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Background: Diarrheagenic Escherichia coli (DEC) strains are a main cause of diarrhea

worldwide in children under 5 years old. DEC virulence is strongly regulated by

environmental conditions andmetabolites produced by the gut microbiota in the intestinal

tract. In this study, we evaluated changes in gut microbiota-metabolome in children with

or without diarrhea produced by DEC pathotypes.

Goal: To determine gut microbiota composition and metabolome in stool samples

obtained from healthy children and children with diarrhea positive for DEC pathotypes.

Methods: We analyzed a total of 16 age-paired stool samples: 8 diarrheal samples

positive for one DEC pathotype and 8 stool samples from healthy children. To identify

the microbiota composition, we sequenced the V3-V4 region of the 16S rRNA and

determined operational phylogenetic units (OPU). OPU were then used to predict

metabolic pathways using the PICRUSt2 software. The presence of metabolites in stool

samples was determined by LC-MS. A correlation analysis was performed with the main

genera from each group and main metabolites. Bacteria associated with variance of main

metabolites were identified using the MIMOSA2 software.

Results: DEC and healthy groups showed a statistically different microbiota

composition. A decrease in Firmicutes together with an increase in Bacteroidetes and

Proteobacteria was found in the DEC group compared to the healthy group. Metabolic

pathway predictions based on microbiota diversity showed that pathways involved in

histidine and L-ornithine metabolism were significantly different between groups. A total

of 88 metabolites detected by LC-MS were included in the metabolome analysis. We

found higher levels of histamine and lower levels of ornithine in DEC samples than in

the healthy group. Histamine and L-ornithine were associated with a specific microbiota

species and the corresponding metabolic pathways.

Conclusion: Stool samples from healthy children and children positive for DEC displayed

a differential metabolome and microbiota composition. A strong correlation between a

gut microbiota species and certain metabolites, such as histamine and L-ornithine, was

found in the DEC group. This information might be useful to identify mechanisms and

signaling molecules involved in the crosstalk between microbiota and DEC pathotypes.
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INTRODUCTION

Diarrheagenic Escherichia coli (DEC) is the most common
bacterial etiological agent of diarrhea in diverse subpopulations,
both in developing and industrialized regions, and it primarily
affects children under 5 years of age (Press, 2014). Generally,
DEC infection involves adherence and colonization of the
intestinal surface, production and secretion of virulence factors,
and diarrhea, along with intestinal inflammation (Croxen et al.,
2013). Even though there are data available about the regulation
of DEC virulence associated with induction of an inflammatory
response, information is limited to the environmental conditions
in the intestine that may modulate infection. Under well-defined
environmental conditions, expression of virulence genes occurs
at specific sites, allowing the bacteria to initiate the infection
process (Carlson-Banning and Sperandio, 2018; Alvestegui et al.,
2019). Most studies have focused on unraveling the molecular
mechanisms occurring inside the bacteria and little is known
about the environmental factors that regulate pathogenesis at a
specific time or place (Carlson-Banning and Sperandio, 2018).
Therefore, an understanding of the molecular basis of DEC
pathogenesis is necessary to design new strategies aimed at
controlling these infections worldwide.

In recent years, gut microbiota has played a significant
role in the regulation of pathogenic mechanisms. Published
evidence has supported the role of specific strains from the
normal gut microbiota in DEC virulence (Pacheco et al., 2012;
Curtis et al., 2014; Rolhion and Chassaing, 2016). Additionally,
several metabolites produced by the gut microbiota in the
intestinal tract could be mediating interactions between the
intestinal microbiota and enteric pathogens, such as DEC (Vogt
et al., 2015). Given their abundance in the intestinal milieu,
short-chain fatty acids (SCFA) have been extensively studied as
signaling molecules for enteropathogens (Sun and O’riordan,
2013), including DEC, but the role of other metabolites must be
explored in order to get a broader picture of virulence regulation
by metabolites present in the intestinal lumen.

In this study, we determined gut microbiota and metabolome
composition in stool samples obtained from healthy children and
children with diarrhea positive for DEC pathotypes. Our data
shows that stool samples from healthy children and children
positive for DEC displayed a differential pattern of metabolites
and bacterial microbiota.

