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Resumen

Hoy en día, una gran cantidad de datasets están basados en RDF, dada su denominación
como estándar de la Web. Wikidata [19] es uno los más importantes y masivos datasets RDF,
conteniendo más de 84 millones de items1, y tiene por función estructurar y estandarizar el
contenido de datos de Wikipedia.

Wikidata – al igual que muchos otros datasets RDF publicados como Linked Data [12]
– está en constante cambio, debido a que corresponde a un dataset abierto y colaborativo
que puede ser editado por sus usuarios. Además, datos adicionales son importados desde
fuente externas constantemente, lo cual convierte a Wikidata en un dataset muy dinámico
en ciertos aspectos. Dadas estas circunstancias, se puede decir que Wikidata tiene distintas
“versiones” en el tiempo, donde los datos disponibles son distintos dependiendo del periodo
de tiempo donde se consulten. Este hecho hace posible analizar una componente temporal
de Wikidata y, por lo tanto, sería relevante estudiar la posibilidad de desarrollar un sistema
de versionamiento y una metodología para construir consultas usando sólamente SPARQL
base junto a un modelo RDF que sea capaz de representar datos versionados, manteniéndose
abierto a recibir consultar sin utilizar herramientas o software especializado.

En este trabajo proponemos y analizamos un sistema que permite, de manera eficiente,
almacenar y realizar consultas sobre grafos RDF que mantienen un historial de cambios en
el tiempo. Algunos sistemas que llevan a cabo objetivos similares ya existen. Sin embargo,
dichos sistemas utilizan extensiones, índices especializados y herramientas fuera del estándar.
Teniendo esto en mente, se añade la meta de construir un sistema que logre nuestro objetivo
usando sólamente RDF y SPARQL base, con la intención de dar al problema una solución
estándar y lista para usar en cualquier ambiente.

Se hacen pruebas con varias alternativas para representar el dataset versionado. Cada
una requiere su propio método para convertir consultas SPARQL, permitiendo la compati-
bilidad con los datasets construidos. Se mantiene una versión sin compresión para comparar
los resultados obtenidos. Junto a ésta, se construyen representaciones basadas de deltas e
intervalos. Se definen dos tipos de deltas: absolutos, donde cada versión del grafo se compara
con la versión base (puede ser la más antigua o la más reciente), y secuenciales, donde cada
versión se compara con la versión anterior a sí misma, manteniendo así una representación
“paso a paso” de los cambios a través del tiempo.

En general, la representación basada en intervalos tiene el mejor desempeño, excepto por
el tiempo que toma su construcción. Sin embargo, dichos tiempos de construcción se pueden
mejorar con pequeñas optimizaciones. Además, la representación de intervalos es la única
que ofrece soporte parcial para property paths, mientras que el resto de las representaciones
son completamente incompatibles con éstos dado que no posible aplicar un property path
sobre múltiples named graphs.

1 https://www.wikidata.org/wiki/Wikidata:Statistics
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Abstract

Currently, a large number of existing datasets are based on RDF due to its status as a
Web standard, with Wikidata being one of the most notable. Wikidata [19] is a massive
RDF dataset, with over 84 million items2, which is meant to serve as a way to structure and
standarize the data content of Wikipedia.

Wikidata – like many other RDF datasets published as Linked Data [12] – is in constant
change, due to it being an open dataset that can be edited by users. Furthermore, data is
being imported from external sources constantly, which makes Wikidata very dynamic in
some areas. Given these circumstances, it can be said that Wikidata has many “versions”
over time, where different data is available at different time intervals, making it possible
to analyze its time component. As such, it would be relevant to study the possibility of
developing a versioning system and methodology for queries using only base SPARQL with
an RDF model capable of representing versioned data and open to be queried without needing
specialized tools or software.

In this work we propose and evaluate a system that allows for efficiently storing and
querying versioned RDF graphs that track changes over time. A few systems that achieve
similar goals currently exist. These systems, however, employ extensions, specialized indices
and other custom tools in their implementations. Considering this, the goal of building a
system that achieves our objetive using only base RDF and SPARQL is added, aiming to
serve as an “off-the-shelf” solution to the problem presented.

Several alternatives to represent the versioned data are tested, each requiring a different
method of conversion for SPARQL queries in order to ensure compatibility with the versioned
datasets created. A version without compression is kept to compare the results obtained.
Alongside it, versioned representations based on intervals are deltas are built. Two types
of deltas are defined: absolute deltas that take each version of the graph and compare it to
the base version (either oldest or most recent), and sequential deltas, where each version is
compared against the previous one to keep a “step by step” representation of the changes in
the graph through time.

Overall, the interval-based representation has the most competitive results, with the ex-
ception of build times. These times could be easily be improved upon with small optimizations
to the construction method. Moreover, the interval-based representation is the only one that
partially supports property paths, while the rest of the representations are fully incompatible
with them as property paths cannot be evaluated across different named graphs.

2 https://www.wikidata.org/wiki/Wikidata:Statistics
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Chapter 1

Introduction

1.1. Motivation
The Semantic Web1 is an initiative of the World Wide Web Consortium, which envisions a

“Web of Data”; that is, a web of Linked Data where information has a standarized structure,
making it easier for machines to comunicate. In order to make such standarization possible, it
is necessary to incorporate meta-data that describes the content, meaning and relationships
of data across websites and online databases.

The Resource Description Framework [16] (RDF for short) is a standard model for data
interchange on the Web. Its design is based on “triples”, which represent connections in a
graph, where every node is a “resource” with “predicates” as the edges connecting them. Both
resources and predicates are formally defined, and a collection of rules allow for inferences
about the relationships in the data. Alongside RDF, the ontological languages RDFS [3]
and OWL [11] provide vocabulary for expressing basic relation and type definitions, and
SPARQL [9] serves as RDF’s query language (similar to SQL over relational databases).

Currently, a large number of existing datasets are based on RDF due to its status as a
Web standard, with Wikidata being one of the most notable. Wikidata [19] is a massive
RDF dataset, with over 84 million items2, which is meant to serve as a way to structure and
standarize the data content of Wikipedia. This structure and standarization is very useful for
abstracting data and making it independent of a language. Currently, Wikipedia articles can
have conflicting information for a topic depending on the language selected. Wikidata allows
for collecting and curating data independently of a language, as well as reutilizing pieces of
information associated to different entities. Another possible use for Wikidata would be in
query systems that can parse natural language queries into structured ones. A simple example
would be querying for winners of a certain award that have a verified Twitter account. Such
information can easily be obtained from Wikidata with a short SPARQL query. The dataset
is also available through weekly “dumps”, which represent a snapshot of the database at a
given moment. These dumps can also help populate other dedicated databases that may be
built for specific purposes.

Wikidata – like many other RDF datasets published as Linked Data [12] – is in constant
change, due to it being an open dataset that can be edited by users. Furthermore, data is
being imported from external sources constantly, which makes Wikidata very dynamic in

1 https://www.w3.org/2001/sw/wiki/Main_Page
2 https://www.wikidata.org/wiki/Wikidata:Statistics
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some areas. Given these circumstances, it can be said that Wikidata has many “versions”
over time, where different data is available at different time intervals, making it possible to
analyze its time component. An important note, however, is that Wikidata does not keep
any of its older versions, so the only data accesible at any given time is the latest. Moreover,
there is no support for queries about recent changes or which entities or relationships have
just been added or removed. Keeping such information would require building a dedicated
system and/or database.

Dataset versioning in RDF/SPARQL is a research topic yet to be fully explored. While
a number of implementations have been proposed very recently [18, 5], most of them rely on
specialized indices or SPARQL extensions. As such, it would be relevant to study the possibil-
ity of developing a versioning system and methodology for queries using only base SPARQL
with an RDF model capable of representing versioned data and open to be queried without
needing specialized tools or software. This way, an off-the-shelf approach is constructed,
contrasting it with the currently proposed solutions.

Such a system could be used as version control for the dataset; administrators would be
able to detect erroneous or malicious editions on data that does not normally change. On
top of that, it would be possible to analyze the evolution of data, possibly predicting future
changes. The system could also be used on datasets other than Wikidata, where data history
may be poorly (or not at all) preserved.

1.2. Main Challenge
Due to the existence of large RDF datasets in constant change (such as Wikidata), there

exists time-based information linked to the data that is completely lost when the dataset is
queried on its current “final” version. Moreover, it is impossible to know since when a certain
query result has been valid in the dataset, and, unless historic data is kept, there is also no
way to determine which results would have been valid in a previous time period. Because
of these reasons, it becomes more difficult to analyze the evolution of the dataset or of the
solutions to queries over it.

In this work, we assume discrete versions of a dataset, which will typically reflect "snap-
shots" of it at a certain point in time. Based on these facts, two key questions relevant for
research are proposed:

• How to build an RDF database that keeps track of information from both current and
past versions of the data?

• How to query over said database?

Keeping time-based or versioned information has several applications that can be of in-
terest, such as archiving dynamic RDF datasets [17], predicting future changes [6], detecting
malicious or erroneous editions [10] and drawing conclusions about data evolution [4]. A
number of technical challenges arise from this, some of them being:

• Compression of historical data to create a versioned dataset.

• Rewriting queries and their results to add versioned information.

• Achieving the previous points using the existing technology deployed in practice.

2



1.3. Proposed Solution
The construction of the proposed solution can be separated into two parts:

1. Defining a method to combine several versions of a dataset, creating a versioned dataset.

2. Defining a method for rewriting SPARQL queries so that they can be used over the
versioned dataset, without modifying the query engine.

Additionally, this presents an optimization problem regarding these two parts, both in storage
space and execution time for the dataset construction and query responses. A first approach
would be to keep every version as-is, using the most storage possible. However, such an
approach can be easily improved upon, especially in terms of storage size.

Five representation alternatives are considered:

(a) Calculate deltas between consecutive versions using the oldest version as a base

(b) Calculate deltas between consecutive versions using the latest version as a base

(c) Calculate deltas between each version and the oldest, which will be used as a base

(d) Calculate deltas between each version and the latest, which will be used as a base

(e) Build graphs representing different intervals of versions and include each triple in the
longest interval(s) for which they are valid, avoiding repetition where possible

An additional alternative without any optimization is added as a comparison point. Every
version is available in its entirety, allowing queries over any historical (or current) data. In
every representation, named graphs are used to separate between each version, interval or
delta within the versioned database.

1.4. Hypothesis
The main hypothesis of this work can be summarized as follows: a versioned database

can be implemented using unmodified versions of RDF and SPARQL and achieve competitive
performance for storage space, database building time and query execution times when com-
pared to queries over the current version alone. Given the context presented, some relevant
questions arise. We will discuss each briefly.

1. What representations of a versioned dataset allow for better compression, more efficient
indexing, and/or more efficient updates?

2. How should queries be rewritten to be compatible with a versioned dataset?

3. How large is the performance cost of implementing a versioned dataset and query
system?

4. Which of the representation alternatives will have the most well-rounded performance?

The rest of this section consists of initial predictions for these questions with respect to
weekly versions of Wikidata (as our key use-case). Experiments will be run to determine
whether the predictions hold true in practice or not.
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1.4.1. What representations of a versioned dataset allow for better
compression, more efficient indexing, and/or more efficient
updates?

For the compression rate, a simple comparison between the number of total triples in all
versions and the one resulting from the compression should be enough. Both can then be
compared against the number of triples in the base version to observe the percentual increase.

