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Abstract

We study dynamic decision making under uncertainty when, at each period, the decision

maker faces a di↵erent instance of a combinatorial optimization problem. Instances di↵er in

their objective coe�cient vectors, which are unobserved prior to implementation. These vectors

however are known to be random draws from an initially unknown distribution with known

range. By implementing di↵erent solutions, the decision maker extracts information about the

underlying distribution, but at the same time experiences the cost associated with said solutions.

We show that resolving the implied exploration vs. exploitation trade-o↵ e�ciently is related to

solving a Optimality Cover Problem (OCP), which simultaneously answers the questions of what

to explore and how to do so. In particular, we show how to construct policies whose asymptotic

performance is arbitrarily close to the best possible. For that, we establish a fundamental

limit on the performance of any admissible policy. A salient feature of our policies is that they

adaptively construct and solve OCP at a decreasing frequency, thus enabling its implementation

in real-time. We provide strong evidence of the practical tractability of OCP, and propose an

oracle polynomial time heuristic solution. We extensively test performance against relevant

benchmark in both the long- and short-terms.

1 Introduction

Motivation. Traditional solution approaches to many operational problems are based on combi-

natorial optimization problems, and typically involve instantiating a deterministic mathematical

program, whose solution is implemented repeatedly through time: nevertheless, in practice, in-

stances are not usually known in advance. When possible, parameters characterizing said instances

are estimated o↵-line, either by using historical data or from direct observation of the (idle) system.

⇤This research was supported by the National Science Foundation [Grant CMMI-1233441]. Correspondence:

sajad.modaresi@duke.edu, dsaure@dii.uchile.cl, jvielma@mit.edu.
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Unfortunately, o↵-line estimation is not always possible as, for example, historical data (if available)

might only provide partial information pertaining previously implemented solutions. Consider, for

instance, shortest path problems in network applications: repeated implementation of a given path

might reveal cost information about arcs on such a path, but might provide no further information

about costs of other arcs in the graph. Similar settings arise, for example, in other network applica-

tions (e.g., tomography and connectivity) in which feedback about cost follows from instantiating

and solving combinatorial problems such as spanning and Steiner trees.

Alternatively, parameter estimation might be conducted on-line using feedback associated with

implemented solutions, and revisited as more information about the system’s primitives becomes

available. In doing so, one must consider the interplay between the performance of a solution and

the feedback generated by its implementation: some parameters might only be reconstructed by

implementing solutions that perform poorly (relative to the optimal solution). This is an instance

of the exploration vs. exploitation trade-o↵ that is at the center of many dynamic decision-making

problems under uncertainty, and as such it can be approached through the multi-armed bandit

paradigm (Robbins 1952). However, there are salient features that distinguish our setting from the

traditional bandit. In particular, the combinatorial structure induces correlation in the performance

of di↵erent solutions, hence there might be multiple ways of estimating some parameters, each

using feedback from a di↵erent set of solutions, and thus experiencing di↵erent performance. Also,

because solutions are not upfront identical, the underlying combinatorial optimization problem

might be invariant to changes in certain parameters, hence not all parameters might need to be

estimated to solve said problem.

Unfortunately, the features above either prevent or discourage the use of known bandit algo-

rithms. First, in the combinatorial setting, traditional algorithms might not be implementable as

they would typically require solving an instance of the underlying combinatorial problem between

decision epochs, for which, depending on the application, there might not be enough computational

resources. Second, even with enough computational resources, such algorithms would typically call

for implementing each feasible solution at least once, which in the settings of interest might take a

prohibitively large number of periods, and thus result in poor performance.

Main objectives and assumptions. A thorough examination of the arguments behind results

in the traditional bandit setting reveals that their basic principles are still applicable. Thus, our

objective can be seen as interpreting said principles and adapting them to the combinatorial setting

with the goal of developing e�cient policies that are amenable to implementation. In doing so,

we also aim at understanding how the specifics of the underlying combinatorial problem a↵ect

achievable performance. For this, we consider settings in which an agent must implement solutions

to a series of arriving instances of a given combinatorial problem (i.e. whose feasible solutions

are structured subsets of a ground set), and there is initial uncertainty about said instances. In

particular, we assume that instance uncertainty is restricted to cost-coe�cients in the objective

function. Hence, the feasible region is the same for each instance and known upfront by the agent.
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In this regard, we assume that cost-coe�cients vary among instances, but they are random draws

from a common time-invariant distribution, which is initially unknown to the agent, except for its

range. By implementing a solution, the agent receives partial feedback that depends on the solution

implemented. Without loss of generality, we assume that the underlying combinatorial problem is

that of cost minimization. Following the bulk of the bandit literature, we measure performance in

terms of the cumulative regret, i.e. the cumulative cost incurred in excess of that of an oracle with

prior knowledge of the cost distribution.

Main contributions. From a methodological perspective, our contributions are as follows:

i) We develop policies that significantly outperform existing and concurrently de-

veloped policies. Let A be the set of ground elements of the underlying combinatorial

optimization problem (e.g. set of arcs in the shortest path problem), s be the size of the

largest feasible solution to the combinatorial optimization problem (e.g. length of the longest

path) and N be the time horizon. The first policy we develop is based on a solution cover of

the ground set A. The cumulative regret of this cover-based policy admits an upper bound

of either order |E| (lnN)1+", for arbitrarily small " > 0, or |E| s2 lnN , where E is a solution

cover of the ground set A (thus |E|  |A|). This immediately compares favorably with existing

bounds of order |A|4 lnN and s2 |A| lnN for the policies in Gai et al. (2012) and Chen et al.

(2013), respectively, and to that of order |B| (lnN)1+✏ for the policy in Liu et al. (2012)1 (B
is a set of solutions that can be thought of as a variation of a solution cover and it always

satisfies |E|  |B|). The second policy we develop is based on an optimization problem which

we denote the Optimality Cover Problem (OCP). The cumulative regret of this OCP-based

policy admits an upper bound of order G (lnN)1+", for arbitrarily small " > 0, where G is

the size of an instance-dependent set of feasible solutions that always satisfies G  |A| and
normally satisfies G  |E| (G ⇠ |A| only for trivial combinatorial optimization problems).

We show that, for many families of instances, |E| is arbitrarily larger than G and hence the

OCP-based policy can significantly outperform the cover-based policy. However, we also show

that it is possible that |E| < G (with some probability) for somewhat pathological instances.

In this regard, we delineate a family of hybrid cover/OCP-based policies that is guaranteed to

outperform the cover-based policy. Nonetheless, extensive computational experiments show

the dominance of the pure OCP-based policy over the cover-based policy in practice.

ii) We show that the proposed policies are essentially optimal with respect to the

combinatorial aspects of the problem. To achieve this we show that no policy can

achieve a regret lower than order L lnN , where L is an instance-dependent constant that is

strongly related to the solution to a relaxation of OCP, and thus to G. We show that such

a lower bound, which is the first for the stochastic combinatorial setting, arises naturally as

the limit of performance bounds for a sequence of policies within the proposed class of hybrid

policies, thus establishing the tightness of the bound, and the e�ciency of such policies.

1Such a policy was independently and concurrently developed after our initial submission.
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iii) We provide strong evidence that our policies are implementable in practice. The

proposed policies focus exploration (either fully or partially) on the solution to either OCP

or a relaxation of it. These problems could be much harder than the underlying combi-

natorial optimization problem and are potentially intractable. However, unlike some of the

benchmark, our policies only require solving these optimization problems (and the underlying

combinatorial optimization problem) with an exponentially decreasing frequency. (Computa-

tionally, the cover-based policy can be thought of as a special case of the OCP-based policy.)

Furthermore, we show that these optimization problems can be formulated as a Mixed Inte-

ger Programming (MIP) problem that can be e↵ectively tackled by state of the art solvers.

Finally, we also develop an oracle polynomial time heuristic that utilizes a solution oracle

for the underlying combinatorial optimization problem to construct a reasonable solution to

OCP and its relaxation. We show that while the performance of the OCP-based policies

deteriorates when the heuristic is used, the resulting policies still outperform the cover-based

policy as well as other long-term benchmarks, and remains competitive with the short-term

benchmarks.

The optimal lnN scaling of the regret is well known in the bandit literature (Lai and Robbins

1985) and can even be achieved in the combinatorial setting by traditional algorithms. The regret

of such algorithms, however, is proportional to the number of solutions, which for combinatorial

settings is typically exponential in |A|, which suggests that the dependence on N might not be

the major driver of performance in this setting. Thus, the focus should be on the accompanying

constants: we show that modest modifications to bandit ideas su�ce to take such a constant from

being proportional to the size of the solution set, which one obtains from the direct application of

bandit algorithms, to the size of a minimal solution cover of the whole ground set. In this regard,

e�ciency is achieved when only a “critical” subset of components of the ground set is covered: OCP

solves for such a critical subset and covers it while incurring minimal regret. Our results speak of

a fundamental principle in active learning, which is somewhat obscured in the traditional bandit

setting: that of only exploring what is necessary to reconstruct the solution to the underlying

problem, and doing so at the least possible cost.

The remainder of the paper. Next, we review related work. Section 3 formulates the problem,

and advances a simple adaptation of classical bandit ideas (i.e. the cover-based policy). In Section 4

we present the OCP-based policy, develop performance guarantees, and assess asymptotic e�ciency.

In Section 5 we discuss practical policy implementation, and Section 6 illustrates the results in the

paper by means of numerical experiments. Finally, Section 7 presents extensions and concluding

remarks. Proofs and supporting material are relegated to Appendices A and B.
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2 Literature Review

Classical bandit settings. Introduced in Thompson (1933) and Robbins (1952), the multi-armed

bandit setting is a classical framework for dynamic decision making under uncertainty. In its basic

formulation a gambler maximizes cumulative reward by pulling arms of a slot machine sequentially

over time when limited prior information on reward distributions is available. The gambler faces

the classical exploration vs. exploitation trade-o↵: either pulling the arm thought to be the “best”

at the risk of failing to actually identify such an arm, or trying other arms which allows identifying

the best arm but hampers reward maximization.

The seminal work of Gittins (1979) shows that, for the case of independent and discounted arm

rewards, and infinite horizon, the optimal policy is of the index type. Unfortunately, index-based

policies are not always optimal (see Berry and Fristedt (1985), and Whittle (1982)) or cannot be

computed in closed form. In their seminal work, Lai and Robbins (1985) study asymptotically

e�cient policies for the undiscounted case. They establish a fundamental limit on achievable

performance, which implies the (asymptotic) optimality of the order lnN dependence in the regret

(see Kulkarni and Lugosi (1997) for a finite-sample minimax version of the result). Our proof of

e�ciency is based on the change of measure argument in this paper: see the discussion in Section

4.4. In the same setting, Auer et al. (2002) introduces the celebrated index-based UCB1 policy,

which is both e�cient and implementable. We revisit their results in the next section.

Envisioning each solution as an arm, our setting corresponds to a bandit with correlated rewards

(and many arms): only a few papers address this case (see e.g., Ryzhov and Powell (2009) and

Ryzhov et al. (2012)). Unlike in these papers, our focus is on asymptotic e�ciency. Alternatively,

envisioning each ground element as an arm, our setting can be seen as a bandit with multiple

simultaneous pulls. Anantharam et al. (1987) extend the fundamental bound of Lai and Robbins

(1985) to this setting and propose e�cient allocations rules: see also Agrawal et al. (1990). Our

setting imposes a special structure on the set of feasible simultaneous pulls, which prevents us from

applying known results.

Bandit problems with a large set of arms. Bandit settings with a large number of arms

have received significant attention in the last decade. In these settings, arms are typically endowed

with some known structure that is exploited to improve upon the performance of traditional bandit

algorithms.

A first strain of literature considers settings with a continuous set of arms, where exploring all

arms is not feasible. Agrawal (1995) studies a multi-armed bandit in which arms represent points

in the real line and their expected rewards are continuous functions of the arms. Mersereau et al.

(2009) and Rusmevichientong and Tsitsiklis (2010) study bandits with possibly infinite arms when

expected rewards are linear functions of an (unknown) scalar and a vector, respectively. In a more

general setting, Kleinberg et al. (2008) consider the case where arms form a metric space, and

expected rewards satisfy a Lipschitz condition. See Bubeck et al. (2011) for a review of work in
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continuum bandits.

Bandit problems with some combinatorial structure have been studied in the context of assort-

ment planning: in Rusmevichientong et al. (2010) and Sauré and Zeevi (2013) product assortments

are implemented in sequence and (non-linear) rewards are driven by a choice model with initially

unknown parameters. See Caro and Gallien (2007) for a similar formulation with linear rewards.

Gai et al. (2012) study combinatorial bandits when the underlying problem belongs to a restricted

class, and extend the UCB1 policy to this setting. They establish what is essentially an order

|A|4 lnN performance bound, where |A| denotes the size of the ground set A. Their policy applies

to the more general setting we study, and is used as a benchmark in our numerical experiments.

Concurrent to our work, two papers examine the combinatorial setting: Chen et al. (2013) provide

a tighter order s2 |A| lnN performance bound for the UCB1-type policy of Gai et al. (2012) applied

to the general combinatorial case (here s denotes a bound on the size of a solution); also, Liu et al.

(2012) develop a version of the cover-based policy for network optimization problems (their ideas

can be adapted to the general case as well) but under a di↵erent form of feedback. Their policy

collects information through implementation of solutions in a barycentric spanner of the solution

set, which in our feedback setting could be set as a solution cover: see further discussion in Section

7. Probable performance of their policy is essentially that of a static cover-based policy, which is

(asymptotically) always lower than or equal to that of its dynamic version, and might be arbitrarily

worse than the OCP-based policy.

Drawing ideas from the literature of prediction with expert advice (see e.g., Cesa-Bianchi and

Lugosi (2006)), Cesa-Bianchi and Lugosi (2012) study an adversarial combinatorial bandit where

arms belong to a given finite set in Rd (see Auer et al. (2003) for a description of the adversarial

bandit setting). Our focus instead is on stochastic (non-adversarial) settings. In this regard, our

work leverages the additional structure imposed in the stochastic setting to developing e�cient

policies whose probable performance exhibits the “right” constant accompanying the lnN term.

Online subset selection. Broadly speaking, our work contributes to the literature of online

learning with combinatorial number of alternatives. There are several studies that focus on similar

online learning problems, from the ranking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron. (See also Ryzhov et al. (2012).) The ideas in Harrison and Sunar (2013)

regarding selection of e�cient learning mechanisms relate to the insight derived from our work.

Also, see Jones et al. (1998), and the references within, for related work in the global optimization

literature.
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3 Combinatorial Formulation vs. Traditional Bandits

3.1 Problem formulation

Model primitives and basic assumptions. We consider the problem of an agent who must

implement solutions to a series of instances of a given combinatorial optimization problem. Without

loss of generality, we assume that such a problem is that of cost minimization. Instances are

presented sequentially through time, and we use n to index them according to their arrival times,

so n = 1 corresponds to the first instance, and n = N to the last, where N denotes their (possibly

unknown) total number. Each instance is uniquely characterized by a set of cost-coe�cients, i.e.,

instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|, a set of feasible

solutions S, and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A (e.g. arcs forming a path), S is the

decision variable, and ba is the cost associated with a ground element a 2 A. We let S⇤(B) be the

set of optimal solutions to (1) and z⇤(B) be its optimal objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront.2 That is, it is known that

la  ba,n  ua a.s. (with la < ua), for all a 2 A and n 2 N. Furthermore, while our general

approach and some of our results hold in more general settings, we assume for simplicity that the

distributions of ba,n are absolutely continuous with respect to the Lebesgue measure in R.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the corresponding cost is incurred. Finally, we assume that the agent is interested in

minimizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

linearity of the objective function), it is optimal to implement Sn 2 S⇤(EF {Bn}), where EF {·}
denotes expectation with respect to F . That is, always implementing a solution to the problem

where costs equal their expected values is the best among all non-anticipative (see below) solution

2Our results extend to the case of unbounded range provided that F (·) is light-tailed.
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sequences.

In practice, the agent does not know F upfront, hence no admissible policy can incur costs

below those incurred by the clairvoyant agent, in expectation. Thus, we measure the performance

of a policy in terms of its expected regret: let ⇡ := (Sn)
1
n=1

denote a non-anticipative policy,

where Sn : ⌦ ! S is a Fn/2S-measurable function that maps the available “history” at time n,

Fn := �({ba,m : a 2 Sm , m < n}), to a solution in S; given F and N , the expected regret of policy

⇡ is

R⇡(F,N) :=
N
X

n=1

EF

(

X

a2Sn

ba,n

)

�N z⇤ (EF {Bn}) .

The regret represents the additional expected cumulative cost incurred by policy ⇡ relative to that

incurred by a clairvoyant agent that knows F upfront (note that regret is always non-negative).

Remark 3.1. Although the regret also depends on the combinatorial optimization problem through

A and S, we omit this dependence to simplify the notation.

Our exposition benefits from connecting the regret to the number of instances in which suboptimal

solutions are implemented. To make this connection explicit, consider an alternative representation

of the regret. For S 2 S, let �F
S denote the expected optimality gap associated with implementing

S, when costs are distributed according to F . That is,

�F
S :=

X

a2S
EF {ba,n}� z⇤ (EF {Bn}) .

(Note that the expected optimality gap associated with S⇤ 2 S⇤ (EF {Bn}) is zero.) For S 2 S, let

Tn(S) := |{m < n : Sm = S}|

denote the number of times that the agent has implemented solution Sm = S prior to instance n.

Similarly, for a 2 A, let

Tn({a}) := |{m < n : a 2 Sm}|

denote the number of times that the agent has selected element a prior to instance n (henceforth,

we say ground element a 2 A is selected or tried at instance n if a 2 Sn). Note that Tn({a}) and
Tn(S) are Fn-adapted for all a 2 A, S 2 S, and n 2 N. Using this notation we have that

R⇡(F,N) =
X

S2S
�F

S EF {TN+1

(S)} . (2)

3.2 Known results for the non-combinatorial case.

Traditional multi-armed bandits correspond to settings where S is formed by ex-ante identical

singleton subsets of A (i.e., S = {{a} : a 2 A}, la and ua equal for all a 2 A), thus the combinatorial
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structure is absent. In this setting, the seminal work of Lai and Robbins (1985) (henceforth, LR)

establishes an asymptotic lower bound on the regret attainable by any consistent policy when F

is regular,3 and provides policies achieving asymptotic e�ciency. LR show that consistent policies

must explore (pull) each element (arm) in A at least order lnN times, hence, by (2), their regret

must also be of at least order lnN .

Theorem 3.2 (Lai and Robbins 1985). Let S = {{a} : a 2 A}, then for any consistent policy

⇡ and regular distribution F , we have that

lim inf
N!1

R⇡(F,N)

lnN
�
X

a2A
�F

{a}Ka, (3)

where Ka is a positive finite constant depending on F , for all a 2 A.

In the above, Ka is the inverse of Kullback-Leibler distance (see e.g., Cover and Thomas (2006))

between the original distribution F and a distribution Fa that makes a optimal (which always

exists because arms are ex-ante identical). The argument behind the result above is the following:

in order to distinguish F from a distribution Fa, consistent policies cannot restrict the exploration

of any given arm to a finite number of times (independent of N), and must explore all arms

periodically. Thus, broadly speaking, balancing the exploration vs. exploitation trade-o↵ in the

traditional setting narrows down to answering when (or how frequently) to explore each element

a 2 A. (The answer to this question is given by LR’s lnN/N exploration frequency).

Di↵erent policies have been shown to attain the logarithmic dependence on N in (3), and in

general, there is a trade-o↵ between computational complexity and larger leading constants. For

instance, the index-based UCB1 algorithm introduced by Auer et al. (2002) is simple to compute

and provides a finite-time theoretical performance guarantee.

Theorem 3.3 (Auer et al. 2002). Let S = {{a} : a 2 A} and for each a 2 A, let K̃a := 8/(�F
{a})

2.

