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B S T R A C T

constitutive relation was developed in Part I for describing the response of a class of visco-elastic bodies, wherein the left Cauchy–Green tensor, the symmetric
art of the velocity gradient, and the Cauchy stress tensor are related through an implicit constitutive relation. Here, we study a boundary value problem within
he context of the model namely the inhomogeneous deformation of the body, corresponding to the response of an infinitely long slab due to the influence of
ravity.
. Introduction

Illustrious scientists, the likes of Kelvin [1], Voigt [2] and Boltz-
ann [3] were amongst the early contributors to the development of

onstitutive relations for viscoelastic solids. A discussion of the early
evelopment, as well as the efforts of Rivlin, Green, Spencer, Pipkin,
nd others in the 1960s can be found in [4,5]. Recently, Rajagopal [6]
ntroduced an implicit relationship between the history of the stress and
he histories of the appropriate kinematical variables that includes as
special case generalizations of the Kelvin–Voigt constitutive relation,
amely an implicit constitutive relation between the stress, the Cauchy–
reen tensor and the symmetric part of the velocity gradient (see
ajagopal [7] and Bulicek et al. [8]). Much of the work concerning the
esponse of viscoelastic solids is either restricted to small displacement
radients (linearized response, see Christensen [9], Wineman and Ra-
agopal [10]) or quasi-linear response with regard to biomaterials (see
ung [11]) and the recent generalization of quasi-linear response, see
uliana et al. [12]. Non-linear response focusing on the deformations

f membranes have been put into place by Wineman [13–15] but even
hese simple problems lead to the numerical solution of complicated
olterra integro-differential equations. The non-linear models due to
ivlin, Green, Pipkin, Rogers and Lockett are too complicated to use
ith regard to geometries that one encounters in realistic physical prob-

ems. Recently, a rate-type model based on a multi-network approach,
ased on a proper thermodynamic foundation, has been developed by
ajagopal and Srinvasa [16] that describes well the response of a large
lass of viscoelastic bodies. However, they restrict their attention to
mall displacement gradients. Their approach can be generalized to
ake into account bodies undergoing large deformations. Here, we study
he response to the constitutive relation developed in [17] that is an

∗ Corresponding author.
E-mail address: rogbusta@ing.uchile.cl (R. Bustamante).

algebraic expression of the Cauchy stress, the left Cauchy–Green tensor
and the symmetric part of the velocity gradient, and the model is not
restricted to describing the response to small displacement gradients.

In a recent paper Bustamante et al. [17] developed a constitutive
relation for the response of viscoelastic solid bodies wherein the stress,
the Cauchy–Green tensor and the symmetric part of the velocity gradi-
ent are related implicitly and using standard representation theorems
in continuum mechanics (see Spencer [18]) developed constitutive
relations, which they then simplified to be amenable to use taking
into consideration that the material should describe shear thinning
as well as dependence of the material moduli on the mean value of
the stress (mechanical pressure). They then used this model to study
simple boundary value problems. The problems that they studied were
restricted to homogeneous deformations of a slab, that is, deformations
wherein the matrix for the deformation gradient in a Cartesian co-
ordinate system has constant entries. However, even within the context
of very simple homogeneous deformations of the slab that they consid-
ered, the equations governing the motion for the general class of models
were non-linear and not amenable to an analytical solution and had to
be solved numerically. In the case of some sub-classes of the models
that they considered, they were able to find exact analytical solutions.

In this paper, we study a class of inhomogeneous problems within
the context of the implicit models for the response of viscoelastic
bodies developed by Bustamante et al. [17], namely the time-dependent
deformation of an inclined viscoelastic layer due to the action of
gravity, a problem that has relevance in geo-mechanics, where one
could model certain geo-materials as being viscoelastic. The governing
equations reduce to a system of non-linear equations, which under
certain approximations can be solved analytically. We also solve the
ttps://doi.org/10.1016/j.ijnonlinmec.2020.103560
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Table 1
Material constants for the model (3).
𝜇0 [Pa s] 6.9 × 107 , 6.24 × 109

𝛿 1/[Pa] 8 × 10−9

𝛽 [s2] 1, 10
𝑛 −0.5, 0, 0.5
𝛾 0, 9.52, 95.2, 952, 9520, 47 600
𝜆 [Pa] 0, 9.52, 952, 95 200, 1.05 × 105 , 9.52 × 106

𝑚 0, 1, 5, 10

Fig. 1. Inclined viscoelastic solid slab under the influence of gravity.

ully non-linear problem, numerically. Experiments corresponding to
he boundary value problem studied here are not available and hence
he results of our study cannot be corroborated against experiments.

The arrangement of the paper is as follows. In Section 2 after
ntroducing the basic kinematics relevant to the problem, we record the
quation of motion, and the implicit constitutive relations that we shall
se to study the boundary value problems. In Section 3 the problem of
he deformation of an inclined slab under gravity is studied.

