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Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus
mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of
neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf,
(2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration.
We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking
parvalbumin positive (PV1) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal net-
works after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV1

interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven con-
trast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory
fibers. When fast auditory fiber activity is lost, tonic PV1 interneuron activity is diminished, resulting in the prolonged response
latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous c oscillations, and impaired attention/stress-con-
trol that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tin-
nitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory
networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze coop-
erative efforts to develop tinnitus therapies.

Introduction
Chronic, subjective tinnitus, an auditory phantom sensation,
affects approximately one-sixth of the general population
(Shargorodsky et al., 2010). Tinnitus can be triggered by a variety
of causes that may act synergistically (Tyler et al., 2008a; Henry
et al., 2014; Moller et al., 2015), but hearing loss is the biggest
risk factor for tinnitus (Roberts et al., 2010; Knipper et al., 2013;
Lanting et al., 2014; Bauer, 2018). The majority of tinnitus
researchers assume that tinnitus is linked to damage or dysfunc-
tion in the periphery of the auditory system (Demeester et al.,
2007). Because tinnitus can occur without hearing threshold ele-
vation (Roberts et al., 2010; Geven et al., 2011; Langers et al.,
2012; Lanting et al., 2014) and normal hearing thresholds rely on

Received June 7, 2019; revised Aug. 5, 2020; accepted Aug. 8, 2020.
M.K. and L.R. this work were supported by German Research Foundation DFG-Kni-316-4-1 and SPP16-08 DFG. P.H.

D. was supported by Fondecyt 1161155, CONICYT BASAL FB008, and Proyecto ICM P09-015F. P.v.D., B.M., and H.S.
were supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie
Grant Agreement 764604 (TIN-ACT). P.v.D., B.M., and W. Schlee were supported by European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-Curie Grant Agreement 722046 (ESIT). D.M.B. was
supported by NIHR; his views are his own and do not represent those of NIHR nor he UK Department of Health and
Care. We thank Jennifer Schulze (Cluster of Excellence “Hearing4all” of the German Research Foundation) for excellent
support in designing the schematic sketch. English language services were provided by www.stels-ol.de.
The authors declare no competing financial interests.
Correspondence should be addressed to Marlies Knipper at marlies.knipper@uni-tuebingen.de or Pim van

Dijk at p.van.dijk@umcg.nl.
https://doi.org/10.1523/JNEUROSCI.1314-19.2020

Copyright © 2020 the authors

7190 • The Journal of Neuroscience, September 16, 2020 • 40(38):7190–7202

https://orcid.org/0000-0002-6181-5735
https://orcid.org/0000-0002-8023-7571
https://orcid.org/0000-0001-8618-8793
https://orcid.org/0000-0001-9652-1035
https://orcid.org/0000-0003-2588-4757
http://www.stels-ol.de
mailto:marlies.knipper@uni-tuebingen.de
mailto:p.van.dijk@umcg.nl


the proper function of outer hair cells (Dallos, 2008), outer hair
cell dysfunction is unlikely to be a primary cause of tinnitus.
Instead, deafferentation of inner hair cells by auditory nerve
fibers is suggested to be linked to tinnitus in animal models
(Müller et al., 2003; Bauer et al., 2007; Roberts et al., 2010;
Knipper et al., 2013; Rüttiger et al., 2013; Singer et al., 2013) and
in humans (Weisz et al., 2006; Geven et al., 2011; Langers et al.,
2012; Boyen et al., 2014; Gilles et al., 2016; Guest et al., 2017;
Milloy et al., 2017; Hofmeier et al., 2018). Other risks for tinnitus
include anxiety and stress-related disorders (Canlon et al., 2013;
Durai and Searchfield, 2016; Mazurek et al., 2017).

From studies on auditory neurons, tinnitus has been linked to
hyperexcitability and elevated spontaneous activity in the brain.
Such increases in activity are observed, for example, in the coch-
lear nucleus (Auerbach et al., 2014; Gao et al., 2016), the inferior
colliculus (Bauer et al., 2008), the medial geniculate body
(Kalappa et al., 2014), and the auditory cortex (AC) (Norena and
Farley, 2013; Eggermont and Tass, 2015) after acoustic trauma,
ototoxicity, or deafferentation of auditory nerve fibers. There is
an ongoing debate about the source of hyperexcitabililty and ele-
vated spontaneous activity, however. Most previous tinnitus lit-
erature suggested that tinnitus is the result of homeostatic
increases in central neural gain (for review, see Norena, 2011;
Schaette and McAlpine, 2011; Schaette and Kempter, 2012;
Auerbach et al., 2014; Sedley et al., 2016; Shore et al., 2016;
Roberts, 2018; Roberts and Salvi, 2019). In contrast, other studies
propose that tinnitus is not related to increased central gain
(Zeng, 2013; Möhrle et al., 2019; Sedley, 2019), but instead occurs
when auditory input falls short of thresholds for increasing neu-
ral gain, so stimulus-evoked responses are diminished in the
ascending auditory path (Rüttiger et al., 2013; Singer et al., 2013;
Zeng, 2013; Hofmeier et al., 2018; Möhrle et al., 2019). In the
present review, we question the previous hypotheses that neural
gain is the source of tinnitus, and propose instead that hyperex-
citability during tinnitus is the result of a failure to generate cen-
tral neural gain because of impairment of an inhibitory network
that had developed with maturation of fast auditory fibers to ena-
ble high stimulus resolution. In this view, a loss of fast auditory
fibers would reduce the drive for tonic inhibition in auditory-
specific circuits, resulting in the emergence of hyperactivity that
underlies tinnitus. Hence, tinnitus may only develop after fast
auditory fibers have stimulated the development of tonic inhibi-
tion within these auditory-specific circuits and would not

develop in persons with congenital deaf-
ness. This hypothesis would explain why
congenital deafness is rarely associated
with tinnitus, whereas acquired deafness
is often associated with tinnitus
(Eggermont and Kral, 2016). We more-
over suggest that fast auditory fibers that
mature with sensory experience improve
stimulus resolution through brain-
derived-neurotrophic factor (BDNF)-de-
pendent synapse formation between fast-
spiking parvalbumin-positive (PV1) in-
hibitory interneuron complex dendritic
networks and pyramidal projection neu-
rons in the ascending auditory path, as
shown for the AC (Xu et al., 2010).
Thereby the representation of specific au-
ditory stimuli can be integrated in distrib-
uted frontostriatal networks that control
attention-driven amplification processes.
Through the activation of this network,