Then the expected regret of policy UCB1 after N plays is such that

R⇡(F,N)

lnN

X

a2A
�F

{a}K̃a +O(1/ lnN). (4)

The left-hand sides of (3) and (4) admit asymptotic lower and upper bounds of the form CF |A|,
respectively, where CF is a finite constant depending on F . Informally, such bounds imply that

the regret R⇡(F,N) grows like CF |A| lnN where the mismatch between the bounds (3) and (4) is

primarily due to the di↵erence in CF (for (3), CF = mina2AKa, and for (4), CF = maxa2A K̃a).

We can then identify three components of the regret:

(i) Component lnN that is exclusively dependent on time,

3A policy ⇡ is said to be consistent if R⇡(F,N) = o(N↵) for all ↵ > 0, for every F on a class of regular distributions
satisfying certain indistinguishability condition: see proof of Proposition 4.9. This avoids considering policies that
perform well in a particular setting at the expense of performing poorly in others.
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(ii) component |A| that is exclusively dependent on the combinatorial structure of S (absent in

the traditional setting), and

(iii) component CF that is almost exclusively dependent on the distribution F .4

Giving simple comparisons between the distribution dependent constants CF can be extremely

challenging (e.g. above, only K̃a has a simple formula5). For the most part, we concentrate on the

combinatorial and temporal components of the regret, and examine components (ii) and (iii) jointly

only when deemed necessary. Thus, informally, we refer to the regret of policy UCB1 and the LR

lower bound being proportional to |A| lnN and declare themmatching up to a distribution-dependent

constant.

As mentioned in the introduction, the combinatorial setting can be seen as a traditional bandit

with a combinatorial number of arms, and where arm rewards are correlated. Implementing o↵-

the-shelf traditional bandit policies to this setting would result in a regret proportional to |S| lnN :

unfortunately, for most combinatorial problems of interest, |S| is exponential in |A|, hence tradi-

tional bandit algorithms will exhibit regrets scaling rather unfavorably with the size of A. (Note,

however, that the fundamental bound in (3) does not apply to the combinatorial setting, thus at

this point it is not clear what would constitute a favorable scaling.) Moreover, from a practical

standpoint, implementing index-based policies such as UCB1 involves computing an exponential

number of indices, and the complexity of selecting an arm is comparable to that of solving the

underlying problem by enumeration, which in most cases of interest is impractical.

3.3 Setting comparison and a first simple approach

The results in the traditional bandit neither apply nor are likely to lead to e�ciency in the combi-

natorial setting. However, their underlying principles are still applicable. For example, all bandit

algorithms, in one way or another, impose a lnN/N exploration frequency on each arm, as this

allows to estimate mean performance of each arm with a precisely increasing confidence. In our

setting, the same goal can be achieved while leveraging the combinatorial structure of the solution

set to expedite estimation: a key observation is that one might conduct mean cost estimation for

elements in the ground set, and then aggregate those to produce estimates for all solutions.

A natural way of incorporating the observation above into most algorithms is to select as an

exploration set a minimal solution cover E of A (i.e., E ✓ S such that each a 2 A belongs to at

least one S 2 E and E is minimal with respect to inclusion for this property). We can then alternate

between exploring the elements of E and exploiting an optimal solution according to current mean

cost estimates.
4While CF can depend on the combinatorial structure (e.g. through mina2A), F has a significantly stronger

impact on it (e.g. changing F we can keep CF constant for a changing combinatorial structure or make CF change
for a fixed combinatorial structure).

5Auer et al. (2002) show that Ka  K̃a/16 and propose UCB2, that can be tuned so that K̃a ⇡ 1/(2
�

�F
a

�2
).
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To induce the appropriate exploration frequency we use an idea known as the doubling trick

(Cesa-Bianchi and Lugosi 2006, Chapter 2.3). This approach allows us to impose the traditional

lnN/N exploration frequency and more importantly, it allows us to minimize the number of times

that the underlying combinatorial problem needs to be solved. The doubling trick divides the

horizon into cycles of growing length so that cycle i starts at time ni where (ni)i2N is a strictly

increasing sequence of positive integers such that n
1

= 1 and ni+2

� ni+1

> ni+1

� ni for all i 2 N.
Within each cycle we first implement every element of the exploration set (at most once, in the

long-run) and only after that consider the implementation of exploitation solutions. The frequency

of exploration can then be controlled by varying the increment in length of the cycles (e.g. to

achieve the lnN/N exploration frequency we can use cycles of exponentially increasing lengths).

Combining the minimal cover exploration set with the doubling trick we obtain a simple static

cover-based policy ⇡s(E) (which we hereafter refer to as the simple policy) that proceeds as follows:

- Starting cycle i, implement solutions in E until Tn({a}) � i for all a 2 A, or until the end of

the cycle. Then, if there is still time left in the cycle, implement S 2 S⇤ �B̄ni

�

for the rest of

it, where B̄n :=
�

b̄a,n, a 2 A
�

and

b̄a,n :=
1

Tn({a})
X

m<n : a2Sm

ba,m a 2 A, n 2 N. (5)

In the following section we introduce a significantly improved policy, so we relegate a detailed

description of the simple policy to Appendix A. Next, we show that this simple adaptation of

traditional algorithms can significantly improve performance. We begin with the following regret

bound results whose proofs are also relegated to Appendix A.

Theorem 3.4. For any cover E, let ⇡s(E) denote static cover-based policy and for an arbitrary � > 1

let H := (1+�)
�

s/�F
min

�

2

, where s := max {|S| : S 2 S} and �F
min := min

�

�F
S : �F

S > 0 , S 2 S
 

.

If we choose ni := max
�

bei/Hc, ni�1

+ 1
 

, for all i � 2, then 6

R⇡s(E)(F,N)

lnN
 (1 + �)

C
�

�F
min

�

2

s2 +O(1/ lnN)  (1 + �)
�F

max
�

�F
min

�

2

|E| s2 +O(1/ lnN),

where �F
max := max

�

�F
S : S 2 S

 

, and C :=
P

S2E �
F
S . If instead we choose ni := max{bei1/(1+")c, ni�1

+

1}, with " > 0 arbitrary, for all i � 2, then

R⇡s(E)(F,N)

(lnN)1+"  C +O(1/ (lnN)1+")  �F
max |E|+O

⇣

1/ (lnN)1+"
⌘

.

The two variants of this simple policy have regrets proportional to |E| s2 lnN and |E| (lnN)1+✏,

with distribution-dependent constants CF = (1 + �)s2�F
max/

�

�F
min

�

2

and CF = �F
max, respectively.

6For simplicity of exposition, the above assumes without loss of generality that ua � la < 1. The proof of the
result, however, keeps track of the dependence on ua� la, which only a↵ects the distribution-dependent constant CF .
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(Note that�F
min

plays the role of�F
{a} in the traditional bandit setting.) The second of these bounds

clarifies the fact that, for this policy, the regret follows from the cost of suboptimal exploration (at

the cost of an arbitrarily small suboptimal scaling with the horizon).

Remarkably, incorporating this simple combinatorial aspect of the problem in the design of

algorithms results in performance that compares favorably to relevant benchmarks. To illustrate

this point, consider the following example:

Example 3.5. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1

[ {pi,j : i  j  k} [ {qi,j : i  j  k} where ei = (vi,i, vi+1,i+1

), pi,j = (vi,j , vi,j+1

),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v
1,1 to node t := vk+1,k+1

.

Let " < c ⌧ M and set la = " and ua = 1 for every arc a 2 A. Define F to be such

that EF {bei,n} = c, and EF
�

bpi,j ,n
 

= EF
�

bqi,j ,n
 

= M , for all i 2 {1, . . . , k} and i  j  k,

n 2 N. The shortest (expected) path is S⇤(EF {Bn}) = (e
1

, e
2

, . . . , ek) with expected length (cost)

z⇤(EF {Bn}) = kc, |A| = (k+ 3)(k+ 2)/2, and |S| corresponds to the number of s� t paths, which

is equal to 1

k+2

�

2(k+1)

(k+1)

�

⇠ 4

k+1

(k+1)

3/2
p
⇡
(Stanley 1999).

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 3.5.

In Example 3.5, the regret of traditional algorithms is pro-

portional to 4

k+1

(k+1)

3/2
p
⇡
lnN . Also, the regret of the policy in

Gai et al. (2012) and Chen et al. (2013), which is designed to

operate in the combinatorial setting, admits a bound propor-

tional to (k + 3)4(k + 2)4 lnN/16 and 2(k + 3)(k + 2)k2 lnN ,

respectively. Compare this to ⇡s(·): one can easily construct a

cover E of size k + 1, in which case its regret is proportional to

4(k + 1)k2 lnN or, alternatively, to (k + 1) (lnN)1+✏. Clearly,

for moderate k

(k + 1)⌧ 4(k + 1)k2 ⌧ 2(k + 3)(k + 2)k2 ⌧ 4k+1

(k + 1)3/2
p
⇡
.

This example is representative of settings with combinatorial

structure, where |E|⌧ |A|⌧ |S|.

Can one do better? The combinatorial structure of the problem allows significant improvement

when applied to policy design. It turns out that additional improvement follows from exploiting

the ideas in the lower bound result in LR as well. To see this, note that, unlike in the traditional

setting, solutions are not ex-ante identical in the combinatorial one, thus, for some a 2 A, there

might not exist a distribution Fa such that a 2 S for some S 2 S⇤ (EFa {B}). Moreover, even if such

a distribution exists, one might be able to distinguish F from Fa without implementing solutions

containing a. This opens the possibility that information collection in some ground elements might

be stopped after a finite number of instances, independent of N , without a↵ecting asymptotic
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e�ciency. We show next that this is indeed the case.

4 The Optimality Cover Problem

4.1 What and How to Explore?

A fundamental principle in the traditional bandit setting is that feedback from periodically pulling

all arms is necessary to find an optimal arm, and to guarantee its optimality through time. However,

in the combinatorial bandit setting, exploring all solutions is not always necessary to achieve such

objectives. From the previous section, we know that it su�ces to collect information on a cover

E . Is such information necessary as well? To answer this, consider the setting in Example 3.5

for k = 3: feedback from solutions S
1

:= (e
1

, e
2

, e
3

) and S
2

:= (p
1,1, q1,1, p2,2, q2,2, p3,3, q3,3) allows

to consistently estimate the mean cost of these arcs; but because every suboptimal path travels

along at least two of the arcs in S
2

(and the fact that costs are non-negative a.s.), such a feedback

su�ces to deduce and guarantee the optimality of S
1

. Thus, we see that a cover E might contain

superfluous information. While one can check that {S
1

, S
2

} is a minimally (w/r to inclusion)

su�cient exploration set, it is by no means the only possible set of solutions with such a feature:

consider for example the alternative minimally su�cient exploration set
n

S
1

, S̃
2

, S̃
3

o

where S̃
2

=

(p
1,1, p1,2, p1,3, q1,3, q2,3, q3,3) and S̃

3

= (e
1

, p
2,2, p2,3, q2,3, q3,3). A crucial observation here is that the

latter exploration set neither directly explores S
2

, nor indirectly explores three of its arcs: q
1,1,

q
2,2, and p

3,3. Thus, no set of paths or arcs is necessary to deduce and guarantee the optimally

of a solution. Nonetheless, minimally su�cient exploration sets di↵er in the regret they incur

(e.g. {S
1

, S
2

} does result in a smaller regret). To find a minimally su�cient exploration set with

minimum regret we first characterize the set of ground elements that are su�cient to guarantee

optimality and then find a way to explore them with the smallest possible regret.

What to explore? Suppose that only a subset of ground elements C ✓ A is selected persistently

over time (irrespective of how), so that their mean cost estimates are accurate. To check the

su�ciency of the feedback from this selection, one should, in principle, check whether z⇤(EF (Bn))

is robust with respect to all plausible changes to mean costs of ground elements in A\C. However,

because f(·) minimizes cost, it su�ces to check only one possibility: that in which E {ba,n} # la for

all a 2 A \ C. This leads to the following definition for our target set of ground elements to be

explored.

Definition 4.1 (Critical Set). A subset C ✓ A is a su�cient ground exploration set (or simply

su�cient set) for a cost vector B 2 R|A| if and only if

z⇤ (B)  z⇤(BC),

where BC := (ba : a 2 C) [ (la : a 2 A \ C). A subset C ✓ A is a critical set if and only if it is a

13



su�cient set that is minimal with respect to inclusion.

How to explore? While minimality of the exploration set seems desirable, regret is ultimately

driven by the cost of the solutions implemented and not their number in isolation. Hence, it is

natural to look for a cheapest (in terms of regret) solution cover of a critical set. The following

formulation finds such an exploration set.

Definition 4.2. For a given cost vector B, we let the Optimality Cover Problem (henceforth, OCP)

be the optimization problem given by

OCP (B) : z⇤OCP (B) := min
X

S2S
�B

S yS (6a)

s.t. xa 
X

S2S:a2S
yS , a 2 A (6b)

X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (6c)

xa, yS 2 {0, 1} , a 2 A,S 2 S, (6d)

where �B :=
P

a2S ba � z⇤(B).

By construction, a feasible solution (x, y) to OCP corresponds to incidence vectors of a su�cient

exploration set C ✓ A and a solution cover E of such a set.7 In what follows we refer to a solution

(x, y) to OCP and the induced pair of sets (C, E) interchangeably.

Constraints (6c) guarantee the optimality of S⇤(B) even if costs of elements outside C are set to

their lowest possible values (i.e., ba = la for all a /2 C), thus ensuring su�ciency of the feedback, and

constraints (6b) guarantee that E covers C (i.e., a 2 S for some S 2 E , for all a 2 C). Finally, (6a)

ensures that the regret associated with implementing the solutions in E is minimized. Note that

when solving (6), one can impose yS = 1 for all S 2 S⇤ (B) without a↵ecting the objective function,

thus one can restrict attention to solutions that cover optimal elements of A. Furthermore, while

the critical subset C in a solution (C, E) to OCP may not be minimal, any minimal subset C 0 of C

leads to a feasible solution (C 0, E) with the same objective value. To avoid any issues arising from

this potential lack of minimality we concentrate on optimal solutions (C, E) to OCP (B) for which

both C and E are minimal. We denote such set of optimal solutions �⇤(B), while noting that any

optimal solution to OCP can be e�ciently converted to a solution in �⇤(B).

Next, we construct a policy that focuses information collection on the solution to OCP.

4.2 An improved adaptive policy

As in Section 3.3, we can use the doubling trick to impose the appropriate exploration frequency

on a critical subset C by implementing the solutions in E , where (C, E) denotes a solution to an

7That is, (x, y) :=
�

xC , yE� where xC
a = 1 if a 2 C and zero otherwise and yE

S = 1 if S 2 E and zero otherwise.
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instance of OCP (B). Ideally we would solve OCP (B) for B = EF {Bn}, but this value is of course
unknown. For this reason we instead use the best current estimate given by B̄ni and construct a

new solution for an updated estimate at the beginning of each cycle. This leads to an adaptive

policy ⇡a, which we refer to as the OCP-based policy, that proceeds as follows:

- Starting cycle i, find a solution (C, E) 2 �⇤ �B̄ni

�

.

- Implement solutions in E until Tn({a}) � i, for all a 2 C or until the end of the cycle. Then,

if there is still time left in the cycle, implement S 2 S⇤ �B̄ni

�

for the rest of it.

Because EF {Bn} is initially unknown, the implementation above solves a proxy of OCP (EF {Bn}),
using the estimate B̄ni . For this reason, (C, E) is updated in an adaptive fashion at the beginning of

each cycle, as more information is incorporated by the estimate B̄ni . The details of the OCP-based

policy are displayed in Algorithm 1. There, we let � := {ni : i 2 N} be the set of starting points of

all cycles, and �(·) is defined below.

Algorithm 1 Adaptive policy ⇡a

Set i = 0, C = A, and E a minimal cover of A
for n = 1 to N do

if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �B̄n

�

[Update exploitation set]
if (C, E) /2 �

�

B̄n
�

then
Set (C, E) 2 �⇤ �B̄n

�

[Update exploration set]
end if

end if
if Tn({a}) < i for some a 2 [S2ES then
Try such an element, i.e., set Sn = S with S 2 E such that a 2 S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

To analyze the performance of this adaptive policy we first need to understand the e↵ect of using

estimate B̄ni instead of the exact value EF {Bn}. Suppose that the policy stabilizes, and eventually

implements the same exploration set (C1, E1) each cycle, so that mean cost estimates converge

to a vector B̄1. While it should be that b̄a,1 ⇡ EF {ba,n} for all a 2
S

S2E1 S, we would have no

guarantee on the quality of the estimates for ground elements a 2 A \
S

S2E1 S. Hence, we cannot

determine if the solution (C1, E1) is optimal for OCP (EF {Bn}) (we can only guarantee it will be

optimal for a cost vector B̄1). We refer to solutions with such limited optimality guarantees as
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feedback-consistent solutions and group them in the set given by

� (B) :=

(

(C, E) feasible to OCP (B) : (C, E) 2 �⇤
⇣

B̃
⌘

for b̃a = ba, a 2
[

S2E
S, b̃a = ua, a 2 A \

[

S2E
S

)

.

Note that Algorithm 1 solves OCP only after checking that the solution from the previous cycle

is not in �
�

B̄ni

�

, and ensures minimum information is collected in all arcs in the exploration set

(not just in a critical subset). This contributes to establishing convergence of the estimates: in

the numerical experiments, we solve OCP each cycle and ensure information collection in a critical

subset, as it has a practical advantage. Using the definition above we can derive the following

performance guarantee for the OCP-based policy.

Theorem 4.3. Let ⇡a denote the policy in Algorithm 1 and set " > 0 arbitrary. If we choose ni :=

max
n

bei1/(1+")c, ni�1

+ 1
o

, for all i � 2, then (Cni , Eni) converges to (C1, E1) 2 � (EF {Bn}).
Moreover,

R⇡a(E)(F,N)

(lnN)1+"  EF
�

z⇤OCP

�

B̄1
� 

+O
⇣

1/ (lnN)1+"
⌘

 �F
max

G+O
⇣

1/ (lnN)1+"
⌘

,

where G := max {|E| : (C, E) 2 � (EF {Bn})}, and B̄1 is a random vector that coincides with

EF {Bn} for a 2
S

S2E1 S.

As in the case of simple policy in Section 3.3, it is possible obtain a bound that scales optimally

with N (i.e. with regret proportional to lnN instead of (lnN)1+") at the expense of a larger

accompanying constant (we account for this possibility in the proof of this result in Appendix B).

Remark 4.4. Consider a version of Algorithm 1, where we impose that xa = 1 for all a 2 A when

solving OCP, i.e. one solves a proxy for the minimum-regret solution cover of A. The proof of

Theorem 4.3 simplifies to show that the performance of the underlying policy ⇡d, which we refer

to as the dynamic cover-based policy, admits an upper bound of the form

R⇡d(F,N)

(lnN)1+"  C⇤ +O
⇣

1/ (lnN)1+"
⌘

,

for " > 0 arbitrary, where C⇤ denotes the regret of a minimum-regret solution cover of A (when

costs are given by EF {Bn}). It follows that, asymptotically, the performance bound for the static

cover-based policy ⇡s is at most as good as that of its dynamic counterpart.

4.3 Performance Bound Comparisons

From the previous section we see that comparing the performance of OCP-based and cover-based

policies amounts to comparing EF
�

z⇤OCP

�

B̄1
� 

and C⇤. Unfortunately, while it is always the

case that z⇤OCP (EF {Bn})  C⇤, in general we only have that z⇤OCP (EF {Bn}) 
P

S2E �
F
S for
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(C, E) 2 � (EF {Bn}) . Thus, it is possible that neither bound dominates the other across all settings.

First, it is possible for OCP-based policy to significantly outperform cover-based policies. To see

this, consider the following example.

Example 4.5. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2

, EF {bpi,n} = EF {bqi,n} = M and

EF {bvi,n} = EF {bwi,n} = c+"
2

for n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The

shortest (expected) path in this digraph is (e).

s t

...

e

f

g

h

p1 q1

pk qk

p2 q2

Figure 2: Graph for Example 4.5.