. Basic equations

The deformation gradient, the left Cauchy–Green tensor, and the
ymmetric part of the velocity gradient are defined through 𝐅 = 𝜕𝝌

𝜕𝐗 ,
= 𝐅𝐅T, 𝐃 = 1

2

[

𝜕�̇�
𝜕𝐱 + 𝜕�̇�

𝜕𝐱
T]. The Cauchy stress tensor denoted by 𝐓

atisfies the balance of linear momentum

�̈� = div𝐓 + 𝜌𝐛, (1)

here 𝜌 is the density of the body and 𝐛 represents the body forces in
he current configuration, and where we use the notation ̇[ ] for the
aterial time derivative.

Here, once again we study a special sub-class of the implicit model
or a visco-elastic body whose constitutive relation takes the form:
(𝐓,𝐁,𝐃) = 𝟎 (see Eq. (4) of [17])

+ 𝜑𝐈 − 𝜆𝐁 − 𝜇𝐃 = 𝟎, (2)

here 𝜆 is a constant and we assume that

= 𝜇(𝐼1, 𝐼2) = 𝜇0𝑒
𝛿𝐼1 [1+𝛽𝐼2]𝑛, 𝜑 = 𝜑(𝐼1, det 𝐅) = [𝛾𝐼1+𝜆][det 𝐅]𝑚, (3)

here 𝜇0, 𝛿, 𝛽, 𝛾, 𝑛 and 𝑚 are constants and

1 = tr𝐓, 𝐼2 =
1
2

tr (𝐃2). (4)

In Table 1 we present the values of the different constants to be used
in the following sections, the same values were used in [17].

3. The response of an infinitely long viscoelastic slab under the
action of gravity

In this section we study the problem of an inclined slab, as depicted
in Fig. 1, due to the effect of gravity.

In the reference configuration the slab is defined by

−∞ ≤ 𝑋 ≤ ∞, 0 ≤ 𝑌 ≤ 𝐻, −∞ ≤ 𝑍 ≤ ∞, (5)
2

We assume that the stress distribution in the slab is of the form

𝐓 =
3
∑

𝑖=1
𝜎𝑖(𝑦, 𝑡)𝐞𝑖 ⊗ 𝐞𝑖 + 𝜏(𝑦, 𝑡)[𝐞1 ⊗ 𝐞2 + 𝐞2 ⊗ 𝐞1]. (6)

We suppose that the above stress leads to a deformation field of the
form

𝑥 = 𝑋 + 𝑢(𝑌 , 𝑡), 𝑦 = 𝑌 + 𝑣(𝑌 , 𝑡), 𝑧 = 𝑍. (7)

In this case the deformation gradient, the matrices with respect to a
Cartesian co-ordinate system associated with the left Cauchy–Green
tensor and the symmetric part of the velocity gradient 𝐃 take the form:

𝖥 =
⎡

⎢

⎢

⎣

1 𝑢𝑌 0
0 1 + 𝑣𝑌 0
0 0 1

⎤

⎥

⎥

⎦

, 𝖡 =
⎡

⎢

⎢

⎣

1 + 𝑢2𝑌 𝑢𝑌 {1 + 𝑣𝑌 } 0
𝑢𝑌 {1 + 𝑣𝑌 } {1 + 𝑣𝑌 }2 0

0 0 1

⎤

⎥

⎥

⎦

,

𝖣 =

⎡

⎢

⎢

⎢

⎣

0 1
2

�̇�𝑌
{1+𝑣𝑌 }

0
1
2

�̇�𝑌
{1+𝑣𝑌 }

�̇�𝑌
{1+𝑣𝑌 }

0
0 0 0

⎤

⎥

⎥

⎥

⎦

,

(8)

where we have used the notation 𝑢𝑌 = 𝜕𝑢
𝜕𝑌 , 𝑣𝑌 = 𝜕𝑣

𝜕𝑌 , and we have used
the relations 𝜕𝑌

𝜕𝑦 = 1
1+𝑣𝑌

and 𝜕�̇�
𝜕𝑦 = �̇�𝑌

1+𝑣𝑌
and 𝜕�̇�

𝜕𝑦 = �̇�𝑌
1+𝑣𝑌

.
It follows from (6) and 𝐛 = 𝑔 sin 𝜃𝐞1 − 𝑔 cos 𝜃𝐞2 that the equations of

motion take the form

𝜌�̈� = 𝜕𝜏
𝜕𝑦

+ 𝜌𝑔 sin 𝜃, 𝜌�̈� =
𝜕𝜎2
𝜕𝑦

− 𝜌𝑔 cos 𝜃, (9)

which taking into account the fact that 𝜕𝑌
𝜕𝑦 = 1

1+𝑣𝑌
become

𝜕𝜏
𝜕𝑌

+𝜌[𝑔 sin 𝜃− �̈�]
[

1 + 𝜕𝑣
𝜕𝑌

]

= 0,
𝜕𝜎2
𝜕𝑌

−𝜌[𝑔 cos 𝜃+ �̈�]
[

1 + 𝜕𝑣
𝜕𝑌

]