Due to the fact that monthly editions never exceed 50% of the total size of Wikidata3,
the delta graphs should never exceed 50% of the base version’s size when using consecutive
deltas. And, given that this project uses weekly versions, the delta size is expected to be
considerably smaller than said upper bound. However, when deltas are being calculated
against a single base version, it becomes possible that the size of each delta grows. However,
given that most of the data does not change, the differences between versions should not be
large, achieving a good compression rate regardless. In the case of time intervals, most of the
data will likely not appear in more than one graph, since triples should only appear in more
than one graph if they were deleted and then added back in a different version, which is very
rare in Wikidata. Given those facts, the best compression should be easier to achieve.

The cost of adding a new version to an already built database varies greatly between
representations. In the non-optimized version, it requires indexing the new graph without
any additional operations. Alternative (a) needs to add the delta between the version being
added and its previous one, which requires re-assembling the latter using all the deltas leading
up to it. Alternative (b) has a relatively low cost, requiring the same new delta as alternative
(a), but since the version being added is preceded by the base, the delta can be calculated
directly and the new version can easily replace the current base. Alternative (c) has a similar
low cost to alternative (b), requiring only calculating the delta between the version being
added and the base, then adding said delta to the available ones. Adding a new version
to alternative (d) has the highest cost compared to the other representations, as it requires
re-assembling every previous version and re-calculating every delta up to the version being
added. As such, it has a similar cost to building the database in its entirety, so it may not
be suitable for versioned datasets that frequently add new versions. Alternative (e) needs to
recalculate all intervals that ended on the now second-to-last version, separating triples that
are valid for the new version from the ones that were removed.

1.4.2. How should queries be rewritten to be compatible with a
versioned dataset?

It is expected that every (SPARQL 1.1) query can be rewritten as an extended query (in
the same SPARQL 1.1 language) with additional parameters to retrieve versioned informa-
tion. Query conversion is one-to-one, meaning no extra queries will be needed to represent a
previously valid query.

An important note to make, however, is that not all queries will be rewritten in the
same way. Depending on the nature of each query, it is possible that rewriting one query
in particular will be more difficult than others. Specifically, when it comes to monotone

3 http://bit.ly/2FwZHXj
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queries4 [1, 2], rewriting them should be easier when the dataset changes are only additions
compared to non-monotone queries or when changes are more than just additions.

1.4.3. How large is the performance cost of implementing a ver-
sioned dataset and query system?

No matter the representation, querying over a versioned database should, in general, be
slower than querying over a non-versioned one (i.e., running the same query over a database
indexing just the current version). However, queries concerning the latest version should be
answered with competitive performance by the alternatives that use it as a base and in the
non-optimized version.

1.4.4. Which of the representation alternatives will have the most
well-rounded performance?

A representation having a “well-rounded performace” can be understood as having several
strong points while minimizing any drawbacks. Each representation will likely have strong
and weak points and, as such, none of them will be the best at everything.

Alternatives (a) and (b) should have the lowest storage size, but may struggle with queries
for versions far from their base. Alternative (b) benefits from using the latest version as base
for two reasons: queries about recent versions are expected to be more common than queries
about older versions, leading to lower query times overall, and adding a new version only
involves calculating the delta between the current base version and the one being added.
Alternatives (c) and (d) have a better average query time, since accessing any non-base
version takes the same amount of time, unlike (a) and (b). Alternative (c) has a low cost
for adding a new version, since it only needs to calculate and add one new delta. However,
alternative (d) must be rebuilt in its entirety when adding a new version. Alternative (e)
has an storage size almost identical to (a) and (b), avoiding repetition of triples as much as
possible. Query times for it are consistent and expected to be competitive with alternatives
(c) and (d). Its cost of adding a new version is expected to be in the middle of the rest of
the alternatives.

1.5. Objectives

1.5.1. General Objectives

The main objective of this work is to develop storage representations for versioned RDF
datasets, and methods to rewrite queries over said representations in order to be able to
obtain versioned data using only base SPARQL. The different versioning representations will
be tested, evaluating advantages and disadvantages in an attempt to determine which one is
the best for any given situation.

4 Let Q be a SPARQL query. Let G, G′ be RDF graphs. Q is said to be monotone if and only if Q(G) ⊆ Q(G′)
when G ⊆ G′.
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1.5.2. Specific Objectives

1. Work simultaneously with multiple weekly Wikidata versions.

2. Define a methodology to calculate differences between two graphs (any problems created
by blank nodes will be ignored for this work).

3. Build a versioned dataset containing all versions with no optimization as a baseline for
comparing results.

4. Build additional datasets with different representations for versioning using named
graphs.

5. Create compression statistics for the versioned databases.

6. Build a framework for the process of rewriting queries and explore possible optimiza-
tions.

7. Create experiments to compare query times for different representations of the versioned
dataset and the different query rewriting strategies.
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Chapter 2

Related Work

In this chapter we’ll discuss systems and concepts relevant to this work, as well as contexualize
the state-of-the-art and alternative approaches to solve the problem presented in the previous
chapter. In particular, both RDF and SPARQL play a fundamental role, being, respectively,
the database and query systems that this work is built upon. The concepts of Semantic
Web and Linked Data are also discussed, since the work done for this thesis belongs to these
research topics.

2.1. Semantic Web
The Semantic Web1 is an extension of the World Wide Web based on standards set by

the World Wide Web Consortium (W3C). Its main goal is to structure and standarize data
available on the Internet, making it easier for machines to process and interact with it. This
would allow for better comunication between systems, as well as for more automation of
complex tasks. To achieve this goal, available data must be coupled with suitable meta-data
that describes the nature of its associated data and the relationships it has with other data.
Three of the key standards proposed by the W3C are RDF, OWL and SPARQL. RDF is
a model that allows representing linked data and connections between it. OWL (short for
Web Ontology Language) provides vocabulary for expressing basic relantionships as well as
type definitions to label data. SPARQL is the standard query engine for RDF, allowing to
evaluate complex queries over RDF databases. Since both RDF and SPARQL are strongly
linked to the work of this thesis, they will discussed more in-depth in the following section
and chapters. Linked Data is essential to the existence and usability of a Semantic Web and,
as such, will be further discussed in a following section.

2.1.1. RDF

The Resource Description Framework [16] (RDF for short) is the standard model for
representing data on the Web. Recommended by the W3C, RDF has become widespread
for publishing data on the Web, being used on millions of websites, helping the vision of
a Semantic Web to become reality2. RDF was designed as a system to represent data and
its based on triples, which are tuples of three elements describing relationships between two

1 https://www.w3.org/2001/sw/wiki/Main_Page
2 https://bit.ly/3eNOLGq
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resources linked by a property in a subject-predicate-object structure. RDF databases can
be represented by a graph where resources are the nodes and properties are the edges. An
example of a small collection of RDF triples can be seen in Code 2.1 and Figure 2.1.

1 @prefix ex: <http://example.org/>
2 ex:SuperMetroid ex:developer ex:Nintendo .
3 ex:SuperMetroid ex:platform ex:SNES .
4 ex:SuperMetroid ex:genre ex:ActionAdventure .
5 ex:SuperMetroid ex:genre ex:Platformer .
6 ex:MegaManX ex:developer ex:Capcom .
7 ex:MegaManX ex:platform ex:SNES .
8 ex:MegaManX ex:genre ex:ActionAdventure .
9 ex:MegaManX ex:genre ex:Platformer .

10 ex:SNES ex:manufacturer ex:Nintendo .

Code 2.1: A sample RDF database

ex:SNES

ex:SuperMetroid

ex:platform

ex:Nintendo

ex:manufacturer

ex:developer

ex:MegaManX

ex:platform

ex:genre

ex:ActionAdventure

ex:genre ex:genre ex:genre

ex:Platformer

ex:Capcom

ex:developer

Figure 2.1: Graph representing the sample RDF database in Code 2.1

2.1.2. SPARQL

SPARQL [9] is the standard query engine for RDF (similar to SQL over relational
databases). Queries are built using triple matching, unions, insersections and other oper-
ations which help constrain the number of matches, navigating and filtering links in the RDF
graph. An example of a query and its results over the sample RDF database can be seen
in Code 2.2 and Table 2.1. A more in-depth view on SPARQL queries will be covered in
Chapter 3.
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1 PREFIX ex: <http://example.org/>
2 SELECT ?game ?developer
3 WHERE {
4 ?game ex:platform ex:SNES .
5 ?game ex:developer ?developer .
6 }

Code 2.2: A sample SPARQL query

?game ?developer
ex:SuperMetroid ex:Nintendo
ex:MegaManX ex:Capcom

Table 2.1: Query results for Code 2.2

2.1.3. Linked Data

Structuring data is not the only goal of the Semantic Web. Building connections or links
between data so that it can be easily associated to related data and to allow navigation of the
Web is another one of its main objectives. Considering that fact, the concept of Linked Data3

comes to light. Linked Data is structured data linked to other data. These links between
related data form chains useful for semantic querying. Linked Data constitutes the building
block for the Semantic Web, aiming to create a global database out of all the data available
on the Internet, thus making W3C’s vision a reality.

Linked Data (and by extension, the Semantic Web) aims to follow four main principles
or rules:

1. Use URIs (Universal Resource Identifiers) as names for objects, concepts, etc.

2. Use HTTP URIs so that the names can be looked up.

3. When the URI is looked up, provide useful information using the standards (RDF,
SPARQL).

4. Include links to other URIs, making navigation and discovery easy.

The first rule is crucial to make sure every item has a unique identifier so it can be
referenced as needed. The second rule allows for mostly standarized URIs that can be easily
looked up and linked, given their nature as URLs. The third rule makes it so that humans can
access the URLs and get information related to the item in question, making URIs useful for
both humans and machines alike. Coupled with the previous rules, the fourth rule allows for
easy navigation of related items in a manner that is intuitive for both humans and machines.
If the data is published under an open license, it is known as Linked Open Data, which can
be rated according to criteria proposed by the same author of the four principles. These
rating criteria are as follows:

1. The data is available on the web with an open license. Regardless of format, this makes
it open data.

3 https://www.w3.org/DesignIssues/LinkedData.html
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2. The data is available as machine-readable structured data.

3. Same as the above, but using a non-propietary format.

4. Use open standards from the W3C to identify items.

5. The data is linked to other datasets, thus making it linked data.

As one of the cornerstones of the Semantic Web, Linked Data is used in a large number of
databases and applications on the Web4. The Linked Open Data cloud5 collects information
about open datasets published as Linked Data and the links between them, representing
them visually in a graph diagram including 1200 datasets and over 16000 links, shown in
Figure 2.2. One the most prominent use cases for Linked Data is DBpedia [13], an RDF
database that makes the content of Wikipedia available as Linked Data, adding links to other
relevant databases, such as Geonames6. Another example of such a use case is Wikidata, a
collaborative RDF database that aims to store information about objects, concepts and their
relationships as structured data available for use in Wikimedia projects. Wikidata will be
especially important for this work, since it will be used for most experiments. However, the
principles and methods discussed in this work can be used any other similar database with
a SPARQL endpoint.