In Example 4.5, |S| = (k+2), the only cover of A is E = S and

s = 4. Thus, the regret of cover-based policies is proportional to

either 16(k+2) lnN or (k+2) (lnN)1+" and hence does not seem

to improve upon traditional algorithms, or other benchmark

(although |A| > |E|). In contrast, we can check that G =

2, thus the regret of ⇡a is proportional to 2 (lnN)1+", which

is independent of k. The following proposition, whose proof

can be found in Appendix A.2, shows that constructing similar

examples where ⇡a has an arbitrarily better performance than

the simple policy in Section 3.3 can be done for a wide variety

of combinatorial optimization problems.

Proposition 4.6. If f(B) corresponds to a shortest path, min-

imum cost spanning tree, minimum cost perfect matching, gen-

eralized Steiner tree or knapsack problem, then there exists a

family of instances where G is arbitrarily smaller than a mini-

mum size cover of A.

The construction of examples where the cover-based policy

outperforms the OCP-based policy is more subtle and we illus-

trate it with the following example.

Example 4.7. Let G = (V,A) be the digraph depicted in Figure 3 and let S be composed of all paths

from node s to node t. Set la = 0 and ua =1 for every arc a 2 A, and F be such that for all n 2 N
we have EF {be,n} = c, EF {bd,n} = EF {bp1,n} = EF {bq1,n} ⇡ 0, EF {bp2,n} = EF {bq2,n} = c�"

2

and

EF {bfi,n} = EF {bgi,n} = c+"
2

for all i 2 {1, . . . , n} where 0 < "⌧ c. The shortest (expected) path

in this digraph is (e).

For every i 2 {1, . . . , k} let Si = (d, p
1

, q
1

, fi, gi) and S̃i = (d, p
2

, q
2

, fi, gi). Then, in Example 4.7

a minimum-regret cover of the digraph is given by {Si}k�1

i=1

[
n

S̃k

o

, which has a regret of c+"(k�1).
In contrast, a minimum-regret feedback-consistent solution to OCP (EF {Bn}) is given by {Si}ki=1

,
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which has a regret of z⇤OCP (EF {Bn}) = k". Hence, an OCP-based policy that consistently im-

plements this feedback-consistent solution as an exploration set will perform significantly better

than a minimum-regret cover-based policy. Unfortunately, an alternative feedback-consistent so-

lution to OCP (EF {Bn}) with regret equal to kc is given by
n

S̃i

ok

i=1

and we cannot guarantee

that exploration set in the OCP-based policy will not converge to this set. The issue here is that

initially the OCP-based policy could draw samples of the costs of p
1

and q
1

that are extremely

high. This event could then permanently bias the policy towards
n

S̃i

ok

i=1

as its feedback su�ces

to guarantee optimality of (e). One can see that the expected regret of the exploration set used

by the OCP-based policy is such that EF
�

z⇤OCP

�

B̄1
� 

2 (k", kc). If the distribution F is such

that EF
�

z⇤OCP

�

B̄1
� 

> c+ "(k � 1), then the dynamic cover-based policy would outperform the

OCP-based policy, on average.

p1 q1

p2
q2

s

d

t

f1

g1

f2

g2

fk

gk

e

...

Figure 3: Graph for Example 4.7.

Generally speaking, a su�cient condition for the OCP-

based policy to outperform cover-based policies is that

feedback-consistent solutions to OCP are also optimal, i.e.

�⇤(EF {Bn}) = �(EF {Bn}). Whether this condition holds de-

pends on the specific setting at hand, however, the next lemma,

which we prove in Appendix A.2, establishes that this is the case

for an important class of combinatorial problems.

Lemma 4.8. Let f(·) be a weighted basis or independent set

matroid minimization problem. Then, for B 2 R|A| in the range

of F ,
S

S2E S ✓ C for all (C, E) 2 �⇤(B).

The above implies that one can always corroborate the op-

timality of a solution to OCP based solely on the feedback it

generates. Thus, for the case of matroids, the OCP-based ac-

cepts a performance bound of

z⇤OCP (EF {Bn}) (lnN)1+" +O
⇣

1/ (lnN)1+"
⌘

and hence always outperforms cover-based policies (asymptotically). However, the analysis also

indicates that the OCP-based policy might not improve upon cover-based policies when feedback-

consistent solutions to OCP are suboptimal.

Can one do better? From above, we see that further improvement in performance might be

achieved if one is to supplement OCP-based feedback with that from a solution-cover of A, so as to

provide the optimality guarantee that feedback-consistent solutions lack. Indeed, consider a policy

that during cycle i conducts exploration such that it guarantees Tn({a}) � � i for all a 2 A, for

� 2 (0, 1) arbitrary, and that Tn({a}) � i for all a in a critical subset C; this while incurring the

lowest possible regret (according to current cost estimates). The proof techniques in this paper

allow to show that the performance of such a hybrid cover/OCP-based policy admits an upper
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bound of order8

((1� �)z⇤OCP (EF {Bn}) + � C⇤) (lnN)1+" +O
⇣

1/ (lnN)1+"
⌘

.

(We provide further details on this policy in the next section.) Note that the asymptotic perfor-

mance of this policy is better than that of the dynamic cover-based policy, and better than the

OCP-based policy (on average) provided that

(1� �)z⇤OCP (EF {Bn}) + � C⇤ < EF
�

z⇤OCP

�

B̄1
� 

,

which is possible when �⇤ (EF {Bn}) ⇢ � (EF {Bn}). Note that � must be positive if one is to

recover the optimal solution to OCP (EF {Bn}). In this regard, we see that z⇤OCP (EF {Bn}) lnN
arises as a natural lower bound on the probable performance of policies in this class.9 This raises

the question of whether this fundamental limit is shared by all admissible policies. To answer this

question, we must first establish a theoretical limit on achievable performance.

4.4 A limit on Achievable Performance

In this section we establish that any consistent policy must explore all elements in some critical

subset, at the frequency prescribed in LR. We then use this fact to establish a fundamental limit

on performance.

Consistent policies must explore critical sets. Let D contain all subsets D of suboptimal

ground elements such that they become part of every optimal solution if their costs are the lowest

possible, and that are minimal with respect to inclusion. That is, D := {D 2 D0 : D0 /2 D0 8D0 ⇢ D},
where

D0 :=

8

<

:

D ✓ A : D ✓
\

S2S⇤
(EF {Bn})

(A \ S) , D ✓
\

S2S⇤
((EF {Bn})A\D)

S ,

9

=

;

,

with BD defined as in Definition 4.1 for B 2 R|A|. By construction, for any D 2 D there exists an

alternative distribution FD under which all elements in D are part of any optimal solution. Because

said elements are suboptimal, a consistent policy must distinguish F from FD to attain asymptotic

optimality. This can be accomplished by selecting at least one element in each set D 2 D at a

minimum frequency. The following proposition, which we prove in Appendix A.2, formalizes this.

Proposition 4.9. For any consistent policy ⇡, regular F , and D 2 D we have that

lim
N!1

PF

⇢

max {TN+1

({a}) : a 2 D}
lnN

� KD

�

= 1, (7)

8The proof of such a result, which is omitted, follows from those of Theorems 3.4 and 4.3, along the lines of the
extension mentioned in Remark 4.4.

9Note that, for a given setting, one can get arbitrarily “close” (in terms of asymptotic performance) to such a
bound by suitably choosing " and �.
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where KD is a positive finite constant depending on F .

In this proposition, KD corresponds to the inverse of Kullback-Leibler distance between F and

the alternative distribution FD. Note that while Theorem 3.2 imposes lower bounds on the number

of times that a solution (a singleton) is implemented, Proposition 4.9 imposes similar bounds, but

on the number of times that certain subsets of A are selected.

From Proposition 4.9, we have that consistent policies try at least one element in each D 2 D at

a minimum frequency. Thus, such policies must at least explore “frequently” all elements on a set

C 2 C0, where

C0 := {C ✓ A : 8D 2 D, 9 a 2 C s.t. a 2 D} .

Note that by construction, any set C 2 C0 is such that z⇤ (EF {Bn})  z⇤((EF {Bn})C), thus C is a

su�cient exploration set. Similarly, because elements in D are minimal with respect to inclusion,

one has that min {z⇤((EF {Bn})C0) : C 0 ⇢ C} < z⇤ (EF {Bn}) for all C 2 C0 that are minimal with

respect to inclusion. Thus, by Definition 4.1, we conclude that C := {C 2 C0 : C 0 /2 C0 , 8C 0 ⇢ C}
essentially corresponds to the family of all critical subsets.10 This confirms the intuition that

consistent policies must actively explore at least all elements of a critical set.

A limit on achievable performance. The above establishes that any consistent solution must

generate feedback su�cient to recover the optimal solution to the underlying problem. E�ciency of

such feedback, on the other hand, follows from minimizing the regret associated with collecting such

information. In that regard, transforming the bounds in Proposition 4.9 into a valid performance

bound might be accomplished by solving the following Lower Bound Problem (LPB)

LBP : L(F ) := min
X

S2S
�F

S yS (8a)

s.t. max {xa : a 2 D} � KD, D 2 D (8b)

xa 
X

S2S:a2S
yS , a 2 A (8c)

xa, yS 2 R
+

, a 2 A,S 2 S. (8d)

In this formulation, yS and xa are meant to represent TN+1

(S)/ lnN and TN+1

({a})/ lnN , respec-

tively. Note that, without loss of generality, one can restrict attention to solutions that set xa = 0

when this does not a↵ect the objective value. Because of this, the a’s with non-zero xa correspond

to a critical subset, and the S’s with non-zero yS correspond to the cover of the critical subset.

Indeed, constraints (8b) enforce exploration conditions (7) on the critical subset and constraints

(8c) enforce the cover of the critical subset.

For any consistent policy ⇡, define ⇣⇡(F,N) :=
P

S2S �F
S TN+1

(S) to be the total additional cost

(relative to an oracle agent) associated with that policy. Note that EF {⇣⇡(F,N)} = R⇡(F,N).

10Unlike C, Definition 4.1 requires maintaining the optimal cost, thus requiring the inclusion of ground elements in
all optimal solutions. Nonetheless, such elements can be explored without incurring in regret.
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The next proposition, which we prove in Appendix A.2, ties the asymptotic bounds in (7) to the

solution to LBP to establish an asymptotic bound on the regret incurred by any consistent policy.

Proposition 4.10. For any consistent policy ⇡ and any regular F we have that

lim
N!1

PF

⇣

⇣⇡(F,N) � L(F ) lnN
⌘

= 1.

Note that the result above establishes convergence in probability (hence it can be used to bound

⇣⇡(F,N), rather than just its expectation, which is the regret). The next result, whose proof we

omit as it follows directly from Proposition 4.10 and Markov’s inequality, shows that the regret of

any consistent policy in the combinatorial setting is (at least) proportional to L(F ) lnN .

Theorem 4.11. The regret of any consistent policy ⇡ is such that for any regular F we have

lim inf
N!1

R⇡(F,N)

lnN
� L(F ),

where L(F ) is the optimal objective value of formulation LBP in (8).

Theorem 4.11 not only provides a fundamental limit on performance, it also supports the principle

behind the OCP-based policy: frequent exploration might be restricted to a solution cover of a

critical subset. Note, however, that while both OCP and LBP aim to minimize the regret associated

with covering a critical subset, LBP is more flexible in terms of the frequency and means by which

such a critical subset is covered. In particular, di↵erences in the KD values might translate into

di↵erent values of the xa variables, thus signaling di↵erent requirements for feedback collection. In

addition, since the yS variables are continuous in LBP, it is possible to cover a critical element with

multiple solutions (implemented a di↵erent frequencies implied by the yS ’s).

Define R-OCP as the relaxation of OCP where the integrality constraints (6d) over the yS vari-

ables are replaced by those of non-negativity. The next lemma, which we prove in Appendix A.2.2,

establishes the connection between LBP and R-OCP

Lemma 4.12. Let KD = K for some constant K > 0, for all D 2 D in formulation LBP. An

optimal solution (x, y) to R-OCP (EF {Bn}) is also optimal to LBP.

The connection between these formulations goes beyond that indicated in Lemma 4.12. When

KD = K for all D 2 D, one can always select a feasible solution to (8) and map it into a feasible

solution to R-OCP (via proper augmentation), and the opposite holds true as well. Thus, for the

equal KD case, one can argue that these formulations are essentially equivalent up to a minor

di↵erence: optimal solutions to R-OCP must cover all optimal ground elements; this, however, can

be done without a↵ecting performance and hence is inconsequential.

Back to bound comparison. Using the results above we can compare the performance of the

hybrid policy discussed at the end of Section 4.3 with that of an idealized optimal policy. In
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particular, ignoring the order (1/ lnN) terms assuming that N is large enough, we have that

L(F ) lnN
(a)
 K

max

z⇤R-OCP (EF {Bn}) lnN
(b)
 ((1� �)z⇤OCP (EF {BN}) + � C⇤) (lnN)1+" , (9)

where K
max

:= max {KD : D 2 D}. We ignore K
max

as it is a distribution-dependent constant

(we assume K
max

= 1). The theoretical gap in attainable performance for the proposed policies

arises from (a) and (b) above. This raises the question of whether any of these sources of gap can

be closed.

Lemma 4.12 establishes that (a) arises because both R-OCP and OCP impose equal exploration

frequencies on all elements on a critical subset. However, it is possible to eliminate (a) by modi-

fying the proposed policy such that it adjusts exploration frequencies adaptively over time. Such

is the spirit of the more complex UCB2 and UCB1-normal (Auer et al. 2002), that modify UCB1.

Nonetheless, improvement from such a modification might be shadowed by the increase in compu-

tational complexity from approximating the coe�cients KD (which depend on F ) and from solving

the resulting proxy formulation (LBP admits an integer programming formulation, but constraint

(8b) is notoriously di�cult to handle (Toriello and Vielma 2012)). We do not pursue such direction

here, as R-OCP already captures the combinatorial nature of LBP while still providing enough

tractability in practice.

With regard to the gap in (b), it can be reduced for a given setting by: (i) focusing information

collection on the solution to R-OCP instead of that to OCP; and (ii) making both " and � tend to

zero. Regarding (i), in Appendix A we present a hybrid policy that collects feedback from both a

solution cover of A and from the solution to R-OCP. The proof techniques in this paper apply to

establish a performance bound of

((1� � + ⇢)z⇤R-OCP (EF {BN}) + � C⇤) (lnN)1+" ,

for ⇢ > 0 arbitrary. With respect to (ii) above, while we can get a sequence of policies whose regret

tend to the left hand side of (b), it is not clear if it is possible to construct a single policy that

achieves this regret (at least not uniformly over all possible settings). Note that making " and �

tend to zero increases the constants accompanying order (1/ (lnN)1+") terms. Hence, achieving the

optimal asymptotic performance for identical constantsKD may come at the expense of a significant

deterioration of the practical finite-time performance. For this reason we also do not pursue such

direction here. Nonetheless, one can get arbitrarily close to the optimal performance within the

class of hybrid policies while maintaining practical implementability, thus we claim that such a class

essentially matches the fundamental limit on performance up to a distribution-dependent constant.
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5 Practical Policy Implementation

In this section, we address the practical implementation of the proposed policies. We provide

strong evidence that, at least for a large class of combinatorial problems, the proposed policies

scale reasonably well and should be implementable for real-size instances. For this, we focus our

attention on the practical solvability of OCP and R-OCP , which our policies solve repeatedly

during the horizon, for many inputs B. Note that f (B), OCP (B) and R-OCP (B) have generic

combinatorial structures and hence could be extremely hard to solve. Thus, practical tractability

of said problems is essential for implementation. For simplicity we concentrate on the solution of

OCP and comment on adaptations for R-OCP when needed.

We begin by delineating a time-asynchronous version of the OCP-based policies, which is imple-

mentable in real-time and highlights the importance of solving OCP e�ciently. Then, we focus our

attention on settings where f(B) is theoretically tractable, i.e. it is solvable in polynomial time.

This class includes problems such as shortest path, network flow, matching, and spanning tree prob-

lems (Schrijver 2003). For these problems we develop polynomial-sized mixed integer programming

(MIP) formulations of OCP, which can be e↵ectively tackled by state of the art solvers.

We also present an oracle polynomial time heuristic for OCP. This heuristic requires a polynomial

number of calls to an oracle for solving f(B). It then runs in polynomial time when f(B) is

polynomialy solvable. Furthermore, it provides a practical solution method for OCP when f(B) is

not expected to be solvable in polynomial time, but is frequently tractable in practice (e.g. medium

size instances of NP-complete problems such as the traveling salesman (Applegate et al. 2011),

Steiner tree (Magnanti and Wolsey 1995, Koch and Martin 1998, Carvajal et al. 2013), and set

cover problems (Etcheberry 1977, Ho↵man and Padberg 1993, Balas and Carrera 1996)).

5.1 A Time-constrained Asynchronous Policy

Depending on the application, real-time implementation might require choosing a solution Sn 2 S
prior to the exogenous arrival of instance Bn. However, the solution times for OCP (B), R-OCP (B),

or even f(B), could be longer than the time available to the executing policy. For example, most

index-based policies must solve an instance of f(B) between successive arrivals, which might not

be possible in practice. Fortunately, a key feature of the proposed policies is that the frequency

at which OCP (B), R-OCP (B) and f(B) need to be solved decreases exponentially. Indeed, such

problems are solved at the beginning of each cycle and the length of cycle i is ⇥
�

exp
�

i1/(1+")
��

.

Hence, as cycles elapse, there will be eventually enough time to solve these problems.

Nonetheless, as described, for example, in Algorithm 1, the OCP-based policy cannot proceed

until the corresponding problems are solved. However, one can easily modify the policy so that

it begins solving f(B) and/or OCP (B) at the beginning of a cycle, but continues to implement

solutions while these problems are solved (such solutions might be computed either upfront or in
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previous cycles). Solution to these problems update incumbent solutions as they become available,

which for long cycles would be at the beginning of the next one.

Algorithm 5, which can be found in Appendix A.3 presents one such possible modification. It

essentially applies the static cover-based policy in the transient period and eventually implements

the OCP-based policy with one cycle delay (once the cycles are long enough, the policy essentially

implements the exploration and exploitation solutions that the OCP-based policy would have im-

plemented in the previous cycle). Note that this one cycle delay does not a↵ect the asymptotic

analysis of the policy and hence the performance guarantee of the OCP-based policy is preserved.

In addition, the short-term performance of this policy is that of the static cover-based policy.

5.2 MIP formulations for OCP for Polynomially Solvable Problems

In this section we assume f(B) is polynomially solvable. However, this does not imply that neither

OCP (B) nor R-OCP (B) are tractable or practically solvable, as they might contain an exponential

(in |A|) number of variables and constraints.11 Nonetheless, the following theorem, whose proof

can be found in Appendix A.3.1, ensures that both OCP (B) and R-OCP (B) remain in NP, the

class of non-deterministic polynomially solvable problems (see e.g., Cook et al. (1998)).

Theorem 5.1. If f (B) is in P, then OCP (B) and R-OCP (B) are in NP.

Regarding the precise theoretical complexity of OCP and R-OCP, the next result, whose proof

is relegated to Appendix B, establishes that at least for a particular class of problems in P there is

no jump in theoretical complexity between f and OCP/R-OCP.

Theorem 5.2. OCP and R-OCP are in P for weighted basis or independent set matroid minimiza-

tion problems.

While it is possible to establish a non-trivial jump in theoretical complexity for problems within

P, we deem the study of the theoretical complexity of OCP/R-OCP for di↵erent problems outside

the scope of the paper. Instead, here we focus on their practical solvability. For this, we first estab-

lish the existence of polynomial-sized MIP formulations when f(B) admits a linear programming

(LP) formulation. Then, we address the case when f(B) admits a polynomial-sized extended LP

formulation, and finally, the case when f(B) does not admit such an extended formulation.