= 0, (10)

and since 𝜌𝑟, the density of the body in the reference configuration,
is given through 𝜌𝑟 = det 𝐅𝜌 we have that 𝜌𝑟 = 𝜌

[

1 + 𝜕𝑣
𝜕𝑌

]

and (10)
ecomes
𝜕𝜏
𝜕𝑌

+ 𝜌𝑟[𝑔 sin 𝜃 − �̈�] = 0,
𝜕𝜎2
𝜕𝑌

− 𝜌𝑟[𝑔 cos 𝜃 + �̈�] = 0. (11)

Moreover

𝐼1 = 𝜎1 + 𝜎2 + 𝜎3, det 𝐅 = 1 + 𝑣𝑌 (12)

and

𝐼2 =
�̇�2𝑌 + 2�̇�2𝑌
4[1 + 𝑣𝑌 ]2

(13)

Using (6), (8) in (2) we obtain that

𝜎1 + 𝜑 − 𝜆[1 + 𝑢2𝑌 ] = 0, (14)

𝜎2 + 𝜑 − 𝜆[1 + 𝑣𝑌 ]2 − 𝜇
�̇�𝑌

[1 + 𝑢𝑌 ]
= 0, (15)

𝜎3 + 𝜑 − 𝜆 = 0, (16)

− 𝜆𝑢𝑌 [1 + 𝑣𝑌 ] −
𝜇
2

�̇�𝑌
[1 + 𝑣𝑌 ]

= 0, (17)

nd the expressions for 𝜇(𝐼1, 𝐼2) and 𝜑(𝐼1, det 𝐅) are given in (3).
The six equations (11), (14)–(17) must be solved to find 𝑢(𝑌 , 𝑡),

(𝑌 , 𝑡), 𝜎1(𝑌 , 𝑡), 𝜎2(𝑌 , 𝑡), 𝜎3(𝑌 , 𝑡) and 𝜏(𝑌 , 𝑡).
Regarding the boundary conditions we have

(0, 𝑡) = 0, 𝜎2(𝐻, 𝑡) = �̂�2(𝑡), 𝜏(𝐻, 𝑡) = 𝜏(𝑡), (18)

here �̂�2(𝑡) and 𝜏(𝑡) are the external loads applied on the surface of the
lab. The special case where the surface 𝑌 = 𝐻 is free of external loads
orresponds to �̂�2(𝑡) = 0 and 𝜏(𝑡) = 0. If we assume that at 𝑌 = 0 the
urface of the slab does not slip, then we have the additional condition

(0, 𝑡) = 0. (19)

ith regard to the initial conditions, we assume that

(𝑌 , 0) = 0, �̇�(𝑌 , 0) = 0, 𝑣(𝑌 , 0) = 0, �̇�(𝑌 , 0) = 0. (20)
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Fig. 2. The non-dimensional component �̄� of the displacement, for different inclination angles for the slab. The times 𝑡 are in seconds.
Fig. 3. The non-dimensional component �̄� of the displacement, for different inclination angles 𝜃 for the slab. The times are in seconds.
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3.1. An analytical solution for the case of small displacement gradient and
|�̈�| ≪ 𝑔 sin 𝜃 and |�̈�| ≪ 𝑔 cos 𝜃

Let us study the case when we assume that ||
|

𝜕𝑢
𝜕𝑌

|

|

|

∼ 𝑂(𝛿) and |

|

|

𝜕𝑣
𝜕𝑌

|

|

|

∼
𝑂(𝛿), where 𝛿 ≪ 1 and 𝑡 > 0. In this case (10) becomes1(approximately)

𝜕𝜏
𝜕𝑦

+ 𝜌(𝑔 sin 𝜃 − �̈�) = 0,
𝜕𝜎2
𝜕𝑦

− 𝜌(𝑔 cos 𝜃 + �̈�) = 0, (21)

whereas (14)–(16) become

𝜎1 + 𝜑 − 𝜆 = 0, (22)
𝜎2 + 𝜑 − 𝜆[1 + 2𝑣𝑦] − 𝜇�̇�𝑦 = 0, (23)

3 + 𝜑 − 𝜆 = 0, (24)
− 𝜆𝑢𝑦 −

𝜇
2
�̇�𝑦 = 0, (25)

here because |

|

|

𝜕𝑢
𝜕𝑌

|

|

|

∼ 𝑂(𝛿) and |

|

|

𝜕𝑣
𝜕𝑌

|

|

|

∼ 𝑂(𝛿) we have that 𝑢𝑌 ≈ 𝜕𝑢
𝜕𝑦 = 𝑢𝑦

and 𝑣𝑌 ≈ 𝜕𝑣
𝜕𝑦 = 𝑣𝑦, and where �̇�𝑦 = 𝜕2𝑢

𝜕𝑦𝜕𝑡 , �̇�𝑦 = 𝜕2𝑣
𝜕𝑦𝜕𝑡 . From (22) and (24)

we have that 𝜎3 = 𝜎1.
If |�̈�| ≪ 𝑔 sin 𝜃 and |�̈�| ≪ 𝑔 cos 𝜃 in (21) after integrating we obtain