Figure 2.2: Diagram of the Linked Open Data cloud
4 https://www.w3.org/2001/sw/sweo/public/UseCases/
5 https://lod-cloud.net/
6 http://www.geonames.org/
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2.2. Wikidata
Wikidata [19] is an RDF document-oriented database. Its goal is to store structured data

that can be accessed by both humans and machines alike and contain information about
people, objects, topics, etc. in a generalized format that can work disregarding constraints
such as language. Wikidata is a open dataset, allowing manual and automated edits by users
and systems and can be used to feed into other databases such as Wikipedia. Each item in
Wikidata has a label and a description that identify them, as well as a unique ID known as
QID, since each ID starts with the letter Q followed by a numeric value.

Wikidata was originally conceived as a “Wikipedia for data”, managing the structured,
factual information that Wikipedia had accumulated so far. As Wikipedia grew in size
and scope, it collected a large amount of structured data, such as numeric amounts, dates,
coordinates, etc. Given the value of said data, a central repository is needed to store it, while
also making sure the data is lifted from restrictions such as language. Wikipedia does not
have a way to access its massive amount of data, lacking any kind of query service endpoint or
data exports. In light of these facts, Wikidata arose as a solution for these problems, while
still keeping the strengths that Wikipedia originally had due to its community-managed
approach. The following points characterize Wikidata’s design:

• Open editing: Wikidata allows users to both add and edit information in the database,
in a similar way that Wikipedia allows.

• Community control: Both the data and its scheme are controlled by the community of
contributors, granting them the power to decide not only which data is stored, but in
what way as well.

• Plurality: Data is never treated as the only possible truth, allowing uncertainty or
disputed facts to coexist and providing mechanisms to organize conflicting data.

• Secondary data: Factual data is stored along with its source, making it so that data
doesn’t exist by itself.

• Multilingual data: Wikidata is multilingual by design. Labels are translated into as
many languages as possible, while numeric or similar information with universal mean-
ing is available for any language, unlike Wikipedia.

• Easy access: The data gathered in Wikidata is meant to be able to be used byWikipedia
and external applications. Data is exported in several formats and legally allows reuse.

• Continuous evolution: Similar to Wikipedia, Wikidata is in constant growth, so the
platform itself adapts and grows as needed, adding features incrementally.
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Figure 2.3: Wikidata article for the game “Super Metroid” taken from
https://www.wikidata.org/wiki/Q1194825

Wikidata is a massive dataset, including over 84 million items and with an active userbase
of over 26 thousand as of May 20207. Moreover, it is by no means a static database: over
600 thousand daily additions were made on average for the month of March 20208 with the
number keeping a mostly increasing rate through Wikidata’s history. Wikidata items can
be accessed and edited individually using their URIs or downloaded in bulk through weekly
“dumps”. It can also be queried and edited using its own SPARQL endpoint through HTTP
requests or accessing the user interface provided by Wikidata itself9.

Currently, a number of applications use Wikidata as their source for data, Wikipedia being
one of them. Voice assistants, such as Amazon’s “Alexa” and Apple’s “Siri” get answers to
simple queries using data extracted from Wikipedia and Wikidata10. Another one of these
applications is WikiGenomes [15], an open web application that allows to add, edit and view
gene annotation data in Wikidata.

2.3. Versioning of RDF
RDF is a general format for data representation and thus temporal meta-data can be di-

rectly encoded without any modifications within an RDF graph and queried using SPARQL.
In Figure 2.4, we show an example where the original release and re-releases of the game “Su-
per Metroid” are presented in an RDF graph utilizing blank nodes. However, some authors
propose to extend RDF with special annotations to represent various meta-data, including
temporal information. In Figure 2.5, the previous graph is simplified utilizing annotations
such as the ones proposed. In order to query annotated data, specialized languages and
implementations must be developed.

7 https://www.wikidata.org/wiki/Special:Statistics
8 https://stats.wikimedia.org/v2/#/wikidata.org
9 https://www.wikidata.org/wiki/Wikidata:Data_access
10 https://internethealthreport.org/2019/wikidata-gives-wings-to-open-knowledge/
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ex:SNES

ex:SuperMetroid

ex:Wii ex:WiiU ex:N3DS

ex:Nintendo

ex:manufacturer ex:manufacturer ex:manufacturer ex:manufacturer

ex:developer

ex:platform ex:platform ex:platform ex:platform

ex:release ex:release

ex:releaseex:release

2007-09-20

ex:date

1994-03-19

ex:date

2013-05-15

ex:date

2016-04-06

ex:date

Figure 2.4: Graph representing the various releases of the game “Super
Metroid”

Gutierrez et al. [8] describe a framework that allows for representing time in RDF using
annotations. An important distinction to make is that their work is focused on labeling over
versioning; labeling means adding meta-data to query result validity, while versioning
implies simultaneously keeping several versions of the same dataset. This work also formally
defines labels and time intervals, but does not cover implementation details for either. In
order to add time to RDF graphs, this work uses annotations over triples to mark their validity
period, which allows the timeline to coexist in a single graph and querying to be simpler.
It requires, however, adapting the query language to account for and filter through these
annotations and return the query results in a format that accomodates the extra temporal
information associated with each triple that has it. The work also formally proves that the
addition of the time dimension does not increase complexity in query answering.

Zimmerman et al. [20] extend RDF, allowing the use of generalized annotations, as well
as a query language compatible with the annotations. The annotations can be used to
represent time intervals associated to each triple to represent their validity, as well as several
other applications. The data is not limited to only one type of annotation and use cases
where several can be combined are presented as well. The concept of an annotation domain
is defined, representing annotations that are compatible to combine in some way, such as
time. SPARQL is also extended in a similar way, producing a query language they call AnQL.
Instead of using Basic Graph Patterns (BGPs), AnQL utilizes Basic Annotated Patterns that
work in a similar way to BGPs but allow annotations in the query. As per the previously
mentioned work, the objectives sought by Zimmerman et al. do not completely align with
the present work, due to the fact that an RDF extension and custom query language are
used.

Grandi [7] proposes an extension for SPARQL, including a time component in queries.
It also introduces the concept of a multi-temporal RDF database where triples are defined
as (s, p, o|T ) where T represents the union of all time intervals where (s, p, o) is valid. A
datatype called xs:period defined as a tuple of dates is used to represent each data interval.
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While the concepts are properly introduced and defined, no practical implementation details
are provided.

The prior three works share their focus on formal definitions over implementations. They
also do not, for the most part, consider efficiency or scalability analysis and employ SPARQL
extensions and/or specialized indices. In light of these facts, said works have a slightly
different focus to ours, where we aim to implement versioning over off-the-shelf SPARQL
implementations.

ex:SNES

ex:SuperMetroidex:platform
[1994-03-19, Now]

ex:Wii

ex:platform
[2007-09-20, Now]

ex:WiiU

ex:platform
[2013-05-15, Now]

ex:N3DS

ex:platform
[2016-04-06, Now]

ex:Nintendo

ex:manufacturer ex:manufacturer ex:manufacturer ex:manufacturer

ex:developer

Figure 2.5: Simplification of the graph in Figure 2.4 using annotations

Tappolet and Bernstein [18] add a time component to RDF’s syntax, proposing an ef-
ficient method to make SPARQL queries over such data. The dataset is annotated with
time intervals corresponding to each triple’s validity, and a specialized index complements
the query engine. An extended version of SPARQL called τ -SPARQL is presented as an
alternative to query over these specialized dataset. τ -SPARQL can be mapped to standard
SPARQL without a loss of expressivity, making it mostly used for convenience. Among the
annotations presented, the concept of snapshot queries is introduced. Queries can be filtered
for an specific time point using the custom FROM SNAPSHOT statement or temporal
wildcard variables can be use to extract the validity period of each result.

Lastly, Fernández et al. [5] formally define the concepts of an RDF Archive and an RDF
Version with Deltas being the difference between two Versions. They also propose several
metrics to evaluate and characterize the dynamicity of an RDF dataset. The work also
describes an implementation for storing such archives, a SPARQL extension for making
queries on them, and a testing suite for RDF archives.

These two works share a similar focus to the one presented in our work. However, they
also employ extensions to either RDF or SPARQL (or both) and will be mostly considered
as reference points, aiming to achieve similar performance without the use of extensions or
specialized indices.

14



Chapter 3

Preliminaries

In this chapter we present several concepts relevant to the thesis, as well as their formal
definitions.

3.1. RDF
RDF [16] is a framework designed for data representation and storage. In Figure 2.1, we

provided an example of a small RDF graph. Since RDF is the data format used in this work,
the concepts associated with its design will be explained further, including notation that will
be used throughout this work.

3.1.1. RDF terms

Some of the basic concepts associated with RDF are its smallest components, called RDF
terms. They are as follows.

• An Internationalized Resource Identifier (IRI for short) is an expansion of Universal
Resource Indentifiers (URIs) with added Unicode support. Their main function is, as
their name implies, providing a unique identifier for the resources in an RDF graph.
Following the Sematic Web principles, IRIs usually use HTTP link format. Prefixes
common among several IRIs can be defined separately for the sake of brevity, displaying
them as prefix:resource. The set containing all IRIs will be referred to as I.

• A Literal is an instance of a datatype, such as an integer, date, string, etc. Literals are
used to store numeric or otherwise structured data that can be associated to resources.
The set containing all Literals will be referred to as L.

• A Blank Node is an element of an RDF graph that represents a resource without a URI
or literal. Blank Nodes are typically used as connectors for complex relationships that
cannot be expressed in a single triple. In an RDF database, Blank Nodes are typically
prefixed with _: followed by string that gives them a local label. The set containing
all Blank Nodes will be referred to as B.
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3.1.2. RDF triple

An RDF triple is a tuple of three elements describing a relationship between two resources
linked by a property in a subject-predicate-object structure. Properties denote the nature of
the relationship between the two resources, and are represented by an IRI. Resources can be
one of three alternatives: IRIs, Blank Nodes or Literals. Literals, however, are not typically
used as subjects, and blank nodes are never used as predicates. In general, a triple can be
defined as:

(s, p, o) ∈ (I ∪B)× (I)× (I ∪B ∪ L)

Triples can also be represented by a connection in a graph where each node is an IRI, Blank
Node or Literal and the edge is labeled with a Property. A collection of RDF triples is known
as an RDF graph and typically denoted by the letter G. We provided an example of an RDF
graph in Figure 2.1.

3.1.3. RDF graph and dataset

An RDF graph is a set of RDF triples that encode information (see Figure 2.1 for an exam-
ple). An RDF dataset consists of one or more RDF graphs, where one RDF graph is called the
default graph, and other graphs are named with an IRI or blank node. A brief formalization
of this concept is as follows: An RDF dataset D is the set D := {G0, (x1, G1), . . . , (xn, Gn)}
where G0, . . . , Gn are RDF graphs and {x1, . . . , xn} ⊆ (I∪B). Each pair (xi, Gi) (1 ≤ i ≤ n)
is called a named graph while G0 is called the default graph. The identifiers xi (1 ≤ i ≤ n)
are all different from each other in order to uniquely identify each graph in the set. These
identifiers may freely appear in any triples, however. This allows to add data related to the
graph linked to the identifier, among other uses.

The graphs contained in an RDF dataset can be navigated and queried using SPARQL,
allowing the retrieval of the information stored. For this work, we will assume SPARQL
queries over different versions of a single RDF graph (a default graph) whose content changes
over time. These versions and changes will be encoded and represented using named graphs
in a few different ways, as will be presented next chapter. We will discuss SPARQL in more
detail in the following.