precisely timed, stimulus-driven bottom-up feedforward, and
top-down feedback activity can accentuate relevant over irrele-
vant stimuli by contrast amplification, as we discuss in more
detail later in this article. The loss of the critical drive that main-
tains baseline tonic inhibitory PV1 network activity may cause
an increase in spontaneous firing rates (SFRs) in central auditory
circuits and impair input for specific contrast amplification in
affected frequency-specific auditory regions, resulting in tinnitus.
This view is consistent with various earlier findings that link tin-
nitus with (1) insufficient gain control, (2) central hyperexcitabil-
ity, (3) excessive cortical synchrony, elevated g oscillations and
corrupted noise-cancellation, (4) increased spontaneous neural
activity generated through stochastic resonance, (5) disrupted
functional connectivity between auditory-specific and frontos-
triatal microcircuits, or (6) amplification of a tinnitus precursor
through attention or stress. This view is also consistent with pre-
vious findings that suggest that tinnitus can be suppressed by
cochlear implant (CI) stimulation or by hearing aids (Punte et
al., 2013; Knopke et al., 2017). By bringing together the single
parts in this review, we trust that new synergies and mutual sci-
entific exchange will help to develop a cure for tinnitus.

Tinnitus occurs with low prevalence in congenital deafness
but with high prevalence in acquired deafness
Rodents are unable to hear when they are born on embryonic
day 21, and hearing onset is delayed until postnatal day 10 (P10)
(Fig. 1, rodent). This is different from the human fetus, in which
hearing starts during embryonic week 27 (Fig. 1, human). After
hearing onset, there is a critical period during which hearing ex-
perience shapes the acuity and fidelity of hearing (Fig. 1, critical
period). In rodents, the critical period extends from P10 to P14
(de Villers-Sidani et al., 2007) and in humans, it likely occurs
between the 27th embryonic week and the sixth to 12th month
after birth (Sharma et al., 2016).

Auditory experience has been suggested as a possible prereq-
uisite for tinnitus because tinnitus has been reported to be absent
in congenital deafness (Eggermont and Kral, 2016). Several stud-
ies have surveyed the prevalence of tinnitus in hearing-impaired
young adults, and tinnitus does not seem to be problematic in
younger children (Baguley and McFerran, 2002; Rosing et al.,
2016). In responses to direct questioning, reports of tinnitus are
higher in moderately or severely hearing-impaired youth than in

Figure 1. Timing of hearing onset and major maturation steps in the auditory pathway relative to birth. In humans, hear-
ing starts in utero at about embryonic week (EW) 27, followed by a critical period with hearing experience. This critical period
spans intrauterine and extrauterine periods up to at least 6-12 months. Adult-like, mature hearing is reached 2-3 years after
birth. In rodents, hearing starts after birth (embryonal day 21: E21) at postnatal day 10 (P10) followed by at P10 followed
by the critical period until;P14. Mature hearing is reached by;P28. The risk of tinnitus is high after the critical time pe-
riod and in acquired deafness.
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those with profound loss. In addition, those with acquired loss
are significantly more likely to report tinnitus (Fig. 1, high risk of
tinnitus) than those with congenital hearing loss (Graham, 1987)
(Fig. 1, low risk of tinnitus). However, limited data are available
on this topic; and in existing studies, it is not always possible to
determine when congenital hearing loss occurred. For example,
a mid- to late-pregnancy infection, or a peripartum event, such
as anoxia or the administration of aminoglycoside antibiotics,
may cause early deafening after some weeks or months of intrau-
terine auditory experience. Two clinical studies, however, indi-
cated that tinnitus may indeed be absent in the population that
has had no auditory experience. In children with a Gap junction
beta-2 protein (GJB2) mutation, for whom a complete lack of au-
ditory experience can be surmised, there was a near absence of
tinnitus (Tsukada et al., 2010). Moreover, a recent study found a
relationship between deafness and the absence of tinnitus, even
for congenital single-sided deafness (S. Y. Lee et al., 2017).
In that study, strikingly, none of the 20 subjects with congeni-
tal deafness perceived tinnitus on the affected side (Fig. 1, con-
genital deafness), whereas 30 of 44 subjects with acquired single-
sided deafness did experience tinnitus on the affected side (S. Y.
Lee et al., 2017) (Fig. 1, acquired deafness). In contrast to con-
genitally deaf patients, patients with normal maturation who
acquire sudden sensorineural hearing loss often experience tinni-
tus, with a prevalence of 60%-90%, often on the deaf side (Fig. 1,
high risk of tinnitus) (Van de Heyning et al., 2008; Chadha et al.,
2009; Eggermont and Kral, 2016).

Based on the findings described above, it was concluded
that the development of tinnitus needs to be preceded by audi-
tory experience (Eggermont and Kral, 2016; S. Y. Lee et
al., 2017). Specifically, it was suggested that the emergence of
tinnitus requires the preexistence of a tonotopic map as a refer-
ence for the integration of sensory input to “somatic memory”
(Eggermont and Kral, 2016). But the proper topographically or-
dered connections are established in the auditory pathway well
before hearing actually functions (Friauf and Lohmann, 1999;
Clause et al., 2014). Additionally, tonotopic maps in the brain
persist in mice with profound deafness, independently of
whether the hearing loss is acquired or congenital (Babola et al.,
2018). Therefore, tonotopy, per se, is unlikely to cause tinnitus.
Instead, a sensory experience-dependent maturation step must
be required for the emergence of tinnitus.