(𝑦, 𝑡) = −𝜌𝑔𝑦 sin 𝜃 + 𝜏𝑜(𝑡), 𝜎2(𝑦, 𝑡) = 𝜌𝑔𝑦 cos 𝜃 + 𝜎2𝑜 (𝑡). (26)

rom the boundary conditions (18)2,3 we obtain 𝜏𝑜(𝑡) = 𝜏(𝑡) + 𝜌𝑔 sin 𝜃𝐻
and 𝜎2𝑜 (𝑡) = �̂�2(𝑡) − 𝜌𝑔 cos 𝜃𝐻 , and so from (26) we have

𝜏(𝑦, 𝑡) = 𝜌𝑔 sin 𝜃(𝐻 − 𝑦) + 𝜏(𝑡), 𝜎2(𝑦, 𝑡) = 𝜌𝑔 cos 𝜃(𝑦 −𝐻) + �̂�2(𝑡). (27)

1 In this case there is no need to distinguish between the reference and
urrent configurations, therefore we use 𝜕

𝜕𝑦
instead 𝜕

𝜕𝑌
. Also if ||

|

𝜕𝑢
𝜕𝑌

|

|

|

∼ 𝑂(𝛿) and
𝜕𝑣 | ∼ 𝑂(𝛿), where 𝛿 ≪ 1 then 𝜌 ≈ 𝜌.

𝜕𝑌

|

|

𝑟

3

Since |

|

|

𝜕𝑢
𝜕𝑌

|

|

|

∼ 𝑂(𝛿) and |

|

|

𝜕𝑣
𝜕𝑌

|

|

|

∼ 𝑂(𝛿), and assuming further that2

|�̇�𝑌 | ∼ 𝑂(𝛿), |�̇�𝑌 | ∼ 𝑂(𝛿), where 𝛿 ≪ 1 and 𝑡 > 0, one can obtain the
ollowing approximation:

= [𝛾𝐼1 + 𝜆][1 + 𝑣𝑦]𝑚 ≈ [𝛾𝐼1 + 𝜆][1 + 𝑚𝑣𝑦], (28)

2 ≈ 0 ⇒ 𝜇 = 𝜇0𝑒
𝛿𝐼1 [1 + 𝛽𝐼2]𝑚 ≈ 𝜇0𝑒

𝛿𝐼1 , (29)
det 𝐅]𝑚 ≈ [1 + 𝑣𝑦]𝑚 ≈ 1 + 𝑚𝑣𝑦. (30)

herefore, from (22)–(25) since (22) and (24) are the same, we obtain

1 + [𝛾𝐼1 + 𝜆][1 + 𝑚𝑣𝑦] − 𝜆 = 0, (31)

2 + [𝛾𝐼1 + 𝜆][1 + 𝑚𝑣𝑦] − 𝜆[1 + 2𝑣𝑦] − 𝜇0𝑒
𝛿𝐼1 �̇�𝑦 = 0, (32)

𝜏 − 𝜆𝑢𝑦 −
𝜇0
2
𝑒𝛿𝐼1 �̇�𝑦 = 0, (33)

where 𝐼1 = 2𝜎1 + 𝜎2. From (31) we have 𝜎1 =
𝜆−[𝛾𝜎2+𝜆][1+𝑚𝑣𝑦]

1+2𝛾+2𝛾𝑚𝑣𝑦
and since

[1 + 2𝛾 + 2𝛾𝑚𝑣𝑦]−1 ≈
1

[1+2𝛾]

{

1 − 2𝛾𝑚
[1+2𝛾]𝑣𝑦

}

we obtain

𝜎1 ≈ −𝑓1(𝑦, 𝑡) − 𝑓2(𝑦, 𝑡)𝑣𝑦, (34)

where we have defined

𝑓1(𝑦, 𝑡) =
𝛾𝜎2

[1 + 2𝛾]
, 𝑓2(𝑦, 𝑡) = 𝑚

[𝜆 + 2𝛾𝜆 + 𝛾𝜎2]
[1 + 2𝛾]2

. (35)

2 In order to be able say that |�̇�𝑌 | ∼ 𝑂(𝛿), |�̇�𝑌 | ∼ 𝑂(𝛿), where 𝛿 ≪ 1, we
eed to compare such quantities with something else. Note that the derivatives

�̇�𝑌 and �̇�𝑌 have units of 1/time. Let us define 𝑡∗ as some characteristic value
or time, for example, the time 𝑡𝑜 that appeared in Section 3.1 of [17]. Then,
efining the dimensionless time 𝑡 = 𝑡∕𝑡∗ we have 𝜕2𝑢∕𝜕𝑡𝜕𝑌 = 1∕𝑡∗𝜕2𝑢∕𝜕𝑡𝜕𝑌

and 𝜕2𝑣∕𝜕𝑡𝜕𝑌 = 1∕𝑡∗𝜕2𝑣∕𝜕𝑡𝜕𝑌 . The quantities 𝜕2𝑢∕𝜕𝑡𝜕𝑌 and 𝜕2𝑣∕𝜕𝑡𝜕𝑌 are
dimensionless, and now we can assume the special cases |

|

𝜕2𝑢∕𝜕𝑡𝜕𝑌 |
|

∼ 𝑂(𝛿),
|𝜕2𝑣∕𝜕𝑡𝜕𝑌 | ∼ 𝑂(𝛿) 𝛿 ≪ 1.