Problems with LP formulations. We present a polynomial-sized formulation of OCP when

f(B) admits an LP formulation. For that, let I be an arbitrary finite set and x 2 {0, 1}|I|; we let

the support of x be supp(x) := {i 2 I : xi = 1}.
11In most cases the natural size of f(B) is O(|A| +

P

a2A:|la|<1 ln2 la +
P

a2A:|ua|<1 ln2 ua), and la and ua are
usually bounded. For instance, in the class of shortest path problems in Example 3.5, the natural size of the considered
graph is the number of arcs |A| = O(k2) (not the number of paths) and the bounds of all arc lengths are constant. If
we instead had non-constant finite upper bounds ua (with ua > 0.03 for the analysis to remain valid), we would also
include the number of bits needed to encode them, which is equal to

P

a2A ln2 ua. We refer the interested reader to
Schrijver (2003) for more information on the input sizes of combinatorial optimization problems.
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Proposition 5.3. Let yS be the incidence vector of S 2 S, M 2 Rm⇥|A|, and d 2 Rm be such that
�

yS
 

S2S =
n

y 2 {0, 1}|A| : My  d
o

and conv
⇣

�

yS
 

S2S

⌘

=
�

y 2 [0, 1]|A| : My  d
 

. Then an

MIP formulation of OCP (B) is given by

min

|A|
X

i=1

 

X

a2A
bay

i
a � z⇤(B)

!

(10a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (10b)

Myi  d, i 2 {1, . . . , |A|} (10c)

MTw  diag(l)(1� x) + diag(b)x (10d)

dTw � z⇤ (B) (10e)

xa, y
i
a 2 {0, 1} , w 2 Rm, a 2 A, i 2 {1, . . . , |A|} , (10f)

where for v 2 Rr, diag(v) is the r ⇥ r diagonal matrix with v as its diagonal. A formulation for

R-OCP (B) is obtained by replacing yia 2 {0, 1} with 0  yia  1.

In the above, x represents the incidence vector of a critical set. Such a condition is imposed via

LP duality, using constraints (10d) and (10e), and eliminates the necessity of introducing constraint

(6c) for each solution in S. Similarly, each yi represents the incidence vector of a solution S 2 S
for OCP and fractions of solutions for R-OCP12.

Formulation (10) has O(|A|2) variables and O (m |A|) constraints. If m is polynomial in the size of

the input of f (B), then we should be able to solve (10) directly with a state of the art IP solver. If

m is exponential, but the constraints in the LP formulation can be separated e↵ectively, we should

still be able to e↵ectively deal with (10c) within a Branch-and-Cut algorithm. However, in such

a case one would have an exponential number of w variables, which would force us to use a more

intricate, and potentially less e↵ective, branch-and-cut-and-price procedure. Nonetheless, when

f(B) does not admit a polynomial-sized LP formulation, one can still provide formulations with

a polynomial number of variables, many of them also having a polynomial number of constraints.

We discuss such cases next.

Problems with Polynomial-sized Extended Formulations. The first way to construct

polynomial-sized IP formulations of OCP (B) and R-OCP (B) is to exploit the fact that many poly-

nomially solvable problems with LP formulations with an exponential number of constraints also

have polynomial-sized extended LP formulations (i.e. formulations that use a polynomial number

of auxiliary variables). A standard example of this class of problems is the spanning tree problem,

where m in the LP formulation required by Proposition 5.3 is exponential in the number of nodes

of the underlying graph. However, in the case of spanning trees, we can additionally use a known

12Because of assumption conv
⇣

�

yS
 

S2S

⌘

=
n

y 2 [0, 1]|A| : My  d
o

, yi is a convex combination of incidence

vectors, so it might correspond to fractions of more than one solution.
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polynomial sized extended formulation of the form P :=
n

y 2 [0, 1]|A| : 9 z 2 Rp, Cy +Dz  d
o

where C 2 Rm0⇥|A|, D 2 Rm0⇥p and d 2 Rm0
, with both m0 and p being only cubic on the

number of nodes (and hence polynomial in |A|) (Martin 1991, e.g.). This formulation satisfies
�

yS
 

S2S = P \ {0, 1}|A| and conv
⇣

�

yS
 

S2S

⌘

= P . Then, a MIP formulation with a polyno-

mial number of variables and constraints of OCP (B) for the spanning tree problem is obtained by

replacing (10c) with Cyi + Dzi  d, replacing (10d) with CTw  diag(l)(1 � x) + diag(b)x and

DTw  0, and adding the polynomial number of variables zi for i 2 {1, . . . , |A|}. Similar techniques

can be used to construct polynomial-sized formulations for other problems with polynomial-sized

extended LP formulations.

Problems without Polynomial-sized Extended Formulations. It has recently been shown

that there is no polynomial-sized extended LP formulations for the non-bipartite perfect match-

ing problem (Rothvoß 2013a). Hence, we cannot use the techniques in the previous paragraph

to construct polynomial-sized IP formulations of OCP (B) and R-OCP (B) for matching. For-

tunately, a simple Linear Programming observation and a result by Ventura and Eisenbrand

(2003) allow constructing a version of (10) with a polynomial number of variables. The obser-

vation is that a solution y⇤ is optimal for max
�

bT y : My  d
 

if and only if it is optimal for

max
�

bT y : MT
i y  di 8i 2 I (y⇤)

 

where I (y⇤) :=
�

i 2 {1, . . . ,m} : MT
i y

⇤ = di
 

is the set of

active constraints at y⇤, and Mi is the i-th row of M . The number of active constraints can still be

exponential for matching. However, for each perfect matching y⇤, Ventura and Eisenbrand (2003)

give explicit C 2 Rm0⇥|A|, D 2 Rm0⇥p and d 2 Rm0
, such that m0 and p are polynomial in |A|

and
n

y 2 [0, 1]|A| : 9 z 2 Rp, Cy +Dz  d
o

=
�

y 2 R|A| : MT
i y  di 8i 2 I (y⇤)

 

. Using these

matrices and vectors we can then do a replacement of (10d) analog to that for spanning trees to

obtain a version of (10) with a polynomial number of variables. We would still have an exponential

number of constraints in (10c), but these can be separated in polynomial time for matching, so

OCP (B) and R-OCP (B) for matching could be e↵ectively solved by branch-and-cut.

Perfect matching is the only explicit polynomially solvable combinatorial optimization problem

that is known not to admit a polynomial-sized extended LP formulation. However, Rothvoß (2013b)

shows that there must exist a family of matroid problems without a polynomial-sized extended LP

formulation. Fortunately, Theorem 5.2 shows that OCP/R-OCP for matroids can be solved in

polynomial time. We are not aware of any other polynomially solvable combinatorial optimization

problem which require non-trivial results to formulate OCP (B) or R-OCP (B) with a polynomial

number of variables.

We end this subsection by noting that further improvements and extensions to (10) can be

achieved. We give two such examples in Appendices A.3.2 and A.3.3. The first example shows

how (10) for OCP (B) can be extended to the case when f(B) is not in P, but admits a compact

IP formulation. The second example gives a linear-sized formulation of OCP (B) for shortest path

problems.
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5.3 Oracle Polynomial-time Heuristic

One practical advantage of using MIP formulations of OCP (B) or R-OCP (B) is that the build-in

heuristics of state of the art MIP solvers usually find good quality solutions early on. One can use

such solutions within the asynchronous policy in Algorithm 5 to update the set of solutions used to

collect information whenever these heuristics encounter a better solution. Of course, such heuristics

might not have runtime or quality guarantees, but should improve the practical performance of

our algorithm, relative to the simple policy of Section 3.3. To illustrate this, we develop one

such heuristic, which only requires a polynomial number of queries to an oracle for f(B) (plus a

polynomial number of additional operations), and that returns a solution that is equal and possibly

arbitrarily better than a minimal cover of A.

We begin by describing the heuristic for OCP (B) in Algorithm 2. This heuristic first sets all costs

to their lowest possible values, and successively solves instances of f(B), each time incorporating the

incumbent solution to the cover E , adding its ground elements to C, and updating the cost vector

accordingly. The procedure stops when the feedback from C su�ces to guarantee the optimality of

a solution (i.e. when z⇤(B̃) � z⇤(B)). To achieve e�ciency of such a feedback, the heuristic then

prunes elements in C that are not required to guarantee su�ciency of the feedback.

Algorithm 2 Oracle Polynomial-time Heuristic

Set B̃ :=
⇣

b̃a : a 2 A
⌘

= (la : a 2 A), E = ;, C = ;.

while z⇤
⇣

B̃
⌘

< z⇤ (B) do

Select S 2 S⇤
⇣

B̃
⌘

and set b̃a = ba for all a 2 S

E  E [ {S} and C  C [ S
end while
for a 2 C do

if z⇤
⇣

B̃{a}c
⌘

� z⇤ (B) then

C  C \ {a} and b̃a  la
end if

end for

Note that in each iteration of the first loop, Algorithm 2 calls an oracle for f(B) and adds at

least one ground element to C. Similarly, in the second loop, the heuristic calls such an oracle once

for every element in C. Hence, the procedure calls such an oracle at most 2 |A| times. Thus, the

heuristic makes a linear number of calls to the oracle for f(B). In particular, if f(B) is in P, then

the heuristic runs in polynomial time.

The performance of the heuristic ultimately depends on the specifics of a setting. For instance, in

the setting of Example 3.5, the heuristic returns, in the worst case, a solution with |E| = k, which is

of the order of a cover of A. In the setting of Example 4.5 on the other hand, the heuristic returns

27



a solution with |E| = 2 (in such a setting a cover of A is of order k). It is not hard to identify

settings where the heuristic performs arbitrarily better than any cover of A. In fact, one can check

such is the case for the settings presented in the proof of Proposition 4.6. We test the practical

performance of the heuristic, when embedded in the OCP-based policy, in the next section.

Finally, a heuristic for R-OCP can be obtained by using the critical set C obtained from Al-

gorithm 2. Using this critical set to fix the xa variables in (6) for R-OCP (i.e. with relaxed yS

variables) which yields an LP than can be solved in polynomial time by column generation.

6 Numerical Experiments

We illustrate the performance of the proposed policies via numerical experiments in two settings.

First, long-term experiments aim to illustrate the ability of the proposed policies to leverage the

combinatorial structures to improve upon the performance of relevant benchmark. Then, we com-

pare policy performance against benchmark especially tuned for the short-term (recall that our

policy aims at asymptotic optimality). For each setting, we first describe the benchmark and then

present numerical results for settings of the shortest path, Steiner tree and knapsack problems.

6.1 Long-term Experiments

6.1.1 Benchmark Policies and Implementation

Benchmark Policies. Two of our benchmark are versions of UCB1, adapted to improve per-

formance in the combinatorial setting. Recall that UCB1 implements solution Sn for instance n,

where

Sn 2 argmin
n

b̄S,n �
p

2 ln(n� 1)/Tn(S)
o

,

and b̄S,n denotes an estimate of the expected cost of solution S 2 S at period n, computed at the

solution level.13 We improve performance of UCB1 by: (i) conducting parameter estimation at

the ground element level; (ii) adjusting confidence interval length to reflect better the amount of

information used in estimating parameters; (iii) adjusting said length so that confidence bounds

remain within the bounds implied by the range of F ; and (iv) reducing the solution set so that it

only includes solutions that are minimal with respect to inclusion. The resulting policy, which we

denote UCB1+, implements solution Sn for instance n, where14

Sn 2 argmin
S2S

(

max

(

X

a2S
b̄a,n �

q

2 ln(n� 1)/(min
a2S

{Tn({a})}),
X

a2S
la

))

.

13This is the average cost incurred in previous implementations of solution S.
14As the e↵ect of truncation in UCB1+ and Extended UCB1+ produces mixed results in practice, our experiments

consider the point-wise minimum regret among the policies with and without truncation.
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Note that the policy incorporates many of ideas in Section 3.3, thus its performance should be

comparable to that of the simple policy. In a similar setting, Gai et al. (2012) propose another

adaptation of UCB1: a modified version of such a policy implements

Sn 2 argmin
S2S

(

X

a2S
max

n

b̄a,n �
p

(K + 1) ln(n� 1)/Tn({a}), la
o

)

for instance n, for some positive finite constant K. We denote this policy as Extended UCB1+.

Note that the performance bound in Chen et al. (2013) compares rather unfavorably to that in

Theorem 3.4 in settings with “highly” combinatorial solution sets.15 Our experiments test whether

such an ordering is preserved in practice. We test the performance of the OCP-based (adaptive),

static cover-based (simple) and dynamic cover-based (dynamic cover) policies, as well as that of

the version of the OCP-based policy that solves OCP heuristically using Algorithm 2 (heuristic),

in addition to Extended UCB1+ and UCB1+.

It is worth mentioning that all solutions to R-OCP are integral in our experiments. While we do

not observe a gap between OCP and its relaxation in the settings of this Section, in general one

can present counter-examples where that is not the case.

Implementation Details. We report results when the marginals of F are exponential (we nor-

malize the mean costs of the ground elements so that the maximum solution cost is at most one):

we tested many cost distributions and observed consistent performance. All policies start with

an initialization phase in which each solution in a common minimum size cover of A is imple-

mented. We report results where H = 5: preliminary tests using H = {5, 10, 20} always resulted

in logarithmic regrets. For the simple policy, we use an arbitrary minimum size cover of A to

perform exploration. For the adaptive policy, we updated the exploration set on each cycle. We

implemented UCB1+ and Extended UCB1+ with and without truncating indices at the implied

lower bounds. Here, we present the point-wise minimum regret among both versions of each policy.

Finally, we set K = 1 in Extended UCB1+, as this selection outperformed the recommendation in

Gai et al. (2012), and also is the natural choice for extending the UCB1 policy. The figures in this

section report average performance for N = 2000 over 100 replications, and dotted lines represent

95% confidence intervals.

All policies were implemented in MATLAB R2011b. Shortest path problems were solved using

Dijkstra’s algorithm except when implementing UCB1+ (note that because of the index compu-

tation, f(·) must be solved by enumeration). For Steiner tree and knapsack problems, we solved

standard IP formulations using GUROBI 5.0 Optimizer. The adaptive policy solves formulation

(6) of OCP using GUROBI 5.0 Optimizer. All experiments ran on a machine with an Intel(R)

Xeon(R) 2.80GHz CPU and 16GB of memory. The average running time for a single replication

15Such a O(s2 |A| lnN) performance bound, however, does not apply directly to this modification. Nonetheless, it
stands to reason that such bounds would remain valid in practice.
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ranged from less than 5 seconds for simple policy to around 1.5 minutes for the adaptive policy.16

6.1.2 Settings and Results

The settings are comprised of the shortest path problems in Examples 3.5, 4.5 and 4.7 for k = 3

(as shown in Figure 1), k = 20 and k = 20, respectively, followed by randomly generated instances

(structures and costs) of shortest path, Steiner tree and knapsack problems. We observed consistent

performance of our policies across these settings: here we only show a representative from each class.

The random settings are complementary to Examples 3.5 and 4.5 in that the optimal critical subsets

are large and hence the OCP-based policy does not have an immediate advantage.

Examples 3.5, 4.5 and 4.7. Figure 4 depict the average performance of six di↵erent policies on

Examples 3.5 (left), 4.5 (center) and 4.7 (right), respectively.
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Figure 4: Average performance of di↵erent policies on Examples 3.5 (left), 4.5 (center) and 4.7
(right).

On Example 3.5, the adaptive and heuristic policies perform significantly better than the other

policies, as they successfully limit exploration to feedback-consistent solution sets. The static cover

policy provides a slightly better performance than its dynamic counterpart (the minimum size cover

has 4 elements). The situation is essentially the same on Example 4.5, only that this time Extended

UCB1+ initially outperforms the simple and dynamic cover policies (recall that in this setting, the

minimum size cover is equal to S, which has size 22). In contrast, minimum regret exploration set

of the adaptive policy is only of size 2, which helps it achieve the best performance. (Note that

for this setting, the heuristic solution to OCP tends to find the actual optimal solution, even with

unreliable estimates.) On Example 4.7, the heuristic solution to OCP coincides with the minimum

regret cover of S, thus the performance of heuristic coincides with those of the cover-based policies,

which in turn are outperformed by UCB1+ (note that this latter policy rarely uses the arcs p
2

and

16Note, however, that while the running times of simple and adaptive policies grow (roughly) logarithmically with
the horizon, those of UCB1+ and Extended UCB1+ grow linearly.
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q
2

, since the costs of p
1

and q
1

close to 0).

In terms of e�cient information collection, one can divide the set of ground elements (arcs) into

three classes: those that are part of the optimal solution (Optimal arcs), those that are covered

by at least one optimal solution to OCP (EF {Bn}) (exploration arcs), and the rest (uninformative

arcs). Table 1 shows the average number of times each type of arc is tested up to horizon N = 2000

by each policy. Note that the adaptive and heuristic policies spend significantly less time exploring

uninformative arcs.

Example 3.5 Example 4.5 Example 4.7
Opt. Arcs Exp. Arcs Uninf. Arcs Opt. Arcs Exp. Arcs Unin. Arcs Opt. Arcs Exp. Arcs Unin. Arcs

Adaptive 1958.93 470.67 2.25 1858.25 548.12 4.55 140.03 214.50 1.00
Heuristic 1951.62 472.18 3.38 1918.43 524.20 3.32 106.83 215.94 35.71

Dyn. Cover 1885.88 482.03 38.00 1159.20 734.66 37.15 119.47 214.68 38.09
Simple 1886.52 481.91 37.81 1128.79 749.88 37.15 142.95 212.59 37.19
UCB1+ 1660.75 533.35 42.12 474.31 929.80 66.61 92.45 217.75 24.61

Ext. UCB1+ 791.31 684.36 364.72 870.88 795.78 53.76 14.87 219.02 151.79

Table 1: Average number of trials of di↵erent arcs up to horizon N = 2000 over di↵erent policies
on Examples 3.5, 4.5 and 4.7.

Shortest path problem. We consider a shortest path problem on a randomly generated layered

graph (Ryzhov and Powell 2011). The graph consists of a source node, a destination node, and

5 layers in between, each containing 4 nodes. In each layer, every node (but those in the last

layer) is connected to 3 randomly chosen nodes in the next layer. The source node is connected

to every node in the first layer and every node in the last layer is connected to the destination

node. Mean arc costs are selected randomly from the set {0.1, 0.2, . . . , 1} and then normalized.

The representative graph is such that |A| = 56, |S| = 324, and while the minimum size cover of

A is of size 13, the minimum regret exploration set is of size 16 even though the implied critical

subset has 40 arcs. The left panel in Figure 5 depicts the average performance of di↵erent policies

on this setting. We see that the adaptive and heuristic policies outperform the benchmark. (Note,

however, that UCB1+ outperforms the cover-based policies, in the short term.)

Knapsack problem. Here the set A represents items that might go into the knapsack. The

solution set S consists of the subsets of items whose total weights do not exceed the knapsack

weight limit. Weight and utility of items, as well as the weight limit, are selected randomly. The

representative setting is such that |A| = 20, |S| = 24680, the minimum size cover is of size 4, and

the minimum regret exploration set is of size 8 with an implied critical subset of size 17. The right

panel in Figure 5 depicts the average performance of di↵erent policies on the representative for the

knapsack setting. We see that the adaptive policy outperform the benchmark, with the heuristic

and dynamic cover policies being close seconds.

Minimum Steiner tree problem. We consider a generalized version of the Steiner tree problem

(Williamson and Shmoys 2011), where for a given undirected graph with non-negative edge costs
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Figure 5: Average performance of di↵erent policies on the representative from the shortest path
(left) and knapsack (right) settings.
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Figure 6: Average performance of di↵erent policies on the representative from the Steiner tree
setting with zero (left) and positive (right) lower bounds.

and a set of pairs of vertices, the objective is to find a minimum cost subset of edges (tree) such

that every given pair is connected in the set of selected edges. The graphs as well as the pairs

of vertices are generated randomly, as well as the mean cost values. The representative setting is

such that |A| = 18, |S| = 10651, the minimum size cover is of size 2. The left panel in Figure

6 depicts average performance when all cost lower bounds are set to zero. In this representative

setting, we have that the minimum regret exploration set is of size 7 with an implied critical subset

of size 17. In this case, all arcs (but those trivially suboptimal) are critical, thus the dynamic cover

policy is essentially equivalent to the adaptive policy, which is corroborated by our results. The

right panel in Figure 6 depicts average performance when lower bounds are chosen randomly.17

The representative setting is such that the minimum regret exploration set is of size 5 with an

implied critical subset of size 12. Note that the adaptive policy outperforms the benchmark as it

successfully limits exploration to a critical set.

