-line measurements as a sole experimental
ource for long-term SBR operations. The main contribution of the
aper was to use phenomenological knowledge given by the ASM1
o estimate the dynamics of active bacteria concentrations in an SBR,
s well as, in consecutive batch-cycles. This knowledge will allow us
o make effective selective pressure strategies to keep NOB growth
nder permanent inhibition/limitation conditions in the reactor while
chieving stable partial nitrification on a long-term basis.
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