| |
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Fig. 4. Variation of �̄�𝑖, 𝑖 = 1, 2, 3 and 𝜏 with respect to 𝑌 for different inclination angles 𝜃 for the slab. The results are provided for time 𝑡 = 5000 s.
Fig. 5. Variation of �̄� and �̄� with respect to 𝑌 for two values for the constant 𝜇0. (A) 𝜇0 = 6.9 × 107, (B) 𝜇0 = 6.24 × 109.
w

𝑔

𝑔

𝑔

E
b
𝜏

On the other hand from (34) we have 𝑒𝛿𝐼1 = 𝑒𝛿[2𝜎1+𝜎2] ≈ 𝑒𝛿[−2𝑓1−2𝑓2𝑣𝑦+𝜎2]

and considering that |𝑣𝑦| ∼ 𝑂(𝛿) we obtain

𝑒𝛿𝐼1 ≈ [1 − 2𝛿𝑓2𝑣𝑦]𝑒𝛿[𝜎2−2𝑓1]. (36)

Using (34) and (36) in (32) and (33) and recognizing that |𝑣𝑦| ∼
𝑂(𝛿), |𝑢𝑦| ∼ 𝑂(𝛿) and |�̇�𝑦| ∼ 𝑂(𝛿), |�̇�𝑦| ∼ 𝑂(𝛿) we finally obtain the
approximate equations

𝑔1 + 𝑔2𝑣𝑦 − 𝑔3�̇�𝑦 = 0, (37)

𝜏 − 𝜆𝑢 −
𝑔3 �̇� = 0, (38)
𝑦 2 𝑦 c

4

here we have defined

1 = 𝑔1(𝑦, 𝑡) = 𝜎2[1 + 𝛾] − 2𝛾𝑓1, (39)

2 = 𝑔2(𝑦, 𝑡) = [𝛾𝜎2 − 2𝛾𝑓1 + 𝜆]𝑚 − 2[𝛾𝑓2 + 𝜆], (40)

3 = 𝑔3(𝑦, 𝑡) = 𝜇0𝑒
𝛿[𝜎2−2𝑓1]. (41)

qs. (37) and (38) are two linear partial differential equations that must
e solved to obtain 𝑢(𝑦, 𝑡) and 𝑣(𝑦, 𝑡), where the expressions for 𝜎2 and
are given through (27). As a consequence of the boundary and initial

onditions 𝑣(0, 𝑡) = 0, 𝑣(𝑦, 0) = 0, 𝑢(0, 𝑡) = 0 and 𝑢(𝑦, 0) = 0, the solutions
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𝜎
a

𝑣

D
𝑐

w

𝜎

W

to (37) and (38) are

𝑣(𝑦, 𝑡) = ∫

𝑦

0

{

exp
(

∫

𝑡

0

𝑔2(𝜂, 𝜁)
𝑔3(𝜂, 𝜁)

d𝜁
)[

∫

𝑡

0

1
𝑔3(𝜂, 𝜉)

× exp
(

−∫

𝜉

0

𝑔2(𝜂, 𝜁)
𝑔3(𝜂, 𝜁)

d𝜁
)

𝑔1(𝜂, 𝜉) d𝜉
]}

d𝜂, (42)

𝑢(𝑦, 𝑡) = ∫

𝑦

0

{

exp
(

∫

𝑡

0

−2𝜆
𝑔3(𝜂, 𝜁)

d𝜁
)[

∫

𝑡

0

2
𝑔3(𝜂, 𝜉)

× exp
(

∫

𝜉

0

2𝜆
𝑔3(𝜂, 𝜁)

d𝜁
)

𝜏(𝜂, 𝜉) d𝜉
]}

d𝜂. (43)

Let us consider the special case when in (27) we assume that 𝜏(𝑡) =
𝜏𝑜 and �̂�2(𝑡) = 𝜎2𝑜 do not depend on time, therefore 𝜏 = 𝜏(𝑦) and
2 = 𝜎2(𝑦) and we have 𝑔𝑖 = 𝑔𝑖(𝑦), 𝑖 = 1, 2, 3. In this case, from (42)
nd (43) we obtain

(𝑦, 𝑡) = ∫

𝑦

0

{

1
𝑔2(𝜂)

[

exp
(

𝑔2(𝜂)𝑡
𝑔3(𝜂)

)

− 1
]

𝑔1(𝜂)
}

d𝜂, (44)

𝑢(𝑦, 𝑡) = ∫

𝑦

0

{

1
𝜆

[

1 − exp
(

−2𝜆𝑡
𝑔3(𝜂)

)]

𝜏(𝜂)
}

d𝜂. (45)