17The non-concave behavior of the regret curve of UCB1+ arises only in the transient as a by-product of truncation,
and it disappears at around n = 1200.
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6.2 Short-term Experiments

6.2.1 Benchmark Policies and Implementation

Benchmark Policies. Our benchmark policies are adaptations of the Knowledge-Gradient (KG)

policy in Ryzhov et al. (2012) and the Gittins index approximation in Lai (1987) to our setting.

Both policies require prior knowledge of the time horizon N , and because of this, several runs of

the benchmark policies are necessary to construct their cumulative regret curves.

The KG policy requires a prior distribution for the cost and hyper-parameters. In our imple-

mentation, we use the Exponential-Gamma conjugate prior for each ground element. That is, the

algorithm assumes that ba,n follows an exponential distribution with rate µa, but this rate itself

is random, and initially distributed according to a Gamma distribution with parameters ↵a,0 and

�a,0. At time n, the posterior distribution of µa is a Gamma with parameters

↵a,n = ↵a,0 + Tn({a}), �a,n = �a,0 +
X

m<n:a2Sm

ba,m, a 2 A.

Thus at time n, the KG algorithm implements solution SKG
n , where

SKG
n 2 argmin

S2S

(

X

a2S

�a,n
↵a,n � 1

� (N � n)En
S

(

min
S02S

(

X

a2S0

�a,n
↵a,n � 1

)

� min
S02S

(

X

a2S0

�a,n+1

↵a,n+1

� 1

)))

,

where the expectation is taken with respect to {ba,n : a 2 S}. The expectation above corresponds to

the knowledge gradient term vKG,n
S in the notation of Ryzhov et al. (2012). Unlike in that paper,

there is no closed form expression for vKG,n
S in our setting. Our plain vanilla implementation

of the KG algorithm computes such a term via Monte Carlo simulation, and performs the outer

minimization via enumeration. The complexity of the implementation limited the size of the settings

we tested.

The second benchmark is an approximation based on the Gittins index rule which in the finite-

horizon undiscounted settings takes the form of an average productivity index (see Niño-Mora

(2011)), and although it is not optimal in general, it is still applied heuristically. Our implementa-

tion assigns an index with each ground element, and computes the index of a solution as the sum

of the indices of the ground elements it includes. The policy requires a parametric representation

of the uncertainty. To mimic a setting where the functional form of reward distributions is un-

known, we consider the approximation in Lai (1987) based on normally distributed rewards and

use Normal/Normal-Gamma conjugate priors (this is motivated by a central limit argument): in

our approximation, the index of a ground element a 2 A at the arrival of instance n is given by

gan,N (µa,n,�a,n,↵a,n,�a,n) =

 

µa,n �

s

�a,n
(↵a,n � 1)�a,n

h

✓

�a,n � �a,0

N � n+ 1 + �a,n � �a,0

◆

!

+

,
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where µa,n and �a,n are the mean and variance of the normal posterior, respectively, ↵a,n and

�a,n are the hyper parameters of the Gamma posterior, respectively, and h(·) approximates the

boundary of an underlying optimal stopping problem. The policy implements solution SGitt
n , where

SGitt
n 2 argmin

S2S

(

X

a2S
gan,N (µa,n,�a,n,↵a,n,�a,n)

)

.

Implementation Details. The implementation details are as in the long-term experiments. The

average running time for a single replication ranged from around one second for the adaptive

policy to around 2 seconds for Gittins to less than 10 minutes for KG. We exclude the results for

the benchmark in the long-term experiments, because they were consistently outperformed by the

adaptive policy.

6.2.2 Settings and Results

We consider randomly generated (structure and costs) settings of shortest path, Steiner tree and

knapsack problems. We observed consistent performance of the policies across settings, and show

only a representative setting for each class of problems. There, the total number of periods is

selected so as to visualize the value at which the adaptive policy begins outperforming the bench-

mark. In all settings, the benchmark policies initially provide a better performance compared to

the adaptive policy, but the latter policy eventually surpasses the benchmarks for moderate values

of N . The same holds true for the case of the heuristic policy.

Shortest path problem. The left panel at Figure 7 depicts the average performances for a

shortest path problem in a layered graph with 5 layers, each with 4 nodes, and 2 connections

between each inner layer. The representative setting is such that |A| = 40, |S| = 64, the minimum

size cover is of size 9, and the minimum regret exploration set is of size 10 with an implied critical

subset of size 23.

Minimum Steiner tree problem. The central panel at Figure 7 depicts the average performances

on a representative from the Steiner tree setting. The representative setting is such that |A| = 9,

|S| = 50, the minimum size cover is of size 2, and the minimum regret exploration set is of size 4

with an implied critical subset of size 8.

Knapsack problem. Figure 7 depicts the average performances on a representative from the

knapsack setting. (Here we report on the average behavior over 500 replications so that the con-

fidence intervals do not cross.) The representative setting is such that |A| = 11, |S| = 50, the

minimum size cover is of size 7, and the minimum regret exploration set is of size 2 with an implied

critical subset of size 5.
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Figure 7: Average performance of di↵erent policies on the representative from the shortest path
(left), Steiner tree (center) and knapsack (right) settings.

7 Final Remarks and Extensions

In this paper we have studied a class of sequential decision-making problems where the under-

lying single-period decision problem is a combinatorial optimization problem, and there is initial

uncertainty about its objective coe�cients. By framing the problem as a combinatorial multi-

armed bandit, we have adapted key ideas behind results in the classical bandit setting to develop

asymptotically e�cient policies, and gave theoretical and practical evidence that its performance

is near-optimal among practical policies. In doing so, we have shown that in addition to answering

the question of when (with what frequency) to explore, which is key in the traditional setting, in the

combinatorial setting one must also answer the questions of what and how to explore. We answer

such questions by explicitly solving for the cheapest optimality guarantee for the optimal solution

to the underlying combinatorial problem (i.e. by solving OCP). We have shown evidence that the

proposed policies are scalable and implementable in practice, and our numerical experiments show

they perform reasonably well relative to relevant benchmark, both in the short- and long-term.

Finally, we note that the flexibility of the OCP-based policies allows them to be easily extended

or combined with other techniques that consider similar what-and-how-to-explore questions. For

instance the OCP-based policy can be easily combined with the barycentric spanner of Awerbuch

and Kleinberg (2004) to extend our results from element-level observations to set- or solution-

level observations as follows. For a particular application it might be the case that the decision

maker only has access, for example, to the total cost incurred by implementing solution Sn. We

begin by showing how a cover-based policy can be adapted to this last setting. For a set of

ground elements S ✓ A, let IS 2 {0, 1}|A| denote the incidence vector of the ground set (so that

S = supp (IS)). We say a solution set E recovers a set E ✓ A if for each a 2 E, there exists a

vector �(a) := (�S(a), S 2 E) such that

X

S2E
�S(a)IS = I{a}. (11)

35



Without loss of generality, one can assume that each ground element is recovered by at least one

solution set.18 Let E be a solution set that recovers A, and let � := (�(a), a 2 A) be such that
P

S2E �S(a)IS = I{a}, for all a 2 A. One can implement a cover-based policy with E playing the

role of a cover while replacing the estimate in (5) with

b̄a,n :=
X

S2E

�S(a)

Tn(S)

X

m<n:Sm=S

X

a2S
ba,m, a 2 A. (12)

The estimate above reconstructs the expected cost of each solution in E and uses (11) to translate

such estimates to the ground-element level. Implementing this modification requires precomputing

a solution set E recovering A. Such a set can be selected so that |E|  |A|, and computed by

solving O(|A|) instances of f(·) (see e.g., the algorithm in Awerbuch and Kleinberg (2004)). A

close inspection to the proof of Theorem 3.4 reveals that its performance guarantee would remain

valid (modulo changes to constants) after incorporating the new estimation procedure.

The idea above can also be used to extend the OCP-based policy to this new setting. In particular,

Algorithm 1 would consider the estimates in (12) and (C, E) to be solution to an alternative version

of OCP where in addition to (6b)-(6d), one imposes that E recovers C, that is

OCP 0(B) : min
X

S2S
�B

S yS (13a)

s.t.
X

S2S
�S(a)IS = xaI{a}, a 2 A (13b)

�S(a)  Q yS , S 2 S, a 2 A (13c)

��S(a)  Q yS , S 2 S, a 2 A (13d)
X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (13e)

xa, yS 2 {0, 1} , �S(a) 2 R, a 2 A,S 2 S, (13f)

where Q is an instance-dependent constant, whose size is polynomial in the size of the instance.

The additional constraints(13b)-(13d) in OCP 0 ensure that the solution set E recovers the critical

subset C. Like OCP, the formulation above can be specialized to accommodate the combinatorial

structure of f(·) (as shown in Section 5.2). The performance guarantee in Theorem 4.3 would

remain valid with the constants associated to OCP 0. We anticipate that the challenge of solving

OCP 0 e↵ectively is comparable to that of solving OCP.

18If this is not the case, then it must be that a appears in a solution if and only if that solution also includes some
ground element a0. Thus, one can (w.l.o.g.) combine such ground elements into a single element. Alternatively, one
can assign costs only to one of such elements, so as to not modify the combinatorial structure of the solution set.
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Applegate, D., Bixby, R., Chvátal, V. and Cook, W. (2011), The Traveling Salesman Problem: A
Computational Study, Princeton Series in Applied Mathematics, Princeton University Press.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002), ‘Finite-time Analysis of the Multiarmed Bandit
Problem’, Machine Learning 47(2-3), 235–256.

Auer, P., Cesa-bianchi, N., Freund, Y. and Schapire, R. E. (2003), ‘The non-stochastic multi-armed
bandit problem’, SIAM Journal on Computing 32, 48–77.

Awerbuch, B. and Kleinberg, R. D. (2004), Adaptive routing with end-to-end feedback: distributed
learning and geometric approaches, in ‘Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing’, STOC ’04, ACM, New York, NY, USA, pp. 45–53.

Balas, E. and Carrera, M. C. (1996), ‘A dynamic subgradient-based branch-and-bound procedure
for set covering’, Operations Research 44, 875–890.

Berry, D. and Fristedt, B. (1985), Bandit Problems, Chapman and Hall, London, UK.
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A Omitted Proofs and Complementary Material

A.1 Appendix for Section 3

The static cover-based policy is detailed in Algorithm 3. Next, we prove its performance bound.

Algorithm 3 Static cover-based policy ⇡s(E)

Set i = 0, and E a minimal cover of A
for n = 1 to N do

if n 2 � then
i i+ 1, and set S⇤ 2 S⇤ �B̄n

�

[Update exploitation set]
end if
if Tn({a}) < i for some a 2 S, for some solution S 2 E then
Implement such a solution, i.e., set Sn = S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

Theorem 3.4. For any cover E, let ⇡s(E) denote static cover-based policy and for an arbitrary � > 1

let H := (1+�)
�

s/�F
min

�

2

, where s := max {|S| : S 2 S} and �F
min := min

�

�F
S : �F

S > 0 , S 2 S
 

.

If we choose ni := max
�

bei/Hc, ni�1

+ 1
 

, for all i � 2, then

R⇡s(E)(F,N)

lnN
 (1 + �)

C
�

�F
min

�

2

s2 +O(1/ lnN)  (1 + �)
�F

max
�

�F
min

�

2

|E| s2 +O(1/ lnN),

where �F
max := max

�

�F
S : S 2 S

 

, and C :=
P

S2E �
F
S . If instead we choose ni := max{bei1/(1+")c, ni�1

+

1}, with " > 0 arbitrary, for all i � 2, then

R⇡s(E)(F,N)

(lnN)1+"  C +O(1/ (lnN)1+")  �F
max |E|+O

⇣

1/ (lnN)1+"
⌘

.

Proof. First, we prove the result for the case ni =
�

bei/Hc, ni�1+1

 

. The regret of the simple policy

⇡s(E) stems from two sources: exploration and errors during exploitation. That is,

R⇡s(E)(F,N) =
X

S2S
�F

S EF {TN+1

(S)} = R⇡s(E)
1

(F,N) +R⇡s(E)
2

(F,N), (A-1)

where R⇡s(E)
1

(F,N) is the exploration-based regret, i.e., that incurred while Tn({a}) < i for some

a 2 A at instance n in cycle i, and R⇡s(E)
2

(F,N) is the exploitation-based regret, i.e., that incurred

when Tn({a}) � i for all a 2 A. We prove the result by bounding each term above separately.

40



In the remainder of this proof, E and P denote expectation and probability when costs are

distributed according to F and policy ⇡s(E) is implemented.

Step 1 (Exploration-based regret). By construction, ⇡s(E) implements each solution S 2 E at

most dH lnNe while exploring. Therefore

R⇡s(E)
1

(F,N)  C(H lnN + 1)  |E|�F
max(H lnN + 1). (A-2)

Step 2 (Exploitation-based regret). Exploitation-based regret during cycle i is due to imple-

menting suboptimal solutions when all elements in A have been tried at least on i instances.

Let i0 := inf {i 2 N, i � 2 : ni � i |E| , ni+1

� ni > |E|} denote the first cycle in which one is sure

to exploit on at least one instance. Note that i0 does not depend on N , thus neither does the

exploitation-based regret prior to cycle i0.

Fix i � i0. With some abuse of notation, for n 2 [ni, ni+1

� 1], let S̄n 2 S⇤(B̄n) be any solution

with minimum average cost at time ni. We have that

R⇡s(E)
2

(F,N)  ni0�
F
max + E

8

<

:

dH lnNe
X

i=i0

ni+1�1

X

n=ni

P
�

S̄n /2 S⇤ (E {Bn}) , Tn({a}) � i , 8 a 2 A
 

�F
¯Sn

9

=

;

 ni0�
F
max +

1
X

i=i0

ni+1�1

X

n=ni

P
�

S̄n 62 S⇤(E {Bn}) , Tn({a}) � i , 8 a 2 A
 

�F
max. (A-3)

Next we find an upper bound for the probability inside the sum in (A-3). For this, note that

�

S̄n 62 S⇤(E {Bn})
 

✓
⇢

|z̄⇤n � E {z̄⇤n}| �
�F

min

2

�

[
⇢

|z̄n � E {z̄n}| �
�F

min

2

�

, (A-4)

where z̄n :=
P

a2 ¯Sn

b̄a,n, z̄⇤n :=
P

a2S⇤
b̄a,n for some S⇤ 2 S⇤(E {Bn}), and

�F
min := min

�

�F
S : �F

S > 0 , S 2 S
 

,

is the minimum optimality gap. Indeed, note that
n

|z̄⇤n � E {z̄⇤n}| <
�

F
min
2

o

and
n

|z̄n � E {z̄n}| <
�

F
min
2

o

implies that z̄n > z̄⇤n.

The next proposition, whose proof can be found in Appendix B, allows us to bound (A-3) using

the observation above.
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Proposition A.1. For any fixed S ✓ A, n 2 N, i 2 N, and ✏ > 0 we have that

P
(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� ✏, Tn({a}) � i , 8a 2 S

)

 2 K(✏) |S| exp
⇢

� 2✏2i

|S|2 L2

�

,

where L := max {ua � la : a 2 A}, and K(✏) is a positive finite constant that only depends on ✏.

Define s := max {|S| : S 2 S}: using the above, one has that

P
⇢

|z̄⇤n � E {z̄⇤n}| �
�F

min

2
, Tn({a}) � i , 8 a 2 A

�



X

S2S
P
(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� �F
min

2
, Tn({a}) � i , 8 a 2 S

)

(a)
 2 Ks |S| exp

(

��F
min

2

i

2s2L2

)

,

whereK is a positive finite constant, and (a) follows from noting that |S|  s for all S 2 S. Consider

(A-4): applying Proposition A.1 and the above to the first and second terms on its right-hand side,

respectively, one obtains

P
�

S̄n /2 S⇤(E {Bn}) , Tn({a}) � i , 8 a 2 A
 

 4 Ks |S| exp {�C
1

i} , (A-5)

where C
1

:= �F
min

2

/(2s2L2). Note that this final bound does not depend on n but rather on i.

Now, for i � i0, one has that ni+1

 e(i+1)/H and ni � e(i�1)/H , hence

ni+1

� ni  C
2

e
i
H , i � i0,

where C
2

:= e1/H � e�1/H . Using this latter fact, (A-3) and (A-5) we conclude that

R⇡s(E)
2

(F,N)  ni0 �
F
max +

1
X

i=i0

C
3

exp

⇢

i

✓

1

H
� C

1

◆�

,

where C
3

:= 4 Ks |S|�F
maxC2

. Because H > 1/C
1

we have that

R⇡s(E)
2

(F,N)  C
4

, (A-6)

where C
4

is a positive finite constant. Combining (A-1), (A-2) and (A-6) we conclude that

R⇡s(E)(F,N)  CH lnN + C
5

 |E|�F
maxH lnN + C

5

,

where C
5

is a positive finite constant. The result follows from the definition of H.
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Consider now the case when ni := max{bei1/(1+")c, ni�1

+1}. By construction, ⇡s(E) implements

each solution S 2 E at most
l

(lnN)1+"
m

while exploring, thus

R⇡s(E)
1

(F,N)  C
⇣

(lnN)1+" + 1
⌘

 |E|�F
max

⇣

(lnN)1+" + 1
⌘

.

To bound R⇡s(E)
2

(F,N) note that ni+1

� ni  e(i+1)

1/("+1)
for i � i0. Also, let i00 � i0 be such that

i C
1

/2 > (i+ 1)1/(1+") for i � i00. The arguments in Step 2 above lead to the bound

R⇡s(E)
2

(F,N)  ni00 �
F
max + C̃

3

1
X

i=i00

e(i+1)

1/(1+")�i C1  ni00 �
F
max + C̃

3

1
X

i=i00

e�C1 i/2 = C̃
4

,

where C̃
3

and C̃
4

are finite positive constants. Then, we have that

R⇡s(E)(F,N)  C (lnN)1+" + C̃
5

 |E|�F
max (lnN)1+" + C̃

5

,

where C̃
5

is a positive finite constant.

A.2 Appendix for Section 4

A.2.1 Performance Bound Comparisons

Proposition 4.6. If f(B) corresponds to a shortest path, minimum cost spanning tree, minimum

cost perfect matching, generalized Steiner tree or knapsack problem, then there exists a family of

instances where G is arbitrarily smaller than a minimum size cover of A.

Proof. For shortest path problems the family of instances is that from Example 4.5, which is

parametrized by an integer k. For this family of instances we have that the unique cover of A is

given by all s � t paths which is of order k. In contrast, solutions in �(B) include path {e} and

any other path, hence their size is 2, independent of k.

For minimum cost spanning tree, consider a complete graph G = (V,A) with |V | = k nodes,

ba = 0 for all a 2 {(i, i+ 1) : i < k} and la = M > 0 for all a /2 {(i, i+ 1) : i < k}. One can check

that any cover of A is of size at least (k � 2)/2. In contrast, solutions in �(B) are of size of 1,

independent of k. Note that the Steiner tree problem generalizes the minimum cost spanning tree

problem, thus this instance covers the Steiner tree case as well.

For minimum cost perfect matching consider a complete graph G = (V,A) with |V | = 2k nodes,

ba = 0 for all a 2 {(2i+ 1, 2i+ 2) : i < k} and la = M > 0 for all a /2 {(2i+ 1, 2i+ 2) : i < k}.
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One can check that any cover of A is of size at least 2(k � 1). In contrast, solutions in �(B) are of

size 1, independent of k.

Finally, for the knapsack problem, consider the items A := {0, . . . , Ck}, where C 2 N denotes

the knapsack capacity, and weights w 2 RCk+1 so that w
0

= C, and wi = 1 for i > 0. In addition,

set b
0

:= 0 and ui := �M < 0 for i > 0. Note that in this case the problem is of maximization.

One can check that any cover of A is of size at least k + 1. In contrast, solutions in �(B) are of

size 1, independent of k.

Lemma A.2. Consider a matroid on a set A. Let R ✓ A, {a
1

, . . . , ak} ✓ R and b 2 A \R be such

that for all i  k, R \ {a
1

, . . . , ai�1

} has a circuit containing aiand R[ {b} has a circuit containing

b. Then R \ {a
1

, . . . , ak} [ {b} has a circuit containing b.

Proof. We show by induction on i that R\{a
1

, . . . , ai�1

}[{b} has a circuit containing b for all i  k.