Maturation steps that require auditory experience
Because hearing appears to be essential for the development of
tinnitus, properties that arise after the onset of hearing are more
likely to contribute to tinnitus than properties that emerge before
hearing onset. One property that develops after hearing onset is
the brain’s SFR. The developing brain is hyperexcitable because
neurons that release g -aminobutyric acid (GABAergic neurons)
are excitatory at this time. The effects of GABA depend on the
chloride gradient across the plasma membrane, which in devel-
oping neurons favors chloride efflux and depolarization. A
maturational shift in chloride transporters is required to reverse
the chloride gradient so that GABA becomes inhibitory (Marin
and Rubenstein, 2001; Ben-Ari, 2002) (Fig. 2A,B, green plus
signs). This process is predicted to be dependent on BDNF,
which has been shown to facilitate the expression of potassium
chloride cotransporter 2 (KCC2) (Wardle and Poo, 2003), which
contributes to this switch (De Koninck, 2007). This excitatory-
to-inhibitory switch in GABAergic signaling occurs after tangen-
tially migrating inhibitory neurons have successfully reached their
destinations in higher brain regions, a process accomplished in

rodents around birth (Marin and Rubenstein, 2001). In the audi-
tory system, the switch occurs in a region-specific pattern after
hearing onset (Kandler and Friauf, 1995; Friauf et al., 2011), possi-
bly driven by sensory experience (Shibata et al., 2004) (Fig. 2A,C,
orange minus signs).

We hypothesize that not hearing experience, per se, but
fast auditory processing resulting from maturation of a distinct
auditory fiber type after hearing onset is critical for the BDNF-
and sensory experience-dependent maturation of inhibitory
GABAergic circuits in the auditory system. Whereas at the be-
ginning of hearing onset, auditory fibers with low SFRs (Fig. 2B,
low-SR, green fiber) and high activation thresholds (Yates, 1991;
Merchan-Perez and Liberman, 1996) dominate, after hearing
onset,;60% of auditory fibers develop high SFRs (Fig. 2C, high-
SR, orange fiber) and low activation thresholds (Merchan-Perez
and Liberman, 1996; Glowatzki and Fuchs, 2002; Grant et al.,
2010). These high-SR fibers determine the threshold of the
summed auditory-nerve response, measured by the compound
action potential (Bourien et al., 2014), and are responsible for the
shortest-latency auditory responses at any given characteristic
frequency. Therefore, fast (high-SR) auditory fibers are suggested
to determine perceptual thresholds (Meddis, 2006; Heil et al.,
2008). Hence, high-SR auditory fibers likely contribute to low-
ered thresholds and shortened latency of cortical auditory
responses, which can be measured after the sharpening of corti-
cal receptive fields (Fig. 2C, cortical resolution*) (de Villers-
Sidani et al., 2007) at the end of the critical period after hearing
onset: between P10 and P14 in rodents (de Villers-Sidani et al.,
2007) and between the 27th embryonic week and sixth to 12th
months after birth in humans (Neville and Bavelier, 2002). The
sharpening of receptive fields, moreover, leads to narrower band-
width responses, likely as a result of stimulus-evoked release of
BDNF from cortical pyramidal neurons, which is suggested to
trigger synaptogenesis in a complex network of fast-spiking PV-
expressing GABAergic interneurons (PV1 interneurons) that
provide perisomatic and dendritic inhibition to cortical pyrami-
dal neurons (Fig. 2C, cortical resolution*, BDNF*, PV*) (Hong
et al., 2008; Xu et al., 2010; Lehmann et al., 2012; Griffen and
Maffei, 2014). Fast-spiking, PV1 interneurons play a key role in
several higher microcircuit functions, such as feedforward and
feedback inhibition, high-frequency network oscillations, and
pattern separation. For all of these functions, the fast signaling
properties of these neurons play a critical role (Hu et al., 2014,
2018). Notably, fast-spiking PV1 interneuron networks develop
in auditory subcortical and cortical projections with sensory ex-
perience (Lohmann and Friauf, 1996; Chumak et al., 2016), as
also described for other sensory systems (Itami et al., 2007; Xu et
al., 2010; Lehmann et al., 2012; Kimura and Itami, 2019).

In further support of our hypothesis, fast (high-SR) auditory
fiber activity was related to the development of perisomatic PV1

interneuron inhibition and the enlargement of dynamic range of
auditory responses after hearing onset (Chumak et al., 2016).
Perisomatic PV1 interneuron activity contributes to feedforward
inhibition that narrows the window for temporal summation of
EPSPs and action potential initiation in principle neurons
(Pouille and Scanziani, 2001) and thereby promotes both sharp-
ening of receptive fields and pattern separation (Leutgeb et al.,
2007). Because maturation of fast (high-SR) auditory fiber activ-
ity was also linked to enhanced auditory fidelity, including
increased inhibitory strength and shortened latencies (Xu et al.,
2010; Chumak et al., 2016), we may predict that fast (high-SR)
auditory fiber activity also contributes to PV1 interneuron-
mediated feedback inhibition at principal-cell dendrites (Couey
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et al., 2013), which has been shown to improve stimulus resolu-
tion and discrimination above noise in sensory systems
(Caraiscos et al., 2004; Hu et al., 2014).

Given that fast inhibitory PV1 interneurons are critical in
generating both g - (feedforward inhibition) and b -frequency
oscillations (feedback inhibition) measured with EEG (Cardin et
al., 2009; Sohal et al., 2009; Chen et al., 2017), experiments that
used optogenetic disruption of inhibitory networks may help to
explain changes in oscillations in tinnitus: Through optogenetic
suppression of PV1 interneuron activity, likely including tonic
and phasic activity, increased synchronization of spontaneous
activity across a broad frequency range was observed, leading to
increased baseline spontaneous g power and occlusion of
changes in evoked g power (Chen et al., 2017). Interestingly,
increased baseline spontaneous g power linked with reduced
evoked g power was observed in children with deficits in fast au-
ditory processing (Mamashli et al., 2017), strengthening the hy-
pothesis that diminished fast (high-SR) auditory fiber processing
might also be able to cause enhanced baseline spontaneous g
power and reduced evoked g power, a predicted correlate of tin-
nitus (see Proposed neural correlates of tinnitus reflected in the
context of fast auditory processing). Elevated activity in fast-

spiking PV1 interneurons is predicted to play a role in improved
task performance and attention-driven contrast amplification
(Cardin et al., 2009; Kim et al., 2016; Chen et al., 2017). We
therefore suggest that diminished fast (high-SR) auditory fiber
activity reduces the ability of listeners to properly attend to rele-
vant stimuli while ignoring irrelevant stimuli (Delano et al.,
2007; Nunez and Malmierca, 2007; Wittekindt et al., 2014;
Dragicevic et al., 2019), which is another neural correlate of tin-
nitus (see Proposed neural correlates of tinnitus reflected in the
context of fast auditory processing).