3.1.1. A qualitative analysis of the solutions for 𝑡 ≫ 1
Taking 𝑈 = 𝑢𝑦 and 𝑉 = 𝑣𝑦 from (37) and (38) we obtain

𝜕𝑈
𝜕𝑡

= 2
𝑔3

[𝜏 − 𝜆𝑈 ], 𝜕𝑉
𝜕𝑡

= 1
𝑔3

[𝑔1 + 𝑔2𝑉 ]. (46)

Assuming �̂�2(𝑡) = 𝜎2𝑜 and 𝜏(𝑡) = 𝜏𝑜, the functions 𝑔1, 𝑔2 and 𝑔3 only
depend on 𝑦. For each 𝑦 fixed (46)1 is a linear system of ordinary
differential equations. The steady-state solutions are 𝑈s = 𝜏∕𝜆, 𝑉s =
−𝑔1∕𝑔2, then for 𝑡 ≫ 1 we have

𝑈 ≈ 𝜏
𝜆
, 𝑉 ≈ −

𝑔1
𝑔2

, (47)

then for 𝑢 and 𝑣 we obtain
𝜕𝑢
𝜕𝑦

=
−𝜌𝑔 sin 𝜃𝑦 + 𝜏𝑜

𝜆
, 𝜕𝑣

𝜕𝑦
= −

{[1 + 𝛾]𝜎2 − 2𝛾𝑓1}
{[𝛾𝜎2 − 2𝛾𝑓1 + 𝜆]𝑚 − [2𝛾𝑓2 + 𝜆]}

. (48)

efining 𝑐1 = 𝛾𝑚
{

1 − 𝛾
[1+2𝛾] −

2𝛾
[1+𝛾]2

}

, 𝑐2 = [𝑚 − 2]𝜆 − 2𝛾𝑚𝜆
[1+2𝛾] and

3 =
1+3𝛾
1+2𝛾 we obtain

𝑢(𝑦, 𝑡) = −
𝜌𝑔 sin 𝜃

2𝜆
𝑦2 +

𝜏𝑜
𝜆
𝑦, (49)

𝑣(𝑦, 𝑡) =
𝑐3
𝑐1

𝑦 −
𝑐2𝑐3

𝑐21𝜌𝑔 cos 𝜃
ln

(

𝑐1𝜌𝑔 cos 𝜃𝑦 + 𝑐1𝜎2𝑜 + 𝑐2
𝑐1𝜎2𝑜 + 𝑐2

)

. (50)

3.2. The fully nonlinear problem

In this section we solve the original equations (11) and (14)–(17)
numerically. Eq. (11) was

𝜕𝜏
𝜕𝑌

+ 𝜌𝑟[𝑔 sin 𝜃 − �̈�] = 0,
𝜕𝜎2
𝜕𝑌

− 𝜌𝑟[𝑔 cos 𝜃 + �̈�] = 0. (51)

Let us recall (14)–(17)

𝜎1 + 𝜑(𝐼1, det 𝐅) − 𝜆[1 + 𝑢2𝑌 ] = 0, (52)

 = 𝜎2 + 𝜑(𝐼1, det 𝐅) − 𝜆[1 + 𝑣2𝑌 ] − 𝜇(𝐼1, 𝐼2)
�̇�𝑌

[1 + 𝑢𝑌 ]
= 0, (53)

𝜎3 + 𝜑(𝐼1, det 𝐅) − 𝜆 = 0, (54)

𝜏 − 𝜆𝑢𝑌 [1 + 𝑣𝑌 ] − 𝜇(𝐼1, 𝐼2)
�̇�𝑌

2[1 + 𝑣𝑌 ]
= 0, (55)

where 𝐼1 = 𝜎1+𝜎2+𝜎3, 𝐼2 =
�̇�2𝑌 +2�̇�

2
𝑌

4[1+𝑣𝑌 ]2
and det 𝐅 = 1+𝑣𝑌 . We recall that the

boundary and initial conditions are 𝑣(0, 𝑡) = 0, 𝑣(𝑌 , 0) = 0, �̇�(𝑌 , 0) = 0,
𝑢(0, 𝑡) = 0, 𝑢(𝑌 , 0) = 0, �̇�(𝑌 , 0) = 0, 𝜎2(𝐻, 𝑡) = �̂�2(𝑡) and 𝜏(𝐻, 𝑡) = 𝜏(𝑡).