The base case is straightforward as it simply states that R[ {b} has a circuit containing b. For the

inductive step assume for i  k that there exists a circuit C ✓ R \ {a
1

, . . . , ai�1

} [ {b} such that

b 2 C. If ai /2 C then C ✓ R \ {a
1

, . . . , ai} [ {b}. If ai 2 C note that by the lemma’s assumptions

there exists a circuit C 0 ✓ R \ {a
1

, . . . , ai�1

} such that ai 2 C 0. Then ai 2 C \ C 0 and b 2 C \ C 0.

Then, by Schrijver (2003, Theorem 39.7) there exists a circuit C̄ ✓ (C [ C 0)\{ai} such that b 2 C̄.

We conclude the induction hypothesis holds for i+1 by noting that C̄ ✓ R \ {a
1

, . . . , ai}[ {b}.

Lemma 4.8. Let f(·) be a weighted basis or independent set matroid minimization problem. Then,

for B 2 R|A| in the range of F ,
S

S2E S ✓ C for all (C, E) 2 �⇤(B).

Proof. We first show that there exists a unique critical subset C. To simplify the exposition, we

assume S⇤ (B) = {S⇤} is a singleton. Also, for S 2 S, we let eS denote the incidence vector

associated with S (i.e., eSa 2 {0, 1}, a 2 A, is such that eSa = 1 if a 2 S and eSa = 0 otherwise).

Let P := conv
�

eS
 

S2S ✓ Rn be the independent set (base) polytope of S. Then, for B feasible,

S⇤ 2 S⇤ (B) if and only if
P

a2S⇤ ba 
P

a2S ba for any S 2 S such that eS
⇤
and eS are adjacent

vertices in P . Furthermore, each adjacent vertex to eS
⇤
can be obtained from S⇤ by: removing

(R), adding (A) or exchanging (E) a single element of S⇤ (Schrijver 2003, Theorem 40.6). Thus, we

construct the set C so that S⇤ is always optimal if and only if the cost of all elements of C are at

their expected value. The construction procedure starts with C = S⇤. In some steps we distinguish

between S corresponding to independent sets or bases.

R. (for the independent set case) From the optimality of S⇤ removing an element never leads to

optimality.
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A. (for the independent set case) For each a 2 A \ S⇤ such that S⇤ [ {a} is an independent set;

if la < 0, then add a to C.

E. (for both cases) For each a 2 A \ S⇤, add a to C if

la < max
�

ba0 : a
0 2 S⇤, S⇤ [ {a} \

�

a0
 

is an indep. set (base)
 

.

By construction, covering all elements in C guarantees optimality of S⇤, and not covering some

guarantees S⇤ is no longer optimal. Note that the set C is unique. For the case of multiple optimal

solutions we simply repeat this procedure for each one.

We now show that for any B,
S

S2E S ✓ C for all (C, E) 2 �⇤ (B). For this, suppose that

there exists a solution (C, E 0) 2 �⇤ (B) such that there exists S0 2 E 0 with S0 \ C 6= ;. We

will show the result by noting that finding a minimum cost independent set or basis S such that

C \ S0 ✓ S is achieved by greedily adding elements to C 0 := C \ S0 (because C 0 ✓ S0, it is an

independent set), and by proving that such a procedure does not add elements in A \
S

S2S⇤
(B)

S,

thus contradicting the optimality of (C, E 0). Indeed, suppose that this is not the case and let ak be

the first one of these elements that is added (w.l.o.g. assume that A =
�

a
1

, . . . , a|A|
 

is such that

ba1  ba2  . . .  ba|A|). Define Dj :=
n

ai 2
S

S2S⇤
(B)

S : i  j
o

for j  k. Because every solution

in S⇤(B) can be constructed through the greedy algorithm and ak 2 A \
S

S2S⇤
(B)

S we have that

Dk [ {ak} must have a circuit containing ak. Hence, the only way the greedy augmentation of C 0

may add ak is if it skipped some elements of Dk (which may happen as we were forced to start

with elements of C 0). Let m � 1 and i
1

, . . . , im < k be such that aij 2 Dk for all j  m and such

that the elements of Dk skipped by the greedy extension of C 0 are precisely {ai1 , . . . , aim} (note

that by the assumption on ak, all elements in {a
1

, . . . , ak�1

} picked by the greedy algorithm are

the original elements in C 0 or elements in Dk). Hence for every j  m, C 0 [Dij�1

\
�

ai1 , . . . , aij�1

 

has a circuit containing aij . Then, by Lemma A.2 we have that C 0 [Dk \ {ai1 , . . . , aim}[ {ak} has

a circuit containing ak, which contradicts the fact that the greedy augmentation of C 0 added ak.

This concludes the proof.

A.2.2 A Limit on Achievable Performance

Proposition 4.9. For any consistent policy ⇡, regular F , and D 2 D we have that

lim
N!1

PF

⇢

max {TN+1

({a}) : a 2 D}
lnN

� KD

�

= 1, (7)
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where KD is a positive finite constant depending on F .

Proof. We begin by imposing some structure on F .

Preliminaries. We assume Fa, the common distribution of ba,n, n 2 N, is uniformly continuous

with respect to Lebesgue measure in R and let fa denote its density function. To simplify the

notation we assume that these functions accept parametric representations, and let ✓a denote the

“true” parameter for fa, a 2 A. Finally, we let ⇥a denote the set of feasible parameters for fa, a 2 A.

These mild conditions are fulfilled by most commonly used distribution functions.

For �a 2 ⇥a, let Ia(✓a,�a) denote the Kullback-Leibler distance between Fa(·; ✓a) and Fa(·;�a),

i.e.,

Ia(✓a,�a) =

Z 1

�1
[ln(fa(xa; ✓a)/fa(xa;�a))]fa(xa; ✓a) dxa.

Define ba(�a) := EFa(·:�a)
{ba,n}, n 2 N. In addition to the conditions above, we assume that

0 < Ia(✓a,�a) < 1 whenever ba(✓a) > ba(�a). This indistinguishability condition implies that

distributions with di↵erent mean costs are not distinguishable based on a finite sample. Finally,

define ✓ = (✓a : a 2 A) and let E� and P� denote the expectation and probability induced when F

receives the parameter � := (�a : a 2 A) 2 R|A|. Also, define S⇤
� := S⇤ (E� {Bn}).

Proof of the result. Consider D 2 D as defined in Section 4.4, and take � 2 R|A| so that �a = ✓a

for a /2 D, and that D ✓ S⇤ for all S⇤ 2 S⇤
�. By the consistency of ⇡, one has that

E�

8

<

:

N �
X

S⇤2S⇤
�

TN+1

(S)

9

=

;

= o(N↵),

for any ↵ > 0. By construction, each optimal solution under � tries each a 2 D when implemented.

Thus, one has that
P

S⇤2S⇤
�

TN+1

(S)  max {TN+1

({a}) : a 2 D}, and therefore

E� {N �max {TN+1

({a}) : a 2 D}}  E�

8

<

:

N �
X

S⇤2S⇤
�

TN+1

(S)

9

=

;

= o(N↵). (A-7)

Take ✏ > ↵. Define I(D,�) := |D|max {Ia(✓a,�a) : a 2 D}, D 2 D. Applying Markov’s inequality

to N �max {TN+1

({a}) : a 2 D} and using (A-7), one has that

(N �O(lnN)) P�

⇢

max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

= o(N↵).

46



The above can be re-written as

P�

⇢

max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

= o(N↵�1). (A-8)

For a 2 D and n 2 N define

Ln(a) :=
n
X

k=1

ln
⇣

fa(b
k
a; ✓a)/fa(b

k
a;�a)

⌘

,

where bka denotes the k-th cost observation for a 2 D when policy ⇡ is implemented. Also, define

the event

⌅(N) :=

⇢

LTN+1({a})(a) 
(1� ↵) lnN

|D| for all a 2 D , max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

,

and note that

P� {⌅(N)}  P�

⇢

max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

.

Next, we relate the probability of the event ⌅(N) under the two parameter configurations.

P� {⌅(N)} =

Z

!2⌅(N)

dP�(!)

(a)
=

Z

!2⌅(N)

Y

a2D
exp(�LTN+1({a})(a)) dP✓(!)

(b)
�

Z

!2⌅(N)

exp(�(1� ↵) lnN) dP✓(!)

= N↵�1P✓ {⌅(N)} ,

where (a) follows from noting that probabilities under � and ✓ di↵er only in that cost observations

in D have di↵erent probabilities under � and ✓, and (b) follows from noting that LTN+1({a})(a) 

(1� ↵) lnN/ |D| for all ! 2 ⌅(N).

From above and (A-8) we have that

lim
N!1

P✓ {⌅(N)}  lim
N!1

N1�↵ P� {⌅(N)} = 0. (A-9)
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Now, fix a 2 D. By the Strong Law of Large Numbers we have that

lim
n!1

max
mn

Lm(a)/n = Ia(✓a,�a), a.s.[P✓], 8a 2 D.

Because ↵ < ✏, we have that

lim
N!1

P✓

⇢

Lm(a) >
(1� ↵) lnN

|D| for some m <
(1� ✏) lnN

|D| Ia(✓a,�a)

�

= 0 8a 2 D,

and because I(D,�) � |D| Ia(✓a,�a), we further have that

lim
N!1

P✓

⇢

Lm(a) >
(1� ↵) lnN

|D| for some m <
(1� ✏) lnN

I(D,�)

�

= 0 8a 2 D.

Then, in particular by taking m = TN+1

({a}) we have that

lim
N!1

P✓

⇢

LTN+1({a})(a) >
(1� ↵) lnN

|D| , TN+1

({a}) < (1� ✏) lnN

I(D,�)

�

= 0 8a 2 D,

which in turn implies

lim
N!1

P✓

⇢

LTN+1({a})(a) >
(1� ↵) lnN

|D| , max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

= 0 8a 2 D.

Finally, by taking the union of events over a 2 D we have that

lim
N!1

P✓

⇢

LTN+1({a})(a) >
(1� ↵) lnN

|D| for some a 2 D , max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

= 0.

(A-10)

Thus, by (A-9), (A-10), and the definition of ⌅(N) we have that

lim
N!1

P✓

⇢

max {TN+1

({a}) : a 2 D} <
(1� ✏) lnN

I(D,�)

�

= 0.

The result follows from letting ✏ approach zero, and taking KD := I(D,�)�1.

Proposition 4.10. For any consistent policy ⇡ and any regular F we have that

lim
N!1

PF

⇣

⇣⇡(F,N) � L(F ) lnN
⌘

= 1.

Proof. Define ⌥N :=
T

D2D {max {TN+1

({a}) : a 2 D} � KD lnN} and note that ⇣⇡(F,N) �

L(F ) lnN when ⌥N occurs, because
⇣

xa = TN+1({a})
lnN , a 2 A

⌘

and
⇣

yS = TN+1(S)
lnN , S 2 S

⌘

are feasi-
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ble to LBP. Thus, one has that

PF

⇢

⇣⇡(F,N)

lnN
< L(F )

�

= PF

⇢

⇣⇡(F,N)

lnN
< L(F ) , ⌥N

�

+ PF

⇢

⇣⇡(F,N)

lnN
< L(F ) , ⌥c

N

�

 PF {⌥c
N} . (A-11)

From Proposition 4.9 and the union bound, we have that

lim
N!1

PF {⌥c
N} 

X

D2D
lim

N!1
PF {max {TN+1

({a}) : a 2 D} < KD lnN} = 0,

because |D| <1. Thus, taking the limit in (A-11) we have that

lim
N!1

PF {⇣⇡(F,N) < L(F ) lnN} = 0.

This concludes the proof.

Lemma 4.12. Let KD = K for some constant K > 0, for all D 2 D in formulation LBP. An

optimal solution (x, y) to R-OCP (EF {Bn}) is also optimal to LBP.

Proof. We prove the result by contradiction. Without loss of generality, we assume K = 1. Let

(x, y) be a feasible solution to R-OCP, and suppose that there is aD 2 D such that max {xa : a 2 D} =

0. By the definition of D, one has that z⇤((EF {Bn})A\D) < z⇤(EF {Bn}), thus

z⇤((EF {Bn})A\D) =
X

a2S⇤\D

EF {ba,n}+
X

a2D
la

(a)
�

X

a2S⇤

(la(1� xa) + EF {ba,n}xa)

(b)
� z⇤(EF {Bn}),

for S⇤ 2 S⇤((EF {Bn})A\D), where (a) follows from the fact that la = (la(1� xa) + EF {ba,n}xa),

for a 2 D, and EF {ba,n} � (la(1� xa) + EF {ba,n}xa), for a /2 D, and (b) follows from the fact

that (x, y) satisfies constraints (6c) (because it is feasible to R-OCP). The last inequality above

contradicts z⇤((EF {Bn})A\D) < z⇤(EF {Bn}), thus we have that max {xa : a 2 D} = 1 for all

D 2 D, therefore (x, y) is feasible to (8).

Now, let (x, y) be a feasible solution to (8) such that xa 2 {0, 1} for all a 2 A, and that xa = 1

and yS⇤ = 1 for a 2 S⇤ and S⇤ 2 S⇤(EF {Bn}) (note that one can restrict attention only to feasible

solutions to (8) with x integral, and �F
S⇤ = 0 for all S⇤ 2 S⇤(EF {Bn}), thus this extra requirement

49



does not a↵ect the solution to (8)). Suppose (x, y) is not feasible to R-OCP, i.e., there exists some

S 2 S such that
X

a2S
(la(1� xa) + EF {ba,n}xa) < z⇤(EF {Bn}). (A-12)

Let S
0

be one such S that additionally minimizes the left-hand side in (A-12) (in case of ties we pick

any minimizing solution S
0

with smallest value of |{a 2 S
0

: xa = 0}|). Then D = {a 2 S
0

: xa = 0}

belongs to D (or a subset of it does), This contradicts the feasibility of (x, y) to (8), because if

(x, y) is feasible to (8), then we must have max {xa : a 2 D} � 1 for all D 2 D. Thus, we conclude

that (x, y) is feasible to R-OCP.

Summarizing, feasible solutions to R-OCP are feasible to (8), and feasible solutions to (8) that

cover all optimal elements in A are feasible to R-OCP. The result follows from noting that there is

always an optimal solution to (8) such that x is integral, and xa = 1 and yS⇤ = 1 for a 2 S⇤ for all

S⇤ 2 S⇤(EF {Bn}).

A.2.3 A R-OCP/cover-based hybrid policy

A feasible solution (x, y) to R-OCP corresponds to incidence vectors of a su�cient exploration set

C ✓ A, a solution cover E of such a set, and vector p of fractions associated with solutions in E .

That is, C = {a 2 A : xa = 1}, E = {S 2 S : yS > 0}, and p = {yS : S 2 E}. In the following we

refer to solutions to R-OCP as triplets (C, E , p).

Define �̃⇤(B) as the set of optimal solutions to R-OCP, and �̂⇤(B) as the set of minimum regret

covers of A, for B feasible. Algorithm 4 presents a hybrid policy that focuses feedback collection

mainly on the solution to R-OCP.

A.3 Appendix for Section 5

The time-constrained Asynchronous Policy in Section 5.1 is depicted in Algorithm 5. A variant of

Algorithm 5 based on R-OCP is simply obtained by modifying Algorithm 4 along the same lines.

A.3.1 Complexity of OCP and Basic MIP Formulation

To prove Theorem 5.1 and Proposition 5.3 we will use the following lemma.
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Algorithm 4 hybrid policy ⇡h(�)

Set i = 0, C = A, E a minimal cover of A, G = E and pS = 1 for all S 2 E
for n = 1 to N do

if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �B̄n

�

, [Update exploitation set]

Set (C, E , p) 2 �̃⇤ �B̄n
�

and G 2 �̂⇤ �B̄n
�

[Update exploration set]
end if
if Tn({a}) < � i for some a 2 A then
Set Sn = S with S 2 G such that a 2 S [Cover-based exploration]

else if E 6= ; then
Set Sn = S 2 E with probability (1� �)pS , and S⇤ otherwise [R-OCP-based exploration]
Set E = E \ {Sn}.

else
Implement Sn = S⇤ [Exploitation]

end if
end for

Lemma A.3. We may restrict OCP or R-OCP to have at most |A| non-zero yS variables without

changing the problems.

Proof. For OCP it follows from noting that any critical subset can be covered by at most |A|

solutions. Hence, if an optimal solution for OCP has |E| > |A| we may remove one solution from

it while preserving feasibility. If the removed solution is sub-optimal for f(B) we would obtain a

solution with lower objective value contradicting the optimality for OCP. If the removed solution

is optimal for f(B) we obtain an alternate optimal solution for OCP.

For R-OCP consider an optimal solution with more than |A| non-zero yS variables. Fixing the

xa variables in formulation (6) for R-OCP (e.g. (6) with yS 2 {0, 1} changed to 0  yS  1) to

the values of this solution and leaving the yS variables free, we obtain a Linear Programming (LP)

problem with at most |A| constraints. Any basic optimal solution to this LP gives an alternate

optimal solution to R-OCP with at most |A| non-zero yS variables.

Theorem 5.1. If f (B) is in P, then OCP (B) and R-OCP (B) are in NP.

Proof. By Lemma A.3, optimal solutions to OCP and R-OCP have sizes that are polynomial in |A|

and their objective function can be evaluated in polynomial time. Checking the feasibility of these

solutions can be achieved in polynomial time, because checking (6c) can be achieved by solving

f(Bx) where Bx := (ba,x : a 2 A) for ba,x := la(1 � xa) + baxa. This problem is polynomially

solvable by assumption.
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Algorithm 5 Basic Time-Constrained Asynchronous Policy

Set i = 0, C = A, and E a minimal cover of A
Let S⇤ 2 S be an arbitrary solution and Bf = BOCP be an initial cost estimate
Asynchronously begin solving f (Bf ) and OCP (BOCP )
for n = 1 to N do

if n 2 � then
i i+ 1
if Asynchronous solution to f (Bf ) has finished then

Set S⇤ 2 S⇤ (Bf ) and Bf = B̄n [Update exploitation set]
Asynchronously begin solving f (Bf )

end if
if Asynchronous solution to OCP (BOCP ) has finished then

if (C, E) /2 � (BOCP ) then
Set (C, E) 2 �⇤ (BOCP ) [Update exploration set]

end if
Set BOCP = B̄n

Asynchronously begin solving OCP (BOCP )
end if

end if
if Tn({a}) < i for some a 2

S

S2E S then
Try such an element, i.e., set Sn = S with S 2 E such that a 2 S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

Proposition 5.3. Let yS be the incidence vector of S 2 S, M 2 Rm⇥|A|, and d 2 Rm be such that
�

yS
 

S2S =
n

y 2 {0, 1}|A| : My  d
o

and conv
⇣

�

yS
 

S2S

⌘

=
�

y 2 [0, 1]|A| : My  d
 

. Then an

MIP formulation of OCP (B) is given by

min

|A|
X

i=1

 

X

a2A
bay

i
a � z⇤(B)

!

(10a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (10b)

Myi  d, i 2 {1, . . . , |A|} (10c)

MTw  diag(l)(1� x) + diag(b)x (10d)

dTw � z⇤ (B) (10e)

xa, y
i
a 2 {0, 1} , w 2 Rm, a 2 A, i 2 {1, . . . , |A|} , (10f)

where for v 2 Rr, diag(v) is the r ⇥ r diagonal matrix with v as its diagonal. A formulation for

R-OCP (B) is obtained by replacing yia 2 {0, 1} with 0  yia  1.
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Proof. We begin with the result for OCP. For any feasible solution (x, y) to (10) we have that x

is the incidence vector of a critical subset. This, because (10d) enforces dual feasibility of w when

elements with x = 0 are not covered, and (10e) forces the objective value of the dual of f(B0) to

be greater than or equal to z⇤ (B), where B0 = diag(l)(1 � x) + diag(b)x. With this, the optimal

objective value of f(B0) is greater than or equal to z⇤ (B). On the other hand, any yia is the incidence

vector of some S 2 S because of (10c) and the assumptions on M and d. Finally, (10b) ensures

that E =
�

supp
�

yia
� 

i,a2A covers the critical subset. Lemma A.3 ensures that the |A| variables in

y are su�cient for an optimal solution. If less than |A| elements are needed for the cover, then the

optimization can pick the additional y variables to be the incidence vector of an optimal solution to

f(B) so that they do not increase the objective function value. The proof for R-OCP is analogous,

while noting that in this case, by assumption conv
⇣

�

yS
 

S2S

⌘

=
�

y 2 [0, 1]|A| : My  d
 

, yi is

a convex combination of incidence vectors, so it might correspond to fractions of more than one

element in S.