METHODS

Patients and Samples
Diarrheal and non-diarrheal stool samples were collected from
September 2018 to February 2019 from patients under 5 years old
treated at theHospital Dr. Luis CalvoMackenna (HLCM) and the
HLCMdaycare center, respectively, located in Santiago, Chile. All
stool samples were stored at −80◦C. Frozen stool samples were
screened for 22 enteric pathogens using FilmArray R© GI testing
and selected samples were grouped as healthy (non-diarrheal,
no pathogens detected) and DEC (diarrheal, with only one
DEC pathotype detected). We excluded from the study children
who received antibiotics, probiotics, steroidal and non-steroidal
anti-inflammatory drugs 2 months prior to enrollment. Eight

age-paired samples for each group were chosen for this study
(Table 1).

Ethics
This study was conducted in accordance with Declaration of
Helsinki guidelines. The study protocol was approved by the
Ethics Committee of the Universidad de Chile. Written informed
consent was obtained from all parents on behalf of their children.

DNA Extraction and Sequencing
Total DNA was extracted from each stool using the QIAamp
Fast DNA Stool Mini kit (Qiagen), quantified using a Synergy
HT R© spectrophotometer (BiotekTM) and stored at −20◦C. DNA
samples were shipped to Molecular Research LP (TX, USA) for
DNA amplification and sequencing of the V3-V4 regions of the
16S rRNA, using the Illumina miSeq 2x300 PE.

Microbiota Identification
Illumina raw amplicons were processed as previously described
(Gallardo et al., 2017). Briefly, raw sequences were trimmed
and processed using MacQiime V1.9.1-20150604, according to
the default parameters for trimming (Caporaso et al., 2010).
Sequences were aligned using the SINA (Pruesse et al., 2012)
built-in resource on the ARB software (Ludwig et al., 2004) and
OPU were assigned using the Silva132 database as the reference
(Quast et al., 2013). OPU abundance was coded as an entry
matrix. Data were transformed applying double square root to
reduce variance between detected OPU. A redundancy analysis
(RDA) and ANOVA was performed using the Vegan (Oksanen
et al., 2019) and ggplot2 (Wickham, 2016) packages from the
RStudio 1.0.136 software. The most statistically representative
genera for each group were determined using the Indicspecies
package (De Caceres and Legendre, 2009) for R. Abundance
of taxa at different levels was determined, expressing OPU
abundance as percentages.

Metabolomic Analysis
The presence of metabolites in stool samples was determined
by liquid chromatography mass spectrometry (LC-MS) at MS-
Omics (Denmark). Briefly, PCR grade water was added to

TABLE 1 | Overall microbiota findings in stool samples for DEC and

healthy groups.

Characteristics DEC group Healthy group

Number of samples 8 8

Age in months

(Interquartile range)

37 (27.8–48.3) 36.5 (34.3–48.5)

Pathogen detected

(number of samples)

Shigella/EIEC (1)

STEC (1)

EAEC (3)

EPEC (3)

Exclusive OPUs 228 185

DEC, Diarrheagenic E. coli.

EAEC, Enteroaggregative E. coli.

EPEC, Enteropathogenic E. coli.

EIEC, Enteroinvasive E. coli.

STEC, Shiga toxin-producing E. coli.
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500mg of stool sample, vortexed and centrifuged. Supernatants
were filtered with a 0.2µm filter and filtered supernatants were
shipped to MS-Omics. A total of 156 metabolites were detected.
We used the KEGG database (Kanehisa and Goto, 2000) for
filtering only those with a bacterial or human origin and that were
present in at least 5 of 8 samples within groups; thus, a total of 88
metabolites were selected for analysis. Metabolomic analysis was
done using the MetaboAnalystR package (Chong and Xia, 2018)
for R considering peak intensities as the input format. Data were
normalized by sample median and log transformation without
other data scaling. A redundancy analysis for determining
metabolic structures was performed using the vegan package
(Oksanen et al., 2019). Exploratory research on metabolites was
performed using fold change analysis and a t-test; important
features were selected by volcano plot, selecting those with a
fold change of 2 or more and setting the t-test threshold at 0.05.
Sample clustering of exploratory selected metabolites was based
on their levels in samples, using hierarchical clustering, Euclidean
distance and Ward algorithms of the MetaboAnalystR package
(Chong and Xia, 2018) for R.