From (55) we obtain

𝜏 = 𝜆𝑢𝑌 [1 + 𝑣𝑌 ] + 𝜇(𝐼1, 𝐼2)
�̇�𝑌 . (56)
2[1 + 𝑣𝑌 ]

5

On the other hand if we use the expression for 𝜑 given in (3) from (54)
e can obtain 𝜎3 as

3 =
𝜆 − {𝛾[𝜎1 + 𝜎2] + 𝜆}[det 𝐅]𝑚

1 + 𝛾[det 𝐅]𝑚
, (57)

and since 𝛾 > 0 and det 𝐅 > 0 the above expression is always valid.
Using the above expression in (52) we can obtain 𝜎1 as

𝜎1 =
{1 + 𝑢2𝑌 + [𝛾𝑢2𝑌 − 1][det 𝐅]𝑚}𝜆 − 𝛾𝜎2[det 𝐅]𝑚

1 + 2𝛾[det 𝐅]𝑚
, (58)

as a result from (57) we have

𝜎3 =
𝜆 − [𝜆 + 𝛾𝜆𝑢2𝑌 + 𝛾𝜎2][det 𝐅]𝑚

1 + 2𝛾[det 𝐅]𝑚
. (59)

In view of the above results, from (53) we have one equation for 𝜎2.
Let us assume that the basic variables for the problem are 𝑢(𝑌 , 𝑡) and
𝑣(𝑌 , 𝑡). From (53) we have an expression of the form

(𝜎2, 𝑢𝑌 , �̇�𝑌 , 𝑣𝑌 , �̇�𝑌 ) = 0,

e can numerically find 𝜎2 in terms of 𝑢𝑌 , �̇�𝑌 , 𝑣𝑌 and �̇�𝑌 from the above
equation using Newton’s method, therefore, in particular we will have

𝜏 = 𝜏(𝑢𝑌 , �̇�𝑌 , 𝑣𝑌 , �̇�𝑌 ), 𝜎2 = 𝜎2(𝑢𝑌 , �̇�𝑌 , 𝑣𝑌 , �̇�𝑌 ), (60)

which can be replaced in (51). Using the above assumptions, the
Eqs. (51) are solved employing the finite element method using the
programme Comsol 3.4 [19].

The following figures portray the components of the displacement
field, and the components of the stress tensor, as a result of solving
(51) for the different cases for the constants that appear in Table 1,
and also for different values for the angle 𝜃 depicted in Fig. 1. In all
these cases we assumed that 𝜌𝑟 = 1500 kg/m3. A study of the influence
of the mesh on the results was performed, and we found that for the
mesh used in this problem with 3842 degrees of freedom, there is no
influence of the mesh on the final results. We have used the following
non-dimensionalization:

𝑌 = 𝑌
𝐻

, �̄� = 𝑢
𝐻

, �̄� = 𝑣
𝐻

�̄�𝑖 =
𝜎𝑖

𝜌𝑟𝑔𝐻
, 𝑖 = 1, 2, 3, 𝜏 = 𝜏

𝜌𝑟𝑔𝐻
,

(61)

as well as 𝐻 = 1 m and 𝑔 = 9.8 m/s2.
In Fig. 2 we have results for �̄� for different angles of inclination 𝜃 of

the slab (see Fig. 1), at different times. As expected, larger displacement
fields are obtained for larger values for 𝜃. For the results presented in
this plot as well as in the following figures, it is necessary to point
out that in order to obtain relatively large displacement fields and
deformations, relatively large time intervals have to elapse.

In Fig. 3 we present similar results in this case for �̄�. As is to be
expected, the displacement is negative, and that magnitude of that
component decreases with increasing inclination angles 𝜃.

In Fig. 4 results are presented for the non-dimensional stresses �̄�𝑖,
𝑖 = 1, 2, 3 and 𝜏 for different inclination angles 𝜃 for the slab. The results
are only presented for the case 𝑡 = 5000 s, this is because we observed
small differences for the components of the stress over time. This is due
to the effect of acceleration being very small in comparison with the
effect of gravity. This would suggest that the following approximation
would be valid (see (27))

𝜏(𝑌 , 𝑡) = 𝜌𝑟𝑔 sin 𝜃[𝐻 − 𝑌 ] + 𝜏(𝑡), 𝜎2 = 𝜌𝑟𝑔 cos 𝜃[𝑌 −𝐻] + �̂�2(𝑡), (62)

which would be the approximate solutions of Eqs. (51), where we see
that 𝜎2 and 𝜏 are linear functions in 𝑌 , which is what is observed in the
results presented in Fig. 4. We choose to solve (51) directly since that
is amenable from the numerical point of view using the finite element
method. With regard to the solutions depicted in Figs. 2–4 we assumed
that 𝜇0 = 6.9 × 107, 𝛽 = 1, 𝛾 = 95.2381, 𝜆 = 952.381, 𝑛 = 0 and 𝑚 = 1.

In Fig. 5 we have results for the displacements �̄� and �̄� for the two
values of 𝜇 presented in Table 1 (see (3)), at different times. From
0
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Fig. 6. Variation of �̄� and �̄� with respect to 𝑌 . Continuous lines 𝛾 = 0. Dashed lines 𝛾 = 4.76 × 104.

Fig. 7. Variation of �̄�1 and �̄�3 with respect to 𝑌 for the different values for 𝛾 presented in Table 1, for the instant 𝑡 = 5000 s.

Fig. 8. Variation of �̄� with respect to 𝑌 for different values of 𝜆. (A) 𝜆 = 0, (B) 𝜆 = 952, (C) 𝜆 = 9.52 × 106.