It remains to be clarified in future studies whether fast (high-
SR) auditory fibers stimulate the maturation of this complex
PV1 interneuron network by activating BDNF promoters and
synaptogenesis of fast-spiking PV1 interneuron with projecting
neurons, as has been suggested to occur in auditory and other
sensory cortices (Itami et al., 2007; Xu et al., 2010; Lehmann et
al., 2012; Kimura and Itami, 2019) or if BDNF acts via the facili-
tation of inhibitory actions by GABA (De Koninck, 2007).
Regardless, both the maturation of fast auditory fibers that drive
BDNF promoters and BDNF-driven faciliation of GABA-medi-
ated inhibition would lower the baseline SFR in pyramidal neu-
rons in cortical and functionally connected networks with

Figure 2. Diagram of auditory excitatory and inhibitory states before (A, left, B) and after (A, right, C) the critical period. A, Immature hearing and congenital deafness go along with a low
risk of tinnitus. In this state, GABAergic neurons still act in an excitatory manner (green1) on the SFR in the brain (white dashed line). When GABA becomes inhibitory after the critical period
(orange minus), the lower SFR baseline may initiate a high risk of tinnitus. B, At hearing onset, auditory fibers with low SFRs (low-SR, green) can already be recorded along the tonotopic fre-
quency map (black arrows) when GABAergic neurons in the ascending path are likely still excitatory. At that time, excitation dominates over inhibition (green1) and auditory discrimination
capacity is not yet specific for distinct sensory modalities (low cortical resolution, green downward arrow). C, With sensory experience, fast and specific auditory processing evolves with the de-
velopment of fibers with high-spontaneous rate characteristics (high-SR, orange) and the maturation of inhibitory circuits (fast spiking PV1 interneuron network, orange minus). The high-SR
fibers may drive BDNF secretion from ascending auditory projection neurons up to the AC in a stimulus-dependent way. BDNF regulates perisomatic synaptic contacts between PV-positive inter-
neurons and cortical pyramidal neurons, and sharpens auditory cortical resolution (orange upward arrow), enabling improved task performance. HC, Hippocampus; SGN, spiral ganglion neurons;
:, increase; ;, decrease.
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auditory experience (Fig. 2A, SFR baseline, white dashed line +).
The initial hyperexcitability in these circuits resulting from
GABAergic neurons being excitatory would thereby be reduced
and the fidelity and specificity of responses to auditory input
would become enhanced, as hypothesized for the auditory sys-
tem (Chumak et al., 2016; Matt et al., 2018) and cerebellum
(Duguid et al., 2012).

Regarding the lower risk of tinnitus in congenital deafness
and the prediction that tinnitus requires auditory experience in
children (see above), it is interesting to consider when fast (high-
SR) auditory fibers and PV1 interneurons, whose activity is
reflected in g - and b -frequency oscillations (Cardin et al., 2009;
Sohal et al., 2009; Gill and Grace, 2014; Chen et al., 2017), might
mature in children. g oscillations develop in humans between
the onset of hearing function before birth, approximately
between the 27th embryonic week and sixth to 12th months after
birth (Neville and Bavelier, 2002), with predictions that increased
g oscillations, associated with feedforward inhibition, precede
the development of increased b oscillations (reflecting feedback
inhibition) before 6months after birth (Sowell et al., 2001; Ortiz-
Mantilla et al., 2016). From sixth months onwards, the develop-
ment of functional connectivity in children’s brains proceeds,
becoming more clustered and specific for sensory modalities
(Sowell et al., 2001; Neville and Bavelier, 2002; Ortiz-Mantilla et
al., 2016), a process that is paralleled by enhanced speech com-
prehension in noise (Obleser et al., 2007; Youssofzadeh et al.,
2018) and improvement of attention-driven contrast amplifica-
tion for auditory stimuli, improved auditory discrimination
capacity, and improved temporal discrimination (Sowell et al.,
2001; Miller and Buschman, 2013) (Fig. 2C, cortical resolution).
We thus can conclude that maturation of fast (high-SR) auditory
fiber processing and inhibitory PV1 interneuron microcircuits
mature in the first months after birth, providing a good rationale
for tinnitus occurring with low prevalence in congenital deafness
but with high prevalence in acquired deafness (see above).

We conclude that the onset of fast (high-SR) auditory nerve
fiber activity with the onset of auditory experience stimulates the
development of a feedforward PV1 interneuron network that is
a prerequisite for the development and maintenance of feedback
inhibitory PV1 interneuron networks in auditory-specific cir-
cuits. The lack of fast auditory processing distinguishes congeni-
tal deafness, with a low risk of tinnitus (Fig. 2B), from mature
acquired hearing loss, with a high risk of tinnitus (Fig. 2C).

Proposed neural correlates of tinnitus reflected in the
context of fast auditory processing
We next reflect on the various predicted neural correlates of tin-
nitus in the context of fast (high-SR) auditory nerve activity and
its predicted functions for central auditory processing described
above.

Neural gain
Most previous tinnitus literature suggested that tinnitus is the
result of homeostatic increases in central neural gain (see
Introduction). We argue against the hypothesis that tinnitus
results from neural gain-related hyperexcitability, instead sug-
gesting that central neural gain describes a compensating central
response to hearing loss that is not related to tinnitus, as expli-
cated in the following. Central neural gain mechanisms typically
include memory-dependent homeostatic modifications to restore
the overall firing rate to its baseline or “setpoint” (Barnes et al.,
2015; Gainey and Feldman, 2017). Considering that tonic PV1

interneuron activity may set baseline levels for homeostatic

modifications, as discussed above, central neural gain would
keep tonic PV1 interneuron network activity, first established
with auditory experience, intact. This may be different in the
case of tinnitus, as will be discussed later in this review.