3.2. SPARQL
SPARQL [9] is the standard query language and engine for RDF. It’s mainly based on

graph pattern matching with variables and operators that allow for searching patterns in the
RDF graph and returning the matches as solutions for the query. In Code 2.2 we provided
an example of a SPARQL query, whose results are shown in Table 2.1. We now introduce
SPARQL in more detail, along with notation that will be used later. This notation largely
follows the conventions first introduced by Perez et al.[14] for SPARQL.

3.2.1. Basic Concepts

SPARQL queries use RDF terms for pattern matching, as well as elements unique to
SPARQL. Some SPARQL concepts are explained below:

• A Variable is an element of SPARQL queries that acts as a wildcard for values in its
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pattern matching, allowing any value to match that position. Variables are identified
with strings that start with the character ?. An example of a Variable would be ?var.
The set containing all Variables will be referred to as V, which is considered disjoint
from IRIs, Blank Nodes and Literals.

• A Filter Condition is an expression that uses elements from (I ∪ B ∪ L ∪ V) and
constants, alongside arithmetic comparisons and built-in operations that result in a
boolean value. Filter Conditions are used to constrain the results of a SPARQL query.

3.2.2. Basic Graph Pattern

A Triple Pattern is the most simple pattern in SPARQL queries, used to match triples.
It has a very similar syntax to an RDF triple, with the exception that each part (subject,
predicate or object) can be replaced with a variable. As such, a Triple Pattern can be defined
as:

t ∈ (I ∪B ∪V)× (I ∪V)× (I ∪B ∪ L ∪V)

Whenever a triple matches a Triple Pattern, the value taken by the variables is recorded, and
can later be displayed in the results of the query. A Basic Graph Pattern (BGP for short) is
a set of Triple Patterns, and is the base of SPARQL queries.

3.2.3. SPARQL query

A SPARQL query is a set of Basic Graph Patterns and operators which can find matches
in the RDF graph. UNION operators can be used to match multiple alternatives in the query,
while OPTIONAL statements allow to include data only if it exists, without adding constraints
to the results already obtained. Finally, a Projection can be applied using SELECT, choosing
which variables are displayed in the results table. A few other options exist for the final
step of the query, such as ASK queries which return a boolean value if a binding exists; or
CONSTRUCT queries, which return an RDF graph according to the parameters given. Our
work, however, will be focused on projections or SELECT queries. Following these parameters,
a SPARQL query pattern can be defined formally as such:

• If t is a triple pattern then t is a query pattern.

• If Q1 and Q2 are query patterns, the following expressions are also query patterns:

– Q1 UNIONQ2.
– Q1 . Q2 (conjunction). Also represented as Q1 ANDQ2.
– Q1 OPTIONALQ2.

• If Q is a query pattern and F is a filter condition, then Q FILTERF is a query pattern.
This pattern can also be expressed as FILTERF (Q)

• Finally, if Q is a query pattern and V is a set of variables, then SELECT V WHERE Q is
also a query pattern, called a projection. For simplicity, this pattern is expressed as
SELECTV (Q).
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– The keyword DISTINCT can be added to a SELECT statement to remove duplicated
results that are otherwise included by default. This is typically expressed as
SELECT∆

V (Q) where ∆ takes a boolean value: true when DISTINCT is used, and
false when it isn’t.

Graph operators

SPARQL allows for queries over several graphs and, as such, datasets may use this feature
to store data of different origins alongside each other. A subset of operators are dedicated to
choose and determine the origin of the triples matched. The data matched can be restricted
to only a subset of all graphs available, or the graph IRIs themselves can be matched and
filtered using a variable and pattern matching or filter conditions. As mentioned earlier
in Section 3.1.3, RDF datasets have one Default Graph and several Named Graphs. If no
graph is specified in a query, the Default Graph is used as origin for the data. However,
a new default graph may be specified for the query using the FROM statement. In more
formal terms, preceding a query Q with the expression FROM G declares that the evaluation
of Q will be done over G. In other words, FROM G {Q} is equivalent to Q(G). We discuss
the concept of evaluation in Section 3.2.4. Alternatively, a graph may be included in the
query using the FROM NAMED statement. The graph can be later accessed using the GRAPH
statement. When a named graph is specified in the GRAPH statement, the effect is equivalent
to changing the default graph for that section of the query. That is to say, a query of the form
FROM NAMED G {GRAPH G {Q}} is equivalent to Q(G). The behaviour of a GRAPH statement
using a variable (such as GRAPH ?g) is slightly more complex, but can be expressed as: a
query of the form GRAPH ?g {Q} is equivalent to ⋃

G∈G Q(G) with G being the set containing
all named graphs declared for the query; furthermore, in the solutions Q(Gi) for each named
Gi ∈ G, the variable ?g will be mapped to ni, the name of Gi.

Other operators

We remark that SPARQL contains further operators such as LIMIT, ORDER BY, etc., that,
for brevity, we do not consider explicitly in these definitions. These operators can be sup-
ported by applying them over the results of our framework, without modification to their
standard definitions [9].

3.2.4. Solution mapping

Applying a query Q over an RDF graph G is denoted as Q(G) and called an evaluation.
The evaluation produces a set of partial mappings for the projected variables represented
as the partial function µ such that µ : V → (I ∪ L). The domain of µ specifies which
variables (a subset of V) are considered for the mapping, and is denoted by dom(µ). µ
is only defined within its domain. Two mappings µ1, µ2 are said to be compatible when
for all ?v ∈ dom(µ1) ∩ dom(µ2) then µ1(?v) = µ2(?v). In essence, for two mappings to be
compatible, they must assign the same values to their shared variables. As such, two disjoint
mappings are always compatible, and the empty mapping µ∅ is compatible with any other
mapping.

Since evaluation is defined in terms of mappings, it becomes useful to define SPARQL
operators in the same manner. But first, some operations between mappings must be defined.
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Let Ω1 and Ω2 be sets of mappings, then:

• Ω1 ./ Ω2 is the join operation, defined as:
Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings}.

• Ω1 ∪ Ω2 is the union operation, defined as:
Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}.

• Ω1 \ Ω2 is the difference operation, defined as:
Ω1 ∪ Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible}.

• With the previous definitions, we can also define the left outer-join (Ω1 ./ Ω2) as:
Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2)

Additionally, in order to properly describe the use of filter conditions in a query, we must
introduce the concept of a mapping satisfying a filter condition. For a mapping µ and a filter
condition F , this is denoted µ |= F . Let c be a constant, ?X, ?Y variables, and F ′, F1, F2
filter conditions. We define µ |= F such that:

• If F = bound(?X), then µ |= F ⇐⇒ ?X ∈ dom(µ).

• If F = op(?X) with op being a built-in unary boolean operator other than bound, then
µ |= F ⇐⇒ [?X ∈ dom(µ) =⇒ op(µ(?X))]. Unlike bound, other unary operators
don’t require ?X ∈ dom(µ). In the case that ?X /∈ dom(µ) then the value of op(µ(?X))
is given as an error. Solutions that return an error for a filter condition will be removed
from the results.

• If F is an arithmetic comparison (such as =, >,<, etc.) between ?X and c, then µ |= F
if and only if ?X ∈ dom(µ) and the same comparison holds true for µ(?X) and c.

• If F is an arithmetic comparison (such as =, >,<, etc.) between ?X and ?Y , then
µ |= F if and only if ?X ∈ dom(µ), ?Y ∈ dom(µ) and the same comparison holds true
for µ(?X) and µ(?Y ).

• If F = ¬F ′, then µ |= F if and only if µ does not satisfy F ′.

• If F = F1 ∨ F2, then µ |= F if and only if µ |= F1 or µ |= F2.

• If F = F1 ∧ F2, then µ |= F if and only if µ |= F1 and µ |= F2.

Now that we have defined operations over mappings, we can then define query pattern
evaluations over a graph G in the same manner. µ(t) represents applying the mapping µ
to the variables in a triple t, which will be in turn denoted by V (t). Let t be an SPARQL
triple pattern, Q′, Q1, Q2 query patterns, and F a filter condition. The following definitions
characterize the evaluation Q(G).

• If Q = t, a single triple pattern, then Q(G) = {µ | dom(µ) = V (t) and µ(t) ∈ G}.

• If Q = Q1 ANDQ2, then Q(G) = Q1(G) ./ Q2(G).

• If Q = Q1 UNIONQ2, then Q(G) = Q1(G) ∪Q2(G).

• If Q = Q1 OPTIONALQ2, then Q(G) = Q1(G) ./ Q2(G).

• If Q = Q′ FILTER F , then Q(G) = {µ | µ ∈ Q′(G) and µ |= F}.
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3.2.5. SPARQL 1.1

So far we’ve discussed formal definitions for operations defined by SPARQL 1.0. SPARQL
1.1 is an extension of SPARQL 1.0 adding support for nested projections, aggregations,
negations and other features that further complex queries. For the most part, this work
implicitly offers support for SPARQL 1.1 features, which can be applied over the results
generated from the SPARQL 1.0 operators previously discussed, with one main exception:
property paths. We now discuss property paths, as well as the MINUS feature of SPARQL 1.1
that will become important later.

Property paths

Property paths are an extension of triple patterns that allow matching paths of arbitrary
length, replacing the predicate in a triple pattern with a path element. Path elements are
defined recursively as follows:

• A predicate IRI p is a path element.

• If e, e1, e2 are path elements, then the following are also path elements:

– ∧e: an inverse path (object to subject).
– (e): a group path e with brackets to control precedence.
– e1/e2: a sequence path of e1 followed by e2

– e1
∧e2: shorthand for e1/

∧e2

– e1|e2: an alternative path where both e1 and e2 are tried.
– e∗: a path of zero of more occurrences of e.
– e+: a path of one or more occurrrences of e.
– e?: a path of zero or one occurrences of e.

Property paths can be divided into two different types: simple and complex. Paths are
considered “simple” if they only use sequence (/), inverse (∧), zero-or-one (?) and alternative
(|). Simple paths can be converted into other operators and, therefore, do not require any
extension or special evaluation. Paths are considered “complex” if they contain operators
other than the ones allowed in simple paths (∗ and +). Such paths require an algebraic
extension. Due to the nature of the implementation of versioning (discussed in Chapter 4),
this work only offers support for simple paths, which are converted to their equivalent BGPs.
Property paths in SPARQL 1.1 can only be applied within a single graph at a time, which
an be either the default graph or a named graph. It is not possible to apply a property path
over multiple named graphs loaded with a FROM NAMED statement, for example. While this
issue can be avoided by combining multiple graphs in the default graph, there would be no
way to distinguish the graphs contained within it.

Negation and Filtering

SPARQL 1.1 introduces several new ways to filter queries and substract results. For this
work, the operation MINUS is the most important of these, since it will be integral to the
query design that will be explained in the next chapter. Following the previous definitions

20



in terms of solution mappings, we add the formal definition of the MINUS operation between
two graph patterns. Let Q1, Q2 be query patterns and G an RDF graph. If Q = Q1 MINUSQ2
then Q(G) = Q1(G) \Q2(G).

Other Features

SPARQL 1.1 introduces several features besides the ones already presented, such as SERVICE
,which allows interfacing with other systems or services to provide data in SPARQL queries;
and VALUES, which allows the assignment of fixed values to a variable. While they’re not
discussed or directly used in this work, they can be supported as per their standard definitions.
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Chapter 4

Native RDF Versioning

In this chapter we define the construction and inner workings of our versioning representation
and query conversion techniques. Since multiple versioning representation alternatives are
used, a brief analysis of their expected advantages and disadvantages is included with each
explanation.