Fig. 9. Variation of �̄� with respect to 𝑌 for different values of 𝜆. (A) 𝜆 = 0, (B) 𝜆 = 952, (C) 𝜆 = 9.52 × 106.
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𝑖
f
t
n

Fig. 10. Variation of �̄� and �̄� with respect to 𝑌 for two values for the constant 𝑚. Continuous lines represent case 𝑚 = 0, dashed lines represent case 𝑚 = 10.
Fig. 11. Variation of �̄�1 and �̄�3 with respect to 𝑌 for two values for the constant 𝑚 and for 𝑡 = 5000 s.
𝜏

these plots one can infer that in the case of �̄�, larger deformations are
observed if 𝜇𝑜 is smaller, i.e., when the viscosity 𝜇 is smaller (see (3)),
which is what one would expect. Now, with regard to the influence
of 𝜇0 on the components of the stress, it is observed that they change
very little at different times, and that the distributions for �̄�2 and 𝜏 are
almost the same for the two different values for 𝜇0 (see the comments
regarding (62)). Only �̄�1 and �̄�3 are affected for the different values of
𝜇0, in particular in the case when �̄�1 is greater, and 𝜏 is smaller. For
the sake of brevity those results are not presented in this paper. With
regard to the results presented in Fig. 5 we assumed that 𝜃 = 40◦, 𝛽 = 1,
𝛾 = 95.2381, 𝜆 = 952.381, 𝑛 = 0 and 𝑚 = 1.

In the case of the two different values for 𝛽 presented in Table 1,
from (3) we can see that the effect of changing the constants would be
more important if 𝐼2 is larger, and from (13) that invariant depends on
the squares of �̇�𝑌 and �̇�𝑌 . In the present problem, the body deforms due
to the effect of gravity, and from the numerical results it is observed
that �̇�𝑌 and �̇�𝑌 are small, therefore, the effect of changing 𝛽 on �̄�, �̄�, �̄�𝑖,
= 1, 2, 3 and 𝜏 is negligible, and in view of this we do not present plots
or these cases. For the same reasons, there is not much difference in
he behaviour of the displacement and the stress as 𝐼2 is small. We do
ot show results for the different values of 𝑛 in Table 1 as well.

In Fig. 6 results are presented for �̄� and �̄� for two different values for
𝛾 (see Table 1 and (3)), namely 𝛾 = 0 and 𝛾 = 4.76×104, and for different
7

times. We found that over a wide range of values for 𝛾 the values for
𝑢 and 𝑣 are nearly the same and hence we only show representative
figures. From Fig. 6, in the case of �̄� we can see that for a larger 𝛾 the
body becomes softer, i.e., it deforms more, the same happens for the
magnitude of �̄�.

In Fig. 7 we have results for �̄�1 and �̄�3 for different values for 𝛾
presented in Table 1, for the instant 𝑡 = 5000 s. In the case of �̄�2 and
̄, such components of the stress are almost the same for the different
values of 𝛾, and plots are not presented for them. The results presented
in Figs. 6 and 7 were obtained assuming that 𝜃 = 40◦, 𝜇0 = 6.9 × 107,
𝛽 = 1, 𝜆 = 952.381, 𝑛 = 0 and 𝑚 = 1.

In Figs. 8 and 9 results are presented for �̄� and �̄� for the three
different values for the constant 𝜆 from Table 1 (see (3)). In each case
we display the behaviour of �̄� and �̄� for different times. It is interesting
to notice the response of the slab when 𝜆 = 9.52 × 106, there is almost
no difference for the displacements �̄�, �̄� with time, and this implies that
the deformation of the slab is almost instantaneous. As 𝜆 increases (this
is the constant that multiplies 𝐁 see (2)) we expect the response of the
body to be more elastic. If 𝜆 decreases we expect the viscous effects
to be more significant. The results presented in these two figures were
obtained assuming that 𝜃 = 40◦, 𝜇0 = 6.9×107, 𝛽 = 1, 𝛾 = 95.2381, 𝑛 = 0
and 𝑚 = 1.
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Finally, in Figs. 10 and 11 results are presented for different values
for 𝑚 given in Table 1 (see (3)). With regard to �̄� and �̄� we do not
observe difference in the response between the results for 𝑚 = 0, 1,
and 5, which is why in Fig. 10 results are only presented for the two
cases 𝑚 = 0 and 𝑚 = 10. For larger values of 𝑚 the body becomes
slightly softer. In the case of the components of the stress tensor, as in
the previous cases, the components �̄�2 and 𝜏 are almost the same for the
different cases for 𝑚, and results are only presented for �̄�1 and �̄�3 for
𝑡 = 5000 s. It is interesting to note, from Fig. 11 the completely different
response characteristic obtained for the two components of the stress
tensor, in particular when 𝑚 = 0, 𝑚 = 1, and 𝑚 = 5, 𝑚 = 10. All these
results were obtained assuming that 𝜃 = 40◦, 𝜇0 = 6.9 × 107, 𝛽 = 1,
𝛾 = 95.2381, 𝜆 = 952.381, 𝑛 = 0 and 𝑚 = 1.
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