Combined Analysis and Statistics
Correlation between the main genera of each group and the
main metabolites detected was done using the corrplot package
(Wei and Simko, 2017) for R. Later, a metabolic prediction
was done based on the sequences of the representative OPU,
using the PICRUSt2 (Douglas et al., 2020) algorithm and the
PICRUSt (Langille et al., 2013) default Greengenes database
as the reference (Desantis et al., 2006). Graphs were obtained
with STAMP 2.9 (Parks et al., 2014), and Welch’s t-test
was used to determine significance of sequence contribution
to predicted pathways. Finally, using the Web version of
the MIMOSA2 (www.borensteinlab.com/software_MIMOSA2.
html) package (Noecker et al., 2016) and the AGORA model,
sequences from the representative OPU and metabolites selected
from the prior volcano plot were used to determine a microbiota
explanation for the presence of metabolite levels within the
DEC groups. Representative OPUs were used to construct a
metabolic model containing the metabolic reactions that each
taxon is potentially capable of performing, assigning a score to
each taxon-metabolite relation. Total scores were compared to
metabolite measurements across all samples, and a regression
analysis to assess whether scores were positively or negatively
predictive of the observed metabolite levels in the samples was
done. Finally, decomposing the model allowed us to identify the
individual taxon contributions. The sum of the contributions
of all listed taxa is equal to the unadjusted R-squared of the
regression model used to predict each metabolite.

RESULTS

Metabolic Pathway Predictions Using
Microbiota Composition in Diarrheal and
Non-diarrheal Stool Samples
We identified a total of 755 OPU within 16 stool samples. The
redundancy analysis showed that microbiota composition was

statistically different among DEC and healthy groups, with a
distinctive community structure clustering (Figure 1; p= 0.002).
At phylum level, the DEC group presented a decreasing number
of Firmicutes (81.8 ± 3.6% vs. 68.3 ± 7.5%, p < 0.001), as
well as an increasing number of Proteobacteria (4.1 ± 1.5% vs.
11.6 ± 6%, p = 0.009) compared to the healthy group. We also
found differences in the proportion of Bacteroidetes (7.1 ± 3.9%
vs. 12.7± 6.7%, p= 0.06). All the taxa comparisons are shown in
Supplementary Figure 1.

Representative sequences of each OPU were used to
predict metabolic pathways that could be related to the
gut microbiota composition. Pathways involved in L-histidine
degradation presented a higher representation of sequences
associated with DEC groups compared to healthy groups. By
contrast, L-ornithine and L-histidine biosynthesis pathways
were less represented in DEC groups compared to healthy
groups (Figure 2). All metabolic predictions are shown in
Supplementary Figure 2.

DEC Group Displayed a Distinctive
Metabolome Composition Compared to
Healthy Group
A total of 156 metabolites were identified in the 16 stool
samples included in this work. We discarded molecules
that are not metabolized by bacteria, such as sweeteners
or food additives. Therefore, a total of 88 metabolites were
included in the analysis. The redundancy analysis of normalized
data showed a distinctive metabolic composition for each
group (Figure 3; p = 0.001). Using a univariate analysis
of samples by volcano plot, we found 13 metabolites with

FIGURE 1 | OPU community structure of healthy and DEC-positive stool

samples. Microbiota community distribution of each sample and its clustering

according to the sample group were analyzed by redundancy analysis. Green

and red circles represent microbiota compositions found in healthy and

DEC-positive stool samples, respectively. The analysis was conducted using a

sample classification as the explanatory matrix and relative OPU abundance as

the response matrix. Data were normalized with a double square root

transformation. Clustering significance was analyzed by ANOVA, using the

vegan package for R.
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FIGURE 2 | Predicted metabolic pathways related to the gut microbiota composition. Principal pathway prediction by PICRUSt2 algorithm using representative

sequences of main OPUs from each group and the Greengenes database as the reference. Graphs of predictions and significance values were obtained using STAMP

v. 2.1.3. Graphs represent the number of sequences in microbiota that have known genes involved in L-ornithine biosynthesis (A), L-histidine degradation (B), and

L-histidine biosynthesis (C). Box plots denote the top quartile, median, and bottom quartile, analyzed using Welch’s t-test.