4.1. Preliminary Concepts
We first begin by introducing some preliminary concepts relating to versioned (RDF)

graphs, graph deltas, and temporal queries.

4.1.1. Versioned Graph

We call an RDF graph that changes through time a Versioned Graph. Snapshots of the
graph are taken at different points in time, creating different versions of the graph. Time
increments are considered discrete instead of continuous for simplicity. While each version
can be identified with its timestamp, version numbers are usually preferred for brevity. In
more formal terms, a versioned graph is the set G = (G1, . . . , Gn) where each Gi (1 ≤ i ≤ n)
represents a version of the graph, with 1, . . . , n being the version numbers. In the following
sections we discuss several methods to represent and store the versioned data corresponding
to a versioned graph using only RDF and SPARQL. We’ll call these datasets containing
temporal information a Temporal or Versioned Dataset. Each version of the RDF graph must
be processed in order to be added to a Temporal Dataset. We restrict both the processing
and storage of the temporal data to RDF and SPARQL, although some pre-processing is
allowed. Moreover, whenever a new version is added to an existing Temporal Dataset, it
must first be proccessed in the similar way, using both the already existing versions in the
dataset and the new version being added. This can be achieved by SPARQL, keeping our
restrictions possible.
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4.1.2. Graph Deltas

Let G0, G1 be two RDF graphs representing two versions of the same dataset. A Delta
between versions is defined as the pair of graphs:

∆(G0, G1) = (∆+(G0, G1),∆−(G0, G1))

where ∆+(G0, G1) = G1 \G0 and ∆−(G0, G1) = G0 \G1

Here G0 \ G1 represents set subtraction. Given this definition, it is easy to observe that for
any two graphs G0 and G1, ∆+(G0, G1) = ∆−(G1, G0) and ∆−(G0, G1) = ∆+(G1, G0).

For the purposes of this work, two types of Graph Deltas are defined: Absolute and
Sequential Deltas. These will be discussed in Section 4.5 and Section 4.6, respectively.

4.1.3. Temporal Query

A Temporal Query will be defined for this work as a special type of SPARQL query that
extracts data from a versioned dataset. Two types of Temporal Queries are used in this work
for the most part: Single Version and Version Delta queries.

4.1.3.1. Single Version query

A Single Version query is a Temporal Query Qi that returns solutions that were available in a
specific version of the dataset Gi. In other words, Qi(G) is equivalent to Q(Gi) where Q is the
base query and i represents the version ID. In order to do this, the default graph of the query
dataset is constructed from the Versioned Dataset such that the solutions over the default
graph equate to the solutions over the requested version. In most representations, however,
the default graph is insufficient to achieve this result, and named graphs must be used as well.
For simplicity, evaluation of Single Version queries will be denoted as Qi(Gi).

4.1.3.2. Version Delta query

A Version Delta query Q∗i extracts only the new results for a specific version of temporal
dataset. Formally, Q∗i (G) = {µ ∈ Qi(Gi) | µ 6∈ Qi(Gi−1)} for i > 1 or Qi(Gi) otherwise. In
order to achieve this, two queries are built to obtain results from the target version and the
version preceding it in a similar manner to a Single Version query. Each query is projected
independently and their results are subtracted, creating a Solution Delta containing only
the results added in the target version. As with Single Version queries, the evaluation of a
Version Delta query will be denoted as Q∗i (Gi) for simplicity.

4.2. Running Example
In order to better illustrate both the construction of the Versioned Dataset alternatives

and their associated query conversion processes, a running example is presented. This running
example will be based on the RDF graph in Figure 2.4 separated in 4 versions and giving
blank nodes labels in order to avoid issues related to them, as can be seen in Figure 4.1. A
mistake on one of the dates was included in the second version in order to further complex
the versioned dataset. A simple query presented in Code 4.1 will be used as reference for
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1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 WHERE {
4 ex:SuperMetroid ex:release ?r .
5 ?r ex:date ?date .
6 ?r ex:platform ?platform .
7 }

Code 4.1: Query for the running example

the query conversions. In order to properly show the different conversion methods, the third
version of the graph will be used as the target version of the queries.
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ex:manufacturer ex:developer

ex:r0
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ex:date
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ex:developerex:r1ex:r0 ex:r2
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1994-03-19
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ex:Wii ex:WiiU ex:N3DS

ex:Nintendo
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ex:r1ex:r0 ex:r2 ex:r3
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2016-04-06
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Figure 4.1: Graphs representing the four versions of the running ex-
ample graph
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4.3. Complete Versions
Keeping each version in its entirety in separate named graphs serves as a way to compare

statistics with the rest of the representations. As such, this would-be “naive” approach will
be referred to as the Baseline from now on.

4.3.1. Construction details

4.3.1.1. Dataset construction

In order to build the dataset, all versions included are labeled accordingly as named graphs.
This makes sure the versions can be independently queried. For the running example, the four
versions are labeled ex : v1, ex : v2, ex : v3, and ex : v4. None of the graphs are modified,
since they are included in full.

4.3.1.2. Query conversion

In Single Version queries, the body of the query is intact, since the only neccesary changes are
made to the data source of the query. The named graphs are filtered using a FROM statement
in SPARQL to extract results only from the appropiate graph, as can be seen in Code 4.2.
In the case of Version Delta queries, the target version is assigned to the default graph while
the preceding version is accessed using FROM NAMED and GRAPH statements. An example of a
Version Delta query using the baseline dataset can be seen in Code 4.3.

4.3.2. Expected advantages

Since all versions are completely available, any query, particularly Single Version queries,
can be answered in competitive time, disregarding any particularities they may have. The
only required step for rewriting a Single Version query is adding the corresponding graph in
a FROM statement. Version Delta queries are easy to rewrite as well, only requiring an extra
named graph and the same query wrapped in a graph statement in order to compute the
difference of results for the two different versions. Adding versions to this representation is
another one of its strong points, since it only requires adding it to the available versions as
a new named graph.

4.3.3. Expected disadvantages

As mentioned before, since this version doesn’t compact the dataset in any way, the
storage size will be the biggest possible with abundant repetition of triples. Even triples that
never change will be present in each named graph, and, as the number of versions grows, the
dataset might become too massive to handle easily.
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4.3. COMPLETE VERSIONS 26

1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/v3>
4 WHERE {
5 ex:SuperMetroid ex:release ?r .
6 ?r ex:date ?date .
7 ?r ex:platform ?platform .
8 }

Code 4.2: Single Version query (Q3) using the baseline dataset

1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/v3>
4 FROM NAMED <http://example.org/v2>
5 WHERE {
6 { SELECT ?platform ?date
7 WHERE {
8 ex:SuperMetroid ex:release ?r .
9 ?r ex:date ?date .

10 ?r ex:platform ?platform .
11 }
12 }
13 MINUS
14 { GRAPH <http://example.org/v2>
15 { SELECT ?platform ?date
16 WHERE {
17 ex:SuperMetroid ex:release ?r .
18 ?r ex:date ?date .
19 ?r ex:platform ?platform .
20 }
21 }
22 }
23 }

Code 4.3: Version Delta query (Q∗3) using the baseline dataset



4.4. Interval-based graphs
In this representation, an approach based on time intervals was selected; each graph of

the dataset represents a time interval, containing all the triples that are valid in said period.
Since the time is determined by the versions used, it is measured discretely and determined
by the timestamp of each given version.

For graphs representing time intervals, the following definition applies: A triple t belongs
to the interval I(i, j) if and only if t is present for all versions between i and j, both inclusive,
and I(i, j) is maximal in this sense. By maximal we mean that either i is the first version
or t is not in i − 1, and that either j is the last version or t is not in j + 1. According to
this definition, a triple may belong to several interval graphs if and only if said intervals are
discontinuous and the previous conditions apply.

4.4.1. Construction Details

4.4.1.1. Dataset construction

In order to construct the dataset, interval graphs are built for every possible interval and
labeled accordingly. First, each individual version of the graph has its triples sorted lexico-
graphically. This is done in order to help with the construction process. In the next step, the
versions are read in parallel, determining the validity of each triple and in which intervals it
belongs, populating the new graphs. The comparison of graphs only reads each version once,
and, along with the sorting, ends up with a complexity of O(mn log(n) +mn) where m is the
amount of versions and n is the size of the largest version. For the running example, several
graphs are empty due to the fact that not many triples are removed between versions. The
dataset converted to interval graphs can be seen in Figure 4.2

ex:r0

1994-03-19

ex:date

<htttp://example.org/intervals/v1-v1>

ex:SNES ex:SuperMetroid

ex:Nintendo

ex:manufacturer ex:developer

ex:r0

ex:platform ex:release

<htttp://example.org/intervals/v1-v4>

ex:r0

1993-03-19

ex:date

<htttp://example.org/intervals/v2-v2>

ex:SuperMetroid

ex:Wii

ex:Nintendo

ex:manufacturer

ex:r1

ex:platform

ex:release

2007-09-20

ex:date

<http://example.org/intervals/v2-v4>

ex:SuperMetroid

ex:WiiU

ex:Nintendo

ex:manufacturer

ex:r2

ex:platform

ex:release

2013-05-15

ex:date

<http://example.org/intervals/v3-v4>

ex:r0

1994-03-19

ex:date

ex:SuperMetroid

ex:N3DS

ex:Nintendo

ex:manufacturer

ex:r3

ex:platform

ex:release

2016-04-06

ex:date

<http://wikidata.org/intervals/v4-v4>

Figure 4.2: Interval graphs representing the running example graph
and its versions
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1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/intervals/v1-v3>
4 FROM <http://example.org/intervals/v1-v4>
5 FROM <http://example.org/intervals/v2-v3>
6 FROM <http://example.org/intervals/v2-v4>
7 FROM <http://example.org/intervals/v3-v3>
8 FROM <http://example.org/intervals/v3-v4>
9 WHERE {

10 ex:SuperMetroid ex:release ?r .
11 ?r ex:date ?date .
12 ?r ex:platform ?platform .
13 }

Code 4.4: Single Version query (Q3) using interval graphs

4.4.1.2. Query conversion

The relevant interval graphs are merged into the default graph at the runtime of a query
using the FROM statement. Only intervals containing the target version are used, such that
only triples existing in the target version are considered for the query. An example of a Single
Version query using this construction method can be seen in Code 4.4, which asks for results
that were valid in version 3 of the dataset. Since the intervals are combined as the default
graph, this query method does not requires the addition of MINUS statements, and, as such,
still provides full support for queries containing complex property paths in Single Version
queries. This does not hold true, however, for Version Delta queries.

In order to convert a query into a Version Delta query using interval graphs, the target
version can be written in the same way as a Single Version query, while the preceding version
must be separated into its triple patterns, wrapping each of them in GRAPH statement and
then filtering them to only keep relevant versions. An example of a Version Delta query using
interval graphs can be seen in Code 4.5.

4.4.2. Expected advantages

Querying over an inteval-based approach only requires filtering the graphs which are
relevant to the target version of the query, making the conversion rather simple. As such,
querying times should not be greatly impacted. Compaction should be near-ideal since triples
should not be repeated in different graphs unless they are intermittently added and removed
across different versions, which we claim to be rare in practice.