A.3.2 IP formulation for OCP when f(B) admits a compact IP formulation

Suppose f(B) admits a compact IP formulation such that
�

yS
 

S2S =
n

y 2 {0, 1}|A| : My  d
o

for some M 2 Rm⇥|A| and d 2 Rm, where yS denotes the incidence vector of S 2 S. Then an IP

formulation of OCP (B) is given by

min

|A|
X

i=1

 

X

a2A
bay

i
a � z⇤(B)

!

(A-13a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (A-13b)

Myi  d, i 2 {1, . . . , |A|} (A-13c)
X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (A-13d)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} . (A-13e)

Like in formulation (10), a feasible solution (x, y) to (A-13) is such that x is the incidence vector

of a critical subset (this is enforced by (A-13d)), and the yi’s are a cover of such set, due to (A-13c)

and the assumptions on M and d. Note that an e�cient cover includes at most |A| elements (the

optimization can pick the additional yi to be the incidence vector of an optimal solution).

Formulation (A-13) has a polynomial number of variables, but the number of constraints described
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by (A-13d) is in general exponential. However, the computational burden of separating these

constraints is the same as solving f (B) (finding a violated inequality (A-13d) or showing that it

satisfies all these inequalities can be done by solving f (B0) for b0a = la(1 � xa) + baxa). Hence, if

we can solve f (B) su�ciently fast (e.g. when the problem is in P, or it is a practically solvable

NP-hard problem) we should be able to e↵ectively solve (A-13) with a Branch-and-Cut algorithm

that dynamically adds constraints (A-13d) as needed. Finally, note that a similar formulation for

R-OCP is obtained by introducing continuous variables {�i : i = 1, . . . , |A|} with �i 2 [0, 1] and

replacing yia with �iyia (which can be linearized with standard tricks) in the objective function and

constraints (A-13b).

A.3.3 Linear-sized formulation for OCP for the shortest path problem

Let f (B) correspond to a shortest s�t path problem in a digraphG = (V,A). Define Â = A[{(t, s)}

and let �̂out and �̂in denote the outbound and inbound arcs in digraph Ĝ = (V, Â). An optimal

solution (x, p, w) to

min

 

X

a2A
bapa

!

� z⇤(B) p
(t,s) (A-14a)

s.t. xa  pa, a 2 A (A-14b)
X

a2ˆ�out(v)

pa �
X

a2ˆ�in(v)

pa = 0, v 2 V (A-14c)

wu � wv  l
(u,v)(1� x

(u,v)) + b
(u,v)x(u,v), (u, v) 2 A (A-14d)

ws � wt � z⇤(B) (A-14e)

pa 2 Z
+

, a 2 Â (A-14f)

xa 2 {0, 1} , wv 2 R, a 2 A, v 2 V, (A-14g)

is such that (C, E) is an optimal solution to OCP (B), where C = {a 2 A : xa = 1} and E ✓ S is

a set of paths for which pa = |{S 2 E : a 2 S}|. Such a set E can be constructed from p in time

O(|A||V |).

The first di↵erence between formulations (A-14) and (10) is the specialization of the LP duality

constraints to the shortest path setting. The second one is the fact that the paths in cover E

are aggregated into an integer circulation in augmented graph Ĝ, which is encoded in variables

p. Indeed, using known properties of circulations (Schrijver 2003, pp. 170-171), we have that

p =
P

S2E y
ˆS , where y

ˆS is the incidence vector of the circulation obtained by adding (t, s) to path
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S. Furthermore, given a feasible p we can recover the paths in E in time O(|A||V |). To obtain a

formulation for R-OCP we simply relax the integrality requirement for the pa variables.

It is possible to construct similar formulations for other problems with the well known integer

decomposition property (Schrijver 2003).
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B Auxiliary Results and Omitted Proofs.

B.1 Auxiliary Result for the Proof of Theorem 3.4

Proposition A.1. For any fixed S ✓ A, n 2 N, i 2 N, and ✏ > 0 we have that

P
(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� ✏, Tn({a}) � i , 8a 2 S

)

 2 K(✏) |S| exp
⇢

� 2✏2i

|S|2 L2

�

,

where L := max {ua � la : a 2 A}, and K(✏) is a positive finite constant that only depends on ✏.

Proof. Consider S ✓ A and note that

(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� ✏

)

✓
[

a2S

⇢

�

�b̄a,n � E {ba,n}
�

� � ✏

|S|

�

,

hence using the union bound one has that

P
(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� ✏ , Tn({a}) � i , 8a 2 S

)


X

a2S
P
⇢

�

�b̄a,n � E {ba,n}
�

� � ✏

|S| , Tn({a}) � i

�

.

(B-15)

For m 2 N define tm(a) := inf {n 2 N : Tn({a}) = m} � 1. Indexed by m, one has that ba,tm(a) �

E {ba,n} = ba,tm(a) � E
�

ba,tm(a)

 

is a bounded martingale di↵erence sequence, thus one has that

P
⇢

�

�b̄a,n � E {ba,n}
�

� � ✏

|S| , Tn({a}) � i

�

= P

8

<

:

�

�

�

�

�

�

Tn({a})
X

m=1

�

ba,tm(a) � E {ba,n}
�

�

�

�

�

�

�

� ✏ Tn({a})
|S| , Tn({a}) � i

9

=

;


1
X

k=i

P
(

�

�

�

�

�

k
X

m=1

�

ba,tm(a) � E {ba,n}
�

�

�

�

�

�

� ✏ k

|S|

)

(a)
 2 exp

⇢

�2 i✏2

|S|2 L2

� 1
X

k=0

exp

⇢

�2 k✏2

|S|2 L2

�

 2 K exp

⇢

�2 i✏2

|S|2 L2

�

,

where (a) follows from the Hoe↵ding-Azuma Inequality (see, for example, Cesa-Bianchi and Lugosi

(2006, Lemma A.7)), and K is a positive finite constant. Combining the above with (B-15) one has

that

P
(

�

�

�

�

�

X

a2S

�

b̄a,n � E {ba,n}
�

�

�

�

�

�

� ✏ , Tn({a}) � i , 8a 2 S

)

 2 K |S| exp
⇢

�2 i✏2

|S|2 L2

�

,

which is the desired result.
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B.2 Proof of Theorem 4.3

To prove Theorem 4.3 we need three probability bounding propositions, which in turn require

two technical lemmas. In what follows, (Ci, Ei) denotes the solution to OCP (B̄ni). Also, de-

fine the events Ũi := {(Ci, Ei) 2 �(E {Bn})} and Ui :=
�

[S2EiS ✓ [S2Ei�1S
 

. Also let i00 :=

max {|A|+ 2, i0 + 1} where i0 is the first cycle in which one is sure to exploit. Finally, as in the

proof of Theorem 3.4, we drop the dependence of EF and PF on F and ⇡a.

Lemma B.1. Let s := max {|S| : S 2 S}. Then, for any fixed (C, E) 2 �(E {Bn}) we have that

�

(C, E) /2 �(B̄n)
 

✓
[

a2[S2ES

�

�

�b̄a,n � E {ba,n}
�

� � �C/(4 |A| s)
 

, (B-16)

where �C is a positive finite constant.

Proof. We prove the lemma by establishing that the complement of the right-hand side of (B-16)

implies the complement of its left-hand side.

Since (C, E) 2 �(E {Bn}), by definition, (C, E) 2 �⇤(B̃) where b̃a = E {ba,n} for all a 2 [S2ES

and b̃a = ua for a 2 A \ [S2ES. Let �(C,E)
min

denote the minimum optimality gap (i.e., the absolute

di↵erence between the objective value of the best and second best solution) in OCP (B̃), and define

�̂C := inf
n

�(C,E)
min

: (C, E) 2 �(E {Bn})
o

. We assume that �̂C is positive and bounded.

Let B̃0 be such that b̃0a = b̄a,n for all a 2 [S2ES and b̃0a = b̃a = ua for a 2 A \ [S2ES. In what

follows, we first prove that
T

a2[S2ES

n

�

�b̄a,n � E {ba,n}
�

� < �̂C/(4 |A| s)
o

implies that (C, E) 2 �⇤(B̃0)

which in turn implies
�

(C, E) 2 �(B̄n)
 

, provided that (C, E) is feasible to OCP (B̄n) (which we

prove later in the proof).

For any (C 0, E 0) feasible to OCP (B̃0) we have

X

S2E
�

˜B0
S

(a)


X

S2E
�

˜B
S + �̂C/2

(b)

X

S2E 0

�
˜B
S � �̂C/2

(c)

X

S2E 0

�
˜B0
S ,

where (a) comes from noting that for any S 2 E

�
˜B0
S ��

˜B
S =

X

a2S

⇣

b̃0a � b̃a
⌘

+
X

a2S⇤

b̃a �
X

a2 ¯S⇤

b̃0a <
X

a2S

�

b̄a,n � E {ba,n}
�

+ �̂C/(4 |A|) < �̂C/(2 |A|)

where S⇤ 2 S⇤(E {Bn}) and S̄⇤ 2 S⇤(B̄n) (note that in what follows, we give conditions under which

S̄⇤ 2 S⇤(E {Bn})), and (b) and (c) follow from the definition of �̂C and B̃0, respectively. Note that

the feasibility of (C, E) to OCP (B̄n) (which will be verified next) also implies its feasibility to
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OCP (B̃0) due to the definition of B̃0.

Now we prove that (C, E) is feasible to OCP (B̄n). Define

�̃C := inf

8

<

:

X

a2C\S
E {ba,n}+

X

a2S\C

la �
X

a2S⇤

E {ba,n} : S 2 S \ S⇤(E {Bn}) , C 2 C

9

=

;

,

and consider the case of �̃C > 0. Suppose the complement of the right-hand side of (B-16) holds

true for the constant �̃C . For any S 2 S \ S⇤(E {Bn}) we have that

X

a2C\S
b̄a,n+

X

a2S\C

la >
X

a2C\S
E {ba,n}+

X

a2S\C

la��̃C/(2 |A|)
(a)
�
X

a2S⇤

E {ba,n}+�̃C/(2 |A|) >
X

a2S⇤

b̄a,n

where (a) follows from the definition of �̃C , and the fact that C includes the optimal solution S⇤.

Note that the argument above also implies that any S⇤ 2 S⇤(E {Bn}) is also optimal for f
�

B̄n
�

and

f(B̃0). Also note that S⇤ is also optimal for f(B̃) by definition of B̃. Setting �C = min
n

�̂C , �̃C

o

completes the proof.

Lemma B.2. Let s := max {|S| : S 2 S}. Then, for any (C, E) feasible to OCP (B̄n), we have

{(C, E) /2 �(E {Bn})} \
�

�

�b̄a,n � E {ba,n}
�

� < �0
C/(4 s |A|) , a 2 [S2ES

 

✓
�

(C, E) /2 �(B̄n)
 

,

(B-17)

where �0
C is a positive finite constant.

Proof. Suppose the left-hand side of (B-17) holds true. Since (C, E) /2 �(E {Bn}), by definition,

either (C, E) is not feasible to OCP (E {Bn}), and/or (C, E) /2 �⇤(B̃) where b̃a = E {ba,n} for all

a 2 [S2ES and b̃a = ua for a 2 A \ [S2ES.

First, suppose that (C, E) is not feasible to OCP (E {Bn}). Define

�00
C := min

8

<

:

X

a2S⇤

E {ba,n}�
X

a2C\S
E {ba,n}�

X

a2S\C

la > 0 : C /2 C

9

=

;

,

where S⇤ 2 S⇤(E {Bn}). Note that �00
C > 0. The infeasibility of (C, E) to OCP (E {Bn}) implies

that constraint (6c) must be violated for some S 2 S, for which

X

a2C\S
E {ba,n}+

X

a2S\C

la <
X

a2S⇤

E {ba,n}.
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Let S0 be one such S that additionally minimizes the left-hand side above. Using�00
C in the left-hand

side of (B-17), one has that for such S0

X

a2C\S0

b̄a,n +
X

a2S0\C

la <
X

a2C\S0

E {ba,n}+
X

a2S0\C

la +�00
C/2

(a)

X

a2 ¯S⇤

E {ba,n}��00
C/2

(b)
<
X

a2 ¯S⇤

b̄a,n,

where S̄⇤ 2 S⇤ �B̄n
�

, (a) follows from the definition of �00
C and the fact that

P

a2S⇤ E {ba,n} 
P

a2 ¯S⇤ E {ba,n} for S⇤ 2 S⇤ (EF {Bn}), and (b) from the fact that S̄⇤ ✓ C when (C, E) is feasible to

OCP
�

B̄n
�

. The last inequality above implies that constraint (6c) is not satisfied for S0 2 S, which

contradicts the feasibility of (C, E) to OCP
�

B̄n
�

. Thus (C, E) must be feasible to OCP (E {Bn}).

Then, (C, E) /2 �(E {Bn}) implies that (C, E) /2 �⇤(B̃) where b̃a = E {ba,n} for all a 2 [S2ES and

b̃a = ua for a 2 A \ [S2ES.

Let (C 0, E 0) 2 �⇤(B̃), and B̃0 be such that b̃0a = b̄a,n for all a 2 [S2ES and b̃0a = b̃a = ua for

a 2 A \ [S2ES. We first establish some feasibility requirements which we need to complete the

proof. Note that (C 0, E 0) is feasible to OCP (E {Bn}) by definition of B̃. Using a similar argument

as in the proof of Lemma B.1, we prove that
T

a2[S2ES

n

�

�b̄a,n � E {ba,n}
�

� < �̃C/(4 |A| s)
o

implies

(C 0, E 0) is feasible to OCP (B̃0), where �̃C is defined in that proof. To show this, note that for any

S 2 S \ S⇤(E {Bn}) we have

X

a2C0\S
b̃0a+

X

a2S\C0

la
(a)
�

X

a2C0\S
E {ba,n}+

X

a2S\C0

la��̃C/(2 |A|)
(b)
�
X

a2S⇤

E {ba,n}+�̃C/(2 |A|) >
X

a2S⇤

b̄a,n,

where S⇤ 2 S⇤ (EF {Bn}), and (a) and (b) follow from the definition of B̃0 and �̃C , respectively. As

in the proof of Lemma B.1,
T

a2[S2ES

n

�

�b̄a,n � E {ba,n}
�

� < �̃C/(4 |A| s)
o

implies that S⇤ is optimal

for f
�

B̄n
�

and f(B̃0). Also note that by assumption (C, E) is feasible to OCP (B̄n) (and thus

OCP (B̃0)), and S⇤ is also optimal for f(B̃).

Let �(C,E) denote the optimality gap of (C, E) in OCP (B̃) and define

�̂0
C := inf

n

�(C,E) : (C, E) feasible to OCP (E {Bn}), (C, E) /2 �⇤(B̃)
o

.

Note that �̂0
C > 0. Now, one has that

T

a2[S2ES

n

�

�b̄a,n � E {ba,n}
�

� < �̂0
C/(4 |A| s)

o

implies that

X

S2E
�

˜B0
S >

X

S2E
�

˜B
S � �̂0

C/2 �
X

S2E 0

�
˜B
S + �̂0

C/2 �
X

S2E 0

�
˜B0
S ,

via the arguments in the proof of Proposition B.1. Seeing that (C, E) and (C 0, E 0) are both
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feasible to OCP (B̃0), above implies that (C, E) /2 �⇤(B̃0) and thus (C, E) /2 �(B̄n). Setting

�0
C = min

n

�00
C , �̃C , �̂0

C

o

completes the proof.

Using the two lemmas above, we prove the following probability bounding propositions.

Proposition B.3. If i � i00, then

P ((Ci, Ei) /2 �(E {Bn}))  K̃ exp
n

�C̃(i� |A|)
o

,

where C̃ and K̃ are some positive finite constants.

Proof. Remember that (Ci, Ei) denotes the solution to OCP (B̄ni), Ũi = {(Ci, Ei) 2 �(E {Bn})} and

Ui =
�

[S2EiS ✓ [S2Ei�1S
 

. Note that

P
n

Ũ c
i

o


i
X

j=i�|A|

P
n

Ũ c
i , Uj

o

+ P
n

Ũ c
i , U

c
j , 8j 2 {i� |A| , . . . , i}

o

. (B-18)

We bound the first and second terms in the right-hand side of (B-18) separately.

Step 1. Here, we bound the first term in the right-hand side of (B-18). Consider j 2 {i� |A| , . . . , i}

and note that Tnj ({a}) � i� |A| for all a 2 [S2EiS under Uj . One has that

P
n

Ũ c
i , Uj

o

= P
n

Ũ c
i , Ũj , Uj

o

+ P
n

Ũ c
i , Ũ

c
j , Uj

o

. (B-19)

We complete the Step 1 by bounding the two terms in the right-hand side of (B-19).

The first event in the right-hand side of (B-19) implies that (Cj , Ej) /2 �
⇣

B̄nj0

⌘

for some j0 2

{j, . . . , i}. Then, from Lemma B.1 we have that

P
n

Ũ c
i , Ũj , Uj

o


i
X

j0=j

P
n

(Cj , Ej) /2 �(B̄nj0 ) , Tnj0 ({a}) � i� |A| , a 2 [S2EjS , Ũj

o


i
X

j0=j

X

a2[S2EjS

P
n

�

�

�

b̄a,nj0 � E {ba,n}
�

�

�

� �C/(4 s |A|) , Tnj0 ({a}) � i� |A|
o

(a)
 2 |A|2K exp

n

�C̃
1

(i� |A|)
o

,

where C̃
1

:= (�C)
2 /(8 s2 |A|2 L2), and (a) follows from Proposition A.1 and also noting that i�|A| 

j  j0  i and
�

�[S2EjS
�

�  |A|.
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To bound the second term in the right-hand side of (B-19) we use Lemma B.2. We have that

P
n

Ũ c
i , Ũ

c
j , Uj

o

 P {(Cj , Ej) /2 �(E {Bn}) , Uj}

 P
�

(Cj , Ej) /2 �(E {Bn}) , (Cj , Ej) 2 �(B̄nj ) , Tnj ({a}) � i� |A| , a 2 [S2EjS
 


X

a2[S2EjS

P
�

�

�b̄a,nj � E {ba,n}
�

� � �0
C/(4 s |A|) , Tnj ({a}) � i� |A|

 

(a)
 2 K |A| exp

n

�C̃
2

(i� |A|)
o

,

where C̃
2

:= (�0
C)

2 /(8 s2 |A|2 L2), and (a) follows from Proposition A.1. Combining the results

above we have
i
X

j=i�|A|

P
n

Ũ c
i , Uj

o

 4 K |A|3 exp
n

�C̃(i� |A|)
o

,

where C̃ := min
n

C̃
1

, C̃
2

o

.

Step 2. Here, we bound the second term in the right-hand side of (B-18). Note that the intersection

of U c
j for j 2 {i� |A| , . . . , i} implies that there exists a j00 2 {i� |A| , . . . , i} such that Tnj00 ({a}) �

i� |A| for all a 2 [S2Ej00S. With this observation, one can apply the arguments in Step 1 to show

that

P
n

Ũ c
i , U

c
j , 8j 2 {i� |A| , . . . , i} , Ũj00

o

 2 |A|3K exp
n

�C̃
1

(i� |A|)
o

,

and

P
n

Ũ c
i , U

c
j , 8j 2 {i� |A| , . . . , i} , Ũ c

j00

o

 2 |A|2K exp
n

�C̃
2

(i� |A|)
o

,

where the extra |A| in the right-hand side of the two inequalities above (compared to that in Step

1) comes from the fact that we do not know the exact value of j00.

Combining the above one has that

P
n

Ũ c
i , U

c
j , 8j 2 {i� |A| , . . . , i}

o

 4 |A|3K exp
n

�C̃(i� |A|)
o

.