Central neural gain, which aims to restore an overall stable
firing rate in neural networks after auditory deprivation (Fig. 3A,
Neural gain*), is predicted to require the strengthening of synap-
ses via a learning-dependent, positive feedback cycle (for review,
see Davis and Bezprozvanny, 2001; Rich and Wenner, 2007;
Turrigiano, 2012). The occurrence of this in the auditory system
can be concluded from the observation of compensating auditory
output activity following reduced auditory input after mildly
traumatic (100 dB SPL) sound exposure in mice. This neural
gain is linked with elevated hippocampal long-term plasticity
and with altered PV1 interneuron labeling and enhanced BDNF
promoter activity in auditory and hippocampal pathways (Matt
et al., 2018). Such a complex brain response after auditory
trauma is indicative of a positive feedback cycle that includes
coactivation of auditory and frontostriatal circuits (for review,
see Irvine, 2018b). Compensating central neural gain has more-
over been observed after traumatic sound exposure in animals
that did not exhibit tinnitus (Möhrle et al., 2019). Here, the
restored late auditory brainstem response (ABR) ABR wave IV
was linked with shortened response latencies (Möhrle et al.,
2019), revealing that central neural gain may include shorter
response latency and increased population-discharge synchrony,
which are characteristics of attention-driven contrast amplifica-
tion processes (Siegle et al., 2014; Kim et al., 2016; Chen et al.,
2017; Galuske et al., 2019). We therefore propose that central
neuron gain, and likewise, attention-driven contrast amplification
of auditory responses, involves coactivation of auditory and fron-
tostriatal regions, such as the following: (1) basal forebrain, to
accentuate particular auditory stimuli (Fig. 3A) (Kilgard et al.,
2002; Kraus and White-Schwoch, 2015; Irvine, 2018a); (2) inferior
frontal gyrus activity (Fig. 3A), to distinguish new or deviant sig-
nals from previous ones (Schonwiesner et al., 2007; Malmierca et
al., 2014); (3) hippocampus, to extract and memorize the behav-
iorally relevant signal (Kraus and White-Schwoch, 2015;
Weinberger, 2015; Irvine, 2018a) and synaptic-adjusted strength
(Fig. 3A, hippocampus); and (4) dlPFC and mPFC (Fig. 3A), to
balance attention-driven plasticity responses (de Kloet, 2014;
Irvine, 2018a; Viho et al., 2019) by inhibiting or enhancing stress
responses (Sullivan and Gratton, 2002). We moreover suggest that
only after auditory experience has enabled fast (high-SR) auditory
fibers to stimulate the development of PV1 inhibitory microcir-
cuits, can BDNF promoters that are specifically activated by fast
(high-SR) auditory fiber activity (Fig. 3A, BDNF*) drive the
required compensating PV1 microcircuit changes in the frontos-
triatal path, leading to restored ABR wave IV responses (neural
gain) (Matt et al., 2018). This positive feedback cycle is not suffi-
cient for initiating tinnitus, however, as suggested in previous
studies (Knipper et al., 2013; Zeng, 2013; Sedley, 2019). Previous
findings that link neural gain to tinnitus (Roberts et al., 2010;
Norena, 2011; Schaette and Kempter, 2012; Shore et al., 2016)
may be explained by unmatched hearing impairment between
participants with and without tinnitus (Adjamian et al., 2009), or
by the co-occurrence of tinnitus with decreased sound tolerance
(hyperacusis) (Melcher et al., 2009; Hickox and Liberman, 2014;
Auerbach et al., 2019; Möhrle et al., 2019).

In conclusion, we suggest that active feedforward and feed-
back PV1 interneuron microcircuits, first established with the
emergence of fast (high-SR) auditory fiber activity during audi-
tory experience, form the base substrate on which overall firing
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rates can be enhanced after hearing onset in response to hearing
loss. However, this memory-dependent positive feedback cycle
that leads to enhanced output activity after reduced auditory
input (neural gain) is unlikely to be sufficient for tinnitus.

Loss of GABAergic inhibition in tinnitus
Numerous studies have suggested that the hyperexcitability
linked to tinnitus is associated with acute GABAergic disinhibi-
tion in the ascending auditory pathway (Norena, 2011; Schaette
and McAlpine, 2011; Schaette and Kempter, 2012; Norena and
Farley, 2013; Auerbach et al., 2014; Kalappa et al., 2014;
Eggermont and Tass, 2015; Gao et al., 2016; Sedley et al., 2016;
Shore et al., 2016; Roberts, 2018; Roberts and Salvi, 2019). From
a traditional position, this hyperexcitability has most often been
interpreted as resulting from a central neural gain response (see
Introduction). We go further in suggesting that the hyperexcit-
ability rather results from critical loss of fast (high-SR) auditory
drive that triggers reemergence of GABAergic excitation, instead
of GABAergic inhibition (Ben-Ari, 2002).

A notable facet of tinnitus is its rapid onset after acquired
deafness. For example, an immediate onset of tinnitus occurred
in 60%-90% of cases in children with CIs when the implants
were not in use (Van de Heyning et al., 2008; Chadha et al.,

2009). Likewise, acquired monaural or binaural sudden sensory
hearing loss in rodents has been linked to disinhibition in nearly
all ascending auditory nuclei (Abbott et al., 1999; Milbrandt et al.,
2000; Mossop et al., 2000). In some cases in rodents, the genera-
tion of hyperexcitability was observed in auditory nuclei within a
few minutes of deafening or nerve transection (McAlpine et al.,
1997; Mossop et al., 2000). Thus, the time frame of hyperexcitabil-
ity associated with acquired deafness in rodents is congruent with
the fast onset of acute tinnitus after CIs are turned off in humans.