4.4.3. Expected disadvantages

Adding a new version has a moderate impact on re-indexing, affecting all intervals con-
taining the version previous to the one being added. A filter needs to be applied to determine
whether a triple continues to be valid towards the new latest version or not. Assuming in
general that for a new version Gn+1 that Gn \Gn+1 will be smaller than Gn+1 ∩Gn, an opti-
mization to reduce the impact of adding a new version would be using open intervals without

28



4.4. INTERVAL-BASED GRAPHS 29

1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/intervals/v1-v3>
4 FROM <http://example.org/intervals/v1-v4>
5 FROM <http://example.org/intervals/v2-v3>
6 FROM <http://example.org/intervals/v2-v4>
7 FROM <http://example.org/intervals/v3-v3>
8 FROM <http://example.org/intervals/v3-v4>
9 FROM NAMED <http://example.org/intervals/v1-v2>

10 FROM NAMED <http://example.org/intervals/v1-v3>
11 FROM NAMED <http://example.org/intervals/v1-v4>
12 FROM NAMED <http://example.org/intervals/v2-v2>
13 FROM NAMED <http://example.org/intervals/v2-v3>
14 FROM NAMED <http://example.org/intervals/v2-v4>
15 WHERE {
16 { SELECT ?platform ?date
17 WHERE {
18 ex:SuperMetroid ex:release ?r .
19 ?r ex:date ?date .
20 ?r ex:platform ?platform .
21 }
22 }
23 MINUS
24 { SELECT ?platform ?date
25 WHERE {
26 GRAPH ?g0 { ex:SuperMetroid ex:release ?r . }
27 GRAPH ?g1 {?r ex:date ?date . }
28 GRAPH ?g2 {?r ex:platform ?platform . }
29 }
30 }
31 }

Code 4.5: Version Delta query (Q∗3) using interval graphs



an end version, interpreted as valid up the current version. This would reduce the amount
of triples in need of updating from (Gn ∩Gn+1)∪ (Gn+1 \Gn) to (Gn \Gn+1)∪ (Gn+1 \Gn).
Since this optimization is not implemented in this work, it is possible than a larger number
of operations than necessary will take place when adding a new version.

4.5. Absolute deltas
In this representation, a version is used as a base and kept in its own graph. Deltas are

calculated for each remaining version compared against the base and kept in separate graphs.
While in theory any version could serve as a base, only the first or latest are selected in this
work. When the first version is selected as a base, the scheme is similar to differential backups
that are sometimes used in database systems. When the latest version is selected, the scheme
is similar to reverse differential backups sometimes used in archiving systems.

4.5.1. Construction details

4.5.1.1. Dataset construction

As previously stated, the base version (either the first or latest) is kept in its entirety in its own
graph. Positive and negative deltas are then calculated for each remaining version against the
base and kept in separate graphs. In order to keep the graph names unambiguous and short,
deltas are named in a way that makes them all negative. For any positive delta needed, the
order of versions is inverted, since ∆+(G0, G1) = ∆−(G1, G0) for any pair of graphs G0, G1.
For the running example, the first version was used as a base. Since no triples are removed,
there are no negative deltas from the base version. The versioned dataset for the running
example using absolute deltas can be seen in Figure 4.3.
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Figure 4.3: Absolte delta graphs representing the running example
graph and its versions

4.5.1.2. Query conversion

In Single Version queries the base version and the positive delta for the target version are
combined into the default graph, while the negative delta is loaded as a named graph. The
query is separated into its BGPs, which are MINUS operated with each triple inside a GRAPH
statement, aiming to remove triples contained in the negative delta, since those represent
data that is no longer available in the target version. This follows the notion that Gtarget =
(Gbase ∪∆+(Gbase, Gtarget)) \∆−(Gbase, Gtarget). An example of a Single Version query using
absolute deltas can be seen in Code 4.6.

In Version Delta queries, the target version portion of the query is constructed in the
same manner as a single version query, while the preceding version must be built using
GRAPH, UNION and MINUS statements for each triple (this is because the default graph, which
can store the union of multiple graphs, has already been used for the current version). An
example of a Version Delta query using absolute deltas can be seen in Code 4.7.

4.5.2. Expected advantages

Absolute deltas have simple query conversions, needing only the base versions and two
other graphs with the positive and negative deltas. Accessing any non-base version has
a similar cost across all of them, keeping query times consistent when varying the target
version. If the first version is used as a base, adding a version to an already built dataset
has a relative low cost, requiring only one new pair of deltas to be calculated for the version
being added and indexed as new named graphs.
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4.5. ABSOLUTE DELTAS 32

1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/v1>
4 FROM <http://example.org/deltas/v3-v1>
5 FROM NAMED <http://example.org/deltas/v1-v3>
6 WHERE {
7 SELECT ?platform ?date
8 WHERE {
9 { { ex:SuperMetroid ex:release ?r .

10 ?r ex:date ?date .
11 ?r ex:platform ?platform .
12 MINUS
13 { GRAPH <http://example.org/deltas/v1-v3>
14 { ex:SuperMetroid ex:release ?r }
15 }
16 }
17 MINUS
18 { GRAPH <http://example.org/deltas/v1-v3>
19 { ?r ex:date ?date }
20 }
21 }
22 MINUS
23 { GRAPH <http://example.org/deltas/v1-v3>
24 { ?r ex:platform ?platform }
25 }
26 }
27 }

Code 4.6: Single Version query (Q3) using absolute deltas
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1 PREFIX ex: <http://example.org/>
2 SELECT ?platform ?date
3 FROM <http://example.org/v1>
4 FROM <http://example.org/deltas/v3-v1>
5 FROM NAMED <http://example.org/deltas/v1-v3>
6 FROM NAMED <http://example.org/v1>
7 FROM NAMED <http://example.org/deltas/v2-v1>
8 FROM NAMED <http://example.org/deltas/v1-v2>
9 WHERE {

10 { SELECT ?platform ?date
11 WHERE {
12 { { ex:SuperMetroid ex:release ?r .
13 ?r ex:date ?date .
14 ?r ex:platform ?platform .
15 MINUS
16 { GRAPH <http://example.org/deltas/v1-v3>
17 { ex:SuperMetroid ex:release ?r } } }
18 MINUS
19 { GRAPH <http://example.org/deltas/v1-v3>
20 { ?r ex:date ?date } } }
21 MINUS
22 { GRAPH <http://example.org/deltas/v1-v3>
23 { ?r ex:platform ?platform } } } }
24 MINUS
25 { SELECT ?platform ?date
26 WHERE {
27 { { GRAPH <http://example.org/v1>
28 { ex:SuperMetroid ex:release ?r } }
29 UNION
30 { GRAPH <http://example.org/deltas/v2-v1>
31 { ex:SuperMetroid ex:release ?r } }
32 MINUS
33 { GRAPH <http://example.org/deltas/v1-v2>
34 { ex:SuperMetroid ex:release ?r } } }
35 { { GRAPH <http://example.org/v1>
36 { ?r ex:date ?date } }
37 UNION
38 { GRAPH <http://example.org/deltas/v2-v1>
39 { ?r ex:date ?date } }
40 MINUS
41 { GRAPH <http://example.org/deltas/v1-v2>
42 { ?r ex:date ?date } } }
43 { { GRAPH <http://example.org/v1>
44 { ?r ex:platform ?platform } }
45 UNION
46 { GRAPH <http://example.org/deltas/v2-v1>
47 { ?r ex:platform ?platform } }
48 MINUS
49 { GRAPH <http://example.org/deltas/v1-v2>
50 { ?r ex:platform ?platform } } } } } }

Code 4.7: Version Delta query (Q∗3) using absolute deltas



4.5.3. Expected disadvantages

The size of the deltas is expected to grow with the number of versions, since each of
them has all the accumulated changes since the beginning. This may lead to a larger dataset
overall when compared to other representation alternatives. If the last version is used as a
base, adding a version to an already built dataset has the highest possible cost, requiring all
deltas to be calculated again, essentially rebuilding the dataset from scratch.

4.6. Sequential deltas
In this representation, a version is used as a base and kept in its own graph. Deltas are

calculated between each pair of consecutive versions. As per the absolute deltas, the first or
latest version can be used as the base. This scheme is similar to incremental backups and
reverse incremental backups sometimes used in database and archiving systems.

4.6.1. Construction details

4.6.1.1. Dataset construction

Similarly to absolute deltas, the base version is kept whole in its own graph. Deltas are cal-
culated bewtween consecutive versions and kept in separate graphs. Given the large number
of deltas that need to be accessed for versions distant to the base, a different query rewriting
methodology was used. As such, it was neccesary to add metadata detailing the version and
direction of the delta graphs, as can be seen in Code 4.8. Direction is measured regard-
ing the latest version depending on whether the delta is positive (“forwards”) or negative
(“backwards”). Another requirement for the dataset is that the version labels must follow
an ascending lexicographical order. For the running example, the first version will be used
for the base. The versioned dataset for the running example using sequential deltas can be
seen in Figure 4.4.
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1 @prefix ex: <http://example.org//>
2 @prefix delta : <http://example.org/deltas/>
3 ex:v1 delta : direction "forwards" .
4 ex:v1 delta :version "v1" .
5 delta :v2-v1 delta : direction "forwards" .
6 delta :v2-v1 delta :version "v2" .
7 delta :v1-v2 delta : direcion "backwards" .
8 delta :v1-v2 delta :version "v2" .
9 delta :v3-v1 delta : direction "forwards" .

10 delta :v3-v1 delta :version "v3" .
11 delta :v1-v3 delta : direcion "backwards" .
12 delta :v1-v3 delta :version "v3" .
13 delta :v4-v1 delta : direction "forwards" .
14 delta :v4-v1 delta :version "v4" .
15 delta :v1-v4 delta : direcion "backwards" .
16 delta :v1-v4 delta :version "v4" .

Code 4.8: RDF triples that add sequential delta graph metadata
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Figure 4.4: Sequential delta graphs representing the running example
graph and its versions

4.6.1.2. Query conversion

Graphs are implicitly searched using a GRAPH statement with a variable and then filtered
according to the direction and version necessary. In more detail, the maximum positive (or
"forwards") version containing the triple is searched. Then, the maximum negative (or "back-
wards") version containing the triple is searched. If the negative version is lexicographically
larger (a latter version), the triple is discarded. Otherwise, it is included in the results. An
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example of a Single Version query can be seen in Code 4.9. In the case of Version Delta
queries, both the target version and preceding version queries are built individually and then
their results compared and subtracted. This corresponds to a limitation due to the way
queries were constructed. Since queries are so lengthy in characters, some query engines fail
to accept the query at runtime.