Combining the results from Steps 1 and 2 one obtains

P
n

Ũ c
i

o

 K̃ exp
n

�C̃(i� |A|)
o

,

where K̃ is a finite positive constant.
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Proposition B.4. If i � i00, then

P {U c
i }  C 0 exp

n

�C̃(i� |A|� 1)
o

,

where C 0 is a positive finite constant and C̃ is as in Proposition B.3.

Proof. Remember that Ui =
�

[S2EiS ✓ [S2Ei�1S
 

and Ũi = {(Ci, Ei) 2 �(E {Bn})}. Then

P (Ui
c) = P

⇣

Ui
c, Ũi�1

⌘

+ P
⇣

Ui
c, Ũ c

i�1

⌘

(a)
 P

⇣

(Ci�1

, Ei�1

) /2 �(B̄ni) , Ũi�1

⌘

+ P
⇣

Ũ c
i�1

⌘

, (B-20)

where (a) follows from the fact that at each cycle, the OCP-based policy keeps the previous ex-

ploration set if (Ci�1

, Ei�1

) 2 �(B̄ni). Also note that Tni({a}) � i � 1 for all a 2 [S2Ei�1S. By

Lemma B.1, one has that

P
⇣

(Ci�1

, Ei�1

) /2 �(B̄ni) , Ũi�1

⌘

 P

8

<

:

[

a2[S2Ei�1
S

⇢

�

�b̄a,ni � E {ba,n}
�

� � �C
4 s |A|

�

\ Ũi�1

9

=

;

 P

8

<

:

[

a2[S2Ei�1
S

⇢

�

�b̄a,ni � E {ba,n}
�

� � �C
4 s |A|

�

, Tni({a}) � i� 1

9

=

;

(b)
 2 |A|K exp

n

�C̃(i� 1)
o

,

where C̃ is as in the proof of Proposition B.3, and (b) follows from applying the union bound and

Proposition A.1. Using this and Proposition B.3 to bound the second term in the right-hand side

of (B-20) gives

P (Ui
c) 

⇣

K̃ + 2K |A|
⌘

exp
n

�C̃(i� |A|� 1)
o

,

where K̃ is as in the proof of Proposition B.3.

Proposition B.5. If i � i00, then

P
n

S̄ni 62 S⇤(E {Bn}) , Ũi�1

o

 C 00 exp
n

�C̃(i� 1)
o

,

where S̄ni 2 S⇤(B̄ni), C
00 is a positive finite constant and C̃ is as in Proposition B.3.

Proof. When Ũi�1

happens, then (Ci�1

, Ei�1

) 2 �(E {Bn}). In particular, all a 2 S⇤ are included
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in Ci�1

, for all S⇤ 2 S⇤(E {Bn}). Note that

�

S̄ni 62 S⇤(E {Bn})
 

✓
[

a2[S2ES

�

�

�b̄a,ni � E {ba,n}
�

� � �C/(2 s)
 

,

for any (C, E) 2 �(E {Bn}), and �C is as in the proof of Lemma B.1. To prove the statement above,

assume that the complement of the right-hand side holds for some fixed (C, E) 2 �(E {Bn}). Then

for any S 2 S \ S⇤(E {Bn})

X

a2S
b̄a,ni >

X

a2C\S
E {ba,n}+

X

a2S\C

la ��C/2
(a)
�
X

a2S⇤

E {ba,n}+�C/2 >
X

a2S⇤

b̄a,ni ,

where (a) follows from the definition of�C . The last inequality above implies that S̄ni 2 S⇤(E {Bn}).

In addition, one has that Tni({a}) � i� 1 for all a 2 [S2Ei�1S. Therefore

P
n

S̄ni 62 S⇤(E {Bn}) , Ũi�1

o

= P
n

S̄ni 62 S⇤(E {Bn}) , Tni({a}) � i� 1 , 8 a 2 [S2Ei�1S , Ũi�1

o

 P

8

<

:

[

a2[S2Ei�1
S

�

�

�b̄a,ni � E {ba,n}
�

� � �C/(2 s) , Tni({a}) � i� 1
 

\ Ũi�1

9

=

;

 P

8

<

:

[

a2[S2Ei�1
S

�

�

�b̄a,ni � E {ba,n}
�

� � �C/(2 s |A|) , Tni({a}) � i� 1
 

9

=

;

 2 K |A| exp
n

�C̃(i� 1)
o

,

where the last inequality above follows from the union bound and Proposition A.1, and C̃ is as in

the proof of Proposition B.3.

Theorem 4.3. Let ⇡a denote the policy in Algorithm 1 and set " > 0 arbitrary. If we choose ni :=

max
n

bei1/(1+")c, ni�1

+ 1
o

, for all i � 2, then (Cni , Eni) converges to (C1, E1) 2 � (EF {Bn}).

Moreover,

R⇡a(E)(F,N)

(lnN)1+"  EF
�

z⇤OCP

�

B̄1
� 

+O
⇣

1/ (lnN)1+"
⌘

 �F
max

G+O
⇣

1/ (lnN)1+"
⌘

,

where G := max {|E| : (C, E) 2 � (EF {Bn})}, and B̄1 is a random vector that coincides with

EF {Bn} for a 2
S

S2E1 S.

Proof. Similar to the case of the simple policy, regret of the adaptive policy ⇡a stems from two
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sources: exploration and errors during exploitation. That is,

R⇡a(F,N) =
X

S2S
�F

S E {TN+1

(S)} = R⇡a
1

(F,N) +R⇡a
2

(F,N), (B-21)

where R⇡a
1

(F,N) is the exploration-based regret and R⇡a
2

(F,N) is the exploitation-based regret.

We prove the result by bounding each term above separately. As in the proof of Theorem 3.4, we

drop the dependence of EF and PF on F and ⇡a.

Step 1 (Exploration-based regret). We begin by setting up some notation. Let (Ci, Ei) denote

the critical subset and exploration set used during cycle i, and for S 2 S define�Ti(S) := Tni+1(S)�

Tni(S). Also, define i00 := max {|A|+ 2, i0 + 1} where i0 is the first cycle in which one is sure to

exploit19, and the events Ui :=
�

[S2EiS ✓ [S2Ei�1S
 

and Ũi := {(Ci, Ei) 2 �(E {Bn})}, for i � i00.

Using these definitions, one has that

R⇡a
1

(F,N)  �F
max ni00 +

d(lnN)

1+"e
P

i=i00

 

E
(

P

S2Ei
�F

S �Ti(S)1 {Ui}
)

+�F
max E

(

P

S2Ei
�Ti(S)1 {U c

i }
)!

.

(B-22)

We bound the exploration-based regret in two steps.

Step 1-(a). First, we bound the second term in (B-22). We have that

E

8

<

:

X

S2Ei

�F
S �Ti(S)1 {Ui}

9

=

;

 E

8

<

:

X

S2Ei

�F
S �Ti(S)1

n

Ui \ Ũi

o

9

=

;

+�F
maxE

8

<

:

X

S2Ei

�Ti(S)1
n

Ui \ Ũ c
i

o

9

=

;

.

Note that event Ui implies that �Ti(S)  1 for all S 2 Ei. Then, the event Ũi implies that

E

8

<

:

X

S2Ei

�F
S �Ti(S)1

n

Ui \ Ũi

o

9

=

;

 E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

 �F
max E

n

�

�

�

Ẽi
�

�

�

o

 �F
max G,

for some random (C̃i, Ẽi) 2 �(E {Bn}), and where G is the constant in Theorem 4.3.

We can then use the bound on the probability of Ũ c
i from Proposition B.3 to obtain

E

8

<

:

X

S2Ei

�Ti(S)1
n

Ui \ Ũ c
i

o

9

=

;

(a)
 |A| P

⇣

Ũ c
i

⌘

(b)
 K̃ |A| exp

n

�C̃(i� |A|)
o

,

19For instance, we can take i0 := inf
n

i 2 N, i � 2 : bei
1/(1+")

c > ni�1 + i |A| , ni+1 � ni > |A|
o

.
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where (a) follows from noting that �Ti(S)  1 under Ui and |Ei|  |A|, and (b) follows from

Proposition B.3. From above, one can bound the second term in (B-22) as follows

d(lnN)

1+"e
X

i=i00

E

8

<

:

X

S2Ei

�F
S �Ti(S)1 {Ui}

9

=

;


d(lnN)

1+"e
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+�F
max

K̃ |A|
1
X

i=i00

exp
n

�C̃(i� |A|)
o

.

(B-23)

Note that the second term above is finite.

Step 1-(b). To bound the third term in (B-22), note that E {�Ti(S)}  i for all S 2 Ei, and that

|Ei|  |A|, hence

E

8

<

:

X

S2Ei

�Ti(S)1 {U c
i }

9

=

;

 i |A|P (U c
i ) .

Using the bounds on the probability of U c
i from Proposition B.4 we have

d(lnN)

1+"e
X

i=i00

E

8

<

:

X

S2Ei

�Ti(S)1 {U c
i }

9

=

;


1
X

i=i00

i |A|C 0 exp
n

�C̃(i� |A|� 1)
o

. (B-24)

Thus, combining (B-22), (B-23) and (B-24) we have that

R⇡a
1

(F,N)  ni00 �
F
max +

d(lnN)

1+"e
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+�F
max

1
X

i=i00

|A|
⇣

C 0i+ K̃
⌘

exp
n

�C̃(i� |A|� 1)
o

=

dH lnNe
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+ C
6

, (B-25)

where C
6

is a positive finite constant.

Step 2 (Exploitation-based regret). From Proposition B.3 one has that

R⇡a
2

(F,N)  ni00 �
F
max +

1
X

i=i00

(ni+1

� ni)P
n

S̄ni 62 S⇤(E {Bn}) , Ũi�1

o

�F
max

+
1
X

i=i00

(ni+1

� ni) K̃ exp
n

�C̃(i� |A|� 1)
o

�F
max,

where S̄ni 2 S⇤(B̄ni) is any solution with minimum average cost at time ni. From proof of Theorem

3.4, we know that ni+1

�ni  e(i+1)

1/(1+")
for i � i00. Also, let ĩ � i00 be such that i C̃/2 > (i+1)1/1+"
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for i � ĩ. Thus, using the results above and Proposition B.5 one has that

R⇡a
2

(F,N)  n
˜i�

F
max +

⇣

K̃ + C 00
⌘

�F
max

1
X

i=˜i

exp
n

�C̃(i� |A|� 1) + (i+ 1)1/(1+")
o

. (B-26)

From proof of Proposition B.3 one has that C̃ := �2

F /(8s
2 |A|2 L2), where �F is a distribution

dependent constant. Therefore, one has that R⇡a
2

(F,N)  C
7

for some positive finite constant C
7

,

independent of N .

Finally, combining (B-21), (B-25) and (B-26) results in the following bound

R⇡a(F,N) 
d(lnN)

1+"e
X

i=˜i

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+ C
8

,

for a positive finite constant C
8

.

Consider now the case when ni := max{bei/Hc, ni�1

+ 1} for i � 2, with H := (1 + �)/C̃ and

� > 1. Following the arguments in step 1 above, one has that

R⇡a
1

(F,N)  ni00 �
F
max +

dH lnNe
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+�F
max

1
X

i=i00

|A|
⇣

C 0i+ K̃
⌘

exp
n

�C̃(i� |A|� 1)
o

=

dH lnNe
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+ C̃
6

,

where C̃
6

> 0 is a finite constant. To bound R⇡a
2

(F,N) note that ni+1

� ni  C
2

e
i
H for i � i00,

where C
2

:= e1/H � e�1/H . The arguments in Step 2 above, and that H > 1/C̃ imply that

R⇡a
2

(F,N)  ni00�
F
max + C

2

⇣

K̃ + C 00
⌘

�F
max

1
X

i=i00

exp
n

�C̃(i� |A|� 1) + i/H
o

= C̃
7

,

for some finite positive constant C̃
7

, independent of N . With this, one obtains that

R⇡a(F,N) 
dH lnNe
X

i=i00

E

8

<

:

X

S2 ˜Ei

�F
S

9

=

;

+ C̃
8

,

for a positive finite constant C̃
8

.
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Step 3. From Propositions B.3 and B.4,

1
X

i=1

P
n

U c
i [ Ũ c

i

o

 K̂ exp
n

�C̃ i
o

<1,

where Ui =
�

[S2EiS ✓ [S2Ei�1S
 

, Ũi = {(Ci, Ei) 2 �(E {Bn})}, and K̂ is a positive finite constant.

Thus, using Borel-Cantelli we have that (Ci, Ei) converges a.s. to some (C1, E1) 2 � (E {Bn}). Let

i⇤(!) denote the last cycle at which the exploration set changes on sample path !. We have that

E

8

<

:

i⇤
X

i=1

X

S2 ˜Ei

�F
S

9

=

;

 G�F
max

E {i⇤}  G�F
max

1
X

i=1

P {i⇤ � i}  G�F
max

K̂
1
X

i=2

%i

1� %
<1,

where % := exp{�C̃} < 1. Thus, we conclude that for both selections of {ni : i � 1}

R⇡a(F,N)  (lnN)1+" E
(

X

S2E1

�F
S

)

+C
9

, and R⇡a(F,N)  (1 + �)8s2 |A|2 L2

�2

F

lnNE
(

X

S2E1

�F
S

)

+C̃
9

for positive finite constants C
9

and C̃
9

. The result follows from noting that
P

S2E1 �F
S = z⇤OCP (B1)

(a.s.) for some B1 because (C1, E1) 2 � (E {Bn}), by the definition of � (E {Bn}).

Theorem 5.2. OCP and R-OCP are in P for weighted basis or independent set matroid minimiza-

tion problems.

Proof. From the proof of Lemma 4.8 we know that there exists a unique critical set. Moreover,

such a set can be found in polynomial time (e.g. by solving |A| instances of f(·)). Let C⇤ denote

the unique critical set and R : 2N ! Z
+

be the rank function of the matroid. We claim that both

OCP and R-OCP can be solved through the Linear Programming problems given by

min
r
X

l=1

X

a2A
bax

l
a (B-27a)

s.t. 1 
r
X

l=1

xla, a 2 C⇤ (B-27b)

X

a2S
xla  R(S), S ✓ A, l 2 {1, . . . , r} (B-27c)

0  xla  1, a 2 A, l 2 {1, . . . , r} , (B-27d)

for r = 1 to r = |A| (for the basis problem we also add
P

a2S xla = R(S) for all l). Indeed,

formulation (B-27) is the fractional covering of the critical set with at most r solutions of the
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matroid and if we change 0  xla  1 to xla 2 {0, 1} we have the standard covering with exactly r

solutions of the matroid. By Lemma A.3, for both OCP and R-OCP it su�ces to consider cases

r 2 {1, . . . , |A|}; we just need to evaluate the regret for each case and pick the best. This proves

the result for R-OCP. For OCP, we simply show that every extreme point of the feasible region of

(B-27) is integral. Because the feasible region of the basis problem is a face of the independent set

problem it su�ces to prove this result for the latter one. For this, we need a few auxiliary results.

We begin with a well known Lemma (Schrijver 2003).20

Lemma B.6 (Uncrossing Technique). Let

P =

(

x 2 R|A| : xa � 0 8a 2 A,
X

a2S
xa  R(S) 8S ✓ A

)

be the independent set polytope of a matroid with rank function R(·), x 2 P and W
1

⇢ . . . ⇢Wk be

an inclusion-wise maximal chain of subsets of A such that
P

a2Wl
xa = R (Wl) for all l  k. Then,

for any set S ✓ A such that
P

a2S xa = R (S) we have that

eS 2 span
��

eWl
 

, l  k
�

We use the following corollary of Lemma B.6.

Corollary B.7. Let P be the independent set or base polytope of a matroid and let x 2 P . If

xa 2 (0, 1), then there exist " > 0 and a0 2 A \ {a} such that xa0 2 (0, 1) and x 2 conv {x, x}, for

x, x 2 P \ {x} defined by

x(", a, a0) := x+ "
⇣

ea � ea
0
⌘

; x(", a, a0) := x+ "
⇣

ea
0 � ea

⌘

. (B-28)

Proof of Corollary B.7. LetW
0

⇢W
1

⇢W
2

⇢ . . . ⇢Wk be the maximal chain from Lemma B.6

(with W
0

= ;). If k = 0 then the result follows trivially (x 2 int (P )), so we will assume that k � 1.

Let l
0

be the smallest l 2 {1, . . . , k} such that a 2 Wl. There exists a0 2 Wl0 \ {a} such that

xa0 2 (0, 1): to see this, note that R(Wl0�1

) 2 Z
+

, and that

R(Wl0) =

0

B

@

R(Wl0�1

) + xa +
X

h2Wl0
\(Wl0�1[{a})

xh

1

C

A

2 Z
+

,

thus one can always find such an a0 in Wl0 \ (Wl0�1

[ {a}). For any choice of a0 we have that

20An explicit proof can be found in http://theory.stanford.edu/

~

jvondrak/CS369P-files/lec10.pdf
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y 2 {x, x} defined in (B-28) satisfies
P

h2Wl
yh = r (Wl) for all l  k, thus by Lemma B.6 y 2 P for

" < min {xa, xa0} (so that y � 0 and
P

h2S yh  R(S) for constraints not active at x). The result

follows since x 2 conv {x, x} by construction.

Next, we use this corollary to show the integrality of (B-27).

Proposition B.8. The feasible region of (B-27) has integral extreme points.

Proof of Proposition B.8. Let x be a fractional extreme point of (B-27). Without loss of gen-

erality x1 has a fractional component x1i1 2 (0, 1): we will reach a contradiction by constructing

a set of solutions whose convex hull contains x. Corollary B.7 implies that there exist "
1

> 0, j
1

such that x1 2 conv
�

x1 ("
1

, i
1

, j
1

) , x1 ("
1

, i
1

, j
1

)
 

, with x1 ("
1

, i
1

, j
1

) , x1 ("
1

, i
1

, j
1

) 2 P defined by

(B-28).

Define C̃ :=
�

h 2 C : 1 =
Pr

l=1

xlh
 

. If {i
1

, j
1

} \ C̃ 6= ;, by symmetry we may assume w.l.o.g.

that j
1

2 C̃ (if not rename i
1

and j
1

). Because x1j1 2 (0, 1), j
1

2 C̃ and the definition of C̃, there

exists l 2 {2, . . . , r} such that xlj1 2 (0, 1). We assume w.l.o.g. that l = 2 and let i
2

= j
1

. By

Corollary B.7 applied to x2 we have that there exist "
2

> 0, j
2

and x2 ("
2

, i
2

, j
2

) , x2 ("
2

, i
2

, j
2

) 2 P

defined by (B-28) such that x2 2 conv
�

x2 ("
2

, i
2

, j
2

) , x2 ("
2

, i
2

, j
2

)
 

. If {i
1

, j
2

} \ C̃ 6= ;, again

by symmetry we can assume j
2

2 C̃ and repeat this construction and continue until we obtain a

sequence i
1

, j
1

= i
2

, . . . , jk�1

= ik, jk and "
1

, . . . , "k for k � 1 which satisfies one of the following

conditions:

1. {i
1

, jk} \ C̃ = ;.

2. jk = il for some l 2 {1, . . . , k � 1}, in which case we may assume that l = 1.

For case 1. let " := min
n

min {"l : l = 1, . . . , k} , 1�
Pr

l=2

xli1 , 1�
Pk�1

l=1

xljk �
Pr

l=k+1

xljk

o

and for

case 2. let " := min {"l : l = 1, . . . , k}. For both cases define X̂ :=
�

x̂l
�r

l=1

, X̌ :=
�

x̌l
�r

l=1

so that

x̂l = xl (", il, jl), x̌l = xl (", il, jl) for l 2 {1, . . . , k} and x̂l = x̌l = xl for all l 2 {k + 1, . . . , r}. We

then have that X̂, X̌ ✓ Q, x /2 X̂ [ X̌ and x 2 conv
n

X̂, X̌
o

, which contradicts x being an extreme

point.

The result follows by noting that (B-27) can be solved in polynomial time because (B-27c) can

be separated in polynomial time (Schrijver 2003, Corollary 40.4c).
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