Given the rapid time scale (minutes to hours) of activity-de-
pendent functional downregulation or upregulation of KCC2
(Khirug et al., 2010; H. H. Lee et al., 2011; Nardou et al., 2011), a
reemergence of GABAergic excitation can occur within the time
frame of acute tinnitus. Furthermore, auditory nerve transection
has been shown to lead to a decline of KCC2 and a reemergence
of depolarizing GABAergic signaling (Tighilet et al., 2016). To
date, however, this has only been analyzed 3-30d after auditory-
nerve transection (Tighilet et al., 2016). Considering that, in the
auditory system, the GABAergic switch from depolarization to
inhibition occurs in a region-specific pattern after hearing onset
(Kandler and Friauf, 1995; Friauf et al., 2011) and BDNF-driven
facilitation of inhibitory signaling by GABA (De Koninck, 2007)
may be maintained through critical fast auditory fiber drive (see

Figure 3. Predicted auditory gating in the absence (A) and presence (B) of tinnitus. A, Auditory gating may lead to central neural gain, preventing tinnitus after mild acoustic trauma (dam-
aged region). High-SR fiber-driven auditory processing may cause activity-dependent BDNF secretion from auditory-specific synapses. This context-specific signaling can be strengthened (blue
1) in a memory-dependent positive feedback cycle requiring activity in the basal forebrain (BasF, blue curved arrow), inferior frontal gyrus (IFG), and dlPFC and mPFC. This may lead to
enhanced output activity relative to reduced input (Neural gain). B, Failing central neural gain is predicted to result in tinnitus after severe or stressful acoustic trauma. The lack of high-SR
fiber-driven auditory input in the damaged region critically reduces context-specific recruitment of activity-dependent BDNF, possibly essential to maintaining inhibitory, tonic PV-positive inter-
neuron network activity. The baseline levels of spontaneous firing in affected frequency regions is enhanced by hyperexcitability (green1 below red dashed line). The prefrontal stress control
becomes unbalanced (mPFC up), which leads to uncoupling of auditory-specific and frontostriatal brain regions, resulting in the accentuation of irrelevant hyperexcitability-derived neuronal ac-
tivity that would otherwise be ignored (tinnitus).
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above), future studies are urgently needed to determine whether
loss of fast (high-SR) fiber processing causes hyperexcitability in
affected frequency regions by inducing reemergence of depola-
rizing GABAergic signaling, thus leading to tinnitus.

Excessive cortical synchrony and enhanced g oscillations in
tinnitus
Hyperexcitability and a rapidly enhanced SFR during chronic
tinnitus have both been linked to neuronal bursting and exces-
sive neuronal synchrony in the AC (Norena and Farley, 2013;
Eggermont and Tass, 2015). This abnormal neural synchrony
has been suggested to be confined to specific oscillation fre-
quency bands (Eggermont and Tass, 2015), particularly to
enhanced spontaneous g oscillations (30-80Hz), which were
observed in tinnitus patients (Weisz et al., 2007; Ortmann et al.,
2011; Vanneste et al., 2019) and in animal models of tinnitus
(Tziridis et al., 2015). Currently, the tinnitus theory of thalamo-
cortical dysrhythmia describes enhanced g oscillations in tinni-
tus patients as an overactive feedback loop (De Ridder et al.,
2015; Sedley, 2019; Vanneste et al., 2019). But we suggest that
increased cortical synchrony in tinnitus might result from under-
active, rather than overactive feedback inhibition, specifically
from underactive tonic PV1 interneuron activity in auditory
microcircuits. We reason that, during tinnitus, a pathologic
reduction of tonic (perisomatic) inhibition of cortical pyramidal
neurons by monosynaptically coupled PV1 interneurons in au-
ditory circuits (Fig. 3B, PV+) might diminish feedback inhibi-
tion. Under these conditions, pyramidal neurons would fire
synchronously and independently of input. Such a reduction of
tonic inhibition mediated by PV1 interneurons leads to a rapid
increase in bursting and a reduced signal-to-noise ratio in neu-
rons in the cerebellum (Duguid et al., 2012) and has been dis-
cussed in the context of excessive cortical synchrony shown for
epilepsy (Rossignol et al., 2013; Hsieh et al., 2017). Moreover,
diminished activity in tonic fast-spiking PV1 interneuron net-
works was shown in rodent models (Lodge et al., 2009; Gill and
Grace, 2014) and in children with fast auditory processing defi-
cits (Mamashli et al., 2017) linked with enhanced baseline spon-
taneous g power and reduced evoked g power. The same
neurobiological deficits that lead to enhanced baseline spontane-
ous g power in children with fast auditory processing deficits
(Mamashli et al., 2017), as is autism spectrum disorder, is also
associated with elevated gap-discrimination thresholds and a
diminished ability to detect short gaps (Foss-Feig et al., 2017), an
often mentioned phenotypical characteristic of tinnitus (Fournier
and Hebert, 2013; Lobarinas et al., 2013; Galazyuk and Hebert,
2015).

We therefore suggest that the excessive cortical synchrony
and enhanced spontaneous g oscillations observed in tinnitus
patients and tinnitus animal models (Weisz et al., 2007;
Ortmann et al., 2011; Tziridis et al., 2015; Vanneste et al., 2019)
may be related to reduced tonic activity in PV1 interneuron
microcircuits resulting from critical diminution of fast (high-SR)
auditory fiber drive.

Stochastic resonance as a putative cause of tinnitus
A predicted noise source located within the somatosensory sys-
tem has been suggested to drive a stochastic resonance mecha-
nism at the level of the dorsal cochlear nucleus during tinnitus
(Krauss et al., 2016, 2017). Stochastic resonance is a phenom-
enon that may occur whenever noise helps to lift a subthreshold
input signal above a threshold. This noise source was hypothe-
sized to be upregulated, for example, following reduced cochlear
input, and to contribute to central hyperexcitability that on short

time scales of milliseconds to seconds could be amplified through
neural gain and thereby contribute to a tinnitus percept (Krauss
et al., 2016, 2017). Within our proposed framework, we suggest
that the noise source that lifts SFR above threshold results from
elevated SFRs in dispersed auditory-specific regions as a conse-
quence of critically reduced fast auditory processing and loss of
tonic PV1 interneuron activity in auditory microcircuits. In such
cases, the stimulus resolution and specificity for the particular
sensory modality would be reduced and stochastic resonance
may manipulate the excitability at the level of the dorsal cochlear
nucleus.

Disrupted auditory/frontostriatal connectivity and impaired
noise cancellation as correlates of tinnitus
Numerous studies have suggested that dysregulation in frontos-
triatal brain regions and the limbic system is a neural correlate of
tinnitus (Muhlau et al., 2006; Vanneste and De Ridder, 2012;
Schmidt et al., 2017). More specifically, disruption of a frontos-
triatal network has been suggested to contribute to tinnitus by
impairing “noise cancellation” (Rauschecker et al., 2015).