FIGURE 3 | Metabolomic structure of healthy and DEC-positive stool samples. Metabolomic structure of each sample and its organization according to the sample

group were analyzed by redundancy analysis. Green and red circles represent metabolome compositions found in healthy and DEC-positive stool samples,

respectively. The analysis was conducted using peak intensities of 88 LC-MS-detected metabolites from stool samples. Clustering significance was analyzed by

ANOVA, using the vegan package for R.

a fold change >2 and p-value of t-test < 0.05 (Table 2;
Figure 4). Alanine, N-butylformamide, piperidine, cadaverine
and histamine were significantly associated with the DEC group
compared to the healthy group. On the other hand, aspartic acid,
ornithine, citrulline, dimethylformamide, dehydroalanine, ethyl
acetoacetate, glucosamine and benzoic acid were significantly
associated with the healthy group compared to the DEC group.

We included guaiacol and diethyl malonate in the DEC and
healthy groups in the following analysis since these metabolites
where close to significance (fold change >2 and p = 0.05).
Dendrograms and heatmaps of the significantly associated
metabolites described above displayed a hierarchical organization
of samples similar to the a priori grouping of samples based on
health status (Figure 5).
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TABLE 2 | Changes of peak intensities of the 15 main LC-MS-detected

metabolites in DEC-positive stool samples compared to the healthy stool samples.

Compounds Fold Change (FC) p

Metabolites associated

to DEC group

Alanine 12.66* 0.0005

N-Butylformamide 6.34* 0.0085

Piperidine 11.09* 0.0183

Cadaverine 11.55* 0.0185

Histamine 9.32* 0.0204

Guaiacol 15.67 0.0517

Metabolites associated

to healthy group

Aspartic acid −2.17* 0.0003

Ornithine −2.19* 0.0014

Citrulline −2.21* 0.0013

Dimethylformamide −2.59* 0.0029

Dehydroalanine −2.37* 0.0031

Benzoic acid −12.25* 0.0055

Glucosamine −4.61* 0.0073

Ethyl acetoacetate −2.56* 0.0154

Diethyl malonate −2.31 0.0582

Metabolites with statistically significant differential levels according to the t-test p-value

and fold-change value are indicated as main metabolites for each group. *p < 0.05.

Microbiota-Metabolome Correlation in
Samples From DEC and Healthy Groups
Among the identified taxa on samples, we found that Gemella
(p = 0.005), Escherichia (p = 0.003), Prevotella (p = 0.027),
Erwinia (p = 0.010), and Buttiauxella (p = 0.016) were the
genera significantly associated with the DEC groups. Instead,
Faecalitalea (p= 0.001), Lactococcus (p= 0.032), andClostridium
(p = 0.010) were the genera significantly associated with the
healthy groups. Correlation between the abundance of thesemain
genera and the 15 metabolites with a fold change >2 showed a
clear pattern of link between the group’s associated genera and
metabolites in each group (Figure 6).

Using the MIMOSA2 software, a tool for the metabolic
model-based estimation of paired microbiome and metabolomic
datasets, we evaluated the representative microbiota sequences
and the abundance of the 15 metabolites described above. We
found specific genera and species that could explain the variance
of histamine and ornithine, metabolites distinctively found in the
DEC and healthy groups. In the case of metabolomic screening
for these metabolites, we found higher levels of histamine in
the DEC groups compared to healthy groups, which according