1 PREFIX ex: <http://example.org/>
2 PREFIX delta: <http://example.org/deltas/>
3 SELECT ?platform ?date
4 WHERE
5 { { { SELECT ?r (str(MAX(?v0_)) AS ?max_v0)
6 WHERE
7 { { { GRAPH ?g0 { ex:SuperMetroid ex:release ?r }
8 ?g0 delta : direction "forwards" .
9 ?g0 delta :version ?v0 }

10 BIND(str(?v0) AS ?v0_) }
11 FILTER ( str(?v0) <= "v3" ) }
12 GROUP BY ?r }
13 OPTIONAL
14 { { SELECT ?r (str(MAX(?v1_)) AS ?max_v1)
15 WHERE
16 { { { GRAPH ?g1 { ex:SuperMetroid ex:release ?r }
17 ?g1 delta : direction "backwards" .
18 ?g1 delta :version ?v1 }
19 BIND(str(?v1) AS ?v1_) }
20 FILTER ( str(?v1) <= "v3" ) }
21 GROUP BY ?r }
22 FILTER ( ( ! bound(?max_v1) ) || ( str(?max_v0) > str(?max_v1) ) ) } }
23 { { SELECT ?r ?date (str(MAX(?v2_)) AS ?max_v2)
24 WHERE
25 { { { GRAPH ?g2 { ?r ex:date ?date }
26 ?g2 delta : direction "forwards" .
27 ?g2 delta :version ?v2 }
28 BIND(str(?v2) AS ?v2_) }
29 FILTER ( str(?v2) <= "v3" ) }
30 GROUP BY ?r ?date }
31 OPTIONAL
32 { { SELECT ?r ?date (str(MAX(?v3_)) AS ?max_v3)
33 WHERE
34 { { { GRAPH ?g3 { ?r ex:date ?date }
35 ?g3 delta : direction "backwards" .
36 ?g3 delta :version ?v3 }
37 BIND(str(?v3) AS ?v3_) }
38 FILTER ( str(?v3) <= "v3" ) }
39 GROUP BY ?r ?date }
40 FILTER ( ( ! bound(?max_v3) ) || ( str(?max_v2) > str(?max_v3) ) ) } }
41 { { SELECT ?r ?platform (str(MAX(?v4_)) AS ?max_v4)
42 WHERE
43 { { { GRAPH ?g4 { ?r ex:platform ?platform }
44 ?g4 delta : direction "forwards" .
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45 ?g4 delta :version ?v4 }
46 BIND(str(?v4) AS ?v4_) }
47 FILTER ( str(?v4) <= "v3" ) }
48 GROUP BY ?r ?platform }
49 OPTIONAL
50 { { SELECT ?r ?platform (str(MAX(?v5_)) AS ?max_v5)
51 WHERE
52 { { { GRAPH ?g5 { ?r ex:platform ?platform }
53 ?g5 delta : direction "backwards" .
54 ?g5 delta :version ?v5 }
55 BIND(str(?v5) AS ?v5_) }
56 FILTER ( str(?v5) <= "v3" ) }
57 GROUP BY ?r ?platform }
58 FILTER ( ( ! bound(?max_v5) ) || ( str(?max_v4) > str(?max_v5) ) ) } } }

Code 4.9: Single Version query (Q3) using sequential deltas

4.6.2. Expected advantages

Sequential deltas, unlike their absolute counterpart, will typically mantain a consistent
size throughout, assuming a consistent number of changes between versions. This consistent
size helps the representation keep an optimal storage size, expected to be smaller than when
absolute deltas are used. Adding a new version to an already built dataset has a relative
low cost assuming the deltas are built in the forwards direction, requiring only one new
pair of deltas to be calculated for the new version added, even if it replaces the current
base.

4.6.3. Expected disadvantages

Queries using sequential deltas are, in general, more complex, needing to access several
deltas per target version. When querying over the version farthest from the base, every named
graph in the dataset must be accessed, impacting query times negatively. Since queries about
recent data are expected to be more common, using the first version as the base risks facing
this issue more often.

4.7. Complex queries
So far we have only discussed query rewritting for Basic Graph Patterns for the sake

of both simplicity and brevity when it comes to the examples given. It should be noted,
however, that most other graph patterns and operations between them – such as OPTIONAL,
UNION, MINUS, etc. – can be supported by simply rewriting the BGPs that constitute them
and joining each part of the rewritten query with the same operations that joined them in the
original query. As discussed in the previous chapter, the main exception to this corresponds
to property paths.

Simple property paths (/, ∧, ?, and |) can be converted into Basic Graph Patterns, which
is used in order to offer support for them. Arbitrary length (or complex) paths (such as ∗
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and +) lack this property, however. Since they cannot be applied over several graphs, com-
plex property paths present an issue for representations that use one or more named graphs
alongside the default graph. Some of the possible paths may be split across several graphs
while building the Versioned Dataset and cannot be restored at query runtime. Versioning
alternatives that do not suffer this limitation are as follows: the Baseline representation
for both Single Version queries and Version Delta queries, since each version is completely
contained in a single graph and paths of arbitrary length are preserved; while the interval-
based representation supports property paths in Single Version queries, since all the relevant
graphs are merged into the default graph at execution, and arbitrary length paths are re-
stored. Any other representation cannot offer support for complex property paths, including
interval-based graphs when it comes to Version Delta queries.

4.8. Implementation
The system used to process and rewrite queries was built using the Jena ARQ1 API for

Java. The Transformer framework, along with implementations of the Transform interface
were used in the query conversion process for each versioned dataset representation. All of
the relevant code can be found on GitHub2.

1 https://jena.apache.org/documentation/query/
2 https://github.com/HunterNacho/sparql-query-versioning

38

https://jena.apache.org/documentation/query/
https://github.com/HunterNacho/sparql-query-versioning


Chapter 5

Evaluation

In this chapter we discuss the construction and execution of the experiments considered for
this work, as well as the results obtained.

5.1. Experimental goals
The experiments and measurements presented in this chapter have the goal of answering

the research questions proposed by the hypothesis in Section 1.4. A contrast between the
expected results and the ones obtained experimentally is also included. The questions relevant
to the experimental section of this work are as follows:

1. What representations of a versioned dataset allow for better compression, more efficient
indexing, and/or more efficient updates?

2. How large is the performance cost of implementing a versioned dataset and query
system?

3. Which of the representation alternatives will have the most well-rounded performance?

How these questions will be addressed by the experiments is discussed in the following sec-
tions. It is expected that using the same dataset and query set in each representation
alternative will give us enough insight to answer them.

5.2. Experimental settings

5.2.1. System specifications

Experiments are run in a Linux virtual machine with the following specifications:

• 4TB hard drive space

• 120GB of R.A.M.

A Virtuoso1 Server was deployed in said virtual machine, making a different instance for
each versioning representation and QID threshold. The relevant RDF graphs were uploaded
1 http://vos.openlinksw.com/owiki/wiki/VOS
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to each instance using Virtuoso’s bulk loader, making sure to register how much time the
upload and indexing took.

5.2.2. Dataset and representations

The data used for the experiments consists of weekly Wikidata “dumps” from August
and September of 2017. In total, 8 dumps are used, each containing over 1500 million triples.
These dumps are used as versions of the same graph for the construction of each version
dataset alternative. The amount of triples contained in each version, along with the amount
added and removed can be seen in Table 5.1. In order to assess how the size of the graph
affects query runtimes, additional datasets are constructed by limiting the amount of QIDs
allowed (see Section 2.2). Since the largest QIDs within the dumps used are around 40 million,
the following thresholds are built: 1 million, 2 million, 4 million, 8 million, 16 million, 32
million, and full dataset. These will be referred to as 1M, 2M, 4M, 8M, 16M, 32M, and full
for brevity. All representations discussed in the previous chapter are used, making a total of
six Versioned Datasets:

• Complete versions as the “baseline”

• Interval-based graphs (or simply “intervals”)

• Absolute deltas using the first version as the base (“absolute-0”)

• Absolute deltas using the latest version as the base (“absolute-n”)

• Sequential deltas using the first version as the base (“sequential-0”)

• Sequential deltas using the latest version as the base (“sequential-n”)

Version Total triples Triples added Triples removed
2017-08-09 1,505,807,223 – –
2017-08-16 1,541,942,580 42,630,489 6,494,985
2017-08-23 1,592,997,542 56,681,292 5,626,215
2017-08-30 1,613,490,986 25,306,043 4,811,224
2017-09-07 1,684,476,127 75,166,341 4,180,870
2017-09-13 1,771,301,517 93,039,159 6,213,763
2017-09-20 1,842,785,338 77,087,119 5,603,102
2017-09-27 1,924,663,703 88,263,688 6,384,825

Table 5.1: Number of total triples, triples added, and triples removed
in each version

5.2.3. Experiments

The experiments run are based on the Wikidata example queries: a set consisting of
over 300 SPARQL queries contributed by various volunteers with many different levels of
complexity. Several of these queries, however, had to be removed due to incompatibilities
related to the use of external services on the Wikidata query engine, as well as the use of
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property paths not supported by all representation alternatives. The resulting test set is
comprised of 146 SPARQL queries.

Each query is converted into both Single Version and Version Delta queries. In the case of
Single Version queries, target versions 1, 5 and 8 are used. For Version Delta queries, target
versions 2, 5 and 8 are used, since target version 1 would be equivalent to a Single Version
query. The different target versions were chosen to present the best case, worst case and
average case of delta-based representations. The baseline and interval-based representations
should not be greatly affected by the target version, however. Every converted query is run
three times in order to reduce any variance in their execution times.

Others factors considered for each representation are their respective construction times,
storage size and the impact adding a new version has. Moreover, using the QID thresholds,
it becomes possible to observe how the size of a versioned graph affects each individual
versioned dataset representation.

5.3. Experimental results

5.3.1. Dataset size

In order to contextualize some of the results in the following sections, we present the
impact of the QID thresholds when it comes to dataset size. As we can see in Figure 5.1,
the growth in dataset size (expressed in total number of triples) is consistently linear for
most representation alternatives. The only exception to this comes from both absolute delta
representations, since they lose compression efficiency for larger graphs.

Figure 5.1: Graph showing dataset size (in triples) for each QID thresh-
old

5.3.2. Storage size

Storage size corresponds to one of the easiest parameters to analyze, but that does not
diminish its importance. In Figure 5.2 we can see a graph that visualizes the size on disk
of each dataset. As expected, the baseline dataset is the largest by far, doubling the size
of other representations at most scales. Sequential deltas are better at compression than
absolute deltas, with intervals being between them in terms of size. The results observed for
this parameter line up with the preliminary expectations. An interesting note to add is that
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deltas based on the first version have a better compression overall than deltas based on the
latest version. This may be due to the growth of subsequent versions, making deltas slightly
larger.

Figure 5.2: Graph showing the storage size for all representation alter-
natives

It is natural to assume that storage size is directly linked to dataset size, and in Figure 5.3
we can see that the relationship between these two parameters is mostly linear.

Figure 5.3: Graph showing the relationship between dataset size and
size on disk for each representation

5.3.3. Construction times

Another relevant parameter to analyze corresponds to the time each dataset takes to be
uploaded and indexed when it is being built for the first time. This measurement assumes
starting with all versions of the graph as dumps, so the time necessary to calculate intervals
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and deltas is included in the representations that need them. Since the constrution of intervals
and deltas took place before the QID filtering, the time spent building these additional graphs
for the full version was taken as a reference and kept fixed. Using this data, some estimations
can be made about the time it would take to add a new version in each representation in
the case of an already built dataset. Figure 5.4 shows the amount of time each represetation
takes to build and index, while Figure 5.5 shows an estimation of the time each representation
would take to add a new version. In the case of absolute deltas with the latest version as a
base, each time a new version is added, the dataset must be built nearly from scratch. For
the interval-based representation, the estimated time assumes the worst case where the most
amount of graphs must be altered and indexed again.