We here suggest that a dysregulation of frontostriatal micro-
circuits in tinnitus can be well explained through reduced tonic
activity in PV1 interneuron microcircuits that are diminished af-
ter critical loss of fast (high-SR) fibers. A critical reduction of fast
(high-SR) auditory processing was suggested to be a correlate of
tinnitus (Knipper et al., 2013; Hofmeier et al., 2018; Möhrle et
al., 2019), as it is expected to impair fast communication between
auditory-specific and frontostriatal regions and would therefore
diminish memory-dependent adjustment of stimulus-evoked
responses following, for example, acoustic trauma. This was veri-
fied in tinnitus patients through a reduced and delayed late ABR
wave V linked to reduced sound-evoked blood oxygenation level
dependent (BOLD) functional magnetic resonance imaging
(fMRI) activity in the AC (Hofmeier et al., 2018; Koops et al.,
2020), reduced functional connectivity observed during sound-
evoked activity (Boyen et al., 2014; Lanting et al., 2014), and
reduced resting-state functional connectivity (r-fc)MRI connec-
tivity between auditory-specific brain regions and frontostriatal
regions (Leaver et al., 2016; Hofmeier et al., 2018).

Disrupted functional connectivity between auditory-specific
and frontostriatal regions (Fig. 3B) is expected to result in a
breakdown of contrast amplification, which accentuates relevant
over irrelevant stimuli (Delano et al., 2007; Dragicevic et al.,
2019). Importantly, contrast amplification relies on an intact
temporal, top-down feedback circuit and on intact fast PV1

interneuron activity (Cardin et al., 2009; Kim et al., 2016; Chen
et al., 2017). As a result of critically impaired fast (high-SR) audi-
tory fiber processing and the resulting diminished drive to tonic
inhibitory PV1 interneuron microcircuits (see above), central
hyperexcitability in deprived frequency regions may occur.
Because this hyperactivity cannot be suppressed through contrast
amplification processes, it results in the perception of phantom
sounds (tinnitus).

In summary, critical reduction in fast (high-SR) auditory fiber
processing after auditory trauma can reduce functional connec-
tivity between auditory-specific regions and frontostriatal micro-
circuits and thereby impair neural processing that allows one to
ignore spurious activity in the deprived auditory regions.

Impaired attention/stress control as a correlate of tinnitus
In tinnitus patients, a tinnitus precursor has been suggested to
exist, but it is normally ignored as imprecise evidence against
the prevailing percept of “silence” (Sedley et al., 2016). This
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precursor is amplified (1) through focused attention (Sedley et
al., 2016); (2) through fear, anxiety, or stress (Jastreboff et al.,
1996); or (3) through a combination of these facilitators that
influence individual tinnitus severity, depending on the context
of each individual’s culture and experience (Searchfield, 2014).

The conscious perception of a tinnitus precursor through
focused attention has been discussed in the context of a predic-
tion error in auditory sensation (Sedley et al., 2016; Hullfish et
al., 2019). Auditory predictions can only be made, however, after
learning about predictable, relevant, auditory signals as distinct
from those that are irrelevant. The remembrance of predictable
stimuli requires fast (high-SR) auditory fiber activity and matu-
ration of PV1 interneuron networks that develop only with sen-
sory experience. We hypothesize that a prediction error might be
caused by hyperexcitability resulting from impaired tonic PV1

interneuron activity. This hyperexcitability produces activity that
cannot be suppressed by contrast amplification processes, as dis-
cussed in the previous section (Fig. 3B, impaired SSR baseline,
red dashed line).

In the Jastreboff Neurophysiological Model of tinnitus, fear,
anxiety, or stress is predicted to be involved in the emergence of
“pre-tinnitus activity” that, in subjects without symptoms, is typ-
ically ignored (Jastreboff et al., 1996). We suggest that elevated
hyperexcitability following the loss of fast (high-SR) auditory
fiber processing can lead to imbalanced stress control by disturb-
ing functional connections between auditory-specific regions
and the medial prefrontal cortex (mPFC) and dorsolateral pre-
frontal cortex (dlPFC). While mPFC is assumed to play a role in
the activation of stress responses, dlPFC has been found to be
linked to inhibition of stress responses (McKlveen et al., 2016).
Correspondingly, it was observed that, during tinnitus, resting-

state connectivity involving mPFC and dlPFC was disturbed
(Schecklmann et al., 2012; Leaver et al., 2016; Hofmeier et al.,
2018) (Fig. 3B, mPFC*, dlPFC+).

Conscious percepts of sound may be encoded not only in the
AC but also in PFC regions (de Lafuente and Romo, 2005).
Unbalanced PFC activity might impact the tinnitus percept itself.
According to this view, the observed reduction in selective atten-
tion for stimuli outside the tinnitus frequency, but increased vigi-
lance for sounds approximating the tinnitus frequency seen in
tinnitus patients (Mazurek et al., 2017; Brozoski et al., 2019) can
be considered to be a response to a critically diminished audi-
tory-specific drive after reductions in fast (high-SR) fiber activity
and subsequent reduction of PFC-dependent contrast amplifica-
tion of auditory information (Fig. 3B, red curved arrow).

Finally, the individual variability of stress sensitivity might
contribute to the observed individually high variability of and
susceptibility to tinnitus (Searchfield, 2014; Durai et al., 2017)
through, for example, a predicted stress vulnerability for auditory
fibers (Singer et al., 2018) or an individual variability in the appa-
rent high metabolic vulnerability of particular PV1 interneuron
synapses (Kann, 2016).

In summary. in tinnitus patients, impaired PFC-triggered
attention/stress control following reduced fast (high-SR)-audi-
tory fiber activity may be linked to a reduced ability to habituate
to, or ignore, enhanced hyperexcitability in critically deprived
frequency regions.