FIGURE 4 | Volcano plot of LC-MS-detected metabolites in healthy and DEC-positive stool samples. Changes in normalized peak intensities of metabolites detected

in samples from the DEC group compared to healthy samples. The volcano plot summarizes both fold-change and t-test criteria for all metabolites. Metabolites with

significant differential levels according to the t-test p-value (p < 0.05) and fold-change value (FC > 2) were colored. Red and green dots represent metabolites found

significantly higher and lower, respectively, in the DEC group compared to the healthy group. Borderline metabolites (diethyl malonate and guaiacol) are represented as

empty circles.
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FIGURE 5 | Heatmap of main metabolites found in healthy and DEC-positive stool samples. Heatmap showing the clustering of the 15 main metabolites present in

stool samples found in the DEC and healthy groups. Each colored cell on the map corresponds to a metabolite peak intensity. The row displays the metabolites and

the column represents the samples (red = elevated; blue = reduced). A distinct pattern of group-associated metabolite ordination was observed. Metabolites and

samples were hierarchically clustered by Ward’s method and Pearson’s distance using the MetaboAnalyst package for R.

to the MIMOSA2 model could be explained mainly by the
presence of Enterobacter hormaechei, Bifidobacterium stercoris,
Shigella spp., and Citrobacter werkmanii/freundii. We also found
lower levels of ornithine in the DEC samples compared to
healthy groups (Table 2), which could be due mainly to the
presence of Streptococcus anginosus, Enterococcus faecalis and
Escherichia sp. (Figure 7).

DISCUSSION

Current knowledge of gut microbiota in diarrheal infections
reveals a distinctive composition and abundance of commensal
bacteria (Jeffery et al., 2019), but these differences are
insufficient to explain the mechanisms involved in infections
by enteric pathogens. Several reports strongly suggest that
DEC pathogenicity along the transit of the pathogen across
the gastrointestinal tract is finely regulated by gut microbiota,
the immune system and metabolites of the intestinal milieu
(Thaiss and Elinav, 2014). Therefore, gut metabolome could

provide relevant information to reveal the environmental signals
produced by gut microbiota that regulate DEC pathogenesis at a
specific time or place (Kumar and Sperandio, 2019).

Our previous evidence has indicated that children with

diarrhea by DEC display a distinctive microbiota composition

(Gallardo et al., 2017). In this current study we have confirmed

our previous observations by analyzing microbiota composition

in stool samples from 8 age-paired children, either healthy or
with diarrhea by DEC (Figure 1). Considering that dysbiosis
could be related to a distinct metabolomic composition
(Noorbakhsh et al., 2019), we sought to identify the metabolome
composition of the samples included in this study. Interestingly,
our data showed a clear metabolomic structure statistically
different for each group (Figure 3), suggesting that metabolic
environment associated with DEC infection may contain specific
metabolites related to DEC pathogenicity. We identified 15
metabolites in stool samples significantly different between the
DEC and healthy groups (Figure 4), the levels of which were
associated with the main genera from DEC and healthy groups
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FIGURE 6 | Main genera and metabolites found in healthy and DEC-positive stool samples. Heatmap showing the correlation relationships between peak intensities

of the 15 main metabolites, and the abundance of the main genera associated with DEC or healthy groups. Blue and red dots represent positive and negative

correlations, respectively, between metabolites and genera. This analysis was done using the corrplot package for R.

(Figure 5). Considering this well-conserved metabolomic and
commensal community structure among the groups, we then
sought to identify which metabolic pathways could be involved
in what was observed. We found by functional predictions
from amplicon sequences that L-histidine biosynthesis and
degradation pathways, as well as the L-ornithine biosynthesis
route, were significantly different between the DEC and healthy
groups (Figure 6). These predictions are in agreement with the
low levels of ornithine and histidine detected in the DEC group
compared to healthy groups (Table 2; Supplementary Table 1).
Interestingly, we found that histamine, a product of L-histidine
decarboxylation, was significantly higher in the DEC group
compared to the healthy groups (Figure 4). In the gut, histamine
is produced by immune cells such as mast cells, and its secretion
could be influenced by cytokines such as IL-18, TNF-α, IL-12,
and IL-1, among others (O’mahony et al., 2011). In commensal
bacteria, such as E. coli, histamine has been linked to endogenous
biosynthetic pathways (Kyriakidis et al., 2008) in Ca2+-mediated
signals (Theodorou et al., 2009) and its chemotaxis (Theodorou
et al., 2012). The role of histamine could be directly linked to E.
coli adherence, as evidence has shown that histamine inhibits the
clearance of E. coli from the host peritoneal cavity in a peritonitis
mouse model (Hori et al., 2002). Related to ornithine, we found
lower levels of this metabolite in the DEC samples than in the
healthy ones. L-ornithine can be produced in the urea cycle