Figure 5.4: Graph showing the time taken by each representation to
build and index initially for each QID threshold

Figure 5.5: Graph showing the estimated time taken by each represen-
tation to add a new version for each QID threshold
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As can be seen, the baseline has the largest times overall due to having to index a larger
amount of data. The rest of the representations take an amount of time proportional to
their storage size, with absolute-n being the highest besides the baseline. For the lower
QID thresholds, the fixed time of building intervals and deltas is larger than the upload and
indexing times, making them very similar.

When it comes to the cost of adding a new version, absolute-n has the highest. This occurs
due to the fact that adding a new version replaces the base being used, which invalidates
the existing deltas and requires the entire dataset to be rebuilt. A similar issue arises in
sequential-n, but the impact is much lower since the deltas already calculated are still relevant.
The sequential-0 representation times may be higher in practice than what is shown, due to
the extra operations required to generate the new delta tuple ∆(Gn, Gn+1). Since Gn is not
available as a single graph, it must be simulated using G0 and the delta tuple ∆(G0, Gn). As
mentioned earlier, the times for the intervals representation could be improved upon with
the implementation of open-ended intervals.

5.3.4. Query times

The largest amount of experiments comes from the queries run in each representation.
Since each query is converted into both Single Version and Version Delta queries, with each
of them built for three different target versions, six different versions of the same query are
run in each representation alternative. A total of 146 queries are kept from the initial set,
since a large amount of them presented issues for one or several reasons. The timeout for
execution was set at five minutes (300 seconds). If the execution time of a query exceeds this
number, it is halted and considered to have taken said amount of time. This is done in order
to prevent excessively long query executions, as well as an attempt to simulate some amount
of responsivity in the system. Since the execution times vary greatly with query complexity,
the graphs display times in a logarithmic scale. For graphs showing all query executions
for the same type of query (Single Version or Version Delta) for all representations, times
are not grouped by query.In these graphs, the executions of each representation are sorted
individually and then grouped by their overall percentile rank. This allows to better compare
the representations at the cost of losing direct query-to-query comparison. Additional graphs
are built to show how the performance of a representation varies with the target version of
queries.

5.3.4.1. Single Version queries

Since Single Version queries are generally simple in their conversions, the difference between
query times is not expected to be drastic for the most part. The representations using
sequential deltas, however, may have some variance in execution time depending on the
target version of the query. In Figure 5.6 we can see the query times for Single Version
queries using target version 1. Figure 5.7 has the same results for target version 5, while
Figure 5.8 has the results for target version 8. Additional graphs showing the performace of
each representation are included. Table 5.2 shows the amount of time-outs for Single Version
queries. Finally, as a means to compare each alternative more directly, Figure 5.9 has the
execution times for a specific query q016.
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Representation Target Version 1 Target Version 5 Target Version 8
baseline 1 1 1
intervals 1 2 1
absolute-0 1 1 1
absolute-n 1 2 1
sequential-0 17 18 18
sequential-n 17 18 12

Table 5.2: Number of timeouts per representation and target version
for Single Version queries

Figure 5.6: Graph showing the distribution of execution times for all
Single Version queries with target version 1

Figure 5.7: Graph showing the distribution of execution times for all
Single Version queries with target version 5
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Figure 5.8: Graph showing the distrution of execution times for all
Single Version queries with target version 8

Figure 5.9: Graph showing execution times for query q016

As expected, the baseline representation has the lowest query times overall, save for some
rare exceptions. Sequential delta representations take the largest execution times and amount
of timeouts. However, it seems that the target version has a smaller impact than expected;
only sequential-n performs consistently better when querying over the latest version, the re-
maining representations do not show as much variance. Absolute deltas and interval-based
graphs have similar performances, with some exceptions where the interval-based represen-
tation times out.

5.3.4.2. Version Delta queries

Version Delta queries are generally more complex than their Single Version counterparts,
making it easier to contrast between each representation alternative. As a consequence of
their complexity, these queries may be harder for the query engine to optimize, causing
more timeouts overall. In Figure 5.10 we can see the query times for Version Delta queries
using target version 2. As with Single Version queries, the graph displays execution times in a
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logarithmic scale and sorts them by percentile ranking within each representation. Figure 5.11
has the same results for target version 5, while Figure 5.12 has the results for target version 8.
Graphs showing the performance of each representation are also included. An important note
to make is that the absolute delta representations failed to return results for most queries due
to errors caused by the complexity of the queries generated (see Code 4.7 for an example).
Also, even though Version Delta queries were separated into two queries for the sequential
delta representations, their combined maximum query execution time is kept at 300 seconds
and any time larger than that threshold is truncated. Table 5.3 shows the amount of timeouts
for Version Delta queries. Same as for Single Version queries, Figure 5.13 shows the results
for a specific query q016 in order to compare the results obtained in a more direct manner
(note that this is one of the few queries that can be executed succesfully for absolute deltas).

Representation Target Version 1 Target Version 5 Target Version 8
baseline 17 17 17
intervals 21 21 20
absolute-0 132 132 132
absolute-n 132 132 132
sequential-0 26 26 26
sequential-n 26 26 25

Table 5.3: Number of timeouts per representation and target version
for Version Delta queries

Figure 5.10: Graph showing weighted execution times for all Version
Delta queries with target version 2
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Figure 5.11: Graph showing weighted execution times for all Version
Delta queries with target version 2

Figure 5.12: Graph showing weighted execution times for all Version
Delta queries with target version 2

Figure 5.13: Graph showing execution times for query q016
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Disregarding absolute deltas since they do not work for most of the queries, sequential
deltas have the longest execution times overall. Intervals have a somewhat inconsistent
performance, but are competitive in most cases with the baseline query times, managing to
out-perform it in queries with lower complexity, but timing out more often in complex queries.
As with Single Version queries, target version does not impact execution times significantly.
Only sequential-n presents slightly lower execution times for target version 8.

5.4. Synthesis
All representations achieve a compression of around 50% when compared against the

baseline, with sequential deltas being the best and absolute deltas the worst. Uploading and
indexing times directly follow this pattern, since they are directly proportional to the storage
size of each dataset. Times for adding a new version are the worst when it comes to deltas
using the last version as a base, but significantly better using the first version. The interval-
based representation is between them, only failing to hold up for smaller QID thresholds due
to the high cost of buiding all the intervals from the Wikidata dumps.

When it comes to query execution times, sequential deltas perform the worst overall.
Absolute deltas have issues with Version Delta queries but perform quite well with Single
Version queries. The interval-based representation shows query times competitive with the
baseline, while also being the most consistent overall. Target version for the queries does
not impact queries as much as expected. Only the sequential-n representation show some
amount of variance in execution time, favoring queries with target version 8, its base version.

Interval-based graphs is chosen as the best overall representation presented due to the
following facts:

• Its indexing times are among the lowest of all representations and could be further
improved with open intervals (see Figure 5.4).

• It offers partial support for property paths, which could be extended to full support
using separate queries for Version Delta queries.

• It has the simplest query rewriting overall, since it does not modify the body of the
query as much as the other representations (compare, for example, Code 4.5 with
Code 4.9).
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Chapter 6

Conclusions

6.1. Summary
In this work we have proposed and evaluated a system that allows for efficiently storing

and querying versioned RDF graphs that track changes over time. This was done in order
to help preserve temporal data in datasets that otherwise lose it whenever an update occurs.
A few systems that achieve similar goals currently exist. These systems, however, employ
extensions, specialized indices and other custom tools in their implementations. Considering
this, the goal of building a system that achieves our objetive using only base RDF and
SPARQL was added. This would serve as an “off-the-shelf” solution to the problem presented.

Several alternatives to represent the versioned data were tested, each requiring a different
method of conversion for SPARQL queries in order to ensure compatibility with the versioned
datasets created. A version without compression was kept to compare the results obtained.
Alongside it, versioned representations based on intervals and deltas were built. Two types
of deltas were defined: absolute deltas that take each version of the graph and compare it to
the base version (either oldest or most recent), and sequential deltas, where each version is
compared against the previous one to keep a “step by step” representation of the changes in
the graph through time.

Overall, the interval-based representation had the most competitive results, with the
exception of build times. These times could be easily be improved upon with small optimiza-
tions to the construction method. Moreover, the interval-based representation is the only one
that partially supports property paths; the rest of the representations are fully incompatible
with them as property paths cannot be evaluated across different named graphs.

6.2. Scope and limitations
While most of the techniques and methods developed can be used beyond what was shown

in this work, acknowledging the limitations associated to its scope is important to analyze
how this work could be expanded upon in the future.

6.2.1. Query engine

While Virtuoso served as an easy-to-deploy RDF server and SPARQL engine, it is not
without its shortcomings and particularities. Virtuoso has issues supporting some valid
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queries or implements some operations in a non-standard way. Building a query conversion
system with Virtuoso in mind may have imposed some limititations that are not easy to
detect. Exploring other SPARQL engines, such as Apache Jena1 would help remove any biases
associated to working exclusively in Virtuoso, as well as prove that the results generalize to
multiple settings.

6.2.2. Query set

The Wikidata example queries were the natural choice given the dataset used for this
work. These queries however, are originally designed to be used on Wikidata’s own query
endpoint and contain some SERVICE statements that only work in that context. Since the
queries had to be adjusted to work around that restriction, a few patterns are repeated
through most of them. The OPTIONAL and COALESCE statements that extract labels for query
results give queries a similar structure with a few exceptions. The few Version Delta queries
that returned results for absolute delta representations are the ones that do no contain this
query pattern. As such, we can state that the Wikidata example queries have an accidental
bias, impacting absolute deltas in a way that causes them to fail. Using a different query
set, such as the BEAR test suite presented in [5] may help avoid any related to the Wikidata
sample queries and detect possible flaws in the query conversion process.

6.2.3. Dataset

As with the engine and query set, it would be useful to use the versioning representations
with a dataset other than Wikidata. Testing the versioning representations in a different con-
text would allow us to determine whether or not they are suitable for any dataset.

6.2.4. Versioning representations

The versioning representations presented cover many possible alternatives, but several
others are possible. A different implementation of intervals where triples refer to their valid
intervals could maximize compression while still allowing queries to be answered.

6.2.5. Property paths

The biggest shortcoming of this work is the lack of support for property paths. It would be
useful to extend the versioning representations and query conversion system to allow any type
of query, though it is not immediately clear how this might be done without either storing full
versions in each graph, or extending the query language with additional features.

6.3. Future Work
Some of the points to be addressed if this work is to be continued are as follows:

• As it was previously mentioned, queries including complex property paths are not
supported by this method of versioning. Therefore, a future version supporting all

1 https://jena.apache.org/
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property path queries would be a possible next step. An important reminder, however,
is that such system would have to take a very different approach for this to be possible.
Since this is one the most prominent shortcomings of this work, it may be a good
starting point.

• A small optimization for interval-based graph comes in the form of open-ended intervals.
As dicussed in Section 4.4.3, having intervals defined as “valid until the last version”
may help with the time it takes to add a new version to an already built dataset.

• An additional type of query that was not implemented in this work is a Version In-
terval query. This type of Temporal Query would return results valid within a range
of versions, instead of a single one. While both the baseline and interval-based graphs
representations could support these queries with minor modifications, delta-based rep-
resentations would need a moderate amount of work and changes to be compatible with
them.

• The experiments in this work assume the dataset is built for the first time. A proper
method for adding versions to already built datasets was not implemented, and the
time it would take to add a version to each representation was estimated from the data
already collected. Implementing such a method may be very relevant if this work is to
be expanded upon.
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