Tinnitus can be suppressed when CIs are turned on but induced
when turned off
CIs are the most successful treatment of choice for auditory
rehabilitation of patients with severe to profound sensory

Figure 4. Predicted auditory processing states after cochlear implantation. A, CI off. B, CI on. A, Tinnitus occurs with high prevalence when congenital deafness is treated with a CI and the
implant is not in use. Under these conditions, the activity fails to serve as the driving force for context-specific secretion of BDNF. When switching off the implant, initial hyperexcitability would
reemerge and on loss of auditory-specific control of frontostriatal coupling would lead to accentuation of irrelevant neural activity in deprived regions basal forebrain (BasF, red curved arrow)
leading to Risk of Tinnitus. B, With electrical stimulation, the driving force for context-specific secretion of BDNF may be partially reinstalled. The initial hyperexcitability would be suppressed in
deprived regions as irrelevant neuronal information (Silenced Tinnitus).
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deafness (Kral and O’Donoghue, 2010; Wilson, 2017). Electrical
stimulation of the auditory nerve via CIs probably reestablishes
crucial central functions for fast auditory processing by initiating
activity in high-SR fibers. This must be concluded from the suc-
cess in achieving nearly normal speech and language develop-
ment in congenitally deaf children (Rajan et al., 2018; Albalawi et
al., 2019). This partial implementation of fast auditory processing
through CIs may also be reflected in the observed shortened
response-onset latencies observed after cochlear electrode im-
plantation in cats (Tillein et al., 2016).

Strikingly, in children implanted between 3 and 15 years, tin-
nitus occurred most commonly on the implanted side when the
implants were not in use (e.g., in bed at night) (Chadha et al.,
2009). The incidence of tinnitus is 70%–90% of cases when a CI,
implanted following severe bilateral hearing loss, is turned off
(Baguley and Atlas, 2007; Ramakers et al., 2015) (Fig. 4A, CI Off:
Risk of Tinnitus). In contrast, increasing evidence suggests that,
on full-electrode stimulation through bilateral CI implants, tinni-
tus is suppressed (Fig. 4B, CI On: Silenced Tinnitus) (Baguley
and Atlas, 2007; Tyler et al., 2008b; Punte et al., 2013; Knopke et
al., 2017). Also, in patients with unilateral hearing loss, the im-
plantation of a CI suppressed tinnitus (Punte et al., 2013). When
tested in their capacity to suppress tinnitus, electric-acoustic
stimulation (Mertens et al., 2018; Pillsbury et al., 2018; Li et al.,
2019), as well as hearing aids (Searchfield et al., 2010; Shekhawat
et al., 2013), have resulted in at least transient tinnitus relief.

We therefore predict that ongoing electrical stimulation of
the auditory pathway may be a prerequisite for the suppression
of tinnitus. In the future, either persistent stimulation near
threshold or stimulation of frequency regions higher than 8 kHz
(Levy et al., 2015), which are often not reliably covered in hearing
aids or CI, should be investigated as a driving force to maintain
or reestablish tonic PV1 interneuron activity in auditory-specific
microcircuits. Thereby appropriate activities for auditory-specific
contrast amplification may be reinstated.

In summary, auditory experience through initial CI stimula-
tion is potentially sufficient to drive feedforward and feedback
PV1 interneuron microcircuits in auditory-specific circuits, and
this may be a prerequisite for a tinnitus percept to occur in a deaf
ear when the CI is turned off. Electrical stimulation of the active
CI is however essential to suppress the tinnitus percept.

Conclusion and future perspectives
In conclusion, we consider that congenital deafness (with a low
risk of tinnitus) differs from acquired deafness (with high risk of
tinnitus). With acquired deafness, the maturation of fast (high-
SR) auditory fiber processing and emergence of specific inhibi-
tory PV1 interneuron microcircuits, essential for accentuation of
relevant over irrelevant auditory stimuli, have already taken
place. This maturation does not occur in congenital deafness
because of the lack of auditory experience. In this view, fast
(high-SR) auditory fiber characteristics developing after hearing
onset provide the drive to establish feedforward and feedback
PV1 interneuron microcircuits and to maintain feedback PV1

interneuron microcircuits required for memory-linked rein-
forcement processes. Upon critical loss of fast (high-SR) auditory
fiber processing, hyperexcitability reemerges through loss of
tonic PV1 interneuron activity and reversion to depolarizing
GABAergic signaling. Tinnitus sufferers cannot ignore the audi-
tory percepts resulting from this hyperexcitability, and this pro-
motes further alertness to the phantom noise (Figs. 3B, 4A, red
curved arrow, tinnitus).

Fast (high-SR) auditory fiber processing cannot be lost in ei-
ther congenital bilateral or single-sided deafness because it was
never established. Upon cochlear implantation, however, part of
the fast auditory processing circuit may develop or be reestab-
lished, albeit with lower resolution (Fig. 4A, Risk of Tinnitus). In
CI-ON mode, electrical stimulation through CI may be able to
install context-specific recruitment of contrast amplification
mechanisms, enabling the suppression of tinnitus (Fig. 4B,
Silenced Tinnitus).

The present article is premised on the hypothesis that various
tinnitus subtypes and mechanisms have a final common pathway
that acts between the onset of hearing loss and the appearance of
the tinnitus percept. Future studies should investigate whether
other tinnitus etiologies (Henry et al., 2014; Moller et al., 2015)
may be related to the framework suggested here. In this context,
(1) the extreme sensitivity and vulnerability of particular inhibi-
tory PV1 interneuron synapses to any metabolic fatigue or
shortfall (Kann, 2016), or (2) the observation that on injury/
trauma or glial inflammation a pathologic GABA signaling, that
is, excitatory instead of inhibitory (Shih et al., 2017), should be
considered as triggers for tinnitus.

In a unified effort across the tinnitus community, tinnitus
research (1) could focus on whether a selective loss of one popu-
lation of auditory nerve fibers (low-SR or high-SR) can explain
why some people acquire tinnitus and other do not; (2) may
investigate the fragility of fast (high-SR) auditory fiber processing
under stress, comorbidities, traumatic, or inflammatory events;
(3) should search for pharmaceutical or neuromodulatory tools
that enable noninvasive reinstatement of a driving force to main-
tain feedback fast-inhibitory PV1 interneuron microcircuits and
feedback control of frontostriatal, attentional and stress-control-
ling circuits; (4) might explicitly analyze the restorative capacity
of the identified feedback mechanisms through noninvasive neu-
rostimulation devices, customized sound therapies, CIs, or medi-
cations; and (5) explore the relationship between positive effects
of CI and cognition (Ramakers et al., 2015; Bruggemann et al.,
2017; Knopke et al., 2017) in the context of fast (high-SR) audi-
tory fiber processing and suppression of tinnitus and other
comorbidities.
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