by the enzyme arginase, using arginine as the substrate. Once
produced, L-ornithine is transformed to citrulline by the enzyme
ornithine carbamoyltransferase (Wu, 1998). Arginine levels were
similar in both groups, but citrulline and ornithine levels were
higher in healthy samples (Table 2). L-ornithine production has
been associated with a healthy gut mucosa. A recent study
showed that L-ornithine administered to mice resulted in goblet
cell production, mucin secretion and cell proliferation, which
are associated with a healthier gut environment (Qi et al.,
2019). Together with these results, L-ornithine also induces
accumulation of IL-22 in intestinal tissues (Qi et al., 2019), a
cytokine involved in the reconstitution of gut epithelial cells,
improving mucus production by goblet cells, increasing the
production of antimicrobial peptides and modulating genes
involved in wound healing (Sun et al., 2012). Overall, these
observations suggest that histamine and L-ornithine might be
important signaling molecules in DEC pathogenesis and merit
further investigation.

MIMOSA2 modeling of the 15 metabolites statistically
associated with the study groups suggested that only 2 metabolite
(ornithine and histamine) variations depend on the presence
of specific taxa. Among the taxa associated with the positive
contribution of histamine and ornithine levels, Escherichia
sp., Streptococcus anginosus, Citrobacter werkmanii/Citrobacter
freundii, and other species were found to increase the variability
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FIGURE 7 | Microbial contribution to metabolite variance. Prediction of microorganisms that positively contribute to variance of the levels for the 15 main metabolites

(blue = high contribution; red = low contribution). This analysis was done with the MIMOSA2 software using the microbiome and metabolome data found on each

group. R-square of the regression model used for prediction represents the sum of the contributions of all listed taxa to the metabolite variance. Red and green

horizontal bars represent the distribution of taxa abundance of proposed organisms among DEC and healthy groups, respectively.

of these metabolites (Figure 7). Within these genera, Escherichia
coli has been identified as being responsible for histamine
production (Barcik et al., 2016, 2017), suggesting that during
DEC infection, histamine levels could be modulated by pathogen
metabolism. For the other 13 metabolites, the metabolic potential
scores of identified taxa were not predictive according to
the MIMOSA2, meaning that metabolite levels could not be
attributed to specific taxa of the DEC or the healthy group.
However, piperidine and cadaverine have been associated with
virulence in enteropathogens. A decrease in S. flexneri invasion
to cells was found in the presence of ornithine; this effect
was found to be counteracted by the presence of cadaverine,
a polyamine produced by lysine decarboxylation (Durand and
Bjork, 2009). In the intestine, cadaverine is cyclated to piperidine,
a molecule that reduces the invasion of S. typhimurium and
the recruitment of polymorphonuclear neutrophils (Kohler
et al., 2002). It would be interesting to evaluate the role that
piperidine and cadaverine might play in the virulence of DEC,
as well as the other metabolites significantly associated with the
DEC group.

Our study has limitations. We analyzed a small number
of samples and therefore our results should be considered as
an exploratory approach. However, our data provided valuable
information about the importance of gut microbiota and
metabolome analysis in understanding the regulatorymechanism
of DEC virulence. It is important to note that our metabolome
analysis did not include metabolites that have been previously
proven to have an impact on DEC virulence, such as SCFAs,
because the primary goal of this study was to identify new
pathways or metabolites that might be important to DEC
pathogenicity. From this study we obtained an effect size
value of 0.4377, which will be used to obtain the required
sample size for further studies to confirm our observations,
as well as in vitro infection experiments to evaluate the role
of metabolites significantly associated with the DEC group as
signaling molecules involved in DEC virulence regulation.

In conclusion, our study showed that stool samples from
healthy children and children positive for DEC displayed
a differential metabolome and microbiota composition. We
found a correlation between gut microbiota species and certain
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metabolites, information that might be useful in identifying
mechanisms and signaling molecules implicated in the crosstalk
between microbiota and DEC pathotypes that might participate
in the virulence of these pathogens.
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